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Preoperative chemoradiotherapy (pCRT) followed by surgery is the standard treatment for locally advanced rectal cancer (LARC).
However, tumor response to pCRT is not uniform, and there are no effective predictive methods. This study investigated whether specific
gene and miRNA expression are associated with tumor response to pCRT. Tissue biopsies were obtained from patients before pCRT and
resection. Gene and miRNA expression were analyzed using a one-color microarray technique that compares signatures between
responders (R) and non-responders (NR), as measured based on tumor regression grade. Two groups composed of 38 “exploration
cohort” and 21 “validation cohort” LARC patients were considered for a total of 32 NR and 27 R patients. In the first cohort, using SAM
Two Class analysis, 256 genes and 29 miRNAs that were differentially expressed between the NR and R patients were identified. The anti-
correlation analysis showed that the same 8miRNA interacted with different networks of transcripts. ThemiR-630 appeared only with the
NR patients and was anti-correlated with a single transcript: RAB5B. After PAM, the following eight transcripts were strong predictors of
tumor response: TMEM188, ITGA2, NRG, TRAM1, BCL2L13,MYO1B, KLF7, and GTSE1. Using this gene set, an unsupervised cluster analysis
was applied to the validation cohort and correctly assigned the patients to theNR or R groupwith 85.7% accuracy, 90% sensitivity, and 82%
specificity. All three parameters reached 100% when both cohorts were considered together. In conclusion, gene and miRNA expression
profiles may be helpful for predicting response to pCRT in LARC patients.

Colorectal cancer (CRC) is one of the principal causes of
cancer mortality in the world. Approximately 30% of CRC
cases are designated as rectal cancer, and approximately 40% of
them are locally advanced (LARC) (Siegel et al., 2014).
Preoperative chemoradiotherapy (pCRT) is the standard
treatment for patients with LARC (Agostini et al., 2014). The
response to pCRT varies from none to complete (Rullier et al.,
2001; Rodel et al., 2003) and only the responding patients seem
to have an outcome improvement (Maas et al., 2010). To spare
the exposure to toxic and inefficient therapy of non-responder
patients and to quickly proceed with surgery, it is clinically
relevant to determine early predictors of tumor response.
Many clinical, metabolic, and imaging tools have been evaluated
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as predictors; however, the performance of these methods for
predicting the histopathological response is poor (Nutt et al.,
2003; Amthauer et al., 2004; Denecke et al., 2005; Gearhart
et al., 2006; Molinari et al., 2013; Crotti et al., 2015).

Controversial issues and poor predictability of tumor
response were also experienced with the following biological
markers: epidermal growth factor receptor (EGFR), thymidylate
synthase (TS), bcl-2/bax, cyclooxygenase (COX-2), p53, Ki-67,
p21, and serum carcinoembryonic antigen (CEA) (Spolverato
et al., 2011).

Drug sensitivity in chemotherapy is thought to be
attributable to variations in the underlying genetic cancer traits.
Gene expression signatures have a great potential for
predicting outcomes, and theymay be superior to conventional
clinical and pathological approaches (van de Vijver et al., 2002;
Gordon et al., 2003; Nutt et al., 2003; Parissenti et al., 2007).
Some studies on the prediction of treatment response have
been based on mRNA profiling of LARC patients, but no
consensus has been obtained for the list of predictive genes
(Ghadimi et al., 2005; Kim et al., 2007; Rimkus et al., 2008).

microRNAs (miRNAs) are non-coding RNAs that negatively
regulate gene expression at the post-transcriptional level by
cleavage and/or translational repression of their mRNA
targets. miRNA dysregulation is believed to promotemalignant
behavior of tumors because they control biological
processes that are implicated in carcinogenesis (Chen, 2005;
VandenBoom et al., 2008; D’Angelo et al., 2015). Depending on
the target genes, they can either be considered as tumor
suppressors or oncogenes. Aberrant expression of miRNAs
has been shown in various types of cancer such as breast, brain,
lung, pancreas, thyroid, and colon cancer, as well as
hematological malignancies.

miRNAs have been extensively studied to determine their
role as predictive markers in cancer cell lines or in metastatic
CRC but in LARC patients the data are still poor (Aslam et al.,
2009; Agostini et al., 2010; Perilli et al., 2014; Vicentini et al.,
2014; D’Angelo et al., 2016). In this study, we investigated the
whole spectrum of transcriptional signatures of tumor and
normal tissues of LARC patients analyzing the differences
between responders (R) and non-responders (NR) to pCRT,
before applying chemoradiotherapy. This study was aimed at
investigating whether specific gene and miRNA expression
profiles might be associated with rectal cancer response to
pCRT and improving the information about the responsive
biomarkers in LARC patients.

Materials and Methods
Patients

The study included consecutive patients treated in theDepartment of
Surgery, University of Padua, Italy and in the Centro di Riferimento
Oncologico of Aviano, Italy. All of the patients fulfilled the following
criteria: histologically confirmed primary adenocarcinoma of the
rectum, tumor within 12 cm of the anal verge on proctoscopic
examination, clinical stage (Edge and Compton, 2010) cT3-4 and/or
N0-2, resectable disease, age �18 years, Karnofsky Performance
Status �60%, and written informed consent. CEA level was also
determined. After baseline staging, all of the patients were treated
with radiotherapy (total dose of at least 45Gy to the entire pelvis at
1.8Gy daily, five times per week) concomitantly with chemotherapy
(5-Fluorouracil [5-FU] intra-venous or capecitabine, with or without
oxaliplatin). Surgery was planned 6–8 weeks after the completion of
pCRT.

Pathological assessment and definition of tumor response

Standardized histological examination of the surgical specimens
was performed according to the American Joint Committee on
Cancer (AJCC) classification (Edge and Compton, 2010).

Histologic tumor response to pCRTwas assessed according to the
modified five-grade tumor regression (TRG) classification of
Mandard (Mandard et al., 1994). For the purpose of this study,
patients were subdivided into responders (TRG 1–2) and non-
responders (TRG 3–5).

Tissue samples and RNA extraction

Endoscopic tumor and normal adjacent rectal biopsies were
collected from each patient before pCRT, according to a standard
protocol approved by the local ethics committee (Comitato Etico
per la Sperimentazione—Azienda Ospedaliera di Padova). Briefly,
each patient signed an informed consent for the use of these
samples for research purposes. All clinical investigation has been
conducted according to the principles expressed in the
Declaration of Helsinki. All biopsies were preserved in the Tissue
Bank of the 1st Surgical Clinic—University of Padua. All biopsies
underwent standardized histopathological examination based on
hematoxylin-eosin staining of 5-mm frozen sections. Tumor
specimens with �60% malignant cells were considered for the
experiment. Total RNA extraction was performed using
TRIZOL1 Reagent (Invitrogen, Carlsbad, CA) following standard
procedures. Samples with RIN >6.5 (RNA 6000 Series Nano
Chips) and samples enriched for small nucleic acid fragments with a
percentage <35% (Agilent Small RNA Kit) were selected for the
microarray analysis.

Gene expression analysis

Total RNA from tumor and normal tissue were analyzed using a
microarray technique (Agilent, Santa Clara, CA) with the Whole
Human Genome Oligo microarray platform 4� 44K (V1); 1mg of
each sample of total RNAwas labeled using the Agilent One-Color
Microarray-Based Gene Expression Analysis kit (Quick Amp
Labelling, Agilent Technologies), linearly amplified, labeled, and
hybridized. Microarrays were read with the Agilent DNA
Microarray scanner, and images were analyzed with Feature
Extraction 10.5.1.1. The data were filtered and normalized using
Moltiplicatively Detrended and Quantile methods. Expression
datasets were compiled according to the standards proposed by
the Microarray Gene Expression Data Society.

MicroRNA expression analysis

We used the human miRNA microarray platform Rel 12.0 (V3)
manufactured by Agilent SurePrint Technology containing 866
human and 89 human viral miRNA probes. Only the first cohort’s
samples were used for this analysis; 100 ng of each RNA sample
was directly labeled. The data were filtered and normalized using
the cyclic Loess method.

Statistical analysis of the expression data

The statistical analysis was performed with TMEV 4_5_1.
Hierarchical clustering analysis was performed using the complete
linkage method and Euclidean distance or Pearson’s correlation.
The differential gene expression between the responders and non-
responders was determined using SAM (Significance Analysis of
Microarrays) TwoClass, FDR (FalseDiscovery Rate) 0%. Class and
gene prediction analysis was performed using the PAM (Prediction
Analysis of Microarrays, http://www-stat.stanford.edu/~tibs/
PAM). The association with biological annotation terms (Gene
Ontology Terms and Pathways) was detected using DAVID
(Database for Annotation, Visualization, and IntegratedDiscovery)
tool (http://david.abcc.ncifcrf.gov/). For the integrative analysis of
miRNA target predictions of differentially expressed miRNA and
gene expression data, the MAGIA (miRNA and genes integrated
analysis) tool (http://gencomp.bio.unipd.it/magia) was used. We
used a parametric linear correlation measure (Pearson) and

2

http://www-stat.stanford.edu/~~tibs/PAM
http://www-stat.stanford.edu/~~tibs/PAM
http://david.abcc.ncifcrf.gov/
http://gencomp.bio.unipd.it/magia


selected only those that were anti-correlated less than �0.3 as
functional. miRNA-mRNA anti-correlations were visualized using
Cytoscape software package (Cline et al., 2007).

Real-time quantitative PCR (qPCR)

To validate miRNA expression, 10 ng of total RNA for each
sample, three miRNA specific primers for target (hsa-miR-630,
hsa-miR-638, and hsa-miR-7) and three for references (RNU48,
RNU44, RNU6B) were used (TaqMan
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MicroRNA Inventoried
Assays, Applied Biosystems, Foster City, CA). qPCR was
performed on an 7500 Real Time PCR System (Applied
Biosystems). Data analysis was performed using the REST
software 2009.

Results
Patient, tumor, and treatment characteristics

Of the 59 patients enrolled in the study, 38 were included in the
first “exploration” cohort and 21 in the second “validation”
cohort. There were no significant differences between the two
cohorts regarding patient, treatment, and tumor
characteristics (Table I). The median tumor distance from the
anal verge was 6 cm (range 2–11). The majority of the patients
were clinically staged as cTNM III (n¼ 55). A radical tumor
resection was achieved in 52 patients, and the remaining 7
patients underwent full-thickness local excision, and
consequently, the status of the pathological lymph nodes

remained indeterminate. Following the TRG classification,
32 patients were consideredNR (54%) andwere considered 27
R (46%), 12 (20%) of them showed a pathological complete
response (TRG 1).

Gene expression profiling: patient exploration cohort

To identify the molecular signatures of responsiveness to
pCRT, we analyzed gene expression profiles from the first 46
rectal cancer biopsies: 38 from tumor and 8 from normal
tissues. Among the 38 tumor samples, 22 were classified as
NRT and 16 as RT. Among the normal tissues, four were from
NRN and four from RN patients. In the first unsupervised
cluster analysis, tumor and normal samples were correctly
clustered, whereas the NR and R groups did not. Using SAM
Two Class analysis, no differentially expressed genes between
NR and R were detected.

Hence, the ratio between tumor and the mean of normal
sample expression (e.g., RTi/MeanRN and NRTi/MeanNRN) was
considered for further analyses. Also in this case, the first
unsupervised cluster analysis did not correctly cluster the NR
and R groups. However, using SAM Two Class analysis, 256
transcripts were found to be differentially expressed (DE)
between NR and R with a FDR of 0%. These transcripts, in the
cluster analysis, separate exactly into two responsive classes
(Fig. 1A); 188 of these are up-regulated and 68 down-regulated
in NR in comparison with R (Supplementary Table SI). To
investigate the cellular components of discriminating genes,
we performed the analysis of Gene Ontology categories
using the DAVID bioinformatics’ tool. “Nuclear envelope”
(6 transcripts) and “Plasma membrane” (34 transcripts)
showed a higher proportion of DE transcripts than other
categories (Table II). Instead, for biological processes, we found
six categories reported in Table II, and the most interesting
were “Transmembrane transport,” “Cell cycle,” and
“Apoptosis.” In the pathway analysis, the most altered
(P� 0.01) appear to be “Chemokine signaling” (six transcripts),
“Pathways in cancer” (seven transcripts), “MAPK signaling”
(seven transcripts), and “Axon guidance” (six transcripts).
Moreover, 85 DE transcripts still have unknown functions, and
27 are non-coding RNAs.

We applied PAM to the expression data and found that only
eight transcripts (TMEM188, MYO1B, ITGA2, GTSE1, NRG1,
KLF7, TRAM1, and BCL2L13) discriminate between NR and R
with a misclassification error of 0. Of them, five (TMEM188,
ITGA2,NRG1, TRAM1, and BCL2L13) unexpectedly belong to the
same category “Integral to membrane” of cellular components.

Gene expression profiling: patient validation cohort

To corroborate the significance of the genes found in PAM
analysis, we evaluated the gene expression profiles of a new
group of 34 LARC biopsies (validation cohort): 21 were taken
from tumor (11 RT and 10NRT) and 13 from normal (7 RN and
6 NRN) tissues. In these experiments, we considered only
samples composed of �70% malignant cells. The expression
data were treated as for the previous analysis. An unsupervised
cluster analysis was performed only with the expression values
of all probes of the 8 PAM discriminant transcripts (Fig. 1B).
The samples clustered in two groups: NR and R. The accuracy
of class prediction was 85.7% (18 of 21 correct calls) with three
misclassification errors, two of which belonged to R, and one
to NR. Considering NR as a test sample in this test set, the
sensitivity was 90% and the specificity 81.8%. Accuracy,
sensitivity, and specificity became 100% when we considered
the two cohorts together (Fig. 1C).

The unsupervised cluster analysis was also applied to the
samples of the validation cohort. All normal samples clustered
together and separately from tumor samples. The cluster of

TABLE I. Patient, treatments, and tumor characteristics of 59 local advanced
rectal cancer patients

First cohort
(N¼ 38)a

Second cohort
(N¼ 21)a

Total
(N¼ 59)a

Age
Median (range), years 64 (43–79) 66 (31–79) 64 (31–79)

Sex
Male 29 (76) 16 (76) 45 (76)
Female 9 (24) 5 (24) 14 (24)

CEA
�5 ng/ml 32 (84) 18 (86) 50 (85)
>5 ng/ml 6 (16) 3 (14) 9 (15)

cTNM
II 2 (5) 2 (10) 4 (7)
III 36 (95) 19 (90) 55 (93)

RT dose
Median (range), Gys 50.4

(45–55)
50.4

(46–56)
50.4

(45–56)
ChT
Cape 18 (47) 10 (47) 28 (47)
CapeþOxa 13 (34) 9 (43) 22 (37)
5-FU 3 (8) 1 (5) 4 (7)
5-FUþOxa 4 (11) 1 (5) 5 (9)

Surgery
LAR 29 (76) 16 (76) 45 (76)
APR 4 (11) 3 (14) 7 (12)
LE 5 (13) 2 (10) 7 (12)

ypT
0 8 (21) 5 (24) 13 (22)
1 4 (11) 4 (19) 8 (14)
2 8 (21) 5 (24) 13 (22)
3 16 (42) 7 (33) 23 (39)
4 2 (5) 0 (0) 2 (3)

TRG
1 8 (21) 4 (19) 12 (20)
2 8 (21) 7 (33) 15 (25)
3 16 (42) 7 (33) 23 (39)
4 5 (13) 3 (14) 8 (14)
5 1 (3) 0 (0) 1 (2)

LAR, low anterior resection; APR, abdominoperineal resection; LE, local excision; ypT,
pathological T stage after neoadjuvant treatment; TRG, tumor regression grade; CEA,
carcinoembryonic antigen; cTNM, clinical tumor node metastasis stage; RT, radiotherapy;
ChT, concomitant chemotherapy; Cape, capecitabine; Oxa, oxaliplatin; 5-FU, 5-fluorouracil;
(%) unless stated otherwise.
aData are expressed as N.
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Fig. 1. Four unsupervised clustering A. (Euclidean distance, complete linkage) with 256 differentially expressed transcripts of the first cohort
patients resulting by SAM. NR and R were clustered correctly into two groups. B and C (Pearson’s correlation and Euclidean distance,
respectively, complete linkage) with all probes of the eight discriminant PAM transcripts of (B) the second cohort patients and of (C) both
cohorts. NR and R were correctly classified into two distinct groups except for three cases (one NR and two R) in B. D: (Pearson’s correlation,
complete linkage) with all of the second cohort’s samples. Two-way clustering separated normal and tumor tissue: tumor cluster with three
subgroups: NR, R, and a mixed of R-NR patients and normal cluster in NR and R. Red, up-regulated; green, down-regulated. In A, B, and C the
expression values are considered as RTi/MeanRN (RT, responder tumor; RN, responder normal) and NRTi/MeanNRN (NRT, non-responder
tumor; NRN, non-responder normal).
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tumor samples is divided instead in three subgroups: NRT, RT,
and a combination of RT-NRT patients.Whereas, in the normal
cluster, RN and NRN were correctly divided (Fig. 1D). Using
SAM Two Class analysis with only the normal samples, 14
differentially expressed transcripts were found: 2 up- and 12

down-regulated (Table III). “Extracellular matrix”was the most
enriched category of the cellular components with MFAP5,
FBLN5, and VCAN, while AGAP1 and BLOC1S6 transcripts that
are involved in “Vesicle trafficking” pathway.

miRNA expression profiling: patient exploration cohort

To extend the transcriptional analysis of LARC patients, we
profiled with microarrays the miRNAs from the total RNA
samples of the first patient cohort. Also in this case, the
unsupervised cluster analysis correctly divided tumor from
normal samples, but did not clearly separate NR and R groups.
Then, the ratio with normal tissues was used. Using SAM Two
Class analysis, 29 miRNAs were found DE between NR and R
groups with a 0% FDR, 24 of them were down-regulated, and 5
were up-regulated. These miRNAs based on the cluster
analysis separate into two responsive classes (Fig. 2); 24 of
these were up-regulated, and 5 down-regulated. The
expression values are reported in Supplementary Table SII.

miRNA data validation

Specific real-time qPCR assays were performed for hsa-miR-7,
hsa-miR-630, and hsa-miR-638, by comparing the pathological
and normal tissue of the same patients classified either in the R
or in the NR group. Overall, the qPCR test was applied to eight
pathological (four NR and four R) samples and eight normal
(four NR and four R) samples. These experiments confirmed
the results obtained with microarrays: hsa-miR-7 and hsa-miR-
638were, respectively, up- and down-regulated in both groups,
whereas hsa-miR-630 was up-regulated in the NR group and
down regulated in the R group (Supplementary Table SIII).

Anti-correlation analysis

To identify the transcripts that are most likely targeted by DE
miRNAs betweenNRandRpatient samples,we integrated 2118
mRNA (FDR 3.6%) and 29 miRNA (FDR 0%) significantly DE
using MAGIA tool. Because miRNAs act as negative regulators,
up-regulated miRNAs should be connected to down-regulated
target mRNAs, and vice-versa. Two analyses were conducted
after uploading theNRsample data separately from theR sample
data. These analyses showed that the same eight miRNAs
interacted with different networks of transcripts. The miR-630
appeared only with NR patients and was anti-correlated with a
single transcript: RAB5B (Figs. 3 and 4).

The topology of the regulatory networks showed that miR-
939 and miR-638 (up-regulated in NR samples but down-
regulated in R) result in the highest number of anti-correlations
withDEmRNAs: 173 transcripts in theNR group (47 shared by

TABLE II. Gene Ontology analysis for cellular component and significant
pathways of 256 differentially expressed transcripts in the first cohort’s patients
Gene Ontology: cellular component

Nuclear envelope
Up-regulated
NPIP, LOC440353

Plasma membrane part
Up-regulated
ABCC2, DENND1A, LMO7, CGN, DST, MCF2L, RAPGEF2, ADD1,
CACNB1, ENG, IGSF9, ITGA2, ITSN1, NRG1, PLXNB1, SLC12A7,
SPRY4, TMEM16J, TM6SF1, LAMA5, TMPRSS3, TPCN1

Gene Ontology: biological process

Transmembrane transport
Up-regulated
ABCC2, NPIP, SCL12A7, SCL37A2, SCL5A11, TPCN1

Intracellular signaling cascade
Up-regulated
ARFRP1, DFFB, ERC1, MCF2L, RASEF, RASL11B, RAPGEF2, RAPGEF4,
WNK, DGKD, DUSP8, HGF, IKBKB, ITSN1, MAPK7, NISCH, PLXNB1

Regulation of phosphate metabolic process
Up-regulated
RAPGEF4, DGKD, DUSP8, ENG, HGF, HNF4A, ITGA2, NRG1, SPRY4,
ZFYVE28

Cell motion
Up-regulated
KLF7, ENG, ITGA2, LAMA5, PPARD, PLXNB1

Cell cycle
Up-regulated
CLIP1, DST, HGF, MAPK7

Apoptosis
Up-regulated
DFFB, MCF2L, ITSN1, MAPK7, NGEF, NISCH, PPARD, SCL5A11

Pathway analysis

Chemokine signaling
Up-regulated
IKBKB

Pathways in cancer
Up-regulated
HGF, IKBKB, ITGA2, LAMA5, PPARD

MAPK signaling
Up-regulated
MAPK7, IKBKB, DUSP8, CACNB1, RAPGEF2

Axon guidance
Up-regulated
SEMA4B, PLXNB1, NGEF, SRGAP1

TABLE III. List of differentially expressed genes between NR and R normal tissue (FDR¼ 0%)

Gene name Systematic name Description Log2 NR/R Mean NR Mean R SAM score

ENST 00000340301 ENST 00000340301 mRNA for FLJ00286 protein 1.1 7.6 6.4 5.4
AGAP1 NM_133446 Centaurin, gamma-like family, member 1 1.1 9.7 8.6 5.5
MFAP5 NM_003480 Microfibrillar associated protein 5 �1.4 7.3 8.7 �6.8
BLOC1S6 NM_012388 Pallidin homolog �1.1 7.0 8.1 �5.2
ZNF24 NM_006965 Zinc finger protein 24 �0.8 10.3 11.0 �4.9
C1orf52 NM_198077 Chromosome 1 open reading frame 52 �0.6 8.1 8.7 �4.6
CPA3 NM_001870 Carboxypeptidase A3 �2.2 7.5 9.7 �4.6
FBLN5 NM_006329 Fibulin 5 �0.9 7.3 8.2 �4.5
CENPL NM_033319 Centromere protein L �1.1 3.6 4.7 �4.5
ING3 NM_019071 Inhibitor of growth family, member 3 �0.6 9.3 9.9 �4.5
VCAN NM_004385 Versican �1.0 7.7 8.7 �4.5
RPN1 NM_002950 Ribophorin I �0.8 9.5 10.3 �4.5
A_24_P480464 A_24_P480464 Unknown �0.8 12.8 13.6 �4.4
RP11-78J21.1 NM_001011724 Heterogeneous nuclear ribonucleoprotein A1-like, 1 �0.8 13.4 14.3 �4.3

R, responders; NR, non-responders; SAM, significance analysis of microarrays.
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both miRNAs) and 163 in the R group (30 shared by both
miRNAs). The complete list of miRNA and anti-correlated
transcripts is reported in the Supplementary Tables SIV and SV.
These were classified according to DAVID by pathway
enrichment analysis using KEGG (Kyoto Encyclopedia of Genes
and Genomes). We found that the “Chemokine signaling,”
“Axon guidance,” and “Insulin signaling” pathways were
enriched in NR networks while only “Adherens junction”
pathway was enriched in R.

Data registration

All expression data have been registered in Gene Expression
Omnibus (GEO) database, ID: GSE68204.

Discussion

Several investigators have used gene or miRNA expression
profiling to analyze tumor response to pCRT in colon and
rectal cancer. While most studies used tumor cell lines
(Mariadason et al., 2003; Arango et al., 2004; Shimizu et al.,
2005) or biopsies from patients with primary advanced (Del
Rio et al., 2007) or metastatic (Khambata-Ford et al., 2007)
CRC, few studies reported findings on LARC patients. Ghadimi

et al. (2005) analyzed 30 LARC biopsies, identifying 54
differentially expressed genes. Kim et al. (2007) found 95
predictive genes by analyzing 46 biopsies, while Rimkus et al.
(2008) identified 42 genes analyzing 43 biopsies. There is a
similar scenario for miRNA expression: the majority of studies
are on colon cancer lines (van de Vijver et al., 2002; Gordon
et al., 2003; Nutt et al., 2003; Parissenti et al., 2007; Spolverato
et al., 2011), and only two (Kim et al., 2007; Rimkus et al., 2008)
reported on LARC patients. With different sensitivity and
specificity, the following miRNAs were found to be involved in
the tumor response: miR143 (Borralho et al., 2009), miR-192/
miR-215 (Boni et al., 2010), miR-140 (Song et al., 2009), miR-31
(Wang et al., 2010), miR-34 (Akao et al., 2011), miR-21 (Valeri
et al., 2010), miR-622/miR-630 (Scarpati et al., 2012), and miR-
223/miR-142-3p (Hotchi et al., 2013).

Unfortunately, no data overlap was found in predictive gene
and miRNA lists among these various studies (Agostini et al.,
2015a). This lack of concordance could be ascribed to several
factors: differences in the tumor content of patient specimens,
studied populations, chemotherapy regimen, microarray
platforms, definitions of responders, and the analytical tools
used to analyze the signatures. Herein, we decided to
investigate the expression profile rationing the tumor with the
surrounding normal tissue and analyzing concurrently the

Fig. 2. Data from 29 differentially expressed miRNAs separated in two correct groups the NR and R patients in the unsupervised clustering
(Euclidean distance, complete linkage).
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mRNA andmiRNA gene signatures with new informatics tools.
In addition, we validated the transcripts determined as
predictors in a second cohort of patients increasing the
percentage of tumor cells.

We found 256 transcripts differentially expressed between
R and NR; 8 of them were strong predictors of tumor
response, as well as the 29 miRNAs that resulted in
differentially expression between the R and NR groups.

Our gene expression analysis highlights many transcripts
belonging to the category of plasma membrane and nuclear
envelope genes. This is interesting because their products may
be involved in the regulation of drug access. For example,
ABCC2 was found to be up-regulated in NR. This protein is a
member of the superfamily of ATP-binding cassette (ABC)
transporters. ABC proteins transport various molecules
across extra- and intra-cellular membranes. ABCC2 is involved
in multi-drug resistance due to its role in excretion processes
(Jemnitz et al., 2010; Sissung et al., 2010). Recently, Cecchin
et al. (2011) found that ABCC2-1249G>A polymorphism is
associated with a better tumor response in rectal cancer
patients who underwent pCRT.

Another interesting finding is the up-regulation of UMP
Synthase (UMPS) only in R patients both of the first and second
cohorts. UMPS plays a crucial role in 5-FU metabolism, in fact

the main mechanism of 5-FU activation is its conversion to
fluorouridine monophosphate (FUMP), either directly by
UMPS or indirectly via fluorouridine (FUR) with consequent
RNA and/or DNA damage (Longley et al., 2003). The enzymes
of the indirect pathway (UPP1 and UCK1) have been found to
be down-regulated in NR patients. The up-regulation of UMPS
enhances the effect of 5-FU on other cancer cell lines
(Taomoto et al., 2006). A reasonable hypothesis is that the
intracellular 5-FU is transported out across ABCC2
transmembrane protein in NR patients, while it is rapidly
metabolized causing the death by damage to DNA and RNA in
R patients.

Analyzing the gene expression data obtained from the tumor
and its corresponding normal tissue, both in NR and in R, we
found the classical pathways of CRC: apoptosis, p53, or PI3K-
AKT or Wnt signaling, or DNA damage repair, colorectal
cancer (data not shown). These pathways disappear when
comparing the two classes of patients because there is the same
transcripts deregulation. Other pathways emerge instead,
likely typical of responsiveness to pCRT: chemokine signaling
(most likely involved in radiation response) (Nagtegaal et al.,
2005), pathways in cancer, MAPK signaling, axon guidance.

After PAM analysis, eight discriminating transcripts were
found in the first set of LARC biopsies: TMEM188, ITGA2,NRG,

Fig. 3. Visualization of functional miRNA-mRNA anti-correlation in responders patients. Each feature are represented as red, up-regulated;
green, down-regulated. Below each node are drawn as “heat strips” the expression values of each patient. The edge color varies according to
the value of anti-correlation from least to most anti-correlated: gray-red-green-blue, respectively.
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TRAM1, BCL2L13, MYO1B, KLF7, and GTSE1. These findings
were validated in an independent cohort with an overall
accuracy of class prediction of 85.7%, sensitivity of 90%, and
specificity of 81.8%. Accuracy, sensitivity, and specificity
reaches 100% when the analysis is performed in the two
cohorts together. The majority of 8 PAM transcripts code for
integral membrane proteins. Particularly interesting are GTSE1
and BCL2L13, both down-regulated in NR. GTSE1 plays a
specific role after DNA damage, regulating the cell arrest in G2
and controlling the triggering of the p53-dependent apoptotic
program (Monte et al., 2003). The BCL2L13 (or BCL-rambo)
over-expression induces apoptosis mediated by the activation
of Caspase-3. BCL2L13 is a known prognostic factor in other
cancers such as childhood leukemia (Holleman et al., 2006).
NRG and KLF7 encode proteins that regulate cell proliferation,
differentiation and survival.

Among the 29 miRNAs found to be differentially expressed
in the present study, 8 are already known in CRC (Corte et al.,
2012): miR-7, let7g, miR-30c, miR-29b, miR-192�, miR-215,

miR-32, and miR-33a. MiR-630 and miR-142-3p have already
been described in miRNA studies for response prediction in
LARC patients (Scarpati et al., 2012; Hotchi et al., 2013) and
miR-192/miR-215 in CRC cell lines (Boni et al., 2010). Although
it has been demonstrated that miR-192/miR-215 target
thymidylate synthase expression in CRC cell lines, their
principal role in 5-FU resistance is the cell proliferation
reduction by targeting cell cycle progression. Galluzzi et al.
(2010) reported that miR-630 arrested A549 cells in the G0–G1
phase of the cell cycle too.

In this study, the web tool MAGIA (Sales et al., 2010) was
used. The strength of this tool is based on the use of three
different algorithms (PITA, miRanda, and Target Scan) for
miRNA target prediction and in the integration of these
information with miRNA and gene expression analysis.
Furthermore, MAGIA reconstructs miRNA-gene bipartite
regulatory networks of the best miRNA and mRNA putative
interactions. The same eight miRNAs were found DE both in
NR and R groups. miR-630 appeared only in NR and, based on

Fig. 4. Visualization of functional miRNA-mRNA anti-correlation in non-responders patients. Each feature are represented as red,
up-regulated; green, down-regulated. Below each node are drawn as “heat strips” the expression values of each patient. The edge color
varies according to the value of anti-correlation from least to most anti-correlated: gray-red-green-blue, respectively.
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our analysis, is anti-correlated with RAB5B. This gene is a
member of the RAS oncogene family, which plays a central role
in CRC tumorigenesis. RAB5B acts in the biogenesis of
endosomal and lysosomal compartments (Hirota et al., 2007).
Furthermore, this gene is a candidate marker for early stage
and malignant transformation in melanocytes (Meije et al.,
2002). We found that the “Chemokine signaling,” “Axon
guidance,” and “Insulin signaling” pathways were enriched in
NR networks while only “Adherens junction” pathway was
enriched in R.

We are conscious of the limits of the present work, first of
which is the small sample size that is a recurrent characteristic
of similar study-sets (Ghadimi et al., 2005; Kim et al., 2007;
Rimkus et al., 2008; Agostini et al., 2015b). Moreover, the
population is uniform (all the patients are from North-East of
Italy) and could affect the gene and miRNA selection. It could
be interesting to test the expression pattern that we found in a
different population (as North American or Asiatic for
example), to verify the reliability of our results.

In conclusion, we propose as significant prognostic factors
for response to treatment in LARC patients the TMEM188,
ITGA2, NRG, TRAM1, BCL2L13, MYO1B, KLF7, and GTSE1
transcripts. Using this gene set, we were able to establish a
model to predict response to pCRT with a sensitivity of 90%
and a specificity of 82%. In the future, the analysis of these
transcripts may be used to avoid the exposure to toxic and
inefficient therapy for NR LARC patients.
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