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ABSTRACT

Claims reserving models are usually based on data recorded in run-off tables,
according to the origin and the development years of the payments. The
amounts on the same diagonal are paid in the same calendar year and are
influenced by some common effects, e.g. claims inflation, that can induce
dependence among payments. We introduce Hierarchical Generalized Linear
Models (HGLM) with risk parameters related to the origin and the calendar
years, in order to model the dependence both among payments of the same
origin year and of the same calendar year. Besides the random effects, the
linear predictor also includes fixed effects. All the parameters are estimated
within the model by the h-likelihood approach. The prediction for the out-
standing claims and an approximate formula to evaluate the mean square
error of prediction are obtained. Moreover, a parametric bootstrap procedure
is delineated to get an estimate of the predictive distribution of the outstand-
ing claims. A Poisson-gamma HGLM with origin and calendar year effects
is studied extensively and a numerical example is provided. We find that
the estimates of the correlations can be significant for payments in the same
calendar year and that the inclusion of calendar effects can determine a re-
markable impact on the prediction uncertainty.

Keywords: Calendar year effects, Claims reserving, Dependence modeling,
Hierarchical generalized linear models, Poisson-gamma model, Mean square
error of prediction, Simulation.

1 Introduction

Claims reserving in non-life insurance is often based on run-off data where claim pay-
ments are recorded according to the origin year and the development year. The pay-
ments on the same diagonal of the run-off table share the same calendar/accounting
year, hence they are subject to common effects connected with the year of pay-
ment, that can induce dependence among payments of the same calendar year. As a
consequence, dependencies among payments of different origin years arise, whereas
stochastic claims reserving models usually assume the independence. It emerges the
need of adequately model such dependencies by taking account of the calendar year
effects.
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The calendar year effect is also generally referred to as claims inflation. Verbeek
(1972)[21] and Taylor (1977)[19] introduce the separation method to separate claims
inflation from the development pattern of the payments. Björkwall et al. (2010)[1]
develop a bootstrap procedure for estimating the predictive distribution of the claims
reserve and assessing the prediction error for the separation method. Jessen and
Rietdorf (2011)[10] present two models with diagonal effects to account for claims
inflation; the parameter estimation is based on the separation method and for the
forecast of the diagonal effects an autoregressive process is used. Bohnert et al.
(2016)[2] analyze the main driving factors for inflation in automobile insurance.
They study the impact of claims inflation on claims reserving and extend the model
in Björkwall et al. (2010)[1] by accounting for an extrapolation of future claims
inflation using stochastic inflation models. Within the Chain-Ladder-type models
the impact of claims inflation is studied e.g. in Brydon and Verrall (2009)[3] and in
Kuang et al. (2011)[9].

Other contributions in literature mainly focus on modeling stochastic depen-
dences among payments, caused by calendar year effects, in order to study the in-
fluence of such dependences on claims reserves and prediction errors. In this context,
by assuming a Bayesian set-up, Wüthrich (2010)[23] studies a Bayes Chain Ladder
model that allows for inference on calendar year random parameters. Within the
same framework, Salzmann and Wüthrich (2012)[18] define a multivariate Bayes
Chain Ladder model that enables modeling dependence along accounting years and
study the sensitivities of claims reserves and prediction uncertainty as a function
of a correlation parameter within accounting years. In the credibility framework,
Bühlmann and Moriconi (2015)[5] develop a stochastic claims reserving model that
extends the Bühlmann-Straub claims reserving model. Besides the risk parame-
ters for the origin years, also risk parameters for the calendar years are considered,
whereas the development pattern is assumed as given and equal to the Chain Ladder
one.

We refer to the previous papers for further references on claims inflation modeling
and calendar year effects.

The quoted studies show that the calendar year effects might be significant for the
reserve estimate and can have a substantial impact on the evaluation of prediction
uncertainty.

In this paper, we define a model that allows for the introduction of dependences
along origin and payment years and, on the lines traced by the last-mentioned pa-
pers, we study the effects of such dependences on claims reserve evaluation, whereas
we do not deal with the problem of claims inflation estimation and extrapolation.

In the Bayesian and credibility frameworks, the dependence induced by calendar
year effects is modeled through diagonal risk parameters. An extension of General-
ized Linear Models (GLM), the Hierarchical Generalized Linear Models (HGLMs)
(Lee et al. (2006)[15]), allows including risk parameters in the model, by means of
random effects in the linear predictor. Claims reserving in the HGLM framework
is considered in Gigante et al. (2013a)[6], (2013b)[7] and (2016)[8]. The HGLM
approach to claims reserving is also discussed in Verrall and Wüthrich (2015)[22].

We assume for the standardized payments a HGLM with risk parameters related
to the origin and the calendar years. The two sets of risk parameters allow modeling
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the dependence among payments of the same origin year and of the same calendar
year, respectively. Moreover, the parameters of the distributions of the random ef-
fects allow incorporating external information such as expert opinion. Besides the
random effects, the linear predictor also includes fixed effects that can be used to
model the claims development pattern. All the parameters are estimated within
the model by maximum h-likelihood. We introduce a predictor for the outstanding
claims and take advantage of an approximate formula, developed in Gigante et al.
(2013a), to evaluate the mean square error of prediction (MSEP). The approxima-
tions are based on asymptotic results and the calculations are straightforward once
the model estimates are available. The model is also appropriate for a simulation
approach, so that, through a parametric bootstrap procedure, it is possible to get
an estimate of the predictive distribution of the outstanding claims and to evaluate
the MSEP. Moreover, simulation allows us to check the effect of the approximations
in the formula of the MSEP.

In particular, we study a Poisson-gamma HGLM with random origin and calen-
dar year effects, whereas the claims development pattern is modeled by fixed effect
parameters. For this model we provide a numerical example. The parameters of
the distributions of the origin year random effects are used to incorporate external
information on the ultimate claims. The estimates of the covariances between pay-
ments show remarkable correlations for payments of the same calendar year. As in
other studies, it results that the insertion of diagonal risk parameters has an effect
on the claims reserve estimate and an even more remarkable effect on the MSEP.

The paper is organized as follows. In Section 2, we introduce the model assump-
tions. In Section 3 we recall the estimation procedure for the HGLMs based on
the h-likelihood. Section 4 is devoted to the prediction problem and to the MSEP
evaluation in claims reserving. In Section 5 a Poisson-gamma HGLM with calendar
year effects is introduced. In Section 6, we develop a numerical example on the same
data set used in Bühlmann and Moriconi (2015)[5] and Gigante et al. (2013b)[7],
in order to make some comparisons of the results of the three models. Section 7
contains a simulation study. Finally, Section 8 concludes the paper.

2 Model assumptions

With respect to the claims of a portfolio, let Pi,j be the incremental payments and
Yi,j = Pi,j/ωi,j the payments standardized with respect to some known exposure
measure ωi,j, where i denotes the origin year (e.g. accident year, underwriting year)
and j the development year, i, j = 0, . . . , t. We assume that all claims are settled
within t + 1 years and that a run-off triangle of data yi,j = pi,j/ωi,j, i, j = 0, . . . , t,
i+ j ≤ t, is available.

For the random process {Yi,j, i, j = 0, . . . , t}, we consider a mixture model de-
pending on a vector of risk parameters related to the origin and the calendar (ac-
counting, payment) years. The model belongs to the class of Hierarchical General-
ized Linear Models. The assumptions, the estimation procedure and the prediction
approach trace those in Gigante et al. (2013a)[6], (2013b)[7], (2016)[8], to which we
refer for the technical details.
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Let (U ,V ) = (U0, . . . , Ut, V0, . . . , V2t) the vector of the risk parameters, where
Ui is related to the origin year i and Vi+j to the calendar year i+ j.

Model Assumptions

(a1) Independence assumptions

The components of the risk parameter (U ,V ) = (U0, . . . , Ut, V0, . . . , V2t) are
independent.

Conditionally on (U ,V ), the response variables Yi,j, i, j = 0, . . . , t, are inde-
pendent.

With respect to the risk parameters (U ,V ), the conditional distribution of
Yi,j only depends on Ui and Vi+j.

(a2) Distributional assumptions for the responses conditional on the risk parameters

The distribution of Yi,j|(Ui, Vi+j) = (ui, vi+j) belongs to an Exponential Dis-
persion Family (EDF) with cumulant and variance functions b and V , respec-
tively. So that

E[Yi,j|(Ui, Vi+j) = (ui, vi+j)] = µi,j,

var[Yi,j|(Ui, Vi+j) = (ui, vi+j)] =
φi,j
ωi,j

V (µi,j).

As it is quite natural, the weights are assumed equal to the exposure measures,
however this is not necessary.

(a3) Structural assumptions for the response variables

The expectations of the conditional standardized payments are given by

E[Yi,j|(Ui, Vi+j) = (ui, vi+j)] = µi,j = g−1(xTi,jβ + wU,i + wV,i+j),

where xi,j is a vector of covariates; β are the regression parameters, called
fixed effects ; w = (wU,0, . . . , wU,t, wV,0, . . . , wV,2t) are the random effects, with
wU,i = gU(ui) and wV,i+j = gV (vi+j). The functions g, gU and gV are strictly
monotone with first and second order continuous derivatives.

(a4) Distributional assumptions for the risk parameters

Let WU,i = gU(Ui) and WV,i+j = gV (Vi+j). We assume that the densities of
WU,i and WV,i+j are

fWU,i
(w) = exp

{
1

λU,i
(ψU,iθU − bU(θU))

}
cU(ψU,i, λU,i),

fWV,i+j
(w) = exp

{
1

λV,i+j
(ψV,i+jθV − bV (θV ))

}
cV (ψV,i+j, λV,i+j),
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where: bU , bV are cumulant functions of EDFs; θU = b′−1U (g−1U (w)), θV =
b′−1V (g−1V (w)); ψU,i, λU,i, ψV,i+j, λV,i+j are parameters; cU(ψU,i, λU,i),
cV (ψV,i+j, λV,i+j) are normalizing functions.

The above assumptions define a mixture model with mixing distribution the
distribution of W = (WU ,W V ) = (WU,0, . . . ,WU,t,WV,0, . . . ,WV,2t). Since the risk
parameters are introduced in the regression structure through random effects, the
model belongs to the class of mixed models.

The random parameters Ui and Vi+j take account of risk characteristics of the
origin year i and the calendar year i + j, respectively. Such risk parameters allow
for the modeling of dependence of the Yi,j related to origin year effects (e.g. cor-
relation patterns among repeated payments of claims of the same origin year) and
to accounting year effects (e.g. claims inflation). Note that, calendar year effects,
such as claims inflation or, as pointed out in Taylor (1977), exogenous influences
operating in experience years, influence all the payments in the same diagonal of
the run-off table and introduce dependence also between different accident years.

In fact, the covariances of the response variables, for (i, j) 6= (h, k), are

cov(Yi,j, Yh,k) = E [cov(Yi,j, Yh,k)|(U ,V )] + cov [E(Yi,j|(U ,V ), E(Yh,k|(U ,V )]

= cov
[
g−1(xTi,jβ +WU,i +WV,i+j), g

−1(xTh,kβ +WU,h +WV,h+k)
]
, (2.1)

where the second equality follows from the conditional independence of the response
variables, so that cov(Yi,j, Yh,k)|(U ,V ) = 0. The last term is null if i 6= h and
i + j 6= h + k, due to the independence of the random effects, but it is not null
otherwise, that is if the two responses refer to the same origin year, i = h, or to the
same calendar year, i+ j = h+ k.

Coming back to the model specifications, if, in particular, gU is the canoni-
cal link of bU , that is gU = b′−1U , then we have θU = w and the distribution of
WU,i = b′−1U (Ui) belongs to the conjugate family of the EDF with cumulant bU . In
this case, under suitable hypotheses, the hyperparameters ψU = (ψU,0, . . . , ψU,t),
λU = (λU,0, . . . , λU,t) are related to the moments of the risk parameter U . Specif-
ically, ψU,i = E(Ui) (see e.g. Jewell (1974)[11]; Bühlmann, Gisler (2005)[4]) and,
in Tweedie models with variance function V (µ) = µp, λU,i = var(Ui)/E(Up

i ) (see
Ohlsson, Johansson (2006)[17]). Similar considerations apply to WV,i+j.

If b = bU = bV and g = gU = gV = b
′−1, then the distributions of both WU,i =

b
′−1(Ui) and WV,i+j = b

′−1(Vi+j) are conjugate of the distribution of Yi,j|(Ui, Vi+j) =
(ui, vi+j). In this case, the HGLM is called conjugate.

In the following, we assume that the parameters ψU = (ψU,0, . . . , ψU,t), ψV =
(ψV,0, . . . , ψV,2t) are given and that they are the expected values of the risk pa-
rameters. We remark that the values of the parameters ψU , ψV can be used to
incorporate external information into the model (see the example in Section 6).

We remark that the risk parameters are assumed to be independent. This as-
sumption could be questionable particularly for the calendar year parameters, since
there may be trends in the data due to calendar year effects. It can be accepted if
we interpret the calendar year parameters as random variations around a trend and
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assume that any calendar year trend (e.g. economic inflation) was preliminarily re-
moved from the data. Alternatively, we could incorporate in the model some trend
estimates through the ψV = (ψV,0, . . . , ψV,2t). This would require side-estimates
that would not be integral to the model, by using any available exogenous or collat-
eral information, but possibly also informed by the model estimates of past calendar
year effects. However, we note that in the case of superimposed inflation it could
be difficult to detect a trend. Moreover, superimposed inflation may appear in a
form that involves inherent serial correlation. Therefore, on the one hand, the in-
dependence assumption simplifies the model, but on the other, it determines some
limitations.

3 Parameter estimation

In order to estimate the parameters in models with fixed and random effects, Lee,
Nelder (1996) [13], Lee, Nelder (2001) [14], Lee et al. (2006) [15], introduced the
hierarchical log-likelihood. In our problem the h-log-likelihood is the joint log-density
evaluated at the data y = (yi,j, i+ j ≤ t),

h = log f(Y ,W ) = lY |W=w + lWU
+ lWV

, (3.1)

where f(Y ,W ) denotes the joint density of (Y ,WU ,W V ), lY |W=w the log-likelihood
of Y |W = w, which is equal to the log-likelihood of Y |(U ,V ) = (u,v), lWU

and
lWV

are the logarithms of the densites of WU and W V .
We do not explain here in detail the estimation approach, since it can be ob-

tained by simple adaption of the procedures described in Gigante et al. (2013a)[6],
(2016)[8]. We just outline it and remark some specific aspects of the current model.

If in addition to ψU , ψV and ω = (ωi,j, i, j = 0, . . . , t), also the dispersion
parameters φ = (φi,j, i, j = 0, . . . , t), related to the standardized payments, and λU ,
λV , related to the risk parameters, are known, ignoring irrelevant constant terms,
we get

h(β,w;φ,λU ,λV ;y,ψU ,ψV ,ω) =
∑

i,j:i+j≤t

ωi,j
φi,j

[yi,jθi,j − b(θi,j)]

+
t∑
i=0

1

λU,i
[ψU,iθU,i − bU(θU,i)] +

∑
i,j:i+j≤2t

1

λV,i+j
[ψV,i+jθV,i+j − bV (θV,i+j)] , (3.2)

where

θi,j = b′−1(g−1(xTi,jβ + wU,i + wV,i+j),
θU,i = b′−1U (g−1U (wU,i)),
θV,i+j = b′−1V (g−1V (wV,i+j)).

The h-log-likelihood (3.2) can be viewed as the log-likelihood of an augmented
GLM for the data y and pseudo-data ψU , ψV , with weights ωi,j/φi,j, i + j ≤ t,
1/λU,i, i = 0, . . . , t, 1/λV,i+j, i + j ≤ 2t, respectively, and dispersion parameter 1.
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Notice that in order to interpret (3.2) as the log-likelihood of a genuine GLM, we
should have b = bU = bV and g = gU = gV .

The augmented GLM has the following regression structure

ηi,j = g(µi,j) = xTi,jβ + wU,i + wV,i+j, i+ j ≤ t,
ηU,i = gU(ui) = wU,i, i = 0, . . . , t,
ηV,i+j = gV (vi+j) = wV,i+j, i+ j ≤ 2t.

The maximum h-log-likelihood estimates of the fixed and random effects δ =
(βT ,wT )T are the solutions of the system{

∂h/∂β = 0
∂h/∂w = 0.

It is easy to verify that the above conditions imply that the estimate of wV,i+j,
with i+ j > t, coincides with gV (ψV,i+j):

ŵV,i+j = gV (ψV,i+j), i+ j > t. (3.3)

The system can be solved by the Iterative Weighted Least Squares algorithm.
The inverse I(δ̂)−1 of the Fisher information matrix of the augmented GLM, eval-
uated at the estimate δ̂, is an estimate of the variance-covariance matrix

var

[
β̃

w̃ −W

]
,

where β̃, w̃ are the estimators of the fixed and random effects. The estimator w̃ of
the parameter w is a predictor of the random vector W . In particular, by (3.3), the
maximum h-log-likelihood estimator of wV,i+j, with i+ j > t, is w̃V,i+j = gV (ψV,i+j).

In this way, by estimating the augmented GLM, we get estimates of the model
parameters and of the standard errors of their estimators.

The HGLMs have been extended to quasi-HGLMs, allowing for the possibility of
specifying only the first two moments of the distributions of the conditional responses
and/or the risk parameters. Moreover, by following the Extended Quasi-Likelihood
approach proposed by Nelder and Pregibon (1987) [16], also the dispersion param-
eters can be estimated and they can have their own regression structures. The
parameters of such models can be estimated through an algorithm in which four
interconnected GLMs are fitted iteratively: the above augmented GLM to obtain
the fixed and random effects for given dispersion parameters, and three suitable
GLMs with gamma distributed responses to obtain the regression parameters of the
dispersion components, given the fixed and random effects.

The delineated estimation process allows obtaining the estimates of the fixed
effects β̂, of the origin year effects ûi, i = 0, . . . , t, of the calendar year effects v̂i+j,
i+ j = 0, . . . , 2t, and of the variance-covariance matrix of the parameter estimators.

4 Reserve prediction and prediction error

In order to predict the outstanding claims and evaluate the quality of the prediction,
as usually done, we restrict ourselves to considering the exposures related to the
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origin years only, ωi. Moreover, we assume that the dispersion parameters are
constant, denoted by φ, λU , λV .

Let

Ri =
t∑

i=t−i+1

Pi,j =
t∑

i=t−i+1

ωiYi,j,

denote the outstanding claims of the origin year i, i = 1, . . . , t, and

R =
t∑
i=1

Ri =
∑

i,j:i+j>t

Pi,j =
∑

i,j:i+j>t

ωiYi,j.

the total outstanding claims.
The conditional expectation of R, at time t, is

E(R|Dt) =
∑

i,j:i+j>t

ωiE(Yi,j|Dt), (4.1)

where Dt = {Yi,j, i+ j ≤ t}.
By the tower property of the conditional expectation and the conditional inde-

pendence of the Yi,j, given (U ,V ), we get

E(Yi,j|Dt) = E [E(Yi,j|Dt,U ,V )|Dt] = E
[
g−1(xTi,jβ +WU,i +WV,i+j)|Dt

]
. (4.2)

Now, we assume that the parameter estimates β̂, ŵ and the corresponding esti-
mators β̃, w̃ provide estimates and estimators of the linear predictors xTijβ+wU,i +
wV,i+j, also for i + j > t. Note that this does not allow considering the payment
year as a categorical covariate in xi,j.

As a predictor for Yi,j, i+j > t, we consider the following estimator of E(Yi,j|Dt)

Ỹi,j = g−1(xTi,jβ̃ + w̃U,i + w̃V,i+j),

where β̃, w̃U , w̃V are the maximum h-log-likelihood estimators. As noted in Section
3, the predictors of the random effects related to future calendar years are

w̃V,i+j = gV (ψV,i+j), i+ j = t+ 1, . . . , 2t.

Hence, future diagonal effects are forecast as functions of hyperparameters asso-
ciated with the distributions of diagonal risk parameters; these forecasts are certain
because the hyperparameters are fixed. We note that also in Bühlmann, Moriconi
(2015) [5] the estimators of the random parameters related to future calendar years
are assumed to be certain, given by the a priori expected values of such parame-
ters. Here, this is implied by the HGLM estimation approach, since they are the
maximum h-log-likelihood estimators.

We obtain the following predictor for the total outstanding claims

R̃ =
∑

i,j:i+j>t

ωig
−1(xTi,jβ̃ + w̃U,i + w̃V,i+j), (4.3)
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and the reserve estimate

R̂ =
∑

i,j:i+j>t

ωig
−1(xTi,jβ̂ + ŵU,i + ŵV,i+j). (4.4)

As a measure of prediction uncertainty, we use the conditional mean square
error of prediction which takes account of the fluctuations of the outstanding claims
around the predictor R̃. As in previous papers on claims reserve evaluation in the
HGLM approach (see Gigante et al. (2013a)[6], (2013b)[7], (2016)[8]), we use an
approximate formula for the MSEP based on the following decomposition

MSEPR|Dt(R̃) = E
[
(R− R̃)2|Dt

]
= var(R|Dt) +

(
E(R|Dt)− R̃

)2
= E[var(R|U ,V )|Dt] + var[E(R|U ,V )|Dt] +

(
E(R|Dt)− R̃

)2
. (4.5)

In the current model, the estimate becomes

M̂SEPR|Dt(R̃) =
∑

i,j:i+j>t

φ̂

ωi
V
(
g−1(xTi,jβ̂ + ŵU,i + ŵV,i+j)

)
+
{
J r(w)H−122 J r(w)T

}
|δ̂ +

{
Jf (β)G−1Jf (β)T

}
|δ̂ , (4.6)

where J r and Jf denote the Jacobian matrices of the functions

r(w) =
∑

i,j:i+j>t

ωig
−1(xTi,jβ + wU,i + wV,i+j),

f(β) =
∑

i,j:i+j>t

ωig
−1(xTi,jβ + w̃U,i(β) + w̃V,i+j(β)),

with w̃(β) denoting the maximum h-log-likelihood estimator ofw obtained for given
β. The Jacobian matrix of w̃(β) is given by −H−122H

T
12 (Lee, Nelder (1996, Ap-

pendix C)[13], Lee, Ha (2010)[12]). The matrices H−122 , G−1 and HT
12 are obtained

from the Fisher information matrix of the augmented GLM and its inverse

I(δ) =

[
H11 H12

HT
12 H22

]
, I(δ)−1 =

[
G−1 F
F T C

]
, (4.7)

where H11 denotes the block of the second derivatives of the h-log-likelihood with
respect to β, H22 denotes the block of the second derivatives with respect to w and
H12 the block of the mixed derivatives.

The estimate of the conditional MSEP (4.5) takes account of the variability in the
estimates of both the regression parameters β and the random effects w. However,
it does not allow for the variability in the dispersion parameter estimates, γ̂φ, γ̂λU
and γ̂λV . An insight into this aspect can be obtained from the standard errors
estimated through the Fisher information matrices of the GLMs used to estimate
such parameters.
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In conclusion of this section, we would like to stress the usefulness of a closed
formula for the MSEP, easy to calculate, although approximate, to get an evaluation
of the quality of the reserve prediction. Alternatively, a simulation approach can
be used, which allows getting much more information on the predictive distribu-
tion. However, we remark that in mixture models simulation techniques are often
computationally demanding, because they require repeated estimation of the model
parameters on the basis of re-sampled data. In Section 7 we illustrate a simulation
approach to get estimates of the MSEP and of the predictive distribution of the
outstanding loss liabilities.

5 Poisson-gamma HGLM with calendar year ef-

fects

As an example of a model that falls within the scope of the paper, we consider an
extension of the Poisson-gamma HGLM in Gigante et al. (2013b) [7], obtained by
adding random calendar year effects.

More precisely, in the model assumptions of Section 2, we consider the following
specifications.

The response variables Yi,j are the incremental payments Pi,j (unstandardized).
In (a2), the conditional distribution of Yi,j|(Ui, Vi+j) = (ui, vi+j) is overdispersed

Poisson, with constant dispersion parameter φ and weight 1. Hence we have a
quasi-HGLM.

In (a3), the link function g and the functions gU , gV , that transform the risk
parameters, are the logarithm. It follows that we obtain a multiplicative model for
the conditional expected value µi,j of Yi,j,

E[Yi,j|(Ui, Vi+j)] = exp(βj + log(Ui) + log(Vi+j)) = eβjUiVi+j,

where the fixed effects are related to the development years only.
In (a4), the distributions of WU,i = log(Ui) and WV,i+j = log(Vi+j) are conjugate

of the Poisson EDF, with constant dispersion parameters, that is

fWU,i
(w) = exp

{
1

λU
(ψU,iw − exp(w))

}
cU(ψU,i, λU),

fWV,i+j
(w) = exp

{
1

λV
(ψV,i+jw − exp(w))

}
cV (ψV,i+j, λV ).

Hence, Ui and Vi+j are gamma distributed with E(Ui) = ψU,i, E(Vi+j) = ψV,i+j,
assumed to be given, and var(Ui) = ψU,iλU , var(Vi+j) = ψV,i+jλV .

We discuss some aspects of the model.
The covariances of the response variables are (see (2.1))
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cov(Yi,j, Yh,k) =



var(Yi,j) i = h, i+ j = h+ k

eβjeβkvar(Ui)E(Vi+j)E(Vh+k) i = h, i+ j 6= h+ k

eβjeβkE(Ui)E(Uh)var(Vi+j) i 6= h, i+ j = h+ k

0 i 6= h, i+ j 6= h+ k

(5.1)

where

var(Yi,j) = E [var(Yi,j|Ui, Vi+j)] + var [E(Yi,j|Ui, Vi+j)]
= E

[
φeβjUiVi+j

]
+ var

[
eβjUiVi+j

]
= φeβjE(Ui)E(Vi+j) + (eβj)2

[
E(U2

i )E(V 2
i+j)− E(Ui)

2E(Vi+j)
2
]
. (5.2)

The correlations of payments of the same origin year or of the same calendar year
are all positive. Given β and ψU , the greater the variance of Ui, the greater the
covariances of payments of origin year i. Analogously, given β and ψV , the greater
the variance of Vi+j, the greater the covariances of payments of calendar year i+ j.

As for the parameter estimates, similarly as in Gigante et al. (2013b) [7], it can
be proved that they satisfy the following conditions



exp(β̂j) =
∑t−j

i=0 yi,j∑t−j
i=0 ûiv̂i+j

j = 0, . . . , t

ûi = ẑU,i

∑t−i
j=0 yi,j∑t−i

j=0 exp(β̂j)v̂i+j
+ (1− ẑU,i)ψU,i i = 0, . . . , t

v̂k = ẑV,k

∑
i+j=k yi,j∑

i+j=k exp(β̂j)ûi
+ (1− ẑV,k)ψV,k k = 0, . . . , t

v̂k = ψV,k k = t+ 1, . . . , 2t

(5.3)

with

ẑU,i =

∑t−i
j=0 exp(β̂j)v̂i+j∑t−i

j=0 exp(β̂j)v̂i+j + φ̂/λ̂U
(5.4)

and

ẑV,k =

∑
i+j=k exp(β̂j)ûi∑

i+j=k exp(β̂j)ûi + φ̂/λ̂V
. (5.5)

Therefore, the risk parameter estimates follow a sort of credibility formula, in
that they are mixtures of the a priori expected values and of estimates based on the
available data. The weights depend on the ratios φ̂/λ̂U and φ̂/λ̂V of the estimates
of the dispersion parameters.
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By exploiting the expression of the origin year effect estimates, ûi, the reserve
estimate R̂i is given by a mixture of two components: a Chain Ladder-type re-
serve, R̂CL−type

i , that is based on the last cumulative payments, and a Bornhuetter-
Ferguson-type reserve, R̂BF−type

i , that takes account of the external estimate ψU,i.
In fact, it is easy to verify that

R̂i = ûi

t∑
j=t−i+1

exp(β̂j)v̂i+j

=

(
ẑU,i

∑t−i
j=0 yi,j∑t−i

j=0 exp(β̂j)v̂i+j
+ (1− ẑU,i)ψU,i

)
t∑

j=t−i+1

exp(β̂j)v̂i+j

= ẑU,iR̂
CL−type
i + (1− ẑU,i)R̂BF−type

i , (5.6)

where

R̂CL−type
i =

(1− b̂i,t−i)
b̂i,t−i

t−i∑
j=0

yi,j, R̂BF−type
i = ψU,i

(
t∑

j=0

exp(β̂j)v̂i+j

)
(1− b̂i,t−i),

with

b̂i,h =

∑h
j=0 exp(β̂j)v̂i+j∑t
j=0 exp(β̂j)v̂i+j

, h = 0, . . . , t. (5.7)

Note that b̂i,h, h = 0, . . . , t, can be interpreted as the prediction of the claims
development pattern of origin year i,

bi,h =
E(Ci,h)

E(Ci,t)
=

∑h
j=0 exp(βj)ψV,i+j∑t
j=0 exp(βj)ψV,i+j

, h = 0, . . . , t,

where Ci,j denotes the cumulative payments in cell (i, j).
As it is well known, in the Chain Ladder method the outstanding loss liabilities

of origin year i are given by

RCL
i = Ci,t−i

(1− bt−i)
bt−i

,

where bh = 1/(fhfh+1 . . . ft−1) denotes the claims development pattern calculated
from the Chain Ladder development factors fj, j = 0, . . . , t− 1 (see Wüthrich and

Merz (2008)[24], (2.1)). So that the term R̂CL−type
i in (5.6) can be related to this

reserve, but note that in our model the claims development pattern depends on the
origin year and its estimate is also affected by the external estimates ψU,i, ψV,i+j. On
the other hand, in the Bornhuetter-Ferguson method the outstanding loss liabilities
of origin year i are given by

RBF
i = µi(1− bt−i),

where µi represents an external estimate of the ultimate claims of origin year i and
again bh denotes the claims development pattern, usually calculated from the Chain
Ladder factors. Hence the term R̂BF−type

i can be related to a Bornhuetter-Ferguson
reserve, if ψU,i is seen as an external estimate of the ultimate claims of origin year
i, that is corrected by taking account of the run-off data through the multiplicative
term

∑t
j=0 exp(β̂j)v̂i+j.
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6 Numerical results

In this section we describe the results of a numerical example for the Poisson-gamma
HGLM with random origin and calendar year effects described in Section 5.

The data are the incremental payments and the prior ultimate claims provided
in Table 2.5 and in Table 2.4 in Wüthrich and Merz (2008)[24]. The same data have
been used in several papers so that some comparisons can be made. In particular,
they have been used in Gigante et al. (2013b) [7] to illustrate a Poisson-gamma
HGLM with random origin year effects and in Bühlmann and Moriconi (2015) [5]
to illustrate a credibility model with random origin year and diagonal effects.

As for the expected values of the risk parameters, we assume ψU,i = E(Ui) equal
to the prior ultimate claims reported in Table 1, so that the external information
on the ultimate claims is incorporated into the model, and ψV,i+j = E(Vi+j) = 1.
Therefore, we assume that there is no trend in the expected calendar year effects. As
noted in Bühlmann and Moriconi (2015) [5] and remarked in Section 2, this assump-
tion would request to remove preliminarily any calendar year trend (e.g. economic
inflation) from the data. It follows that the expected values of the unconditional
payments are E(Yi,j) = exp(βj)ψU,i. Hence, the expected ultimate claim amount
of origin year i, E(Ci,t) = ψU,i

∑t
j=0 exp(βj), is assumed to be proportional to the

external information on the ultimate claims ψU,i and, according to the usual param-
eter interpretation, E(Yi,j) is the product of the expected ultimate claim amount of
origin year i and the proportion of such amount paid in development year j.

Now we come to the model estimate (for implementation, we have developed our
own code in SAS).

In Table 1 are reported the estimates exp(β̂j), j = 0, . . . , t, ûi = exp(ŵU,i),
i = 0, . . . , t, and v̂k = exp(ŵV,k), k = i+ j ≤ t, whereas, for k = i+ j > t, v̂k = 1. It
is easy to check that the development year factors are rather similar to the Chain
Ladder ones, in particular for low development years. The parameters related to
the origin year effect are quite close to their expected values. As for the parameters
related to the calendar year effect, several of them are sensibly different from 1 (the
expected value), in particular for the calendar years 1, 2, 8, 9. This indicates that
such effect is appreciable in the data. As noted above, for the sake of comparison
with Bühlmann and Moriconi (2015) [5], we have set the parameters ψV,i+j equal to
1, hence we have assumed that any trend was already removed from the data. On
the contrary, the estimates suggest the presence of a trend in the data, that should
be accounted for through the ψV,i+j or by inserting in the fixed part of the model a
regression component related to the payment year.

The estimates of the dispersion parameters are φ̂ = 12, 281, λ̂U = 5, 269 and
λ̂V = 0.00503. It follows that, the estimates of the coefficients of variation of the
risk parameters Ui, (λU/E(Ui))

1/2, are about 2% and the estimates of the coefficients
of variation of the risk parameters Vi+j are about 7%. The rather high coefficients
of variation for the calendar year effects suggest that a model with random effects
for such component is suitable for this data.

We point out that the model has not been selected through a validation proce-
dure, but it has been chosen to derive some comparisons with the example developed
on the same dataset in Gigante et al. (2013b), in order to appreciate the effect of
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i, j, k exp(β̂j) ψU,i ûi v̂k ẑU,i ẑV,k
0 0.5190 11,653,101 11,827,546 0.9776 0.2804 0.7155
1 0.2565 11,367,306 11,271,388 1.1045 0.2927 0.7844
2 0.0620 10,962,965 11,064,095 1.0884 0.2874 0.7933
3 0.0203 10,616,762 10,653,721 1.0395 0.2796 0.7922
4 0.0138 11,044,881 11,062,856 1.0097 0.2743 0.7964
5 0.0067 11,480,700 11,497,398 1.0098 0.2697 0.8026
6 0.0051 11,413,572 11,391,764 0.9581 0.2601 0.8046
7 0.0011 11,126,527 10,943,022 0.9563 0.2540 0.8011
8 0.0011 10,986,548 10,893,966 0.9365 0.2365 0.7990
9 0.0015 11,618,437 11,665,042 0.9195 0.1699 0.8051

Table 1. Parameter estimates

the calendar year components. However, the graphs of the studentized deviance
residuals in Figure 1 do not show remarkable model failures.

Figure 1. Residuals versus fitted

The weights (5.4), (5.5) are reported in the last two columns of Table 1; ẑU,i,
i = 0, . . . , t, show a decreasing trend with increasing i, whereas ẑV,k, k = 0, . . . , t,
show an increasing trend with increasing k. Therefore, in general, the more the
available data in the run-off triangle, the higher the weights. Note the quite high
values of the weights for the calendar year effects, for k = 0, . . . , t: this entails that

the parameter estimates v̂k are nearer to the observed component,
∑

i+j=k yi,j∑
i+j=k exp(β̂j)ûi

,

than to the expected value, ψV,k, in line with the above remark on the presence of a

calendar year effect in the data. This happens because, in the weights ẑV,k, φ̂/λ̂V =

2, 441, 202 is low with respect to
∑

i+j=k exp(β̂j)ûi, k = 0, . . . , t. On the contrary,

the high value of φ̂/λ̂U = 2.33 with respect to
∑t−i

j=0 exp(β̂j)v̂i+j, i = 0, . . . , t, implies
that the weights ẑU,i are not so high.

We observe that in this example the two random components act so that, if the
total observed payment of one origin year,

∑t−i
j=0 yi,j, is greater than the estimate of

its expected value, Ê(Ci,t−i) = ψU,i
∑t−i

j=0 exp(β̂j)ψV,i+j, then also the prediction of

the same payment, Ĉi,t−i = ûi
∑t−i

j=0 exp(β̂j)v̂i+j, is greater than the expected value.
Moreover, the predictions entail a smoothing effect on the latest observed diagonal
values, as can be seen in Figure 2.

The HGLM reserve predictions, R̂i = ûi
∑t

j=t−i+1 exp(β̂j), and prediction errors,
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Figure 2. Latest observed diagonal

given by the square roots of the MSEPs, are reported in Table 2. We note that, as
usual, there is considerable uncertainty in the reserve estimates in the earlier origin
years and then the relative prediction errors decrease. The prediction error for the
whole reserve as a percentage of the claims reserve is about 7.7%. As already re-
marked, the conditional MSEP estimate allows for the variability in the estimates of
the fixed effects β and also in the random effectsw = (wU,0, . . . , wU,t, wV,0, . . . , wV,2t),
not in the dispersion parameter estimates. The process error is sensibly higher than
the estimation error in all origin years, except in the first one.

Origin Reserve Prediction % Process % Estimation %
year error error error

1 16,389 20,295 123.8 14,238 86.9 14,462 88.2
2 27,841 24,917 89.5 18,553 66.6 16,633 59.7
3 38,434 27,926 72.7 21,797 56.7 17,456 45.4
4 96,297 41,488 43.1 34,712 36.0 22,722 23.6
5 176,998 54,905 31.0 47,280 26.7 27,912 15.8
6 332,200 73,887 22.2 65,533 19.7 34,128 10.3
7 540,715 93,593 17.3 84,637 15.7 39,953 7.4
8 1,213,470 146,811 12.1 134,907 11.1 57,911 4.8
9 4,291,646 355,320 8.3 329,211 7.7 133,687 3.1

Total 6,733,989 521,451 7.7 437,300 6.5 284,042 4.2

Table 2. Reserve and prediction error estimates

It is interesting to compare these results with the reserve and prediction error
estimates obtained in Gigante et al. (2013b)[7] in the Poisson-gamma HGLM with-
out calendar year effects, reported in Table 3. We note that, with respect to the
current model, the reserves and the prediction errors are underestimated. In fact,
the reserve in Table 2 is about 8% higher than that in Table 3 and even more rel-
evant is the difference between the prediction errors, about 24% higher in Table
2. Actually, as noted in several papers (e.g. Wüthrich (2010)[23], Salzmann and
Wüthrich (2012)[18], Bühlmann and Moriconi (2015)[5]), the inclusion of random
diagonal effects can be significant especially for the evaluation of the prediction
uncertainty. The higher prediction errors are implied by a more appropriate de-
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pendence modeling of the incremental payments. In this regard, we have estimated
the coefficients of correlation of the couples of payments from (5.1) and (5.2), by
plugging-in the parameter estimates. The correlations for payments related to the
same origin year are rather low, they vary from 0.005 to 0.05. In Figure 3(a), we
have plotted the correlation coefficients of (Y0,0, Y0,j), j = 1, . . . , t. The correlations
of (Y0,h, Y0,j), j = h + 1, . . . , t, are lower than those of (Y0,0, Y0,j), but they show
a pattern that is similar to the one in the figure, from h on. Similar patterns are
found for the other origin years. Differently, the correlations for payments of the
same calendar year are quite high in the first development years: the correlation
coefficients of (Yi,0, Yi−1,1) are about 0.58, the correlation coefficients of (Yi,0, Yi−2,2)
and (Yi−1,1, Yi−2,2) vary from 0.33 to 0.38. Then the correlation coefficients decrease.
For example, in Figure 3(b) we have plotted the following correlation coefficients of
the last observed calendar year corr(Y9,0, Y9−j,j), j = 1, . . . , 9. The pattern could
be explained by the type of data that are from a motor insurance portfolio where
most of the claims are paid within the second development year, as can also be seen
from the development factors reported in Table 1. The model takes account of such
correlations in the reserve evaluation.

Origin Reserve Prediction %
year error

1 15,199 21,082 138.7
2 26,125 26,155 100.1
3 34,857 28,674 82.3
4 86,623 42,357 48.9
5 159,377 55,987 35.1
6 294,565 74,221 25.2
7 470,703 92,566 19.7
8 1,086,682 142,204 13.1
9 4,061,356 312,042 7.7

Total 6,235,487 419,505 6.7

Table 3. Reserve and prediction error estimates without calendar year effects

Figure 3. (a) corr(Y0,0, Y0,j), j = 1, . . . , 9 (b) corr(Y9,0, Y9−j,j), j = 1, . . . , 9

The two components, CL-type and BF-type in (5.6), of the reserve predictions
and the still-to-come factors 1 − b̂i,t−i, with b̂i,t−i given in (5.7), are reported in
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Table 4. Note that the CL-type and BF-type reserves are rather close. This hap-
pens because, differently than the genuine Chain Ladder and Bornhuetter-Ferguson
reserves, both of them combine the external estimates and the run-off data. As a
difference to Gigante et al. (2013b)[7], the current HGLM reserves are closer to
the BF-type reserves, than to the CL-type. This is explained by the weights ẑU,i
that are all lower than 30%. However, the other comments in the quoted paper still
apply here. In fact, as already noted, the still-to-come factors show that, in this
portfolio, most of the claim amount for a given origin year is paid within the first
two development years; the estimate of the factor

∑t
j=0 exp(βj) is 0.8869, lower than

1, hence the estimate of the expected ultimate claims Ê(Ci,t) = ψU,i
∑t

j=0 exp(β̂j)
is lower than the external estimate ψU,i; since, as remarked in other papers, such
external estimates are quite conservative for the portfolio under consideration, the
HGLM estimates update the external data according to the run-off data.

Origin R̂CL−type
i R̂BF−type

i 1− b̂i,t−i

year
1 16,052 16,529 0.0015
2 28,472 27,587 0.0027
3 38,777 38,300 0.0040
4 96,711 96,140 0.0098
5 177,694 176,741 0.0176
6 330,390 332,836 0.0344
7 514,082 549,782 0.0586
8 1,180,174 1,223,783 0.1337
9 4,375,391 4,274,499 0.4353

Total 6,757,743 6,736,197

Table 4. CL-type and BF-type components of the HGLM reserves

Finally, we report in Table 5 the reserve predictions and the prediction errors
of the total portfolio obtained by the HGLM model and by the homogeneous and
inhomogeneous credibility models in Bühlmann and Moriconi (2015)[5]. Although
the models are different, even in the structures of the expected conditional payments,
some comparison can be made. The HGLM reserve is intermediate between the two
credibility reserves. Note that, similarly to the inhomogeneous credibility model, we
assume that the expected values of the origin year effects, ψU,i, are not estimated
from the data and are set equal to the external estimates of the ultimate claims. But,
on the other hand, as noted above, the estimates of the development year parameters
have the effect to correct such external estimates. The correction term is 0.8869 that
can be compared with the ”collective correction factor”, µ̂0 = 0.8820, that adjusts
the a priori estimates of the ultimate claims in the homogeneous credibility model.
The prediction error in the HGLM is higher than in both of the credibility models.
The difference can be explained by the fact that in these models the development
pattern is not estimated within the model and the Chain Ladder one is used. Hence
the estimation error connected with this component is not accounted for in the
prediction error. In fact, the prediction errors in the credibility models are close to
the process error component in the HGLM (see Table 2).
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Model Reserve Prediction error %
HGLM 6,733,989 521,451 7.7

Homogeneous credibility model 6,416,109 426,609 6.6
Inhomogeneous credibility model 7,002,087 407,426 5.8

Table 5. Model comparisons

7 Simulation study

In this section, we illustrate the evaluation of the MSEP and of the predictive
distribution of the outstanding loss liabilities by means of a simulation approach.

If the distributions of Ui, Vi+j and Yi,j|(Ui, Vi+j) = (ui, vi+j) in Section 3 are suit-
able for simulation, the MSEP can be estimated by the usual parametric bootstrap
procedure defined by the following algorithm. We note that the estimation of the
MSEP obtained via simulation can also be used to empirically test the effect of the
approximations considered in Section 3.

Step 1 Parameter estimation

From the original data, given ψU,i = E(Ui), i = 0, . . . , t, and ψV,i+j = E(Vi+j),

i+j = 0, . . . , 2t, calculate the HGLM estimates of the parameters (β̂, φ̂, λ̂U , λ̂V ).

Step 2 Simulation

Assume that the stochastic process

{U0, . . . , Ut, V0, . . . , V2t, Y0,0, . . . , Yt,t)},

follows the estimated distribution, hence the model parameters are
(ψU ,ψV , β̂, φ̂, λ̂U , λ̂V ).

For b = 1, . . . , B,

– simulate, independently, the random effects u
(b)
0 , . . . , u

(b)
t ,

v
(b)
0 , . . . , v

(b)
2t from the respective distributions with parameters (ψU,i, λ̂U),

i = 0, . . . , t, (ψV,i+j, λ̂V ), 0 ≤ i+ j ≤ 2t;

– simulate y
(b)
i,j for the upper triangle, i + j ≤ t, and y

∗(b)
i,j for the lower

triangle, i+ j > t, from the respective overdispersed Poisson conditional
distributions with parameters (β̂j, u

(b)
i , v

(b)
i+j, φ̂).

Step 3 Parameter estimation from simulated triangles

For b = 1, . . . , B,

– from the simulated upper triangle y
(b)
i,j , i+j ≤ t, given (ψU ,ψV ), estimate

the parameters (β̂
(b)
, φ̂(b), λ̂

(b)
U , λ̂

(b)
V ) and the predictions of the random

effects ŵ
(b)
U , ŵ

(b)
V ;

– evaluate the predicted outstanding claims R̂(b), by (4.4), and the esti-

mated mean square error of prediction, M̂SEP
(b)

, by (4.5) and (4.6);
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– calculate the simulated outstanding claims i.e. the sum of the simulated
payments in the lower triangle R∗(b) =

∑
i,j:i+j>t ωiy

∗(b)
i,j .

Step 4 MSEP estimation

Let MSEPest = 1
B

∑B
b=1 M̂SEP

(b)
the average of the estimated MSEPs and

MSEPsim = 1
B

∑B
b=1(R

∗(b) − R̂(b))2 the MSEP estimated via simulation.

Simulation also allows obtaining an estimate of the predictive distribution of the
outstanding claims, from which we can get estimates of the expected loss liabilities,
of the coefficient of variation and of the quantiles. For this purpose, in Step 3
of the above algorithm, for any b = 1, . . . , B, simulate M lower triangles y

∗∗(b,m)
i,j ,

i+ j > t, m = 1, . . . ,M , from the process with distribution given by the estimated

parameters (ψU ,ψV,i+j, β̂
(b)
, φ̂(b), λ̂

(b)
U , λ̂

(b)
V ). The estimate of the outstanding claims

distribution is then given by the empirical distribution function of the simulated
values R∗∗(b,m) =

∑
i,j:i+j>t ωiy

∗∗(b,m)
i,j , b = 1, . . . , B,m = 1, . . . ,M .

A simulation study has been conducted for the numerical example in Section 6.
In Table 6 we report the values of the square root of the average of the estimated

MSEPs, MSEPest, and of the MSEPsim estimated via simulation, in 20,000 simu-
lations. As noted above, MSEPsim can be compared with MSEPest to appreciate
the effect of the approximations in (4.6). The relative differences are very low, for
the total reserve lower than 1%, the higher difference is 1.6% for the reserve of origin
year 4. The two estimated root MSEP are also very close to the prediction errors of
the reserve estimators obtained from the original data in Table 2. We can say that,
for this model and these data, the approximate formula for the MSEP derived in
Section 4 performs quite well.

Origin MSEP
1/2
est MSEP

1/2
sim

year
1 20,109 20,283
2 24,550 24,351
3 27,838 27,538
4 41,483 40,824
5 54,937 54,791
6 74,131 74,267
7 94,789 95,027
8 147,944 148,781
9 355,084 359,460

Total 520,535 525,669

Table 6. Prediction errors

To get estimates of the predictive distributions of the outstanding loss liabilities,
for each of the B = 20, 000 simulated run-off triangles, we have simulated M =
10 lower triangles. Some characteristic values of the distributions are reported in
Table 7. The means are very close to the HGLM reserve predictions in Table 2.
The standard errors can be compared with the prediction errors of the reserves.
The distribution of the total liability is slightly skewed to the right, the skewness
coefficient is about 0.16. As expected, and in line with the results in Table 2, the
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coefficients of variation are decreasing with increasing origin years. The percentiles
or Value-at-Risk at high confidence levels allow obtaining additional information on
the distributions. They can also be used to assess a risk adjustment component to
be added to the estimate of the outstanding loss liabilities to evaluate the liability
for incurred claims as requested by the IFRS 17 accounting standard. We note
that the percentiles of the distribution of the total liability are near to those of the
normal with same mean and variance. Therefore, as highlighted in Taylor (2000)[20],
for practical purposes the normal approximation could be acceptable for the whole
reserve. However, as expected, it could be critical for the single accident years, in
particular for the less recent ones.

Origin Mean Std V aR75% V aR90% V aR95% V aR99% CV%
year

1 16,435 20,098 26,586 44,067 56,556 83,371 122.3
2 27,654 24,493 41,118 60,833 74,295 103,844 88.6
3 38,780 27,684 54,692 76,143 90,339 120,775 71.4
4 97,270 41,407 122,705 151,997 170,743 210,091 42.6
5 178,220 54,934 212,688 250,186 274,024 322,863 30.8
6 334,633 74,245 382,333 431,396 461,743 523,393 22.2
7 551,977 95,397 613,718 675,752 714,074 790,420 17.3
8 1,226,380 149,904 1,323,935 1,420,112 1,478,786 1,597,240 12.2
9 4,277,567 360,496 4,510,545 4,738,896 4,882,555 5,169,551 8.4

Total 6,748,915 524,390 7,090,591 7,421,755 7,632,194 8,046,769 7.8

Table 7. Characteristic values of the predictive distributions

8 Conclusions

We have introduced HGLMs that allow for the modeling of calendar year effects in
claims reserving in order to take account of the dependences among payments, due
to such effects.

We obtain the prediction of the outstanding claims and an approximate analyt-
ical formula for the MSEP, easy to compute once the model estimates are available.
The MSEP takes account of the process risk and, for the estimation risk, of variabil-
ity in the regression parameters and random effects. The model provides estimates
of the correlations between payments.

We have studied in detail an overdispersed Poisson-gamma HGLM with random
effects related to the origin and the calendar years. It has been applied to a motor
insurance liability data set of the actuarial literature. The results have confirmed
the relevance of calendar year effects. In fact, the estimates of covariances show
remarkable correlations between payments of the same calendar year, made in the
first development years. The inclusion of calendar year effects determines a remark-
able increment of the MSEP, with respect to other models in which the dependence
among payments in the same calendar year is ignored.

Moreover, a simulation approach has been considered to estimate the predictive
distribution and to check the impact of the approximations in the MSEP formula.
We have found, in our example, that the impact of the approximations is moderate.

20



So, the analytical formula for the MSEP appears particularly useful to get insights
on the quality of the reserve prediction.
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