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Abstract. This paper analyzes the quasilinear elliptic boundary value problem driven by
the mean curvature operator

−div
(
∇u/

√
1 + |∇u|2

)
= λa(x)f(u) in Ω, u = 0 on ∂Ω,

with the aim of understanding the effects of a flux-saturated diffusion in logistic growth
models featuring spatial heterogeneities. Here, Ω is a bounded domain in RN with a regular
boundary ∂Ω, λ > 0 represents a diffusivity parameter, a is a continuous weight which
may change sign in Ω, and f : [0, L] → R, with L > 0 a given constant, is a continuous
function satisfying f(0) = f(L) = 0 and f(s) > 0 for every s ∈ ]0, L[. Depending on the
behavior of f at zero, three qualitatively different bifurcation diagrams appear by varying λ.
Typically, the solutions we find are regular as long as λ is small, while as a consequence of
the saturation of the flux they may develop singularities when λ becomes larger. A rather
unexpected multiplicity phenomenon is also detected, even for the simplest logistic model,
f(s) = s(L− s) and a ≡ 1, having no similarity with the case of linear diffusion based on
the Fick-Fourier’s law.
Mathematics Subject Classifications: 35J62, 35J93, 35B09, 35J25.
Keywords: flux-saturated diffusion, mean curvature operator, logistic-type equation,
indefinite weight, Dirichlet problem, bounded variation solution, strong solution, positive
solution.

1 Introduction
This paper analyzes the quasilinear elliptic problem−div

(
∇u√

1 + |∇u|2

)
= λa(x)f(u) in Ω,

u = 0 on ∂Ω,
(1.1)

where the diffusion is driven by the mean curvature operator. Here, λ > 0 is viewed as a parameter
measuring diffusivity and
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(H1
1 ) Ω ⊂ RN is a bounded domain, with a C2 boundary ∂Ω in case N ≥ 2;

(H1
2 ) a : Ω→ R is a continuous function such that maxΩ a > 0;

(H1
3 ) f : R → R is a continuous function satisfying, for some constant L > 0, f(0) = f(L) = 0, and

f(s) > 0 for every s ∈ ]0, L[.

Assumption (H1
2 ) on the weight a introduces spatial heterogeneities within the model and allows,

but does not impose, that a changes sign in Ω. Assumption (H1
3 ) basically requires that the reaction

term af is of logistic-type. As well-known, logistic maps play a pivotal role in the modeling theory of
various disciplines, with special prominence in biology, ecology, genetics; see, e.g., [7, 14, 15, 27, 28] and
the extensive bibliographies therein. Unlike the classical theory based on the Fick-Fourier’s law, where
the flux depends linearly on ∇u, here the diffusion is governed by the bounded flux ∇u/

√
1 + |∇u|2,

which is approximately linear for small gradients but approaches saturation for large ones.
The aim of this work is, therefore, describing, understanding, and clarifying the effects of a flux-

saturated diffusion in logistic growth models featuring spatial heterogeneities. This study is motivated
by the investigations on reaction processes with saturating diffusion started in [33] and further carried
out in [8, 20, 22, 34], in order to correct the non-physical gradient-flux relations at high gradients. This
specific mechanism of diffusion, of which the mean curvature operator provides a paradigmatic example,
may determine spatial patterns exhibiting abrupt transitions at the boundary or between adjacent
profiles, up to the formation of discontinuities [4, 9, 10, 11, 12, 16, 18, 19, 23, 24, 25, 26, 35]. This makes
the mathematical analysis of the problem (1.1) more delicate and sophisticated than the study of the
corresponding semilinear model, the use of some tools of geometric measure theory being in particular
required. It is an established fact indeed that the space of bounded variation functions is the natural
setting for dealing with this problem. The precise notion of bounded variation solution of (1.1) used in
this paper has been basically introduced in [3] and is recalled below for completeness.

Notation. Throughout this work, for every v ∈ BV (Ω), Dv = Dav dx+Dsv is the Lebesgue-Nikodym
decomposition of the Radon measure Dv in its absolutely continuous part Dav dx and its singular part
Dsv with respect to the N -dimensional Lebesgue measure dx in RN , |Dv| denotes the total variation of
the measure Dv, and Dv

|Dv| stands for the density of Dv with respect to its total variation. Further, |Ω|
is the Lebesgue measure of Ω, while HN−1 represents the (N − 1)-dimensional Hausdorff measure, and
|∂Ω| is the HN−1-measure of ∂Ω. We refer to [2] for additional information. Moreover, for all functions
u, v : Ω→ R, we write: u ≥ v if ess inf (u−v) ≥ 0; u > v if u ≥ v and ess sup (u−v) > 0; u� v if, for a.e.
x ∈ Ω, u(x)− v(x) ≥ dist(x, ∂Ω). We also define u ∧ v and u ∨ v by setting (u ∧ v)(x) = min{u(x), v(x)}
and (u ∨ v)(x) = max{u(x), v(x)} for a.e. x ∈ Ω. Finally, we write u+ for u ∨ 0 and u− for −(u ∧ 0).

Definition 1.1. By a bounded variation solution of (1.1) we mean a function u ∈ BV (Ω), with
f(u) ∈ LN (Ω), which satisfies∫

Ω

DauDaφ√
1 + |Dau|2

dx+
∫

Ω

Du

|Du|
Dφ

|Dφ|
|Dsφ|+

∫
∂Ω

sgn(u)φdHN−1 = λ

∫
Ω
af(u)φ dx (1.2)

for every φ ∈ BV (Ω) such that |Dsφ| is absolutely continuous with respect to |Dsu| and φ(x) = 0
HN−1-a.e. on the set {x ∈ ∂Ω: u(x) = 0}. A bounded variation solution u is said positive if u > 0.

Remark 1.1. It follows from [3, Section 3] that a function u ∈ BV (Ω), with f(u) ∈ LN (Ω), is a bounded
variation solution of (1.1) if and only if it satisfies the variatonal inequality

J (v)− J (u) ≥ λ
∫

Ω
af(u)(v − u) dx for all v ∈ BV (Ω), (1.3)

where
J (v) =

∫
Ω

(√
1 + |Dav|2 − 1

)
dx+

∫
Ω
|Dsv|+

∫
∂Ω
|v|dHN−1.
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Remark 1.2. If a bounded variation solution u of (1.1) belongs to W 2,p(Ω) ∩W 1,p
0 (Ω) for some p > N ,

then it satisfies the differential equation in (1.1) for a.e. x ∈ Ω and the boundary condition for all x ∈ ∂Ω.
Therefore, u is a strong solution of (1.1). The Lp-regularity theory [17, Chapter 9] then entails that
u ∈W 2,q(Ω) for all q > N . Conversely, it is evident that any weak solution u ∈W 1,1

0 (Ω), and hence in
particular any strong solution, is a bounded variation solution.

Remark 1.3. It is clear that, for any given λ > 0, u = 0 is a solution of (1.1), while u = L is not. Indeed,
if L were a solution, taking φ = 1 as test function in (1.2) would yield

∫
∂Ω 1 dHN−1 = |∂Ω| = 0, which is

a contradiction.

We are now going to present the main results obtained in this paper. Here, for the sake of clarity, our
statements are set out in a simplified form, while referring to the subsequent sections for some variants or
extensions thereof that rely on slightly more general but less neat conditions: for each result, the minimal
needed assumptions will be specified in an appropriate remark placed just below the corresponding proof.

The first result only exploits the structural assumptions (H1
1 ), (H1

2 ), and (H1
3 ). It provides us with

the existence of a number λ∗ ≥ 0 such that, for all λ > λ∗, the problem (1.1) has a maximum solution
uλ, with 0 < uλ < L. The asymptotic behavior of uλ, as λ→ +∞, is described too, and the bifurcation
of the solutions from the trivial line {(λ, 0) : λ ≥ 0} at the point (0, 0) is ascertained in the case λ∗ = 0.
Figure 1 illustrates the admissible bifurcations diagrams.

Theorem 1.1. Assume (H1
1 ), (H1

2 ), and (H1
3 ). Then there exists λ∗ ≥ 0 such that for all λ ∈ ]λ∗,+∞[

the problem (1.1) admits a maximum bounded variation solution uλ, with 0 < uλ < L, which satisfies

lim
λ→+∞

(ess supuλ) = L. (1.4)

Moreover, if λ∗ = 0, then
lim
λ→0+

‖uλ‖BV = 0. (1.5)

0
λ∗

L

λ

‖uλ‖∞

0
λ∗

L

λ

‖uλ‖∞

Figure 1: Admissible bifurcation diagrams for the problem (1.1) under the structural assumptions (H1
1 ),

(H1
2 ), and (H1

3 ), in case λ∗ > 0 (left) or λ∗ = 0 (right). Dashed curves indicate bounded variation
solutions.

The specific features displayed by the bifurcation diagrams of the problem (1.1) are determined by
the slope at 0 of the function f , as expressed by the following conditions:

(H1
4 ) there exists lim

s→0+

f(s)
s = +∞

(H1
5 ) there exists lim

s→0+

f(s)
s = κ ∈ ]0,+∞[

(H1
6 ) there exists lim

s→0+

f(s)
s = 0

(sublinear growth at 0);

(linear growth at 0);

(superlinear growth at 0).

When f has a sublinear growth at zero, a bifurcation from the trivial line occurs at the point (0, 0),



Logistic growth models with flux-saturated diffusion 4

and the existence of positive bounded variation solutions of the problem (1.1) is guaranteed for all λ > 0.
In addition, positive strong solutions exist provided that λ is small enough.

Theorem 1.2. Assume (H1
1 ), (H1

2 ), (H1
3 ), and (H1

4 ). Then for all λ > 0 the problem (1.1) admits at least
one bounded variation solution uλ ∈ BV (Ω), with 0 < uλ < L, which satisfies (1.4) and (1.5). Moreover,
there exists λ∗ > 0 such that, for all λ ∈ ]0, λ∗[, solutions uλ can be selected so that uλ ∈W 2,p(Ω)∩W 1,p

0 (Ω)
for any p > N , it is a strong solution and it satisfies

lim
λ→0+

‖uλ‖W 2,p = 0.

When f grows linearly at zero the bifurcation occurs from the trivial line at the point (λ1, 0), where λ1
is the principal eigenvalue of the linear weighted problem{

−∆ϕ = λa(x)κϕ in Ω,
u = 0 on ∂Ω.

Here, Ω satisfies (H1
1 ), κ comes from (H1

5 ), and a satisfies (H1
2 ). It follows from [6] that λ1 is positive and

simple, with a positive eigenfunction ϕ1. The Lp-regularity theory and a standard bootstrap argument
entail that ϕ1 ∈ W 2,p(Ω) ∩W 1,p

0 (Ω) for all p > N , while the strong maximum principle and the Hopf
boundary point lemma yield ϕ1 � 0. In this case the solvability of the problem (1.1) is guaranteed for all
λ > λ1. In addition, for λ close to λ1 strong solutions do exist.

Theorem 1.3. Assume (H1
1 ), (H1

2 ), (H1
3 ), and (H1

5 ). Then for all λ > λ1 the problem (1.1) admits at
least one bounded variation solution uλ, with 0 < uλ < L, which satisfies (1.4). Moreover, suppose that

(H1
7 ) f is of class C2

and fix any p > N . Then there exists a neighborhood U of (λ1, 0) in R×W 2,p(Ω) ∩W 1,p
0 (Ω) such that

solutions uλ can be selected so that (λ, uλ) ∈ U , uλ is a strong solution and it satisfies

lim
λ→λ1

‖uλ‖W 2,p = 0 and lim
λ→λ1

uλ
‖uλ‖C1

= ϕ1. (1.6)

Finally, there exists η > 0 such that the following assertions hold:

(i) if f ′′(0) < 0, then for all λ ∈ ]λ1, λ1 +η[ there is at least one strong solution uλ ∈W 2,p(Ω)∩W 1,p
0 (Ω)

satisfying (1.6);

(ii) if f ′′(0) > 0, then for all λ ∈ ]λ1−η, λ1[ there is at least one strong solution uλ ∈W 2,p(Ω)∩W 1,p
0 (Ω)

satisfying (1.6).

Remark 1.4. For the standard logistic model f(s) = s(L− s), the condition f ′′(0) = −2 < 0 holds and
therefore the bifurcation is supercritical.

When f exhibits a superlinear growth at zero, the existence of multiple solutions can be detected if,
for instance, conditions (H1

2 ) and (H1
6 ) are strengthened as follows. Let us set

Ω+ = {x ∈ Ω: a(x) > 0}, Ω− = {x ∈ Ω: a(x) < 0}, Ω0 = {x ∈ Ω: a(x) = 0},

and replace (H1
2 ) with

(H1
8 ) a ∈ C2(Ω), Ω+ 6= ∅, Ω− 6= ∅, Ω0 = Ω+ ∩ Ω− ⊂ Ω, and ∇a(x) 6= 0 for all x ∈ Ω0,

as well as (H1
6 ) with
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(H1
9 ) there exists q > 1, with q < N+2

N−2 if N ≥ 3, such that

lim
s→0+

f(s)
sq

= 1.

Then, for λ sufficiently large, the problem (1.1) has at least two positive bounded variation solutions, the
smaller being strong.

Theorem 1.4. Assume (H1
1 ), (H1

3 ), (H1
8 ), and (H1

9 ). Then there exists λ∗ ≥ 0 such that for all
λ ∈ ]λ∗,+∞[, the problem (1.1) admits at least one bounded variation solution uλ and one strong solution
vλ ∈ W 2,p(Ω) ∩W 1,p

0 (Ω), for any p > N , such that 0 � vλ < uλ < L. In addition, uλ satisfies (1.4),
while vλ satisfies

lim
λ→+∞

‖vλ‖W 2,p = 0.

Figure 2 illustrates three qualitatively different bifurcation diagrams corresponding, respectively, to
Theorems 1.2, 1.3, and 1.4.

0

L

λ

‖uλ‖∞

0
λ1

L1

λ

‖uλ‖∞

0
λ∗

L1

λ

‖uλ‖∞

Figure 2: Admissible qualitative bifurcation diagrams for the problem (1.1), according to the growth of f
at 0: either sublinear (left), or linear (center), or superlinear (right). Dashed curves indicate bounded
variation solutions, solid curves represent strong solutions.

Unexpectedly enough, the existence of multiple solutions can always be detected in the standard
logistic model, whenever the carrying capacity L is sufficiently large, even in the case where the weight
function a is a positive constant (cf. Remark 1.5 below). We state such a multiplicity result for the
simplest one-dimensional prototype of the problem (1.1), that is,−

(
u′√

1 + (u′)2

)′
= λaf(u) in ]0, 1[,

u(0) = 0, u(1) = 0.
(1.7)

Theorem 1.5. Assume (H1
3 ),

(H1
10) a ∈ C0([0, 1]) satisfies a > 0,

and

(H1
11) there exist r,R ∈ ]0, L[, with r < R, such that

2F (r)
r2 (1 +

√
1 + r2) < F (R)

R
,

where F (s) =
∫ s

0 f(t) dt is the potential of f . Then there exist λ] and λ], with 0 ≤ λ] < λ], such that
for all λ ∈ ]λ], λ][ the problem (1.7) admits at least two bounded variation solutions uλ, vλ such that
0 < uλ < vλ < L.
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It is worth stressing that the assumptions of Theorem 1.5 do not prevent f from being concave in
[0, L]: this fact witnesses the peculiarity of this multiplicity result, which is specific of the quasilinear
problem (1.1) and has no similarity at all with the semilinear case, where the concavity of f always
guarantees the uniqueness of the positive solution, as proven in [5] even for sign-changing weights a.

Remark 1.5. For the standard logistic model, where f(s) = s(L− s), condition (H1
11) is satisfied if, for

instance, L > 32
3 ≈ 10.67.

Example 1.6. A numerical study of the problem (1.7), with a ≡ 1, f(s) = s(L− s) and L = 11 > 32
3 ,

reveals the existence of three positive solutions in a (small) right neighborhood of the bifurcation point
λ1 = π2

L ≈ 0.8972, in particular at λ = 0.8975, and of two positive solutions in a left neighborhood of λ1.
This is in complete agreement with (i) the bifurcation result stated in Theorem 1.3 and Remark 1.4, which
predicts the bifurcation branch emanates from λ1 pointing to the right; (ii) the multiplicity conclusions of
Theorem 1.5, which guarantee the existence of two solutions in an interval of the λ-axis located on the left
of λ1. Hence a S-shaped bifurcation diagram is expected as shown by the picture on the left in Figure 3.

0
λ1 λ

L1

λ

‖uλ‖∞

1
0

L

1

x

u

Figure 3: On the left, an admissible bifurcation diagram is depicted with reference to Example 1.6: the
dashed curve indicates bounded variation solutions, the solid curve represents strong solutions. On the
right, the profiles of the three detected solutions at λ = λ are shown: in blue the regular ones, in red the
singular one.

The remainder of this paper is structured as follows. Section 2 is devoted to the proof of various
statements concerning the existence and the asymptotic behavior of the positive bounded variation
solutions of (1.1), under the sole structural conditions (H1

1 ), (H1
2 ), and (H1

3 ); in particular, Theorem 1.1
is proven. Section 3 focuses on the discussion of the features displayed by the bifurcation diagrams of
the problem (1.1) according to the slope at zero of the function f ; here, some extensions, or variants,
of Theorems 1.2, 1.3, and 1.4 are derived. Section 4 closes the paper by providing the proof of a more
general version of the multiplicity result stated in Theorem 1.5.

2 Bounded variation solutions: existence and asymptotic be-
havior of the bifurcation branches

In this section we aim to prove Theorem 1.1, as well as some variants thereof, by using variational
techniques in the space BV (Ω), in combination with the method of lower and upper solutions for mean
curvature problems as first developed in [21] and independently in [29]. Henceforth, we endow the space
BV (Ω) with the norm

‖v‖BV =
∫

Ω
|Dv|+

∫
∂Ω
|v|dHN−1,



7 P. Omari and E. Sovrano

which is equivalent to the usual one by [26, Proposition 2] and [2, Theorem 3.88]. Since we are looking for
solutions u of (1.1) satisfying the condition 0 < u < L, we can suppose, without loss of generality, that

f(s) = 0 for all s ∈ R \ [0, L].

We also set
F (s) =

∫ s

0
f(t) dt for all s ∈ R.

Next, we introduce the action functional associated with the problem (1.1). Namely, for each λ > 0, we
define Iλ : BV (Ω)→ R by

Iλ(v) = J (v)− λ
∫

Ω
aF (v) dx, (2.1)

where J : BV (Ω)→ R is given by

J (v) =
∫

Ω

√
1 + |Dv|2 − |Ω|+

∫
∂Ω
|v|dHN−1,

having set ∫
Ω

√
1 + |Dv|2 =

∫
Ω

√
1 + |Dav|2 dx+

∫
Ω
|Dsv|.

We start by proving the existence of positive bounded variation solutions of (1.1) under the following
conditions that weaken (H1

1 ) and (H1
2 ), respectively:

(H2
1 ) Ω ⊂ RN is a bounded domain, with a boundary ∂Ω of class C1 in case N ≥ 2;

(H2
2 ) a ∈ L∞(Ω) and there is a Caccioppoli set E of positive measure such that

∫
E
a(x) dx > 0.

Proposition 2.1. Assume (H1
3 ), (H2

1 ), and (H2
2 ). Then there exists λ∗ ≥ 0 such that for all λ ∈ ]λ∗,+∞[

the problem (1.1) admits a maximum bounded variation solution uλ satisfying 0 < uλ < L.

Proof. For later reference, the proof is split into three parts.
Step 1 : For every λ > 0, there exists a global minimizer uλ of Iλ. Fix λ > 0. From (H2

2 ) and (H1
3 ) we

easily get, for all v ∈ BV (Ω),

Iλ(v) ≥
∫

Ω
|Dv| − |Ω|+

∫
∂Ω
|v|dHN−1 − λ‖a+‖L1F (L)

= ‖v‖BV − |Ω| − λ‖a+‖L1F (L).

Therefore, Iλ is bounded from below and coercive. Let (vn)n be a minimizing sequence. Since (vn)n is
bounded in BV (Ω), the compact embedding of BV (Ω) into L1(Ω) implies that there exist a subsequence
of (vn)n, still denoted by (vn)n, and a function uλ ∈ BV (Ω) such that vn → uλ in L1(Ω) and a.e.
in Ω. The lower semicontinuity of Jλ with respect to the L1-convergence in BV (Ω) and the dominated
convergence theorem easily yield

Iλ(uλ) ≤ lim inf
n→+∞

Iλ(vn) = inf
v∈BV (Ω)

Iλ(v),

that is, uλ is a global minimizer of Iλ.
Step 2 : For every λ > 0, uλ is a bounded variation solution of (1.1) satisfying 0 ≤ uλ < L. From [30,
Remark 2.2.] we know that any local minimizer uλ of Iλ satisfies the variational inequality (1.3) and
therefore by Remark 1.1 it is a bounded variation solution of (1.1).

Next, we show that uλ < L. Taking v = uλ ∧ L as test function in (1.3) and observing that
v − uλ = −(uλ − L)+, we get

0 = λ

∫
Ω
af(uλ)

(
−(uλ − L)+) dx ≤ J (uλ ∧ L)− J (uλ).
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Then, recalling that uλ ∨ L = L+ (uλ − L)+ and using the lattice property proven in [21, Theorem 3.2]
or [29, Proposition 2.2], we infer

0 ≤ J (uλ ∧ L)− J (uλ) ≤ J (L)− J (uλ ∨ L)

= −
(∫

Ω

√
1 + |D(uλ − L)+|2 − |Ω|

)
−
∫
∂Ω

(uλ − L)+ dHN−1 ≤ 0.

This yields (uλ − L)+ = 0 and thus uλ ≤ L. Moreover, we have that uλ < L, because, by Remark 1.3, L
is not a solution of (1.1).

At last, we prove that uλ ≥ 0. Taking v = uλ ∨ 0 as test function in (1.3), observing that v− uλ = u−λ
and using again the lattice property, we obtain

0 ≤ J (uλ ∨ 0)− J (uλ) ≤ J (0)− J (uλ ∧ 0)

= −
(∫

Ω

√
1 + |Du−λ |2 − |Ω|

)
−
∫
∂Ω
u−λ dHN−1 ≤ 0.

Hence we conclude that u−λ = 0 and thus uλ ≥ 0.
Step 3 : For every λ > λ∗, there exists a maximum bounded variation solution wλ of (1.1) such that
0 < wλ < L. We first prove that the global minimizer uλ of (1.1) satisfies uλ > 0. To this end it is
sufficient to show that, when λ is large enough, 0 is not a global minimizer of Iλ. Thanks to (H2

2 ), we
can take v = χE ∈ BV (Ω) in (2.1), where χE is the characteristic function of E. Denoting by Per(E,Ω)
the perimeter of E in Ω, we obtain

Iλ(χE) = Per(E,Ω)− λF (L)
∫
E

adx.

Therefore, by setting
λ∗ = Per(E,Ω)

F (L)
∫
E
adx

,

we infer that Iλ(0) = 0 > Iλ(χE), for every λ > λ∗.
Fix now λ > λ∗. Thanks to [21, Proposition 3.6] or to [29, Lemma 3.7] it is immediately checked

that L is an upper bounded variation solution of (1.1), according to the definition given in [21, Section 3]
or in [29, Section 2]. Hence, by [21, Theorem 3.4] or by [29, Theorem 2.4] there exists a maximum
solution wλ ∈ BV (Ω) of (1.1) with uλ ≤ wλ < L. Suppose by contradiction that there exists a solution
vλ ∈ BV (Ω) satisfying 0 < vλ < L and vλ 6≤ wλ. Since α = vλ ∨wλ is a lower bounded variation solution
with 0 < α < L, by [21, Theorem 3.4] or by [29, Theorem 2.4] again, there should exist a solution
zλ ∈ BV (Ω) with wλ < α ≤ zλ < L, which is a contradiction. Therefore wλ is the maximum solution
of (1.1) with 0 < wλ < L. This concludes the proof.

Remark 2.1. From the proof of Proposition 2.1 it follows that the problem (1.1) has, for a given λ > 0,
a solution uλ ∈ BV (Ω), with 0 < uλ < L, if and only if there exists a function ψ ∈ BV (Ω) such that
0 < ψ < L and Iλ(ψ) < 0. This in turn holds, for all large λ > 0, if and only if

∫
Ω aF (ψ) dx > 0.

To complement the previous result, we investigate the asymptotic behavior of the maximum solutions
uλ ∈ BV (Ω) of (1.1) as λ→ +∞. To this purpose, we assume the following condition

(H2
3 ) a ∈ L∞(Ω) and there is an open set ω ⊂ Ω such that ess infω a > 0.

Assumption (H2
3 ) obviously implies (H2

2 ).

Proposition 2.2. Assume (H1
3 ), (H2

1 ), and (H2
3 ). Then the maximum bounded variation solution

uλ of (1.1) with 0 < uλ < L, which exists for all λ ∈ ]λ∗,+∞[ according to Proposition 2.1, further
satisfies (1.4).
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Proof. We begin with the following simple consequence of assumption (H1
3 ).

Claim 1. There exist a global maximizer σM ∈ ]0, L[ of f in [0, L] and a sequence (σn)n in ]σM , L[ such
that

lim
n→+∞

σn = L

and
f(s) ≥ f(σn) for all s ∈ ]σM , σn[. (2.2)

Indeed, the largest global maximizer σM ∈ ]0, L[ of f in [0, L] exists by (H1
3 ). For each n ≥ 1, let

σn ∈
]
σM , L− L−σM

n+1
]
be the largest global minimizer of f in

]
σM , L− L−σM

n+1
]
. Assumption (H1

3 ) implies
that f

(
L− L−σM

n+1
)
→ 0 and hence that σn → L, as n→ +∞. Accordingly, (σn)n is the desired sequence.

Thanks to assumption (H2
3 ) we can find constants ε > 0 and ρ > 0 such that a(x) ≥ ε for a.e. x ∈ ωρ,

where ωρ is the open ball of center x0 and radius ρ. Without restriction we can suppose that ωρ ⊂ Ω.
Let (σM ) be the largest global maximizer of f in [0, L] and (σn)n be the sequence given by Claim 1. Fix
n and, for simplifying notation, set σ = σn. Define also

λ? = N

εf(σ) min {ρ, σ − σM}
.

Fix λ > λ? and set τ = N
λεf(σ) . Denote by ωτ the open ball of center x0 and radius τ . As τ ∈ ]0, ρ[, we

have that ωτ ⊂ ωρ. First, we define a function v1 ∈W 1,1(ωτ ) ∩ C0(ωτ ) ∩ C2(ωτ ) by

v1(x) = σ − τ +
√
τ2 − |x− x0|2.

Clearly, v1 is a classical solution of−div
(

∇u√
1 + |∇u|2

)
= λεf(σ) in ωτ ,

u = v1 on ∂ωτ .

It is immediately checked that v1 also satisfies

σM < σ − τ ≤ min v1 < max v1 = σ. (2.3)

Second, we define v2 ∈W 1,1(Ω \ ωτ ) ∩ C0(Ω \ ωτ ) ∩ C2(Ω \ ωτ ) by

v2(x) = −1−
√
|x− x0|2 − τ2.

The function v2 is a classical solution of−div
(

∇u√
1 + |∇u|2

)
= g(x) in Ω \ ωτ ,

u = v2 on ∂(Ω \ ωτ ),

where g ∈ L∞(Ω) is given by

g(x) =


2(N − 1)|x− x0|2 −Nτ2

(2|x− x0|2 − τ2)3/2 if x ∈ Ω \ ωτ ,

0 if x ∈ ωτ .

Clearly, we have that
max v2 = −1. (2.4)
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Third, we define a function v by

v(x) =
{
v1(x) if x ∈ ωτ ,
v2(x) if x ∈ Ω \ ωτ .

It follows from [2, Theorem 3.84] that v ∈ BV (Ω). Let also h ∈ L∞(Ω) be defined by

h(x) =
{
λεf(σ) if x ∈ ωτ ,
g(x) if x ∈ Ω \ ωτ .

Claim 2. The function v is a bounded variation solution of−div
(

∇u√
1 + |∇u|2

)
= h(x) in Ω,

u = v2 on ∂Ω.
(2.5)

We begin observing that, for all x ∈ ∂ωτ , v1(x) > v2(x) and

∇v1(x) · νωτ (x)√
1 + |∇v1(x)|2

= −1,
∇v2(x) · νΩ\ωτ (x)√

1 + |∇v2(x)|2
= 1, (2.6)

where νωτ (x) and νΩ\ωτ (x) are, respectively, the unit outer normals to ωτ and to Ω \ ωτ at x ∈ ∂ωτ .
By [2, Theorem 3.84] we can write

Dv = Dav dx+Dsv = ∇v dx+ (v2 − v1)νωτ dHN−1. (2.7)

Take now a test function φ ∈ BV (Ω) such that |Dsφ| is absolutely continuous with respect to |Dsv|
and φ(x) = 0 HN−1-a.e. on the set {x ∈ ∂Ω: v(x) = v2(x)}. If we set φ1 = φ|ωτ ∈ W 1,1(ωτ ) and
φ2 = φ|Ω\ωτ ∈W

1,1(Ω \ ωτ ), then, by [2, Theorem 3.84] again, we have that

Dφ = Daφdx+Dsφ = ∇φ dx+ (φ2 − φ1)νωτ dHN−1. (2.8)

Thanks to (2.6), (2.7), and (2.8), we get∫
ωτ

hφ1 dx = −
∫
ωτ

div
(

∇v1√
1 + |∇v1|2

)
φ1 dx

= −
∫
∂ωτ

∇v1 · νωτ√
1 + |∇v1|2

φ1 dHN−1 +
∫
ωτ

∇v1 · ∇φ1√
1 + |∇v1|2

dx

=
∫
∂ωτ

φ1 dHN−1 +
∫
ωτ

Dav1D
aφ1√

1 + |Dav1|2
dx

and∫
Ω\ωτ

hφ2 dx = −
∫

Ω\ωτ
div
(

∇v2√
1 + |∇v2|2

)
φ2 dx

= −
∫
∂(Ω\ωτ )

∇v2 · νΩ\ωτ√
1 + |∇v2|2

φ2 dHN−1 +
∫

Ω\ωτ

∇v2 · ∇φ2√
1 + |∇v2|2

dx

= −
∫
∂ωτ

∇v2 · νΩ\ωτ√
1 + |∇v2|2

φ2 dHN−1 −
∫
∂Ω

∇v2 · νΩ√
1 + |∇v2|2

φ2 dHN−1 +
∫

Ω\ωτ

∇v2 · ∇φ2√
1 + |∇v2|2

dx

= −
∫
∂ωτ

φ2 dHN−1 +
∫

Ω\ωτ

Dav2D
aφ2√

1 + |Dav2|2
dx.
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Since

|Dsv| = |v2 − v1|dHN−1,
Dsv

|Dsv|
= v2 − v1

|v2 − v1|
νωτ ,

|Dsφ| = |φ2 − φ1|dHN−1,
Dsφ

|Dsφ|
= φ2 − φ1

|φ2 − φ1|
νωτ ,

and v = v2 on ∂Ω, we can conclude that∫
Ω
hφdx =

∫
ωτ

hφ1 dx+
∫

Ω\ωτ
hφ2 dx =

∫
∂ωτ

(φ1 − φ2) dHN−1 +
∫

Ω

Dav ·Daφ√
1 + |Dav|2

dx

=
∫
∂ωτ

v2 − v1

|v2 − v1|
νωτ ·

φ2 − φ1

|φ2 − φ1|
νωτ |φ2 − φ1|dHN−1 +

∫
Ω

Dav ·Daφ√
1 + |Dav|2

dx

=
∫

Ω

Dsv

|Dsv|
· D

sφ

|Dsφ|
|Dsφ|+

∫
∂Ω

sgn(v − v2)φdHN−1 +
∫

Ω

Dav ·Daφ√
1 + |Dav|2

dx.

Therefore v is a bounded variation solution of (2.5) according to [3, Section 3]. This concludes the proof
of Claim 2.

Let us now define a function ` : Ω× R→ R by

`(x, s) =


λεmin{f(s), f(σ)}χωτ (x) + λa(x)f(s)χΩ\ωτ (x) if s ≥ 0,
−sg(x) if − 1 < s < 0,
g(x) if s ≤ −1,

(2.9)

where χωτ and χΩ\ωτ are the characteristic functions of ωτ and of Ω \ ωτ , respectively. The function `
satisfies the L∞-Carathéodory conditions and, due to (2.2), (2.3), and (2.4),

`(x, v(x)) = h(x) for a.e. x ∈ Ω.

Consequently, v is a bounded variation solution of−div
(

∇u√
1 + |∇u|2

)
= `(x, v) in Ω,

u = v2 on ∂Ω.

Hence, by [3, Section 3] the function v also satisfies the variational inequality∫
Ω

√
1 + |Dw|2 +

∫
∂Ω
|w − v2|dHN−1 −

∫
Ω

√
1 + |Dv|2 −

∫
∂Ω
|v − v2|dHN−1 (2.10)

≥
∫

Ω
`(x, v)(w − v) dx

for all w ∈ BV (Ω).
Claim 3. The function v ∨ 0 is a lower bounded variation solution of−div

(
∇u√

1 + |∇u|2

)
= `(x, u) in Ω,

u = 0 on ∂Ω.
(2.11)

Fix any z ∈ BV (Ω) such that z ≤ 0. As v(x) = v2(x) < 0 for all x ∈ ∂Ω, we have that |z(x)| =
|v(x) + z(x)| − |v(x)| for HN−1-a.e. x ∈ ∂Ω. Since v is a solution of (2.11), taking v + z as test function



Logistic growth models with flux-saturated diffusion 12

in (2.10) yields∫
Ω
`(x, v)z dx ≤

∫
Ω

√
1 + |D(v + z)|2 +

∫
∂Ω
|v + z − v2|dHN−1

−
∫

Ω

√
1 + |Dv|2 −

∫
∂Ω
|v − v2|dHN−1

=
∫

Ω

√
1 + |D(v + z)|2 +

∫
∂Ω
|z|dHN−1 −

∫
Ω

√
1 + |Dv|2

=
∫

Ω

√
1 + |D(v + z)|2 +

∫
∂Ω
|v + z|dHN−1 −

∫
Ω

√
1 + |Dv|2 −

∫
∂Ω
|v|dHN−1.

Further, as `(x, 0) = 0 for all x ∈ Ω, we have that 0 is a solution of (2.11). Hence, according to [21] or
[29], v ∨ 0 is a lower bounded variation solution of (2.11). This concludes the proof of Claim 3.
Claim 4. For any λ > λ? there exists a lower bounded variation solution α of (1.1) such that 0 < α < L
and ess sup α ≥ σ. We know that v ∨ 0 is a lower bounded variation solution of (2.11). Moreover, as
`(x, L) = 0 for all x ∈ Ω, L is an upper bounded variation solution, but not a solution, of (2.11). Then,
by [21] or by [29] there exists a solution α of (2.11) with 0 < v ≤ α < L. From (2.9), we see that, for all
s ≥ 0 and a.e. x ∈ Ω,

a(x)f(s) ≥ εmin{f(s), f(σ)}χωτ (x) + a(x)f(s)χΩ\ωτ (x) = `(x, s).

Therefore, we immediately infer from [21] or [29] that α is a lower bounded variation solution of (1.1) as
well, thus concluding the proof of Claim 4.

We are now in position of concluding the proof. Indeed, for each η ∈ ]0, L[ we can find σ ∈ [L− η, L[
and λ? = λ?(η) > 0 such that, for all λ > λ?, there is a lower bounded variation solution αλ of (1.1)
with ess supαλ ≥ σ. Hence, the maximum bounded variation solution uλ of (1.1), which exists according
to Proposition 2.1 for all λ > λ∗, must satisfy uλ ≥ αλ and thus ess supuλ ≥ σ ≥ L − η for all
λ > max{λ?, λ∗}. Consequently, condition (1.4) is proven.

We finally describe the behavior of the solutions uλ ∈ BV (Ω) of (1.1), if any, as λ→ 0+.

Proposition 2.3. Assume (H1
3 ), (H2

1 ), and

(H2
4 ) a ∈ LN (Ω).

Then any sequence ((λn, un))n of solutions of the problem (1.1), with λn > 0, 0 < un < L, for all n, and
lim

n→+∞
λn = 0, satisfies

lim
n→+∞

‖un‖BV = 0. (2.12)

Proof. For any given n, taking φ = un as test function in (1.2), we get∫
Ω

|Daun|2√
1 + |Daun|2

dx+
∫

Ω
|Dsun|+

∫
∂Ω
|un|dHN−1 = λn

∫
Ω
af(un)un dx.

Letting n→ +∞, we find, as λn → 0,

λn

∫
Ω
af(un)un dx ≤ λn ‖a+‖L1‖f(un)un‖∞ ≤ λn ‖a+‖L1 L max

s∈[0,L]
f(s)→ 0

and hence ∫
Ω

|Daun|2√
1 + |Daun|2

dx+
∫

Ω
|Dsun|+

∫
∂Ω
|un|dHN−1 → 0. (2.13)
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Since each of the three terms of this sum tends to 0 as n→ +∞, in particular, we have that∫
Ω

|Daun|2√
1 + |Daun|2

dx→ 0. (2.14)

Possibly passing to a subsequence, still labeled by n, it follows from (2.14) that (Daun)n converges to 0
a.e. in Ω. Thus, the Severini-Egorov’s theorem implies that, for every ε > 0, there exists a measurable
subset Sε ⊂ Ω, with |Sε| < ε, such that Daun → 0 uniformly on Ω \ Sε. Fix ε > 0. Then, there exists
n̄ such that, for each n > n̄, |Daun| < ε a.e. in Ω \ Sε and, possibly reducing the size of the set Sε,
|Daun| ≥ ε a.e. in Sε. Hence, we obtain∫

Ω

|Daun|2√
1 + |Daun|2

dx =
∫

Ω\Sε

|Daun|2√
1 + |Daun|2

dx+
∫
Sε

|Daun|√
1 + |Daun|2

|Daun|dx

≥ 1√
1 + ε2

∫
Ω\Sε

|Daun|2 dx+ ε√
1 + ε2

∫
Sε

|Daun|dx

= 1√
1 + ε2

‖Daun‖2L2(Ω\Sε) + ε√
1 + ε2

‖Daun‖L1(Sε)

≥ cε√
1 + ε2

‖Daun‖2L1(Ω\Sε) + ε√
1 + ε2

‖Daun‖L1(Sε)

where cε > 0 is the embedding constant of L2(Ω \ Sε) into L1(Ω \ Sε). This estimate allows to conclude,
thanks to (2.14), that (Daun)n converges to 0 in both L1(Ω \ Sε) and L1(Sε), and thus in L1(Ω). Since
by (2.13) ∫

Ω
|Dsun|+

∫
∂Ω
|un|dHN−1 → 0,

as n→ +∞, we can therefore conclude that (2.12) holds.

Proof of Theorem 1.1. As (H1
1 ) implies (H2

1 ) and (H1
2 ) implies (H2

3 ), combining Propositions 2.1, 2.2,
and 2.3 yields Theorem 1.1.

Remark 2.2. From the above proof it follows that Theorem 1.1 still holds replacing (H1
1 ) with (H2

1 )
and (H1

2 ) with (H2
3 ).

3 Prescribing different growth conditions at zero
In this section we discuss the existence and the multiplicity of solutions of the problem (1.1) by imposing
one of the growth conditions on f at zero expressed by (H1

4 ), or (H1
5 ), or (H1

6 ).

3.1 Sublinear growth
In this subsection we establish two results from which Theorem 1.2 will eventually be inferred. The first
statement guarantees the existence of a solution for any λ > 0 under a generalized form of condition (H1

4 ).

Proposition 3.1. Assume (H1
3 ), (H2

1 ), (H2
3 ), and

(H3
1 ) lim sup

s→0+

F (s)
s2 = +∞.

Then for all λ > 0 the problem (1.1) admits at least one bounded variation solution uλ ∈ BV (Ω), which
can be selected so as to satisfy 0 < uλ < L, (1.4), and (1.5).
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Proof. It is convenient here to suppose that f(s) = 0 for all s ∈ R \ [0, L]. For any given λ > 0, the
existence of a global minimizer uλ of Iλ, satisfying 0 ≤ uλ < L, is guaranteed by the first two steps of the
proof of Theorem 2.1. Hence, according to Remark 2.1, in order to establish that uλ > 0, it is sufficient to
find a function ψ ∈ BV (Ω) such that Iλ(ψ) < 0. We first notice that, by assumption (H3

1 ), there exists a
sequence (sn)n in ]0, L[ such that

lim
n→+∞

sn = 0 and lim
n→+∞

F (sn)
s2
n

= +∞.

Next, we pick an open set ω1 such that ω1 ⊂ ω, with ω defined in (H2
3 ), and a function w ∈ H1

0 (Ω) such
that w(x) ≥ 0 in Ω, w(x) = 0 in Ω \ ω and w(x) = 1 in ω1. Hence, we have that

Iλ(snw) = 1
2

∫
ω

|sn∇w|2 dx− λ
∫
ω1

aF (snw) dx− λ
∫
ω\ω1

aF (snw) dx

≤ s2
n

(
1
2

∫
ω

|∇w|2 dx− λF (sn)
s2
n

∫
ω1

a dx
)
< 0,

for all large n. This implies that Iλ(uλ) < 0 and thus uλ > 0. Finally, we observe that Iλ(uλ) < 0 yields

J (uλ) < λ

∫
Ω
aF (uλ) dx ≤ λ‖a‖L1F (L)

and then

1
2

∫
Ω

|Dauλ|2√
1 + |Dauλ|2

dx+
∫

Ω
|Dsuλ|+

∫
∂Ω
|uλ|dHN−1

≤
∫

Ω

|Dauλ|2

1 +
√

1 + |Dauλ|2
dx+

∫
Ω
|Dsuλ|+

∫
∂Ω
|uλ|dHN−1 = J (uλ)→ 0, as λ→ 0+.

Hence, arguing as in the proof of Proposition 2.3, we see that

lim
λ→0+

‖uλ‖BV = 0.

The last conclusion,
lim

λ→+∞
(ess supuλ) = L,

follows from Proposition 2.2.

The next result yields the existence of strong solutions for λ sufficiently small.

Proposition 3.2. Assume (H1
1 ), (H1

3 ), (H2
3 ), and (H3

1 ). Then there exists λ∗ ∈ ]0,+∞] such that for all
λ ∈ ]0, λ∗[ the problem (1.1) admits at least one strong solution uλ ∈W 2,p(Ω) ∩W 1,p

0 (Ω), for all p > N ,
satisfying 0 < uλ < L and

lim
λ→0+

‖uλ‖W 2,p = 0.

Proof. From [30, Theorem 3.1] we infer the existence of λ∗ ∈ ]0,+∞] such that for every λ ∈ ]0, λ∗[ there
is uλ ∈ C1,γ(Ω) ∩W 1,1

0 (Ω), for some γ ∈ ]0, 1[, such that uλ > 0,∫
Ω

∇u · ∇φ√
1 + |∇u|2

dx = λ

∫
Ω
af(u)φdx, for all φ ∈ C∞0 (Ω),

and
lim
λ→0+

‖uλ‖C1(Ω) = 0.
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The Lp-regularity theory implies that uλ ∈W 2,p(Ω) ∩W 1,p
0 (Ω), for all p > N , and

lim
λ→0+

‖uλ‖W 2,p = 0.

This ends the prof.

Proof of Theorem 1.2. As (H1
2 ) implies (H2

3 ) and (H1
4 ) implies (H3

1 ), Propositions 3.1 and 3.2 yield
Theorem 1.2.

Remark 3.1. From the above proof it follows that Theorem 1.2 still holds replacing (H1
2 ) with (H2

3 )
and (H1

4 ) with (H3
1 ).

3.2 Linear growth
In this subsection we provide a proof of Theorem 1.3 as a consequence of two slightly more general results
stated below as Propositions 3.3 and 3.4. The basic assumption of Proposition 3.3 is

(H3
2 ) there exists lim

s→0+

2F (s)
s2 = κ ∈ ]0,+∞[ ,

generalizing condition (H1
5 ). Once the constant κ is assigned by (H3

2 ), we assume (H1
1 ) and

(H3
3 ) a ∈ L∞(Ω) is such that ess sup Ω a > 0.

Then, we respectively denote by λ1 and ϕ1 the principal eigenvalue and the principal eigenfunction of the
linear weighted problem {

−∆ϕ = λa(x)κϕ in Ω,
u = 0 on ∂Ω.

It follows from [6] that λ1 > 0, λ1 is simple and ϕ1 > 0. As already observed, the Lp-regularity theory
and a standard bootstrap argument then entail that ϕ1 ∈ W 2,p(Ω) ∩W 1,p

0 (Ω) for all p > N , while the
strong maximum principle and the Hopf boundary point lemma yield ϕ1 � 0.
Proposition 3.3. Assume (H1

1 ), (H1
3 ), (H3

2 ), and (H3
3 ). Then for all λ > λ1 the problem (1.1) admits

at least one bounded variation solution uλ, satisfying 0 < uλ < L.
Proof. It is convenient here to suppose that f(s) = 0 for all s ∈ R\ [0, L]. Fix any λ > λ1. By Remark 2.1,
it is enough to find a function ψ ∈ BV (Ω) such that Iλ(ψ) < 0. Assumption (H3

2 ) implies that there is a
sequence (sn)n in ]0, L[ such that

lim
n→+∞

sn = 0 and lim
n→+∞

F (sn)
s2
n

= κ

and hence
lim
k→0+

2F (snϕ1(x))
s2
nϕ1(x)2 = κ uniformly in x ∈ Ω.

This yields

lim
n→+∞

∫
Ω

(
|∇ϕ1|2

1 +
√

1 + s2
n|∇ϕ1|2

− λa F (snϕ1)
s2
nϕ

2
1

ϕ2
1

)
dx = 1

2

∫
Ω

(
|∇ϕ1|2 − λκaϕ2

1
)

dx

= 1
2

∫
Ω

(
1− λ

λ1

)
|∇ϕ1|2 dx < 0.

We therefore conclude that

I(snϕ1) = s2
n

∫
Ω

(
|∇ϕ1|2

1 +
√

1 + s2
n|∇ϕ1|2

− λa F (snϕ1)
s2
nϕ

2
1

ϕ2
1

)
dx < 0,

for all large n.
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Remark 3.2. It is evident from the above proof that in place of (H3
2 ) one can assume the existence of a

constant κ ∈ ]0,+∞[ and of a sequence (sn)n in ]0, L[ such that

lim
n→+∞

sn = 0 and lim
n→+∞

2F (sn)
s2
n

= κ ∈ ]0,+∞[ .

The next result guarantees the existence of small positive strong solutions u of (1.1). Fix p > N and
introduce the set

S = {(λ, u) ∈ R×W 2,p(Ω) ∩W 1,p
0 (Ω): λ > 0 and u > 0 is a strong solution of (1.1)} ∪ {(λ1, 0)}.

Since (λ, 0) solves (1.1) for all λ ∈ R, we look for positive solutions bifurcating from the line of the trivial
solutions by the Crandall-Rabinowitz theorem [13]. Namely, the following local bifurcation result holds.

Proposition 3.4. Assume (H1
1 ), (H1

3 ), (H1
5 ), (H1

7 ), (H3
3 ), and fix p > N . Then there exists a neighbor-

hood U of (λ1, 0) in R×W 2,p(Ω) ∩W 1,p
0 (Ω) and functions

χ : ]−1, 1[→ R, ψ : ]−1, 1[→
{
u ∈W 2,p(Ω) ∩W 1,p

0 (Ω):
∫

Ω
uϕ1 dx = 0

}
of class C1 such that

χ(0) = λ1, ψ(0) = 0,

and
S ∩ U =

{
(λ, u) : λ = χ(t), u = t(ϕ1 + ψ(t)), t ∈ [0, 1[

}
.

Supposing, in addition, that

(H3
4 ) f is of class C3,

the following assertions hold:

(i) if either f ′′(0) > 0 or, otherwise, f ′′(0) = 0 and f ′′′(0)
f ′(0) > −

∫
Ω
|∇ϕ1|4 dx∫

Ω
|∇ϕ1|2ϕ2

1 dx
, then the bifurcation of

positive solutions is subcritical,

(ii) if either f ′′(0) < 0 or, otherwise, f ′′(0) = 0 and f ′′′(0)
f ′(0) < −

∫
Ω
|∇ϕ1|4 dx∫

Ω
|∇ϕ1|2ϕ2

1 dx
, then the bifurcation of

positive solutions is supercritical.

Proof. Fix p > N and define the operator F : R×W 2,p(Ω) ∩W 1,p
0 (Ω)→ Lp(Ω) by setting

F(λ, u) = div
(

∇u√
1 + |∇u|2

)
+ λaf(u).

It is clear that (λ, u) ∈ W 2,p(Ω) ∩W 1,p
0 (Ω) satisfies F(λ, u) = 0 if and only if u is a strong solution

of (1.1) for some λ > 0. By combining the results in [36, Chapter II, Section 4] with the continuity, from
W 1,p(Ω) to Lp(Ω), of the linear operators which map any function u onto its weak partial derivative ∂iu,
with i = 1, . . . , N , we infer that F is of class C2 under (H1

7 ) and, respectively, of class C3 under (H3
4 ).

The partial derivatives of F relevant to the present proof are produced below. For all (λ, u) ∈
R×W 2,p(Ω) ∩W 1,p

0 (Ω) and v, w, z ∈W 2,p(Ω) ∩W 1,p
0 (Ω), there hold:

∂λF(λ, u) = af(u),

∂uF(λ, u)[v] = div
(

∇v√
1 + |∇u|2

− ∇u · ∇v(√
1 + |∇u|2

)3∇u
)

+ λaf ′(u)v,
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∂uλF(λ, u)[v] = af ′(u)v,

∂uuF(λ, u)[v][w] = div
(
− ∇u · ∇w

(
√

1 + |∇u|2)3
∇v − ∇w · ∇v

(
√

1 + |∇u|2)3
∇u− ∇u · ∇v

(
√

1 + |∇u|2)3
∇w

+ 3(∇u · ∇v) (∇u · ∇w)
(
√

1 + |∇u|2)5
∇u
)

+ λaf ′′(u)vw,

∂uuuF(λ, u)[v][w][z] = div
(
− ∇z · ∇w

(
√

1 + |∇u|2)3
∇v − ∇w · ∇v

(
√

1 + |∇u|2)3
∇z − ∇z · ∇v

(
√

1 + |∇u|2)3
∇w

+ 3(∇u · ∇z) (∇u · ∇w)
(
√

1 + |∇u|2)5
∇v + 3(∇w · ∇v) (∇z · ∇u)

(
√

1 + |∇u|2)5
∇u

+ 3(∇u · ∇v) (∇u · ∇z)
(
√

1 + |∇u|2)5
∇w + 3(∇z · ∇v) (∇u · ∇w)

(
√

1 + |∇u|2)5
∇u

+ 3(∇u · ∇v) (∇z · ∇w)
(
√

1 + |∇u|2)5
∇u+ 3(∇u · ∇v) (∇u · ∇w)

(
√

1 + |∇u|2)5
∇z

− 15(∇u · ∇v) (∇u · ∇w) (∇u · ∇z)
(
√

1 + |∇u|2)7
∇u
)

+ λaf ′′′(u)vwz.

Let us set
L = ∂uF(λ1, 0) = ∆ + λ1aκI and M = ∂uλF(λ1, 0) = aκI,

where κ = f ′(0) and I is the identity operator. It is clear that L is a Fredholm operator with index 0,
having kernel

N(L) = span{ϕ1},

and range

R(L) =
{
u ∈ Lp(Ω):

∫
Ω
uϕ1 dx = 0

}
.

Further, the transversality condition

M[ϕ1] = aκϕ1 6∈ R(L)

is satisfied, because

A =
∫

Ω
M[ϕ1]ϕ1 dx =

∫
Ω
aκϕ2

1 dx

= λ−1
1

∫
Ω
−∆ϕ1ϕ1 dx = λ−1

1

∫
Ω
|∇ϕ1|2 dx > 0.

Hence, the Crandall-Rabinowitz theorem [13, Theorem 1.7] yields the existence of a neighborhood U of
(λ1, 0) in R×W 2,p(Ω) ∩W 1,p

0 (Ω) and of functions

χ : ]−1, 1[→ R, ψ : ]−1, 1[→
{
u ∈W 2,p(Ω) ∩W 1,p

0 (Ω):
∫

Ω
uϕ1 dx = 0

}
of class C1 such that

χ(0) = λ1, ψ(0) = 0,

and
S ∩ U =

{
(λ, u) : λ = χ(t), u = t(ϕ1 + ψ(t)), t ∈ ]−1, 1[

}
.
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We further infer from [13, Theorems 1.7 and 1.18] (see also [1, Chapter 5.4]) that

λ = χ(t) = λ1 −
B

A
t+ o(t),

where

B =1
2

∫
Ω
Fuu(λ1, 0)[ϕ1][ϕ1]ϕ1 dx = 1

2

∫
Ω
λ1af

′′(0)ϕ3
1 dx

=1
2
f ′′(0)
κ

∫
Ω
−∆ϕ1ϕ

2
1 dx = f ′′(0)

κ

∫
Ω
|∇ϕ1|2ϕ1 dx.

Thus, the bifurcation of positive solutions is subcritical if f ′′(0) > 0, while it is supercritical if f ′′(0) < 0.
In case f ′′(0) = 0 and f satisfying (H3

4 ), we define

C =1
3

∫
Ω
Fuuu(λ1, 0)[ϕ1][ϕ1][ϕ1]ϕ1 dx

=1
3

∫
Ω

(
−3 div(|∇ϕ1|2∇ϕ1) + λ1af

′′′(0)ϕ3
1
)
ϕ1 dx

=1
3

∫
Ω

(
−3 div(|∇ϕ1|2∇ϕ1)ϕ1 −

f ′′′(0)
κ

∆ϕ1ϕ
3
1

)
dx

=
∫

Ω

(
|∇ϕ1|4 + f ′′′(0)

κ
|∇ϕ1|2ϕ2

1

)
dx ,

and we get, as B = 0,
λ = χ(t) = λ1 −

1
2
C

A
t2 + o(t2).

Thus, the bifurcation is subcritical if∫
Ω

(
|∇ϕ1|4 + f ′′′(0)

κ
|∇ϕ1|2ϕ2

1

)
dx > 0,

while it is supercritical if ∫
Ω

(
|∇ϕ1|4 + f ′′′(0)

κ
|∇ϕ1|2ϕ2

1

)
dx < 0.

This ends the proof.

Proof of Theorem 1.3. Since (H1
2 ) implies (H3

3 ), combining Propositions 2.2, 3.3, and 3.4 yields Theo-
rem 1.3.

Remark 3.3. From the above proof it follows that Theorem 1.3 still holds replacing (H1
2 ) with (H3

3 ).

3.3 Superlinear growth
The aim of this subsection is providing a proof of Theorem 1.4, by combining Proposition 2.2 with
Proposition 3.5 below, that has been recently proven in [32]. The following assumptions are here
considered:

(H3
5 ) a ∈ C2(Ω);

(H3
6 ) Ω+ = {x ∈ Ω: a(x) > 0} 6= ∅, Ω− = {x ∈ Ω: a(x) < 0} 6= ∅, and Ω0 = {x ∈ Ω: a(x) = 0} is such

that ∂Ω0 ⊂ Ω; the boundaries ∂(intΩ0), ∂Ω+ and ∂Ω− are of class C2; Ω0 has a finite number of
connected components, that we denote by D+

i , D
−
j and D±k .
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Hence, we can represent Ω0 in the form

Ω0 =
⋃
i

D+
i ∪

⋃
j

D−j ∪
⋃
k

D±k ,

where the components D+
i , D

−
j and D±k are supposed to satisfy:

(H3
7 ) for each i, ∂D+

i ⊂ Ω+ and there exist γ1,i > 0, a neighborhood U+
i of ∂D+

i and α+
i : U+

i → ]0,+∞[
such that

a(x) = α+
i (x) dist(x, ∂D+

i )γ1,i for all x ∈ Ω+ ∩ U+
i ;

(H3
8 ) for each j, ∂D−j ⊂ Ω− and there exist γ2,j > 0, a neighborhood U−j of ∂D−j and α−j : U−j → ]−∞, 0[

such that
a(x) = α−j (x) dist(x, ∂D−j )γ2,j for all x ∈ Ω− ∩ U−j ;

(H3
9 ) for each k, the following alternative holds

(H3
9.1) if int(D±k ) = ∅, then

– ∂D±k = Γk are of class C2;
– there exist γ3,k > 0, a neighborhood U+

k of Γk and α+
k : U+

k → ]0,+∞[ such that

a(x) = α+
k (x) dist(x,Γk)γ3,k for all x ∈ Ω+ ∩ U+

k ; (3.1)

– there exist γ4,k > 0, a neighborhood U−k of Γk and α−k : U−k → ]−∞, 0[ such that

a(x) = α−k (x) dist(x,Γk)γ4,k for all x ∈ Ω− ∩ U−k ; (3.2)

(H3
9.2) if int(D±k ) 6= ∅, then

– ∂D±k = Γ+
k ∪ Γ−k , with Γ+

k ∩ Γ−k = ∅, Γ+
k ⊂ Ω+, Γ−k ⊂ Ω− of class C2;

– there exist γ3,k > 0, a neighborhood U+
k of Γ+

k and α+
k : U+

k → ]0,+∞[ satisfying
condition (3.1);

– there exist γ4,k > 0, a neighborhood U−k of Γ−k and α−k : U−k → ]−∞, 0[ satisfying
condition (3.2).

Let us define
D+ =

⋃
i

D+
i , D− =

⋃
j

D−j , D± =
⋃
k

D±k .

The set D+ (respectively, D−) is constituted by the connected components D+
i (respectively, D−j ) of Ω0,

that are surrounded by regions of positivity (respectively, negativity) of a. Instead, D± is constituted by
the connected components D−j of Ω0, that are in between a region of positivity and one of negativity of a.
D± can be either a “thin” nodal set, like when assuming condition (H1

8 ), or a “thick” nodal set, that
is, of positive measure. An example of an admissible nodal configuration for the function a is provided
by Figure 4.

Remark 3.4. Let a ∈ C2(Ω) be a sign-changing function satisfying condition (H1
8 ). Then, as already

observed in [32], D+, D−, and int(D±) are all empty sets, and assumption (H3
9.1) holds.

Proposition 3.5. [32, Theorem 2.2] Assume (H1
1 ), (H1

9 ), (H3
5 ), (H3

6 ), (H3
7 ), (H3

8 ), and (H3
9 ). Then

there exists λ∗ > 0 such that for all λ ∈ ]0, λ∗[ the problem (1.1) admits at least one strong solution
vλ ∈W 2,p(Ω) ∩W 1,p

0 (Ω), for any p > N , satisfying vλ � 0 and

lim
λ→+∞

‖vλ‖W 2,p = 0.
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Figure 4: Examples of admissible nodal configurations for the weight a: the union of the green, the purple
and the blue regions are respectively the sets Ω+, Ω0 and Ω−. On the left, Ω0 =

⋃2
k=1D

±
k satisfies the

assumptions of both Theorem 1.4 and Proposition 3.5. On the right, Ω0 = D+
1 ∪D

−
1 ∪

⋃4
k=1D

±
k satisfies

the assumptions of Proposition 3.5.

Proof of Theorem 1.4. From Propositions 2.2 and 3.5, as well as Remark 3.4, we know that, for any given
p > N , there exists λ∗ > 0 such that, for all λ > λ∗, the problem (1.1) admits a maximum bounded
variation solution uλ and one strong solution vλ ∈W 2,p(Ω) ∩W 1,p

0 (Ω) satisfying 0 < uλ, vλ < L,

lim
λ→+∞

(ess supuλ) = L and lim
λ→+∞

(ess sup vλ) = 0.

Hence we infer that vλ < uλ, provided λ is large enough. Thus Theorem 1.4 is proven.

Remark 3.5. From the above proof it follows that Theorem 1.4 still holds replacing (H1
8 ) with (H3

5 ),
(H3

6 ), (H3
7 ), (H3

8 ), and (H3
9 ).

4 A peculiar multiplicity result
We prove here a more general version of Theorem 1.5 where the positivity and the continuity assumptions
on the weight a are dropped.

Proposition 4.1. Assume

(H4
1 ) f : [0, L] → R, with L > 0 a given constant, is a continuous function satisfying f(0) = f(L) = 0

and f(s) > 0 for every s ∈ ]0, L[,

(H4
2 ) a ∈ L1(0, 1) and satisfies

∫ 1
0 a dx > 0,

and

(H4
3 ) there exist r,R ∈ ]0, L[, with r < R, such that

‖a+‖L1
2F (r)
r2 (1 +

√
1 + r2) <

(∫ 1

0
adx

)
F (R)
R

.

Then there exist λ], λ] ∈ ]0,+∞[, with λ] < λ], such that for all λ ∈ ]λ], λ][ the problem (1.7) admits at
least two bounded variation solutions uλ, vλ such that 0 < uλ < vλ < L.



21 P. Omari and E. Sovrano

Proof. The proof relies on a counterpart for the problem (1.1) of a mountain pass lemma for non-smooth
functionals stated in [31, Lemma 3.7]. It is convenient here too to suppose that f(s) = 0 for all s ∈ R\[0, L].
For any given λ > 0 we introduce the functionals J , j, I : BV (0, 1)→ R defined by

J (v) =
∫ 1

0

(√
1 + |Dav|2 − 1

)
dx+

∫ 1

0
|Dsv|+ |v(0)|+ |v(1)|,

j(v) =
‖Dav‖2L1

1 +
√

1 + ‖Dav‖2L1

+
∫ 1

0
|Dsv|+ |v(0)|+ |v(1)|,

Iλ(v) = J (v)− λ
∫ 1

0
aF (v) dx.

By the Jensen’s inequality we see that

J (v) ≥ j(v) for all v ∈ BV (0, 1).

According to Remark 1.1, a function u ∈ BV (0, 1) is a bounded variation solution of (1.7) if and only if

J (v)− J (u) ≥ λ
∫ 1

0
af(u)(v − u) dx for all v ∈ BV (0, 1). (4.1)

We endow the space BV (0, 1) with the norm

‖v‖BV = |Dav‖L1 +
∫ 1

0
|Dsv|+ |v(0)|+ |v(1)|,

which, as already observed in Section 2, is equivalent to the standard one.

Step 1 : Mountain pass geometry. Let r,R > 0 be the constants introduced in assumption (H4
3 ). Define

Br = {v ∈ BV (0, 1) : ‖v‖BV = r}.

We first show that there exist constants λ], λ] > 0, with λ] < λ] such that, for each λ ∈ ]λ], λ][,

inf
v∈Br

Iλ(v) > 0 = Iλ(0). (4.2)

Elementary calculations show that the function ζ : [0,+∞[→ R

ζ(ξ) = ξ2

1 +
√

1 + ξ2
− ξ

is decreasing and hence, for all ξ ∈ [0, r],

ξ2

1 +
√

1 + ξ2
+ r − ξ ≥ r2

1 +
√

1 + r2
.

Hence, we infer that, for all v ∈ Br

j(v) =
‖Dav‖2L1

1 +
√

1 + ‖Dav‖2L1

+ r − ‖Dav‖L1 ≥ r2

1 +
√

1 + r2
.

On the other hand, we have that, for all v ∈ Br,

‖v‖∞ ≤ ‖v‖BV = r
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and hence, as F is increasing,
‖F (v)‖∞ ≤ F (‖v‖∞) ≤ F (r).

Thus, we can conclude that, for all v ∈ Br,

Iλ(v) = J (v)− λ
∫ 1

0
aF (v) dx ≥ j(v)− λ‖a+‖L1‖F (v)‖∞

≥ r2

1 +
√

1 + r2
− λ‖a+‖L1F (r).

By using (H4
2 ), we can take

λ] <
(
‖a+‖L1

F (r)
r2

(
1 +

√
1 + r2

))−1
.

Hence, condition (4.2) holds for each λ ∈ ]0, λ][.
Next, using (H4

2 ) again, we can take λ] > 0 such that

λ] >

((∫ 1

0
adx

)F (R)
2R

)−1
,

and so we obtain, for each λ > ]λ],+∞[,

Iλ(R) = 2R− λ
∫ 1

0
aF (R) dx = 2R− λ

(∫ 1

0
a dx

)
F (R) < 0 = Iλ(0). (4.3)

Note that assumption (H4
3 ) implies that((∫ 1

0
a dx

)F (R)
2R

)−1
<
(
‖a+‖L1

F (r)
r2

(
1 +

√
1 + r2

))−1
.

In particular, λ], λ] can be chosen so as to satisfy((∫ 1

0
a dx

)F (R)
2R

)−1
< λ] < λ] <

(
‖a+‖L1

F (r)
r2

(
1 +

√
1 + r2

))−1
.

Therefore, for each λ ∈ ]λ], λ][, conditions (4.2) and (4.3) hold, with ‖R‖BV = 2R > r, thus displaying
the desired mountain pass geometry of the functional Iλ.

Step 2 : Existence of almost critical points. Henceforth, we fix λ ∈ ]λ], λ][. Then, we set

Γ = {γ ∈ C0([0, 1], BV (0, 1)) : γ(0) = 0, γ(1) = R}.

From Step 1, we infer that

cλ = inf
γ∈Γ

max
t∈[0,1]

Iλ(γ(t)) > max{Iλ(0), Iλ(R)} > 0.

Then, from a variant of [31, Lemma 3.7] valid for the functional Iλ, there exist sequences (vn)n in BV (0, 1)
and (εn)n in R with

lim
n→+∞

εn = 0 (4.4)

such that, for every n,
cλ −

1
n
≤ Iλ(vn) ≤ cλ + 1

n
(4.5)
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and
J (v)− J (vn) ≥ λ

∫ 1

0
af(vn)(v − vn) dx+ εn‖v − vn‖BV for all v ∈ BV (0, 1). (4.6)

Step 3 : Estimates on the almost critical points. By (4.5) the sequence (vn)n satisfies, for every n,

‖vn‖BV − 1 ≤ J (vn) ≤ λ
∫ 1

0
aF (vn) dx+ cλ + 1 ≤ λ]‖a+‖L1F (L) + cλ + 1

and thus
sup
n
‖vn‖BV < +∞. (4.7)

Step 4 : Existence of a positive bounded variation solution uλ with Iλ(uλ) = cλ > 0. By the compact
embedding of BV (0, 1) into L1(0, 1), there exist a subsequence of (vn)n, still denoted by (vn)n, and
uλ ∈ BV (0, 1) such that limn→+∞ vn = uλ in L1(0, 1) and a.e. in [0, 1]. By passing to the inferior limit
in (4.6) and using the lower semicontinuity of J with respect to the L1-convergence in BV (0, 1), as well
as the dominated convergence theorem, we obtain

J (v)− λ
∫ 1

0
af(uλ)v dx = J (v)− λ lim

n→+∞

∫ 1

0
af(vn)v dx

≥ lim inf
n→+∞

J (vn)− λ lim
n→+∞

∫ 1

0
af(vn)vn dx ≥ J (uλ)− λ

∫ 1

0
af(uλ)uλ dx,

for all v ∈ BV (0, 1). Hence, condition (4.1) holds and thus uλ is a solution of (1.7).
Next we prove that Iλ(uλ) = cλ by showing that

lim
n→+∞

Iλ(vn) = Iλ(uλ) (4.8)

and using (4.5). The dominated convergence theorem implies that

lim
n→+∞

∫ 1

0
aF (vn) dx =

∫ 1

0
aF (uλ) dx.

Hence, to prove (4.8) it is enough to verify that

lim
n→+∞

J (vn) = J (uλ).

The lower semicontinuity of J with respect to the L1-convergence yields

lim inf
n→+∞

J (vn) ≥ J (uλ).

On the other hand, taking the solution uλ as test function in (4.6), we get, for all n,

J (vn) ≤ J (uλ)− λ
∫ 1

0
af(vn)(uλ − vn) dx− εn‖uλ − vn‖BV .

Passing to the superior limit and using the dominated convergence theorem again, together with (4.4)
and (4.7), we infer that

lim sup
n→+∞

J (vn) ≤ J (uλ).

Step 5 : Existence of a positive bounded variation solution wλ with Iλ(wλ) < 0. From the proof of
Proposition 2.1 it is apparent that we only need showing that the functional Iλ attains negative values
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if λ ∈ ]λ], λ][. This is indeed guaranteed by (4.3). Then the global minimizer of Iλ provides us with a
solution wλ 6= uλ.

The same argument developed in the proof of Proposition 2.1 shows that 0 < uλ, wλ < L. Further,
since uλ 6= wλ and L is an upper bounded variation solution, but not a solution, we have that 0 <
uλ, wλ < uλ ∨ wλ < L and uλ ∨ wλ is a lower bounded variation solution. Hence we infer from [21] or
[29] the existence of a solution vλ > uλ. This concludes the proof of Proposition 4.1.

Proof of Theorem 1.5. Notice that (H1
3 ), (H1

10), and (H1
11) imply (H4

1 ), (H4
2 ), and (H4

3 ), respectively.
Thus, Theorem 1.5 is directly inferred from Proposition 4.1.

Remark 4.1. The case where Ω is an arbitrary bounded interval ]c, d[ can be easily handled via the
change of variables

ξ = x− c
d− c

, v(ξ) = 1
d− c

u
(
c+ (d− c)ξ

)
,

which transforms the problem−
(

u′√
1 + (u′)2

)′
= λaf(u) in ]c, d[,

u(c) = 0, u(d) = 0,

into −
(

v′√
1 + (v′)2

)′
= λãf̃(v) in ]0, 1[,

v(0) = 0, v(1) = 0,

where
ã(ξ) = a

(
c+ (d− c)ξ

)
, f̃(s) = (d− c)f

(
(d− c)s

)
.

Remark 4.2. It is worth observing that if a vanishes on the boundary of its domain and it satisfies the
regularity condition specified in [23, 24] at its nodal points, then all solutions of (1.7) are strong solutions.
This topic will be discussed in detail elsewhere.
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