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Introduction
The motivation of this research is to optimise
the propeller of a small-scale electrical aircraft
under uncertainty. The expensive performance
evaluation prohibits the application of standard
optimisation techniques and the direct calcu-
lation of statistical measures. This motivates
the use of cheap low-fidelity simulations to ob-
tain more information about the unexplored lo-
cations of the input space. The information
stemming from the low- and high-fidelity sim-
ulations are fused together with multi-fidelity
Gaussian Process Regression to build an ac-
curate surrogate model despite the low num-
ber of high-fidelity simulations. The proposed
surrogate-based optimisation workflow allows
us to efficiently carry out an optimisation prob-
lem which otherwise would be impracticable.

Optimisation Workflow

Conclusion
Multi-fidelity optimisation techniques require
good cross-correlation between fidelity levels.
Multi-fidelity surrogate techniques can help
construct accurate surrogates when only sparse
high-fidelity samples are available. An acquisi-
tion function calculating the expected variance
reduction can efficiently choose where to sam-
ple next. The separate design and probability
space modelling approach facilitates the use of
appropriate surrogate techniques in each space.
Multi-fidelity techniques in aerospace applica-
tions can increase efficiency as well-calibrated
low-fidelity formulas are available.
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Propeller Performance Solvers

Solver Speed Samples Accuracy

CFD1 ∼3.5 h few highest
XROTOR2 ∼30 s some intermediate
BEMT3 ∼0.1 s many lowest

1Navier-Stokes Solver (SU2)
2Lifting-line Theory
3Blade Element Momentum Theory

Multi-fidelity techniques require high correlation between the fidelities. Fortunately, in aerospace
engineering even low-fidelity models (Lifting-line Theory, Blade Element Momentum Theory) are
well calibrated and the correlation with high-fidelity Navier-Stokes Solvers is good. This allows us
to obtain valuable information on the performance of a design at a cheaper cost.

Uncertainty Quantification
The probability space is modelled by Polynomial Chaos Expansion
(PCE). The PCE is a very efficient technique and depending on its
polynomial family it can model the probability space of various prob-
ability distributions.

f(x) ∼=
k∑
i=1

αipi(x), (1)

Multi-fidelity Gaussian Process Regression
A complex process can be approximated by the
sum of two processes. The low-fidelity process
can be modelled accurately as many data can be
generated. The difference term is typically a less
complex process.

Zt(x) = ρt−1(x)Zt−1(x) + Zδt(x) (2)
m̂Zt(x) = ρt−1m̂Zt−1(x) + m̂δt(x) (3)

ŝ2Zt
(x) = ρt−1ŝ

2
Zt−1

(x) + ŝ2δt(x) (4)

Surrogate Samples Erroravg1 Erroropt2

GPR 20 21.628 0.3949

MF-GPR 20(HF )
40(LF )

0.881 0.0002

1 Mean squared error
2 Absolute error of the location of the optimum

Acquisition Function

The fidelity level (l) is chosen which provides the
highest scaled variance reduction:

l = argmax
LF,HF

σ̃l, (5)

where the σ̃l is defined as:
σ̃HF = ŝ2Zt

(xnew)/costHF (6)

σ̃LF = ρt−1ŝ
2
Zt−1

(xnew)/costLF (7)

Results
The proposed surrogate-based optimisation
algorithm achieved 6% improvement of the
objective. The uncertain nature of the problem
was captured with a nested probability modelling.

Design CT
1 CP

2 Objective3

baseline 2.281 3.367 1.476
optimum 1.173 1.624 1.384

1 Mean of the thrust coefficient
2 Mean of the power coefficient
3 Inverse of mean efficiency


