
Periodic solutions of nearly integrable Hamiltonian systems
bifurcating from infinite-dimensional tori

Alessandro Fonda a,∗, Giuliano Klun b, Andrea Sfecci a

a Dipartimento di Matematica e Geoscienze, Università di Trieste, P.le Europa 1, I-34127 Trieste, Italy
b Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, I-34136 Trieste, Italy

a r t i c l e i n f o

Dedicated to Shair Ahmad, on the oc-
casion of his 85th birthday

MSC:
34C25
47H15

Keywords:
Periodic solutions
Bifurcation
Infinite-dimensional dynamical
systems
Superintegrable systems

a b s t r a c t

We prove the existence of periodic solutions of some infinite-dimensional nearly
integrable Hamiltonian systems, bifurcating from infinite-dimensional tori, by the
use of a generalization of the Poincaré–Birkhoff Theorem.

1. Introduction

The aim of this paper is to provide the existence of periodic solutions bifurcating from an infinite-
dimensional invariant torus for a nearly integrable Hamiltonian system.

The finite-dimensional case was treated in [1,2,4–6] by assuming the existence of an invariant torus made of
periodic solutions all sharing the same period, under some non-degeneracy conditions. Let us briefly describe
the main result in this setting. Denoting by H(I, φ) = K(I) the Hamiltonian of a completely integrable
system in R2N (as usual, we denote by φ and I the angle and the action variables, respectively), we can
write the corresponding system {

φ̇ = ∇K(I)
−İ = 0 .
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Assume that there is a I0 ∈ RN such that

det K′′(I0) ̸= 0 . (1.1)

Consider now the perturbed system {
φ̇ = ∇K(I) + ε∇IP (t, φ, I)
−İ = ε∇φP (t, φ, I) ,

where P (·, φ, I) is T -periodic, and P (t, ·, I) is τk-periodic in φk, for every k = 1, . . . , N . Assume that there
exist some integers m1, . . . ,mN for which

T∇K(I0) = (m1τ1, . . . ,mNτN ) . (1.2)

Then, for |ε| small enough, there are at least N + 1 solutions (φ(t), I(t)) satisfying

φ(t+ T ) = φ(t) + T ∇K(I0) , I(t+ T ) = I(t) , for every t ∈ R , (1.3)

and these solutions are near to some solutions of the unperturbed problem, i.e., briefly,

φ(t) ≈ φ(0) + t∇K(I0) , I(t) ≈ I0.

Notice that, by (1.2) and (1.3), φk(t + T ) = φk(t) + mkτk, for every k = 1, . . . , N . Since usually φk is
interpreted as an angle, with τk = 2π, we may consider these as “periodic solutions” having period T .
However, in the following, it will be better to keep more freedom in the choice of the periods τk.

Clearly enough, being P (·, φ, I) also mT -periodic for every positive integer m, one could search “periodic
solutions” having period mT , as well (the so-called “subharmonic solutions”). We refer to [6] for a complete
description of the problem, and for a more general statement, obtained by the use of the Poincaré–Birkhoff
theorem.

The above result was recently extended in [7] for systems of the type⎧⎪⎨⎪⎩
φ̇ = ∇K(I) + ε∇IP (t, φ, I, z)
−İ = ε∇φP (t, φ, I, z)
Jż = Az + ε∇zP (t, φ, I, z) ,

(1.4)

where J =
(

0 −IM

IM 0

)
denotes the standard 2M × 2M symplectic matrix and A is a symmetric non-

resonant matrix, meaning that the only T -periodic solution of the unperturbed equation Jż = Az is the
constant z = 0. Assuming (1.1), (1.2) and that ∇P , the gradient of P with respect to (φ, I, z), is uniformly
bounded, the existence of at least N + 1 solutions (φ(t), I(t), z(t)) satisfying (1.3) and z(t+ T ) = z(t) was
proved, when |ε| is small enough.

The aim of this paper is to extend the above results to an infinite-dimensional setting. Let X and Z be
the separable Hilbert spaces which will replace RN and R2M , respectively. So, when looking at system (1.4),
the functions φ(t) and I(t) will vary in X, while z(t) will belong to Z. The spaces X and Z may be infinite-
dimensional, finite-dimensional, or even reduced to {0}. If X is finite-dimensional, the cases Z = {0} and
Z finite-dimensional correspond to the settings in [6] and [7], respectively. However, if X or Z are infinite-
dimensional, we will be able to prove the bifurcation of at least one periodic orbit from an invariant torus,
which can also be infinite-dimensional. The multiplicity problem remains open.

In order to obtain our existence result in infinite dimensions, we ask all the functions to be Lipschitz
continuous on bounded sets, and the perturbing term ∇P to be uniformly bounded. Moreover, we need a
special structure of the autonomous Hamiltonian function: in our assumptions (Dec1) and (Dec2) below,
roughly speaking, the functions involved must be decomposable in a sequence of finite-dimensional blocks.
This allows us to tackle the problem by a finite-dimensional approximating process, applying a version of the
Poincaré–Birkhoff theorem for the reduced systems, and carefully estimating the so-found periodic solutions
in order to guarantee their convergence to a periodic solution of the infinite-dimensional system.
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2. The main result

We want to treat a system of the type (1.4) in an infinite-dimensional setting. To this aim, let X and
E be two separable Hilbert spaces, and set X = X2 × E2. We will use the notation ω = (φ, I, z) for the
elements of X , with φ, I ∈ X and z = (x, y) ∈ E2. For simplicity, we will write Z = E2, and we define
J : Z → Z as J(x, y) = (−y, x). (The same notation J will also be used with the same meaning in similar
settings.) Let us introduce all the assumptions we need.

The continuous functions K : X → R and P : R × X → R are assumed to be continuously differentiable
with respect to I and ω, respectively. The function t ↦→ P (t, ω) is T -periodic, for some T > 0. Moreover, we
assume the following Lipschitz condition on bounded sets.

(L) For every R > 0 there exist two positive constants LR,LR such that

∥∇K(I ′) − ∇K(I ′′)∥ ≤ LR∥I ′ − I ′′∥ ,

for every I ′, I ′′ ∈ X with ∥I ′∥ < R, ∥I ′′∥ < R, and

∥∇ωP (t, ω′) − ∇ωP (t, ω′′)∥ ≤ LR∥ω′ − ω′′∥ ,

for every t ∈ [0, T ] and ω′, ω′′ ∈ X with ∥ω′∥ < R and ∥ω′′∥ < R.

Introducing some Hilbert bases of X and E, we can identify these spaces either with some Rn, if they are
finite-dimensional, or with ℓ2, the space of real sequences (αk)k which satisfy

∑∞
k=1 α

2
k < ∞. Each of the

vectors φ, I in X and z in Z will then be written in their coordinates, e.g., φ = (φ1, φ2, . . . ), or φ = (φk)k,
with φk ∈ R, while I = (Ik)k and z = (zl)l, with zl = (xl, yl) ∈ R2. Notice that these sequences may be
finite.

We also ask P to be periodic in the φ-variables, as follows.

(Pτ ) The function P (t, φ, I, z) is τk-periodic in each φk, i.e., for k = 1, 2, . . . ,

P (t, . . . , φk + τk, . . . , I, z) = P (t, . . . , φk, . . . , I, z) , for every (t, φ, I, z) ∈ [0, T ] × X ;

moreover, if dimX = ∞, then the sequence (τk)k belongs to ℓ2.

Concerning ∇ωP , we assume it to be bounded and precompact, in the following sense.

(Pbd) There exist (α⋆
k)k and (α♯

l )l such that, for every k, l = 1, 2, . . . ,⏐⏐⏐⏐ ∂P∂φk
(t, ω)

⏐⏐⏐⏐+
⏐⏐⏐⏐ ∂P∂Ik

(t, ω)
⏐⏐⏐⏐ ≤ α⋆

k ,

⏐⏐⏐⏐ ∂P∂xl
(t, ω)

⏐⏐⏐⏐+
⏐⏐⏐⏐∂P∂yl

(t, ω)
⏐⏐⏐⏐ ≤ α♯

l ,

for every (t, ω) ∈ [0, T ]×X . If dimX = ∞ or dimZ = ∞, then (α⋆
k)k or (α♯

l )l belong to ℓ2, respectively.

Notice that the sets
∏∞

k=1[−α⋆
k, α

⋆
k] and

∏∞
l=1[−α♯

l , α
♯
l ] are Hilbert cubes, hence compact sets in ℓ2.

Let A : Z → Z be a linear bounded selfadjoint operator. We need the following non-resonance assumption.

(NR) Denoting by
L : D(L) ⊂ L2([0, T ], Z) → L2([0, T ], Z) , Lz = Jż ,

the unbounded selfadjoint operator with domain

D(L) = {z ∈ H1([0, T ], Z) : z(0) = z(T )} ,

we assume that 0 /∈ σ(L − A).
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In the case when Z is infinite-dimensional, we need to assume a particular structure for the function A.

(Dec1) If dimZ = ∞, there exists a sequence of positive integers (N ♯
m)m≥1 and functions Am : R2N

♯
m →

R2N
♯
m such that, writing any vector z ∈ Z as z = (z⃗1, . . . , z⃗m, . . . ), with z⃗m = (x⃗m, y⃗m) ∈ R2N

♯
m , we

have that
Az = (A1z⃗1, . . . ,Amz⃗m, . . . ) .

Concerning the function K, its gradient will be “guided” by some linear bounded selfadjoint invertible
operator B : X → X, with bounded inverse, as we now specify. First of all, similarly as before, in the case
when X is infinite-dimensional, we need to assume a particular structure for the functions B and K.

(Dec2) If dimX = ∞, there exists a sequence of positive integers (N⋆
j )j≥1 and functions Bj : RN⋆

j → RN⋆
j ,

Kj : RN⋆
j → R such that, writing any vector I ∈ X as I = (I⃗1, . . . , I⃗j , . . . ), with I⃗j ∈ RN⋆

j , we have
that

B I = (B1I⃗1, . . . ,Bj I⃗j , . . . ) , K(I) =
∞∑

j=1
Kj(I⃗j) .

We now fix I0 ∈ X, and introduce our twist condition.

(Tw) There exist two positive constants c̄, ρ̄ such that, for every j = 1, 2, . . . ,

∥I⃗j − I⃗ 0
j ∥ ≤ ρ̄ ⇒

⟨
∇Kj(I⃗j) − ∇Kj(I⃗ 0

j ) , Bj(I⃗j − I⃗ 0
j )
⟩

≥ c̄ ∥I⃗j − I⃗ 0
j ∥2 .

Finally, we assume a compatibility condition between T and the periods introduced in (Pτ ).

(Cτ ) There exist some integers m1,m2, . . . for which

T∇K(I0) = (m1τ1,m2τ2, . . . ) .

We are now ready to state our main result.

Theorem 2.1. Let the above assumptions hold. Then, for every σ > 0 there exists ε̄ > 0 such that, if |ε| ≤ ε̄,
there is a solution of system ⎧⎪⎨⎪⎩

φ̇ = ∇K(I) + ε∇IP (t, φ, I, z)
−İ = ε∇φP (t, φ, I, z)
Jż = Az + ε∇zP (t, φ, I, z) ,

(2.1)

satisfying
φ(t+ T ) = φ(t) + T∇K(I0) , I(t+ T ) = I(t) , z(t+ T ) = z(t) , (2.2)

and such that

∥φ(t) − φ(0) − t∇K(I0)∥ + ∥I(t) − I0∥ + ∥z(t)∥ < σ , for every t ∈ R . (2.3)

Remark 2.2. When X is finite-dimensional, we will see that condition (Tw) can be generalized to
(Tw’) There exists a positive constant ρ̄ such that

∥I − I 0∥ ≤ ρ̄ ⇒
⟨

∇K(I) − ∇K(I 0) , B(I − I 0)
⟩
> 0 ;

a still more general condition, adopted in [6], is the following:

0 ∈ cl
{
ρ ∈ ]0,+∞[ : min

∥I−I0∥=ρ

⟨
∇K(I) − ∇K(I0) , B(I − I0)

⟩
> 0
}
,

where cl S denotes the closure of a set S.
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3. Preliminaries for the proof

We will carry out the proof of Theorem 2.1 in the case dimX = ∞ and dimZ = ∞, with some specific
remarks on the finite-dimensional cases. By the change of variables

(ξ(t), I(t), z(t)) = (φ(t) − t∇K(I0), I(t), z(t)) , (3.1)

system (2.1) becomes ⎧⎪⎨⎪⎩
ξ̇ = ∇K(I) − ∇K(I0) + ε∇I P̂ (t, ξ, I, z)
−İ = ε∇ξP̂ (t, ξ, I, z)
Jż = Az + ε∇zP̂ (t, ξ, I, z) ,

(3.2)

where
P̂ (t, ξ, I, z) = P (t, ξ + t∇K(I0), I, z) .

We use the notation ζ = (ξ, I, z); the Hamiltonian function is thus

Ĥ(t, ζ) = K(I) −
⟨
∇K(I0), I

⟩
+ 1

2 ⟨Az, z⟩ + εP̂ (t, ζ) .

Combining (Pτ ) with (Cτ ), we see that the function P̂ (·, ξ, I, z) is T -periodic, and P̂ (t, ·, I, z) is τk-periodic
in ξk, for every k = 1, 2, . . .

Some additional notations are now necessary. By assumption (Dec2), the vectors ξ, I ∈ X decompose in
vectors ξ⃗j , I⃗j ∈ RN⋆

j . Setting

S⋆
0 = 0 , S⋆

j =
j∑

i=1
N⋆

i for j ≥ 1 ,

we can explicitly write the components of ξ⃗j , I⃗j as

ξ⃗j = (ξS⋆
j−1+1, ξS⋆

j−1+2, . . . , ξS⋆
j
) , I⃗j = (IS⋆

j−1+1, IS⋆
j−1+2, . . . , IS⋆

j
) .

Similarly, by assumption (Dec1), the vector z ∈ Z decomposes in vectors z⃗m ∈ R2N
♯
m . Setting

S♯
0 = 0 , S♯

m =
m∑

i=1
N ♯

i for m ≥ 1 ,

we can explicitly write the components of z⃗m as

z⃗m = (z
S

♯
m−1+1, zS

♯
m−1+2, . . . , zS

♯
m

) .

We define the sequences (a⋆
j )j , (a♯

m)m in ℓ2 by

a⋆
j =

(N⋆
j∑

i=1
(α⋆

S⋆
j−1+i)2

)1/2
, a♯

m =
(N

♯
m∑

i=1
(α♯

S
♯
m−1+i

)2
)1/2

.

Notice that ∥a⋆∥ℓ2 = ∥α⋆∥ℓ2 and ∥a♯∥ℓ2 = ∥α♯∥ℓ2 .

Remark 3.1. When X has a finite dimension dX , we can define the sequence (N⋆
j )j taking N⋆

1 = dX and
N⋆

j = 0 for j ≥ 2. Similarly when Z is finite-dimensional.
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Without loss of generality, from now on we will assume that I0 = 0, a situation which can be recovered
by a simple translation. The strategy of the proof of Theorem 2.1 will be to construct a finite-dimensional
approximation of system (3.2), and then pass to the limit on the dimension. Precisely, we define the
projections ΠS⋆

J
: X → X and Π

S
♯
J

: Z → Z as

ΠS⋆
J
υ = (υ⃗1, . . . , υ⃗J , 0, 0, . . . ) , Π

S
♯
J
z = (z⃗1, . . . , z⃗J , 0, 0, . . . ) ,

and consider the truncated system⎧⎪⎪⎨⎪⎪⎩
ξ̇ = ΠS⋆

J
[∇K(I) − ∇K(0) + ε∇I P̂ (t, ξ, I, z)]

−İ = ΠS⋆
J

[ε∇ξP̂ (t, ξ, I, z)]
Jż = Π

S
♯
J

[Az + ε∇zP̂ (t, ξ, I, z)] .
(3.3)

We thus have the Hamiltonian function

ĤJ (t, ζ) = K(ΠS⋆
J
I) −

⟨
∇K(0) , ΠS⋆

J
I
⟩

+ 1
2
⟨
AΠ

S
♯
J
z , Π

S
♯
J
z
⟩

+ εP̂ (t,ΠS⋆
J
ξ,ΠS⋆

J
I,Π

S
♯
J
z) .

Notice that the function
P̂J (t, ξ, I, z) = P̂ (t,ΠS⋆

J
ξ,ΠS⋆

J
I,Π

S
♯
J
z)

satisfies both (L) and (Pτ ) with the same constants, for every index J ≥ 1, and observe that system (3.3)
is equivalent to ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙⃗
ξj = ∇Kj(I⃗j) − ∇Kj(0) + ε∇I⃗j

P̂J (t, ξ, I, z)

− ˙⃗
Ij = ε∇ξ⃗j

P̂J (t, ξ, I, z) j ≤ J ,

J ˙⃗zj = Aj z⃗j + ε∇z⃗j
P̂J (t, ξ, I, z)

˙⃗
ξi = 0
− ˙⃗
Ii = 0 i > J .

J ˙⃗zi = 0

(3.4)

It can be viewed as two uncoupled systems, the first one in a finite-dimensional space (the “approximating
system”), and the second one, infinite-dimensional, having only constant solutions. From now on, we will
take ξ⃗i(t), I⃗i(t), z⃗i(t) identically equal to zero when i > J .

Concerning the “approximating system”, we will need the following slight modification of
[7, Corollary 2.3]. Let us consider the finite-dimensional Hamiltonian system

Jζ̇ = ∇ζH(t, ζ) , (3.5)

with ζ = (ξ, I, z) ∈ RN+N+2M , where the Hamiltonian function is T -periodic in t. Here we use the notation
ξ = (ξ⃗1, . . . , ξ⃗J ), I = (I⃗1, . . . , I⃗J ).

Theorem 3.2. Assume that H(t, ζ) = 1
2 ⟨Az, z⟩ + G(t, ζ), where A is a symmetric 2M × 2M matrix such

that z ≡ 0 is the unique T -periodic solution of equation Jż = Az, and there exists a constant c1 such that

|∇ζG(t, ζ)| ≤ c1 , for every (t, ζ) ∈ R × R2(M+N) .

Let G(t, ξ, I, z) be periodic in the variables ξ1, . . . , ξN . Assume moreover the existence of some positive
constants r′

j < r′′
j and symmetric invertible matrices Bj, with j = 1, . . . ,J , such that, for any solution

ζ(t) = (ξ(t), I(t), z(t)) of (3.5) satisfying

r′
j ≤ ∥I⃗j(0) − I⃗ 0

j ∥ ≤ r′′
j and ∥I⃗i(0) − I⃗ 0

i ∥ ≤ r′′
i for every i ̸= j ,
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we have ⟨
ξ⃗j(T ) − ξ⃗j(0) , Bj(I⃗j(0) − I⃗ 0

j )
⟩
> 0 .

Then, there are at least N+1 geometrically distinct T -periodic solutions ζ(t) = (ξ(t), I(t), z(t)) of (3.5), such
that

∥I⃗j(0) − I⃗ 0
j ∥ < r′

j , for every j = 1, . . . ,J .

4. Proof of Theorem 2.1

In what follows, we always assume that |ε| ≤ 1, and we denote by ρ̄ the constant introduced in assumption
(Tw). Moreover, as in the previous section, we assume I0 = 0.

Lemma 4.1. There is a constant C > 0 with the following property: if ζ(t) = (ξ(t), I(t), z(t)) is a solution
of (3.2) with ∥I⃗j(0)∥ ≤ ρ̄, for some j ≥ 1, then

∥ξ⃗j(t) − ξ⃗j(0) − t[∇Kj(I⃗j(0)) − ∇Kj(0)]∥ + ∥I⃗j(t) − I⃗j(0)∥ ≤ C|ε|a⋆
j , for every t ∈ [0, T ] .

The same property holds for the solutions of (3.4), when j = 1, . . . ,J .

Proof. Let us start computing, for every t ∈ [0, T ] and every k ∈ {S⋆
j−1 + 1, . . . , S⋆

j−1 +N⋆
j = S⋆

j },

|Ik(t) − Ik(0)| ≤
∫ t

0
|İk(s)| ds ≤ |ε|

∫ T

0

⏐⏐⏐ ∂P̂
∂ξk

(s, ζ(s))
⏐⏐⏐ ds ≤ |ε|Tα⋆

k .

Then we easily get

∥I⃗j(t) − I⃗j(0)∥ ≤ |ε|T
(N⋆

j∑
i=1

(α⋆
S⋆

j−1+i)2
)1/2

= |ε|Ta⋆
j .

Moreover,

∥ξ⃗j(t) − ξ⃗j(0) − t[∇Kj(I⃗j(0)) − ∇Kj(0)]∥ ≤
∫ t

0
∥ ˙⃗
ξj(s) − [∇Kj(I⃗j(0)) − ∇Kj(0)]∥ ds

≤
∫ T

0
∥∇Kj(I⃗j(s)) − ∇Kj(I⃗j(0))∥ ds+ |ε|

∫ T

0
∥∇I⃗j

P̂ (s, ζ(s))∥ ds

≤
∫ T

0
L∥I⃗j(s) − I⃗j(0)∥ ds+ |ε|Ta⋆

j

≤ |ε|T (1 + LT )a⋆
j ,

where L is a suitable Lipschitz constant provided by (L). The proof is thus completed. □

Lemma 4.2. There exist ε̄ > 0 and a sequence (δj)j in ℓ2, with δj ∈ ]0, ρ̄[ , satisfying the following property:
if ζ(t) = (ξ(t), I(t), z(t)) is a solution of (3.2), with |ε| < ε̄ and δj ≤ ∥I⃗j(0)∥ ≤ ρ̄, for some j ≥ 1, then⟨

ξ⃗j(T ) − ξ⃗j(0) , Bj I⃗j(0)
⟩
> 0 .

The same property holds for the solutions of (3.4), when j = 1, . . . ,J .
7



Proof. If ∥I⃗j(0)∥ ≤ ρ̄ for some j ≥ 1, then, by Lemma 4.1 and (Tw),⟨
ξ⃗j(T ) − ξ⃗j(0) , Bj I⃗j(0)

⟩
=
⟨
ξ⃗j(T ) − ξ⃗j(0) − T [∇Kj(I⃗j(0)) − ∇Kj(0)] , Bj I⃗j(0)

⟩
+

+T
⟨

∇Kj(I⃗j(0)) − ∇Kj(0) , Bj I⃗j(0)
⟩

≥ −C|ε|a⋆
j ∥Bj∥ ∥I⃗j(0)∥ + T c̄∥I⃗j(0)∥2

=
(

−C|ε|a⋆
j ∥Bj∥ + T c̄∥I⃗j(0)∥

)
∥I⃗j(0)∥ .

Setting
δj := min

{
ρ̄

2 ,
2C
c̄T

a⋆
j ∥Bj∥

}
,

we easily verify that (δj)j ∈ ℓ2, since (∥Bj∥)j is bounded by ∥B∥ and (a⋆
j )j ∈ ℓ2; in particular, there exists

an integer j0 such that
δj = 2C

c̄T
a⋆

j ∥Bj∥ , for every j ≥ j0 .

So, we see that, since |ε| ≤ 1 and ∥I⃗j(0)∥ ≥ δj ,

−C|ε|a⋆
j ∥Bj∥ + T c̄∥I⃗j(0)∥ > 0 ,

for every j ≥ j0. For the remaining finite number of integers j ∈ {1, . . . , j0 − 1} we simply need to choose
|ε| sufficiently small, thus finishing the proof. □

Remark 4.3. When X is finite-dimensional, the above estimate simplifies, in view of the compactness of
the closed balls centered at the origin, so the first condition in (Tw′) is sufficient in this case. Concerning
the second condition in (Tw′), we see that it guarantees the existence of a sequence of balls, with smaller
and smaller radii, over which the twist condition still holds.

Notice that the set
ΞI =

∞∏
j=1

BN⋆
j [0, δj + Ca⋆

j ] ,

where Bn[0, R] denotes the closed ball {υ ∈ Rn : ∥υ∥ ≤ R}, is compact, being the product of compact sets
with the sequence of diameters in ℓ2. We now modify the function K outside ΞI , in order that the gradient
of the modified function be bounded. Let RI > 0 be such that ΞI ⊆ {υ ∈ X : ∥υ∥ ≤ RI}, and ψ : R → R be
a smooth decreasing function such that

ψ(s) = 1 if s ≤ RI , ψ(s) = 0 if s ≥ 2RI .

Define K̃ : X → R as K̃(I) = ψ(∥I∥)K(I). Then, when I ̸= 0,

∥∇K̃(I)∥ =
ψ′(∥I∥)K(I) I

∥I∥
+ ψ(∥I∥)∇K(I)

 ≤ c1|K(I)| + ∥∇K(I)∥ ,

for some c1 > 0. By assumption (L), we can find a Lipschitz constant L such that, for every s ∈ [0, 1], if
∥I∥ ≤ 2RI ,

∥∇K(sI)∥ ≤ ∥∇K(sI) − ∇K(0)∥ + ∥∇K(0)∥ ≤ L∥I∥ + ∥∇K(0)∥ .

Moreover,

|K(I)| =
⏐⏐⏐⏐K(0) +

∫ 1

0
⟨∇K(sI) , I⟩ ds

⏐⏐⏐⏐ ≤ |K(0)| + sup
s∈[0,1]

∥∇K(sI)∥ ∥I∥
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≤ |K(0)| +
(
L∥I∥ + ∥∇K(0)∥

)
∥I∥ .

Hence,
∥∇K̃(I)∥ ≤ c1|K(0)| + (2RIc1 + 1)(2RIL+ ∥∇K(0)∥) , for every I ∈ X.

We define A = diag(A1, . . . ,AJ ) as a block-diagonal matrix having a diagonal formed by the matrices
A1, . . . ,AJ introduced in (Dec1), i.e. such that

A(z⃗1, . . . , z⃗J ) = (A1z⃗1, . . . ,AJ z⃗J ) .

It is easy to verify, using (NR), that z ≡ 0 is the unique T -periodic solution of equation Jż = Az. Then,
by Theorem 3.2 with r′

j = δj and r′′
j = ρ̄, for every J there is a T -periodic solution

ζJ (t) = (ξJ (t), IJ (t), zJ (t))

of the modified system (3.4) with K = K̃, such that

∥I⃗Jj
(0)∥ < δj , for every j ≥ 1 . (4.1)

(Recall that we have chosen the last constant components of the solutions of (3.4) to be equal to zero.) By
Lemma 4.1, these solutions satisfy

∥I⃗Jj
(t)∥ ≤ δj + Ca⋆

j , for every t ∈ [0, T ] ,

i.e.,
IJ (t) ∈ ΞI , for every t ∈ [0, T ] , (4.2)

so that they are indeed solutions of the non-modified system (3.4).
Let us now consider the component ξJ (t) of the solution. By the periodicity assumption (Pτ ), we can

assume without loss of generality that ξk(0) ∈ [0, τk], for every k ≥ 1. From Lemma 4.1, property (L)
and (4.1), we have

∥ξ⃗j(t) − ξ⃗j(0)∥ ≤ Ca⋆
j + TLδj , for every t ∈ [0, T ] ,

for a suitable Lipschitz constant L. Then,

ξJ (t) = ξJ (0) + (ξJ (t) − ξJ (0)) ∈ Ξξ :=
∞∏

k=1
[0, τk] +

∞∏
j=1

BN⋆
j [0, Ca⋆

j + TLδj ] , for every t ∈ [0, T ] . (4.3)

We now need an a priori estimate on zJ (t).

Lemma 4.4. There exists a sequence (Rj)j ∈ ℓ2 of positive constants such that, for every T -periodic solution
ζ(t) = (ξ(t), I(t), z(t)) of (3.2), we have

∥z⃗j∥
C([0,T ],R

2N
♯
j )

≤ |ε|Rj ,

for every j ≥ 1. The same property holds for every T -periodic solution of (3.4), when j = 1, . . . ,J .

Proof. Fix j ≥ 1 and consider the jth block of the third equation in (3.2), i.e.

Lj z⃗j = Aj z⃗j + ε∇z⃗j
P̂ (t, ζ) , (4.4)

where Lj denotes the j-th block of the linear operator L introduced in (NR), i.e.

Lj z⃗j = Lj(z
S

♯
j−1+1, . . . , zS

♯
j
) = (Jż

S
♯
j−1+1, . . . , JżS

♯
j
) . (4.5)
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From hypothesis (Dec1), we have σ(Lj − Aj) ⊆ σ(L − A). Hence, using (NR), 0 /∈ σ(Lj − Aj) and (4.4)
is equivalent to

z⃗j = ε(Lj − Aj)−1∇z⃗j
P̂ (t, ζ) .

Moreover,
∥(Lj − Aj)−1∥ = 1

dist(0, σ(Lj − Aj)) ≤ 1
dist(0, σ(L − A)) = ∥(L − A)−1∥ ,

and consequently, setting rj :=
√
Ta♯

j∥(L − A)−1∥, we have that

∥z⃗j∥
L2([0,T ],R

2N
♯
j )

≤ |ε| ∥(Lj − Aj)−1∥ · ∥∇z⃗j
P̂∥

L2([0,T ],R
2N

♯
j )

≤ |ε|rj .

Since z⃗j solves (4.4), we have that ˙⃗zj ∈ L2([0, T ],R2N
♯
j ), and

∥ ˙⃗zj∥
L2([0,T ],R

2N
♯
j )

≤ ∥Aj∥∥z⃗j∥
L2([0,T ],R

2N
♯
j )

+ |ε|
√
Ta♯

j ≤ |ε|
(

∥Aj∥rj +
√
Ta♯

j

)
.

So, setting Cj = (1 + ∥Aj∥)rj +
√
Ta♯

j ,

∥z⃗j∥
H1([0,T ],R

2N
♯
j )

≤ |ε|Cj . (4.6)

By the continuous immersion of H1([0, T ], Z) in C([0, T ], Z), cf. [14, §23.6], we can find a constant χ > 0
such that

∥z∥C([0,T ],Z) ≤ χ∥z∥H1([0,T ],Z) ,

for every z ∈ H1([0, T ], Z). Since C([0, T ],R2N
♯
j ) and H1([0, T ],R2N

♯
j ) can be seen as a subsets of C([0, T ], Z)

and H1([0, T ], Z), respectively, simply adding an infinite number of null components, we obtain

∥z⃗j∥
C([0,T ],R

2N
♯
j )

≤ χ∥z⃗j∥
H1([0,T ],R

2N
♯
j )

≤ |ε|χCj .

The proof is thus completed, taking Rj = χCj . □

Defining

Ξz =
∞∏

j=1
B

2N
♯
j [0, Rj ] ,

we have thus proved that
zJ (t) ∈ Ξz , for every t ∈ [0, T ] . (4.7)

Summing up, by (4.2), (4.3), (4.7), we have that, setting Ξ = Ξξ × ΞI × Ξz, the T -periodic solutions we
found satisfy

ζJ (t) = (ξJ (t), IJ (t), zJ (t)) ∈ Ξ , for every t ∈ [0, T ] .

Notice that Ξ is compact, being the product of three compact sets. We will now prove that there is a
subsequence of (ζJ )J which uniformly converges to a solution of (3.2).

From (4.6), recalling that |ε| ≤ 1, we have

∥zJ (t1) − zJ (t2)∥ ≤ |t1 − t2|1/2

(∫ T

0
∥żJ (s)∥2 ds

)1/2

≤ |t1 − t2|1/2

( ∞∑
j=1

C2
j

)1/2

.

Looking at the variables IJ (t), by (Pbd) we have that

∥IJ (t1) − IJ (t2)∥ ≤ |t2 − t1|1/2

(∫ T

0
∥İJ (s)∥2 ds

)1/2

≤ |t2 − t1|1/2 √
T ∥a⋆∥ℓ2 .
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Concerning the variables ξJ (t), we first observe that

∥ξ̇J (s)∥ ≤ ∥∇K(IJ (s)) − ∇K(0)∥ + ∥a⋆∥ℓ2

≤ L∥IJ (s)∥ + ∥a⋆∥ℓ2 ≤ L
( ∞∑

j=1
(δj + Ca⋆

j )2
)1/2

+ ∥a⋆∥ℓ2 := Ĉ ,

where L is a suitable Lipschitz constant provided by (L). Then,

∥ξJ (t1) − ξJ (t2)∥ ≤ |t2 − t1|1/2

(∫ T

0
∥ξ̇J (s)∥2 ds

)1/2

≤ |t2 − t1|1/2√
T Ĉ .

Hence, the sequence (ζJ )J is equi-uniformly continuous on [0, T ] and takes its values in a compact subset of
X . By the Ascoli–Arzelà Theorem, we find a subsequence, still denoted by (ζJ )J , which uniformly converges
to a certain continuous function ζ♮ : [0, T ] → X , such that ζ♮(t) ∈ Ξ for every t ∈ [0, T ], and ζ♮(0) = ζ♮(T ).
We are going to prove that ζ♮ solves (3.2), following the lines of the proof of [3, Theorem 3].

Let us consider the solution ζ∞ of system (3.2) such that ζ∞(0) = ζ♮(0) which, by the boundedness of
∇K and ∇ζP̂ , is certainly defined on [0, T ]. We will prove that the sequence (ζJ )J converges uniformly to
ζ∞, thus obtaining that ζ∞ = ζ♮. To this aim, we write the integral formulation of systems (3.2) and (3.3),
for J ≥ 1:

ζ∞(t) = ζ∞(0) −
∫ t

0
J∇ζĤ(s, ζ∞(s)) ds , (4.8)

ζJ (t) = ζJ (0) −
∫ t

0
J∇ζĤJ (s, ζJ (s)) ds . (4.9)

In order to simplify the notations, we introduce the projection

PJ (ζ) = PJ (ξ, I, z) = (ΠS⋆
J
ξ,ΠS⋆

J
I,Π

S
♯
J
z) .

Let us write
∥ζJ (t) − ζ∞(t)∥ ≤ ∥ζJ (t) − PJ ζ∞(t)∥ + ∥PJ ζ∞(t) − ζ∞(t)∥ .

By an elementary argument,

∥PJ ζ∞(t) − ζ∞(t)∥ → 0 , as J → ∞ , (4.10)

uniformly with respect to t ∈ [0, T ]. From (4.8) and (4.9), since PJ J = JPJ , we have

∥ζJ (t) − PJ ζ∞(t)∥ ≤ ∥ζJ (0) − PJ ζ∞(0)∥ +

+
∫ t

0
∥J∇ζĤJ (s, ζJ (s)) − JPJ ∇ζĤ(s, ζ∞(s))∥ ds . (4.11)

Notice that

∥ζJ (0) − PJ ζ∞(0)∥ ≤ ∥ζJ (0) − ζ∞(0)∥ = ∥ζJ (0) − ζ♮(0)∥ → 0 , as J → ∞ . (4.12)

Since ∇ζĤJ (s, ζJ (s)) = PJ ∇ζĤ(s, ζJ (s)), the integral term in (4.11) satisfies∫ t

0

JPJ

(
∇ζĤ(s, ζJ (s)) − ∇ζĤ(s, ζ∞(s))

) ds ≤ L

∫ t

0
∥ζJ (s) − ζ∞(s)∥ ds ,

where L is a suitable Lipschitz constant. Summing up, we have

∥ζJ (t) − ζ∞(t)∥ ≤ cJ + L

∫ t

0
∥ζJ (s) − ζ∞(s)∥ ds ,
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where (cJ )J is a sequence, provided by the limits in (4.10) and (4.12), such that limJ cJ = 0. Hence, by
Gronwall’s Lemma,

∥ζJ (t) − ζ∞(t)∥ ≤ cJ e
Lt , for every t ∈ [0, T ] ,

implying that ζJ → ζ∞ uniformly on [0, T ]. We conclude that ζ∞ = ζ♮ on [0, T ], thus showing that
ζ∞(0) = ζ∞(T ), so that ζ∞ is a T -periodic solution of (3.2).

By the inverse change of variables

(φ(t), I(t), z(t)) = (ξ(t) + t∇K(I0), I(t), z(t)) ,

cf. (3.1), we have a solution of (2.1), satisfying (2.2). Moreover, condition (2.3) holds true, by Lemmas 4.1
and 4.4, suitably reducing, if necessary, the value of ε̄. The proof of Theorem 2.1 is thus completed. □

5. Applications

5.1. Coupling second order with linear systems

We first state a simple lemma, which may be useful for the verification of the twist condition.

Lemma 5.1. If there exists I0 ∈ X such that K : X → R is twice continuously differentiable at I0 and
K′′(I0) : X → X is invertible, with bounded inverse, then there exist two positive constants c̄, ρ̄ such that

∥I − I0∥ ≤ ρ̄ ⇒
⟨

∇K(y) − ∇K(I0) , K′′(I0)(y − I0)
⟩

≥ c̄ ∥y − I0∥2.

Moreover, if dimX = ∞ and, with the usual notation, K(I) =
∑∞

j=1 Kj(I⃗j), then condition (Tw) holds.

Proof. Since B := K′′(I0) : X → X is invertible with bounded inverse, there exists γ > 0 such that
∥B I∥ ≥ γ∥I∥ for every I ∈ X. Then,⟨

∇K(I) − ∇K(I0) , B(I − I0)
⟩

=

=
∫ 1

0

⟨
K′′(I0 + s(I − I0)

)
(I − I0) , B(I − I0)

⟩
ds

= ∥B(I − I0)∥2 +
∫ 1

0

⟨ [
K′′(I0 + s(I − I0)

)
− B

]
(I − I0) , B(I − I0)

⟩
ds

≥
(
γ2 − ∥B∥ · ∥K′′(I0 + s(I − I0)

)
− B∥

)
∥I − I0∥2 .

Since K′′ is continuous at I0, there exists ρ̄ > 0 such that, if I ∈ X satisfies ∥I − I0∥ ≤ ρ̄, then

∥K′′(I) − B∥ = ∥K′′(I) − K′′(I0)∥ ≤ γ2

2∥B∥
,

so ⟨
∇K(I) − ∇K(I0) , B(I − I0)

⟩
≥ γ2

2 ∥I − I0∥2, (5.1)

and the first part of the lemma is thus proved.
Assume now that K(I) =

∑∞
j=1 Kj(I⃗j). We have that

B I = (B1I⃗1, . . . ,Bj I⃗j , . . . ) ,

where Bj = K′′
j (I⃗ 0

j ). Then, (Tw) is verified directly from (5.1) defining, for every j ∈ {1, 2, . . . }, the vector
I as I⃗i = I⃗ 0

i if i ̸= j, once I⃗j has been chosen. □
12



We thus have the following.

Corollary 5.2. Assume (L), (Pτ ), (Pbd), (NR), (Dec1), (Dec2) and (Cτ ) hold. If K : X → R is twice
continuously differentiable at I0 and K′′(I0) : X → X is invertible, with bounded inverse, then there exists
ε̄ > 0 such that, if |ε| ≤ ε̄, system (2.1) has a T -periodic solution.

Let us now consider an equation in an infinite-dimensional space of the type⎧⎨⎩− d

dt
(∇Φ ◦ ẋ) = ε∇xF (t, x, z)

Jż = Az + ε∇zF (t, x, z) .
(5.2)

Let, for definiteness, dimX = ∞ and dimZ = ∞. Concerning the bounded selfadjoint operator A, we require
the nonresonance assumption (NR) and that it decomposes as in (Dec1). For the differential operator in
the first equation, we suppose that there exists a sequence of positive integers (Nj)j≥1 such that, writing
any vector y ∈ X as y = (y⃗1, . . . , y⃗j , . . . ), with y⃗j ∈ RNj ,

Φ(y) =
∞∑

j=1
Φj(y⃗j) ,

where each Φj is a continuous real valued strictly convex function defined on a closed ball B(0, aj) in RNj ,
continuously differentiable in the open ball B(0, aj), with ∇Φj : B(0, aj) → X being a homeomorphism, and
∇Φj(0) = 0.

Denoting by Φ∗
j the Legendre–Fenchel transform of Φj , we have that Φ∗

j : X → R is strictly convex and
coercive, with ∇Φ∗ = (∇Φ)−1 : X → B(0, a), cf. [11, Chapter 2]. We can define

Φ∗(y) =
∞∑

j=1
Φ∗

j (y⃗j) ,

so that system (5.2) can be written as a Hamiltonian system⎧⎪⎨⎪⎩
ẋ = ∇Φ∗(y)
−ẏ = ε∇xF (t, x, z)
Jż = Az + ε∇zF (t, x, z) .

So, we are in the situation of system (2.1), taking K(I) = Φ∗(I) and P (t, φ, I, z) = F (t, φ, z).
An example is provided by the choice

Φ(y) =
∞∑

j=1

(
1 −

√
1 − ∥y⃗j∥2

)
,

for which, writing x = (x⃗1, . . . , x⃗j , . . . ), system (5.2) becomes⎧⎪⎪⎨⎪⎪⎩
− d

dt

˙⃗xj√
1 − ∥ ˙⃗xj∥2

= ε∇x⃗j
F (t, x, z) , j = 1, 2, . . .

Jż = Az + ε∇zF (t, x, z) ,

(5.3)

so that, in the first equation, we can see a kind of relativistic operator. We then have the following.
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Corollary 5.3. In the above setting, assume moreover the following conditions:
(L) for every R > 0 there exists a positive constant LR such that

∥∇uF (t, u′) − ∇uF (t, u′′)∥ ≤ LR∥u′ − u′′∥ ,

for every t ∈ [0, T ] and u′ = (x′, z′), u′′ = (x′′, z′′) ∈ X × Z with ∥u′∥ < R and ∥u′′∥ < R;
(Fτ ) the function F (t, x, z) is τk-periodic in each xk, and the sequence (τk)k belongs to ℓ2;
(Fbd) there exist (α⋆

k)k and (α♯
l )l in ℓ2 such that, for every k, l = 1, 2, . . . ,⏐⏐⏐⏐ ∂F∂xk

(t, x, z)
⏐⏐⏐⏐ ≤ α⋆

k , ∥∇zl
F (t, x, z)∥ ≤ α♯

l ,

for every (t, x, z) ∈ [0, T ] ×X × Z.
Then, there exists ε̄ > 0 such that, if |ε| ≤ ε̄, system (5.3) has a T -periodic solution.

Proof. Taking I0 = 0, we have that ∇Φ∗(0) = 0 and (Φ∗)′′(0) = Id. So, assumption (Cτ ) is fulfilled taking
m1 = m2 = · · · = 0 and, in view of Lemma 5.1, we can apply Theorem 2.1 to conclude. □

We have thus obtained an extension to infinite-dimensional systems of a result in [10].
Another possible situation where Theorem 2.1 applies is provided by the choice

Φ(y) =
∞∑

j=1

(√
1 + ∥y⃗j∥2 − 1

)
.

In this case, we find

Φ∗(y) =
∞∑

j=1
Φ∗

j (y⃗j) =
∞∑

j=1

(
1 −

√
1 − ∥y⃗j∥2

)
,

and the first equation in system (5.2) becomes

− d

dt

˙⃗xj√
1 + ∥ ˙⃗xj∥2

= ε∇x⃗j
F (t, x, z) , j = 1, 2, . . .

involving a kind of mean curvature operator.
Since each ∇Φ∗

j is defined only on the open ball B(0, 1), we must first modify and extend the Hamiltonian
function outside a ball B(0, r), with r ∈ ]0, 1[, and then be careful that the y⃗j component of the T -periodic
solution we find remains in B(0, r). We omit the details, for briefness. Stating the analogue of Corollary 5.3,
we thus obtain an infinite-dimensional version of some results obtained in [8,9] (see also [13], where bounded
variation solutions are considered).

5.2. Perturbations of “superintegrable” systems

In this section we study a slightly different situation with respect to system (2.1). We are going to consider
the Hamiltonian system ⎧⎪⎨⎪⎩

φ̇ = ∇K(I) + η2∇IP (t, φ, I, z)
−İ = η2∇φP (t, φ, I, z)
Jż = ηAz + η2∇zP (t, φ, I, z) ,

(5.4)

with Hamiltonian function

H(t, φ, I, z) = K(I) + η

2 ⟨Az , z⟩ + η2P (t, φ, I, z) .

The following result extends to an infinite-dimensional setting [7, Theorem 4.1], which was motivated by the
study of perturbations of superintegrable systems, cf. [12].
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Theorem 5.4. Assume (L), (Pτ ), (Pbd), (Dec1), (Dec2), (Tw) and (Cτ ). Moreover let the operator A
be invertible with a bounded inverse. Then, for every σ > 0 there exists η̄ > 0 such that, if |η| ≤ η̄, system (5.4)
has a solution satisfying (2.2) and (2.3).

Notice that the nonresonance assumption (NR) is not required here.

Proof. Arguing as above we can perform the change of variable (3.1) and set without loss of generality
I0 = 0, so to obtain ⎧⎪⎨⎪⎩

ξ̇ = ∇K(I) − ∇K(0) + η2∇I P̂ (t, ξ, I, z)
−İ = η2∇ξP̂ (t, ξ, I, z)
Jż = ηAz + η2∇zP̂ (t, ξ, I, z) ,

(5.5)

and, for every index J ≥ 1, its approximation⎧⎪⎪⎨⎪⎪⎩
ξ̇ = ΠS⋆

J
[∇K(I) − ∇K(0) + η2∇I P̂ (t, ξ, I, z)]

−İ = ΠS⋆
J

[η2∇ξP̂ (t, ξ, I, z)]
Jż = Π

S
♯
J

[ηAz + η2∇zP̂ (t, ξ, I, z)] .
(5.6)

Lemmas 4.1 and 4.2 hold again, simply replacing |ε| with η2 and ε̄ with η̄2. The statement and the proof of
Lemma 4.4, however, must be modified as follows.

Lemma 5.5. There exists a sequence (rj)j ∈ ℓ2 of positive constants such that, for every T -periodic solution
ζ(t) = (ξ(t), I(t), z(t)) of (5.5) we have

∥z⃗j∥
L2([0,T ],R

2N
♯
j )

≤ |η|rj ,

for every j ≥ 1. The same conclusion holds for every solution of (5.6), when j = 1, . . . ,J .

Proof. Fix j ≥ 1 and consider the jth block of the third equation in (5.6), i.e.

Lj z⃗j = ηAj z⃗j + η2∇z⃗j
P̂ (t, ζ) , (5.7)

where Lj denotes the j-th block of the linear operator L, cf. (4.5). From hypothesis (Dec1), we have that
σ(Lj − ηAj) ⊆ σ(L − ηA). We set η0 = min{1, π

T ∥A∥ } and, recalling that 0 /∈ σ(A), we choose δ ∈ (0, π
T )

such that σ(A) ∩ [−δ, δ] = ∅.

Claim. When |η| < η0, every λ ∈ σ(L − ηA) satisfies |λ| > δ|η|.

In order to prove this Claim, notice that, if λ ∈ σ(L − ηA), there exists a non-trivial T -periodic solution
z of Jz′ = (ηA − λI)z, so

σ
(
J(ηA − λI)

)
∩ 2π
T
iZ ̸= ∅ . (5.8)

If |λ| ≥ π/T , then |λ| > δ > δ|η|. So, we can assume |λ| < π/T . In this case, we have

∥J(ηA − λI)∥ ≤ |η| ∥A∥ + |λ| < 2π
T
,

so,
µ ∈ σ

(
J(ηA − λI)

)
⇒ |µ| ≤ ∥J(ηA − λI)∥ < 2π

T
.

By (5.8), we have that 0 ∈ σ(J(ηA − λI)) and, since J is invertible, 0 ∈ σ(ηA − λI). Hence, λ
η ∈ σ(A) and

so | λ
η | > δ, thus proving the Claim.
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From now on we assume |η| < η0. By the Claim, in particular, 0 /∈ σ(L − ηA) and so L − ηA is invertible,
as well as Lj − ηAj , with bounded inverses. Hence, (5.7) is equivalent to

z⃗j = η2(Lj − ηAj)−1∇z⃗j
P̂ (t, ζ) .

Moreover,
∥(Lj − ηAj)−1∥ = 1

dist(0, σ(Lj − ηAj)) ≤ 1
dist(0, σ(L − ηA)) ≤ 1

δ|η|
,

and consequently

∥z⃗j∥
L2([0,T ],R

2N
♯
j )

≤ η2 ∥(Lj − ηAj)−1∥ · ∥∇z⃗j
P̂∥

L2([0,T ],R
2N

♯
j )

≤
η2

√
Ta♯

j

δ|η|
= |η|

√
Ta♯

j

δ
,

thus concluding the proof of the lemma. □

The proof of Theorem 5.4 can now be completed following again the lines of the proof of Theorem 2.1. □
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