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Section
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Abstract—Over the past few decades, intelligentization, sup-
ported by Artificial Intelligence (AI) technologies, has become
an important trend for industrial manufacturing, accelerating
the development of smart manufacturing. In modern industries,
standard AI has been endowed with additional attributes, yield-
ing the so-called Industrial Artificial Intelligence (IAI) that has
become the technical core of smart manufacturing. AI-powered
manufacturing brings remarkable improvements in many aspects
of closed-loop production chains from manufacturing processes
to end product logistics. In particular, IAI incorporating domain
knowledge has benefited the area of production monitoring con-
siderably. Advanced AI methods such as deep neural networks,
adversarial training and transfer learning have been widely used
to support both diagnostics and predictive maintenance of the
entire production process. It is generally believed that IAI is
the critical technologies needed to drive the future evolution of
industrial manufacturing. This survey offers a comprehensive
overview of AI-powered manufacturing and its applications in
monitoring. More specifically, it summarizes the key technologies
of IAI and discusses their typical application scenarios with
respect to three major aspects of production monitoring: fault
diagnosis, remaining useful life prediction and quality inspection.
In addition, the existing problems and future research directions
of IAI are also discussed. This survey further introduces the
papers in this focused section on AI-based Monitoring in Smart
Manufacturing by weaving them into the overview, highlighting
how they contribute to and extend the body of literature in this
area.

Index Terms—Smart manufacturing, Artificial intelligence,
Machine learning, Deep learning, Fault diagnosis, Remaining
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I. INTRODUCTION

Science and technology developments have advanced indus-
trial manufacturing through the stages of mechanization, elec-
trification and digitization over the past 150 years. Industrial
intelligentization, i.e., the fusion of advanced manufacturing
processes with data and AI technology, which enables in-
telligent perception, analysis, reasoning, decision-making and
control, is believed to be the next stage in manufacturing.
Smart manufacturing is the core of industrial intelligentization.
In general, it is the organic integration of many existing
high-end technologies from a wide range of areas including
communication, production, internet, computer science, etc.
and is continually absorbing emerging technologies such as
the Internet of Things (IoT) and digital twin technologies.
Consequently, the definition of smart manufacturing is evolv-
ing with the advancement of modern technologies. Currently,
smart manufacturing is considered to be the aggregation of
various new technologies including AI algorithms, IoT, big
data analytics, cloud computing, and Cyber Physical Systems
(CPS) [1]. Lee et al. [2] proposed the concept of the indus-
trial intelligence ecosystem composed of five key elements
including big data technology, data analytics technology, cloud
computing and cyber technologies. Regardless of the specific
technologies that may contribute at present or potentially in
the future, we define smart manufacturing as self-evolving
manufacturing endowed with human intelligence which can
not only learn but also learn to learn. Therefore, the potential
of smart manufacturing is unlimited and its development may
never cease.

Today, smart manufacturing is regarded as the core com-
petitiveness that marks the level of a country’s industrial
manufacturing abilities. To vigorously support smart manu-
facturing and promote the competitive advantage of domestic
manufacturing industries, almost all the big industrial countries
have created their own programs and policies such as ‘Made
in China 2025’, the United States’ ‘Advanced Manufacturing
Partnership’, Germany’s ‘Industries 4.0’, the United King-
dom’s ‘High value manufacturing strategy’, Japan’s ‘New
robot strategy’, etc.

Intelligent manufacturing is mainly supported by IAI tech-
nologies. Although the corresponding research is still in the
early stage, IAI is attracting increasing attention, incurring
rapid technical development and making remarkable progress
in applications (e.g., [3]). In essence, IAI involves six key
techniques: modeling, diagnostics, prediction, optimization,
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decision and deployment. They have penetrated all aspects
of industrial manufacturing from process quality control to
supply chain management, among which real-time monitoring
is one typical area benefiting greatly from IAI technologies.

Real-time monitoring involves diagnosis, prediction and
inspection of manufacturing process. Taking Fault Diagnosis
(FD) as an example, this area has experienced a long history of
research and is essential for the safety of smart manufacturing.
In general, FD includes state monitoring and fault diagnosis
for management and maintenance of equipment (e.g., [4])
and many developed countries took an active part in its
development.

Intelligentization is the inevitable trend of industrial manu-
facturing. The deep integration of AI and advanced manufac-
turing technologies provides a complete solution to improve
the quality and efficiency of products, raise service levels of
enterprises and reduce energy consumption considerably. This
survey focuses on the field of manufacturing monitoring, con-
cerning the technologies of fault diagnosis, remaining useful
life prediction, and quality inspection of IAI. The research
status of these technologies is systematically summarized and
the corresponding problems faced by IAI along with their
possible solutions are also discussed.

This paper is organized as follows. Section III provides an
overview of the main concept of IAI from the technical per-
spectives to typical application scenarios. Following that, IAI
technology is discussed in detail specifically under the context
of manufacturing monitoring. Section IV, V and VI present
AI-based fault diagnosis, remaining useful life prediction and
quality inspection, respectively. Section VII discusses the
existing problems of IAI and Section VIII demonstrates future
research prospects. Finally, Section IX concludes this survey.
This survey introduces the papers in this focused section
on AI-based Monitoring in Smart Manufacturing by weaving
them into the overview, and showing how they contribute to
and extend the body of literature in this area. These papers are
specifically highlighted in the survey by bolding the references
to them.

II. INTRODUCTION TO FOCUSED SECTION IN SMART
MANUFACTURING

Add abstraction
The focused section received a total of X paper, among

which Y paper were accepted. The accepted paper are
recorded in Table II. In what follows, papers in bold are
accepted papers for the focused section.

III. AN OVERVIEW OF INDUSTRIAL ARTIFICIAL
INTELLIGENCE

To achieve high-quality, efficient, reliable and low-cost
multi-objective industrial operations, IAI combines AI tech-
nologies and the domain knowledge of standard industrial pro-
cesses to generate intelligent systems, endowed with the abil-
ity of self-perception, self-comparison, self-prediction, self-
optimization and self-adaptation. AI technologies including
traditional analytics, machine learning and deep learning tech-
niques have been applied to solving problems in computer

vision, speech engineering, natural language processing and
decision-making. The standard industrial process involves
production, decision-making and product service (e.g., de-
sign, production, process, assembly, warehousing and logistics,
sales, etc.), equipment category (i.e., sensors, manufacturing
equipment, production lines, workshops, factories) and supple-
mentary category (e.g., operation and maintenance, after-sales,
market, emission, energy consumption, environment). IAI as
a member of the AI family is developed under the context
of industry. We summarize six key technologies of IAI in
Fig. 1, namely modeling, diagnostics, prediction, optimization,
decision and deployment.

Key 

Technologies

Modeling

Optimization

Figure 1. Key technologies of industrial artificial intelligence.

A. Key technologies of IAI

Modeling: Modeling is of great significance in industrial
production. Models constructed based on industrial mecha-
nisms and knowledge reveal hidden laws such as the de-
terioration process of equipment or components, the rela-
tionship between process parameters and product quality, the
coupling between the status of production line operation and
component process, etc. Therefore, these models are able to
reflect the core production process of manufacturing industries
and indicate the production capacity and competitiveness
of enterprises. By describing the manufacturing process as
industrial Cyber Physical Systems (CPS), Yuan et al. [5]
proposed a novel method to identify nonlinear coupling system
dynamics using a dictionary of mechanistic functions, excavate
the switching logics between the subsystems, and reveal the
evolution trend of CPS. Due to its desired performance in
modeling industrial processes, the developed method has been
successfully applied under many contexts such as robotics,
smart manufacturing, intelligent power grids, etc.

Diagnostics: Safety is the basic requirement in industrial
production since abnormal operations of equipment or pro-
duction process may lead to the serious drop in product
quality, or possibly accidents and casualties. Therefore, sensors
are widely used to collect monitoring data in the form of
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Table II
ACCEPTED PAPER FOR THE FOCUSED SECTION.

Title Authors

Operating mode recognition based on fluctuation interval prediction for iron ore sintering process
S. Du, M. Wu, L. Chen,
J. Hu, L. Jin,
W. Cao, W. Pedrycz

Fault detection of electromechanical actuators via automatic generation of a fuzzy index D. De Martini, T. Facchinetti

Parameter identification and non-parametric calibration of the tri-pyramid robot
S. Liao, Q. Zeng,
K. F. Ehmann, J. Cao

Surrogate-assisted symbiotic organisms search algorithm for parallel batch processor scheduling
Z. Cao, C. Lin,
M. Zhou, J. Zhang

Robust deep learning-based diagnosis of mixed faults in rotating machinery
S. Chen, Y. Meng, H. Tang,
Y. Tian, N. He, C. Shao

Intelligent fault diagnosis of multi-channel motor-rotor system based on multi-manifold deep extreme learning machine
X. Zhao, M. Jia, P. Ding,
C. Yang, D. She, Z. Liu

Vibrational triboelectric nanogenerator-based multi-node self-powered sensor network for machine fault detection
W. Li, Y. Liu, S. Wang,
W. Li, G. Liu, J. Zhao,
X. Zhang, C. Zhang

An unknown input observer-efir combined estimator for electro-hydraulic actuator in sensor fault tolerant control application
S. A. Nahian, T. Q. Dinh,
H. V. Dao, K. K. Ahn

Robust wheel wear monitoring system for cylindrical traverse grinding
B. C. Zhang, C. C. Katinas,
Y. C. Shin

Ensemble generalized multiclass support vector machine-based health evaluation of complex degradation systems
J. Wu, P. Guo, Y. Cheng,
H. Zhu, X.B. Wang, X. Shao

Industrial remaining useful life prediction by partial observation using deep learning with supervised attention
X. Li, X. Jia, Y.L. Wang,
S.J. Yang, H.D. Zhao, J. Lee

Machinery health monitoring based on unsupervised feature learning via generative adversarial networks
J. Dai, J. Wang, W. Huang,
J. Shi, Z. Zhu

Prognostics of health measures for machines with aging and dynamic cumulative damage C. Duan, C. Deng

Exploring equipment electrocardiogram mechanism for performance degradation monitoring in smart manufacturing
B. Chen, J. Wan, M. Xia,
Y. Zhang

A cnn-based adaptive surface monitoring system for fused deposition modeling
Y. Wang, J. Huang, Y. Wang,
S. Feng, T. Peng, H. Yang,
J. Zou

Magnetic machine perception for reconstruction of non-uniform electrical conductivity based on eddy current model B. Hao, K. Lee, I. Chang

images, videos and time series from manufacturing equipment,
production lines and the final products. With enormous data,
big data analysis, machine learning, deep learning and other
AI-based methods are used to realize intelligent online de-
tection and diagnosis of anomalies in industrial production
processes, and to perform causality analysis. These tasks are
often solved as supervised or unsupervised classification and
clustering problems. For example, a deep learning framework
was proposed in [7] to automatically extract the features
from noisy sensor signals including vibration, voltage, current,
temperature, sound, and force. The framework is robust and
flexible, and achieves high-precision diagnosis for several
manufacturing components containing bearings, cutter, gear-
boxes, lithium batteries, etc.

Prediction: Prediction plays an important role in boosting
industrial production. With the rapid development of big data,
cloud service and AI technologies, data-driven forecasting
methods have been widely used in predictive maintenance,
demand prediction, quality prognosis, etc., which helps reduce
costs, increase efficiency and improve the quality and safety
of industrial manufacturing. In predictive maintenance, both

monitoring data and empirical degradation knowledge are used
to predict the remaining useful life of industrial equipment,
which guides the development of strategies for efficient main-
tenance [9]. Based on the historical monitoring data of the
production line, the manufacturer forecasts the demand to
coordinate the production chain, carry out risk management
and reduce production waste. Finally, quality prediction is
often implemented in high-end manufacturing. Product quality
is predicted by analyzing the monitoring data and operation
status of the production line. The production process is then
optimized to avoid defective products. Notably, the digital twin
technology as a novel concept shows growing impacts on the
quality inspection area in recent years [10], [11].

Optimization: Optimization is a major technique to im-
prove the efficiency of industrial manufacturing, which is
divided into equipment level optimization and system level
optimization. The parameters of industrial equipment such
as machine tools control the manufacturing process, thus
influencing the quality of end product. Since many process
parameters are not known a priori, they are usually learned
from monitoring data using supervised feature screening (e.g.,
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LDA, Fisher score, Lasso) or unsupervised feature screening
(e.g., PCA, Laplacian score, autoencoder). Online optimization
of process parameters using AI algorithms are crucial to
improve the quality and efficiency of industrial processes in
real time. Normally, a production process involves a series
of industrial equipment and a production line is composed of
multiple production processes. Based on the monitoring data
of equipment and manufacturing processes, the cooperation
among production processes is optimized in terms of the
desired indices for the whole production line [14].

Decision: Decision making is the key to closing the
loop of industrial manufacturing, which is associated with
the optimization of industrial process and maintenance of
equipment [15]. Decision making takes into account various
manufacturing-related factors (e.g., real-time market infor-
mation, production conditions, operation indices, production
instructions, control instructions and operation conditions) to
achieve the enterprise objectives by performing optimization
and scheduling [16]. For example, Cao et al. [17] solved
scheduling of a parallel batch processor using the reinforce-
ment learning algorithm SARSA(λ). As for the maintenance
of industrial equipment, decision making determines repairing
maintenance, preventive maintenance and predictive mainte-
nance, among which predictive maintenance is considered to
be one of the ’killer’ applications of the industrial Internet.
Predictive maintenance can effectively reduce maintenance
costs, eliminate production downtime, reduce equipment or
process downtime, and improve productivity [18]. Recently,
prescriptive maintenance has been a new trend experiencing
rapid development. The methods not only predict a failure
that may likely happen but also prescribe what can be done
to avoid the failure altogether.

Deployment: Deployment is the key to the efficient imple-
mentation of IAI by providing technical support platforms.
More specifically, the technology of hardware acceleration
based on smart chips is the core to deploy AI models. With the
rapid growth of data volume, standard computing chips (e.g.,
CPU) can no longer meet the demand of real-time processing
in the stage of online model reasoning. Therefore, it is
imperative to invent intelligent chips for the implementation of
IAI algorithms. The essence of intelligent chip technologies is
the hardware acceleration for model interface, which involves
the design of efficient hardware architectures and software
compilation tools. Compared with traditional computing chips,
smart chips are superior in terms of computing power and
reduced energy consumption. The development of intelligent
chips has accelerated the spread of IAI applications.

IAI appears to be increasingly important in the rapid de-
velopment of industrial manufacturing. It has penetrated into
many links of the production chain. As shown in Fig 2,
typical application scenarios of IAI include quality inspection
and process quality control, energy management and energy
efficiency optimization, supply chain and intelligent logistics,
predictive maintenance of equipment, etc.

To better demonstrate detailed technologies, IAI is specif-
ically discussed in the context of intelligent monitoring that
involves Fault Diagnosis (FD), Remaining Useful Life Pre-
diction (RULP) and Quality Inspection (QI). According to
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Figure 2. Typical application scenarios of industrial artificial intelligence.

the general framework of intelligent monitoring, the following
sections will discuss AI based algorithms for FD/RULP/QI in
sequence, and the typical methods are summarized in Figure 3.

IV. FAULT DIAGNOSIS OF MANUFACTURING EQUIPMENT
WITH MACHINE LEARNING

Safety and robustness are critical to industrial manufacturing
[19]–[23]. Fault diagnosis aims to prevent the occurrence of
possible accidents and casualties by recognizing abnormal
operations of production process and equipment from moni-
toring data. Additionally, highly efficient FD technologies are
required to achieve the goals with low maintenance costs, high
flexibility, robust performance, desired platform independence
and good interpretability.

Machine learning has been a prevalent IAI technique for
fault diagnosis. Considering the depth of model structures,
machine learning based methods are classified into two cat-
egories, i.e., shallow machine learning and deep learning
methods. Shallow machine learning methods mainly contain
Extreme Learning Machine (ELM), Gaussian Process Re-
gression (GRP), Support Vector Machine (SVM) and Hidden
Markov Process (HMM) while deep learning involves the
usage of deep neural networks (e.g., Convolutional Neural
Networks (CNN), Fully connected Neural Networks (FNN),
Long Short-Term Memory (LSTM), Generative Adversarial
Networks (GAN) and Graph Neural Networks (GNN)) along
with advanced learning strategies (e.g., Transfer Learning (TL)
and Attention Mechanism (AM)). In recent years, deep learn-
ing has dominated fault diagnosis and is receiving increasing
attention. In addition, other approaches based on advanced
control theories are also studied as part of intelligent fault
diagnosis.

A. Benchmark datasets

Benchmark datasets are often used to verify algorithm
performance and to compare different methods. A variety of
benchmark datasets are available online for fault diagnosis
including motor bearing datasets with vibration signals [25],
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Figure 3. Typical machine learning methods of industrial artificial intelligence and its application.

[26], bearing datasets with current signals [27], gear fault
vibration datasets [28], [29], milling dataset [30], turbofan
engine degradation simulation datasets [31], etc.

B. Machine learning based methods

Machine learning based diagnosis methods typically include
three steps: feature extraction, feature selection and classi-
fication. Feature extraction and selection can be achieved
artificially or automatically. Artificial feature extraction and
selection benefit from expert experience and, thus, better
interpret inherent properties, e.g., system dynamics, whilst au-
tomatic feature learning through designed models can extract
abstract representations embedded in more complex feature
spaces. Notably, these two approaches are often combined in
the deep learning framework. The detection of machine failure
is often formulated as a classification problem and addressed
using learned features.

Chen et al. proposed a 1-D CNN-based approach to diag-
nose both known and unknown faults in rotating machinery
under added noise, which reliably identified the nature of
the mixed faults. Two neural networks were developed to
evaluate rotors and bearings respectively for 48 machine health
conditions. One-vs-all classifiers were designed to identify

previously unseen fault types. It turns out that the method
was robust to noise, thus providing stable performance.

Zhao et al. proposed a new FD method for multichan-
nel motor-rotor system via Multi-manifold Deep Extreme
Learning Machine (MDELM) to address multi-channel data.
The designed MDELM algorithm combined unsupervised and
semi-supervised learning schemes where unsupervised self-
taught feature extraction was realized using Extreme Learning
Machine based-Modified Sparse Filtering (ELM-MSF) and a
Multimanifold Extreme Learning Machine (MELM) classifier
with multi-manifold constraints was applied to explore the
intra-class and inter-class discriminant feature information to
accomplish semi-supervised fault classification. The designed
MDELM showed outstanding learning efficiency for industrial
data from motor-rotor systems.

Li et al. developed a multi-node sensor network to detect
machine faults using SVM based on mechanical vibration
energy. The method applied a multilayered vibrational tri-
boelectric nanogenerator (V-TENG) to extract energy from
working machines. The V-TENG generated an output with a
power density of 3.33 mW/m3 once triggered by the vibration
motion. A Self-powered Vibration Sensor Node (SVSN) was
constructed based on a micro control unit integrated with
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sensors and a wireless transmitter, which was supported by
the V-TENG. SVM was employed to build up the three-SVSN
network for fault diagnosis by analyzing acceleration and
temperature data from the working machine. The developed
method was able to recognize different working conditions of
the machine accurately.

C. Other approaches

Machine learning based FD are data-driven methods under
the end-to-end framework, which do not exploit the physical
rules or working mechanisms of the target system. Such
methods are highly flexible and applicable to a wide range of
platforms. The scenario developed for one scenario is transfer-
able to other scenarios, thus, incurring low maintenance costs.
Nevertheless, machine learning based methods are sensitive
to noise and in most cases, not understandable by human
labors. To offer robust and analyzable FD systems, a variety of
techniques have been invented using advanced control theories.

De Martini et al. proposed a FD framework for elec-
tromechanical systems based on a Fuzzy Inference System
(FIS). Whilst Fuzzy Logic (FL) requires the specification of a
large number of fuzzy inference rules in accordance to input
variables and Membership Functions (MFs), the developed
Fuzzy INDices (F-IND) framework automatically generated
the fuzzy rules from the specification of the qualitatively best
and worst cases of the MFs of each input variable. The method
was applied to electric motors, presenting high computational
performance and detection accuracy.

Nahian et al. developed an Unknown Input Observer
(UIO)-integrated Extended Finite Impulse Response (EFIR)
Estimator (UIOEFIR) to estimate states of Electro-Hydraulic
Actuators (EHAs) in sensor Fault Tolerant Control (FTC)
applications. This hybrid estimator exploited the UIO structure
in the EFIR filter and estimates system states and unknown
invoked-sensor-fault value without prior knowledge of states
and process or measurement noise. The UIOEFIR estimator
contributed to the fault diagnosis algorithm inside a simple
sensor FTC architecture of an EHA to detect unknown sensor
fault information. The developed method presented outstand-
ing and reliable performance under chaotic environmental
conditions.

Zhang et al. proposed a robust grinding wheel wear
monitoring system applicable to diverse grinding conditions
(e.g., varying wheel types and workpiece materials). A novel
normalization scheme was applied to extract features of sig-
nals collected from the grinding process via power sensors,
accelerometers and acoustic emission sensors in order to
decouple these features from the factors of the wheel type,
workpiece material and grinding parameters. With the selected
features, an interval type-2 Fuzzy Basis Function Network
(FBFN) was adopted as the wheel wear monitoring model
to predict wheel wear under various grinding conditions and
estimate variance according to the fluctuation of features,
leading to the robust monitoring performance.

V. REMAINING USEFUL LIFE PREDICTION FOR
MANUFACTURING EQUIPMENT

With the rapid development in sensors, data storage, net-
work transmission and other new technologies, numerous data
are generated to monitor key manufacturing equipment. The
main part of life prediction research is focused on mining the
deterioration information from monitoring data and developing
effective algorithms to predict the accurate remaining useful
life.

Data-driven RUL prediction techniques are typically divided
into two groups, i.e., statistical methods [37] and machine
learning based methods [38]. Statistical methods are based on
the theory of statistics. Principal component analysis or partial
least square methods are commonly utilized to process the data
of equipment degradation, establish evaluation indices, and
assess the health status of equipment. However, the application
of these methods is limited by data quality and strict pre-
conditions of statistical theory. In contrast, machine learning
based methods are more flexible and practical, becoming the
common techniques utilized for RUL prediction in recent
years with great success. Hence, this section mainly discusses
machine learning based methods. RUL prediction techniques
based on machine learning are composed of feature extraction,
health index establishment, feature selection, and remaining
useful life prediction. These steps are implemented in very
different ways for shallow and deep learning frameworks.

A. Benchmark datasets

Similar to FD, benchmark datasets are applied to test
the proposed methods. Some well-known benchmark datasets
for RULP include turbofan engine degradation simulation
dataset [39], FEMTO bearing dataset [40], IMS bearing dataset
[41], milling dataset [42], etc.

B. Machine learning based methods

RUL prediction based on machine learning is attracting
growing attention [43], [50]. Similar to fault diagnosis, rep-
resentative methods of RULP include Support Vector Re-
gression (SVR) [44], [45], HMM, GRP, CNN [46], Deep
Belief Networks (DBN) [47], and Recurrent Neural Networks
(RNN) [48], [49].

Wu et al. proposed a health evaluation method comprised
of stacking ensemble learning and a Generalized Multiclass
Support Vector Machine (GMSVM) algorithm. Before evalu-
ating the health situation of a degradation system, abnormal
value elimination and missing value processing were con-
ducted. Statistical features and Pearson correlation coefficient
were applied to selected efficient features. The experimental
results showed that the GMSVM algorithm achieves high
multiclass efficiency with low variance and deviation.

Li et al. utilized the supervised attention mechanism
using the deep neural network framework to predict the RUL
for real-world cutting wheel degradation process with high-
resolution image datasets. The IMS-Foxconn dataset origi-
nated from Intelligent Maintenance Systems lab and Foxconn
Technology Group was introduced, offering a new perspective
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on the image-based prognostic. The experimental results vali-
dated the effectiveness and superiority of the proposed method
over traditional DCNN, LSTM and NoSupAtt.

Jun et al. developed a new Generative Adversarial Net-
works (GAN) model to learn a discriminative feature for ma-
chinery health monitoring. The proposed model adopted Auto-
Encoder (AE) as the generator to learn the data distribution
of normal samples embedded in the signal spectrum space
and latent representation space. Experiments demonstrated that
the high sensitivity to incipient machinery anomaly and the
capability in description of machine degradation progression
can be achieved.

C. Other approaches

While data-driven methods based on machine learning have
been extensively studied, degradation model based methods
and model-data fused methods also have unique advantages
in that they can mine the deep information in the degradation
process of equipment.

Duan et al. employed a prognostic model to describe the
aging and environment-varying cumulative damage process
which included a large number of states and flexible transition
mechanisms under varying operational conditions. A matrix-
based approximation method was developed to compute im-
portant health measures so that the low computational load
could be obtained.

Chen et al. proposed an Equipment Electro-Cardiogram
(EECG) mechanism to collect the entire operating data. An
optimization strategy of APL-EECG was adopted to improve
the efficiency of an intelligent production line and a preventive
maintenance strategy was designed.

VI. QUALITY INSPECTION OF INDUSTRIAL PRODUCTS

Quality Inspection (QI) of industrial products plays a
significant role in modern industries. Compared with tradi-
tional approaches that rely on expert experience, automated
quality inspection provides high-quality and high-efficiency
monitoring routines. QI methods can be classified into two
categories, including machine learning-based approaches (i.e.,
supervised, semi-supervised and unsupervised learning) and
other traditional approaches.

A. Benchmark datasets

A variety of benchmark datasets are available online for QI
to verify the developed inspection algorithms and to compare
different methods, including road crack datasets [56], datasets
for PCB analysis [57], nanofibrous materials datasets [58],
steel strip surface datasets [59], X-Ray datasets [60], saliency
defects of magnetic tile [61], images of cracks on solar cells
[62], non-woven fabric [62], etc.

B. Machine learnng-based methods

Recent advances in the development of AI technologies
have driven traditional QI towards intelligent QI in several key
industries such as aerospace, automotive, and healthcare. The
novel paradigm of AI adoption is to apply advanced machine

learning algorithms on quality inspection processes to achieve
quality control and process monitoring with high reliability.
Supervised, semi-supervised, and unsupervised learning have
been the mainstream machine learning algorithms for intel-
ligent QI and quality control, which helps to increase the
productivity and profitability of enterprises by reducing the
rejection and defect rate of product.

Wang et al. proposed a novel surface monitoring system
for fused deposition modeling processes to achieve high defect
detection accuracy with high response speed under a cloud-
based framework. A heuristic algorithm was proposed to
achieve adaptive shooting position planning according to part
geometries and a CNN-based model was designed to achieve
efficient defect classification with high accuracy.

Du et al. designed an Elman neural network with another
classification model to predict the operating mode of iron
ore sintering processes, according to the data distribution of
the burn-through point in fluctuation intervals. Fluctuation
intervals were the key features in this study and were used
to describe the time-series signals acquired by sensors. In
terms of the feature extraction, PCA and the fuzzy infor-
mation granulation methods were employed to reduce the
high-dimensional time-series sensory data and extract the
fluctuation interval respectively.

Liao et al. predicted the end-effector positions of a
3-DOF overconstrained parallel robot (named Tri-Pyramid
Robot). The final positions were calculated by combining a
parametric and a non-parametric calibration method. More
specifically, the spatial position data of the end-effector were
collected on a test-rig using a laser tracker. Then, the structural
parameters in the kinematic robot model were identified using
the least-squares method. For the non-parametric calibration,
non-geometric errors like backlash and link deformations were
predicted by using a trained neural network.

Wang et al. [66] applied a lightweight CNN for machine
vision inspection to identify and classify defective product
without loss of accuracy. For the image data pre-processing,
Gaussian filtering and probabilistic Hough transform methods
were employed to prevent the influence of noise and remove
the unrelated background contents respectively. The devel-
oped method, as an online inspection method, demonstrated
outstanding performance on defective and defect-free bottle
images.

C. Other approaches
In addition to deep learning that dominates the field of

surface inspection, traditional statistical and spectral methods
are also widely used.

Hao et al. [67] proposed a novel field-based sensing
method that reconstructs Eddy Current (EC) density field
enabling the machine to have adequate perception to locate and
quantify features or defects (such as residual stress, corrosion
and microstructure abnormity). This work solved the inverse
solutions to the EC model, which differs from the forward EC
models used in previous studies, to reconstruct the unknown
conductivity distribution.

Cao et al. [68] used a knowledge embedded sparse Bayesian
regression approach to achieve online machining error predic-
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tions of thin-wall workpieces. The proposed Bayesian model
was trained to learn the hidden pattern between the machining
errors and cutting parameters, cutting location, as well as
online measured cutting forces.

Yang et al. [69] adopted a nonsubsampled shearlet transform
to decompose the original images into multiple subbands at
different directions and scales. A novel column filtering based
on envelope gray level gradient was employed to remove the
uneven background in the approximation subband, and a shear-
let coefficient variance discriminator was used to eliminate
interferences of noise and textures in the detail subbands.

Tsai et al. [70] proposed a global Fourier image reconstruc-
tion method to detect and localize small defects in nonperi-
odical pattern images by comparing the whole Fourier spectra
of the template with the inspection image. Similarly, Gai et
al. [71] used the quaternion wavelet transform and the least
squares method to detect cracks and scratches on banknote
images.

VII. EXISTING PROBLEMS

Industrial AI can use the high volumes of data generated
by production processes to identify hidden patterns, which
improves production efficiency and reduces the consumption
of manufacturing processes. However, the current stage of the
IAI faces several challenges:

1) Heterogeneous data: Datasets generated by industrial
equipment, production lines, Manufacturing Execution Sys-
tems (MES) and Enterprise Resource Planning (ERP) are
complex and heterogeneous in arbitrarily high dimensional
spaces. Industrial data have different formats: (a) Vibration,
pressure and temperature data are time series; (b) Image data
are obtained by infrared nondestructive testing technology;
(c) Video and audio data are collected by ultrasonic testing,
acoustic emission testing, ray testing and other means; and (d)
Documentary data cover logistics, management, operation and
service.

2) Data imbalance: As sensors have been widely imple-
mented in intelligent plants, one typical challenge that manu-
facturers and researchers face is the imbalanced data problem.
This problem is characterized by the fact that only a fraction
of the operational data constitutes failure. Further more, failure
data points are commonly different from one another. On
the contrary, normal operational data samples account for the
majority of the data and share similar features. As a result,
conventional feature extraction and selection methods are not
appropriate for imbalanced data. Moreover, the evaluation
metrics (e.g., accuracy and area under the curve) can mislead
the users due to a biased satisfied model generated from
imbalanced training datasets. The model does not learn the
features of the failure data as it focuses on the instances of the
majority class, i.e., normal data. Most mainstream classifiers
such as SVM and ANN learn from balanced datasets but
show poor generalization on the test dataset given imbalanced
training datasets.

3) Complexity: Learning advanced industrial production
processes demands enormous datasets and complex learn-
ing algorithms. Machine learning algorithms concentrate on

achieving high model accuracy without considering the train-
ing cost. As for deep learning, models have been trained
deeper and deeper in recent years without too many constraints
in terms of the great number of training parameters and
weights, leading to high computational costs and significant
memory requirements. Therefore, real-time data processing
is challenging for most machine learning methods. More
importantly, proposed machine learning models should self-
adapt to diverse application circumstances and able to address
various impact factors such as equipment, human operators,
target objects, manufacturing techniques, raw material and
working conditions.

4) Uncertainty: In CPS smart manufacturing processes,
uncertainty sources of the final product quality may originate
from several stages, including measurement uncertainty from
embedded sensors, input uncertainty and modeling errors from
manufacturing processes, resource and communication from
network system, environmental uncertainties, and subjective
uncertainties from experienced experts. Moreover, these uncer-
tainties are accumulated over time during the manufacturing
process, especially for those complex components that require
multi-stage manufacturing processes. Without considering the
effect of these uncertainty sources, the robustness and gen-
eralization of machine learning techniques will significantly
degrade.

5) Black box model: Most of the machine learning methods
train models without domain knowledge and expert experi-
ences. They build the so called ‘black box’ models to describe
input-output relationships using data acquired during manufac-
turing processes. However, despite the significant performance
of machine learning, the learning process is not transparent
and the learned weights of a model reflect little information
about the model’s behavior. In the industrial field where the
trust of the model is critical for decision makers, the wide
implementation of AI platforms can be considered unreliable
without model interpretability. For this reason, maintenance
decisions of precision instruments/equipment and key com-
ponents in military, aerospace and other important industrial
fields are still based on previous experience and domain
experts. Hence, this calls for understandable, explainable and
transparent machine learning models of industrial systems,
enabling the clear explanation of the results of the system
models to human experts/engineers.

VIII. RESEARCH PROSPECTS

In response to the abovementioned challenges in smart
manufacturing, we identify the following aspects which will
help manufacturers transfer the IAI from laboratory settings
to the factory floor:

1) Feature engineering: To deal with imbalanced positive
and negative samples, methods including data augmentation,
knowledge transfer between similar categories by means of
transfer learning, and domain adaptive learning can be used
for compensation. Moreover, feature enlargement is used to
enhance the diversity of training samples. Especially, unsuper-
vised learning and supervised learning based feature selection
methods can be combined to embed high dimensional data
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into low dimensional spaces, from which hidden features and
key information are extracted.

2) Robustness: In practical applications, it has been re-
cently shown that machine learning models are vulnerable
to uncertainties (i.e., data outliers and measurement noise)
of the input data which may cause misclassification [73]. It
is possible to enhance the robustness of machine learning
model via robust loss functions, parameter regularization,
and reliable optimizers. Incorporating uncertainty treatment
techniques such as probabilistic modeling into neural network
structure provides potential solutions in terms of establishing
effective tools to analyze proposed models rigorously.

3) Generalization: Accelerated learning algorithms based
on stochastic optimization and distributed optimization have
been proposed to address large amounts of data, strong indi-
viduation, and numerous parameters of deep learning models
in industrial production. The super parameters and structure
of the model are automatically optimized with intelligent
optimization algorithms. Ultimately, industrial artificial intelli-
gence algorithms are expected to possess great generalization
ability in order to handle various industrial demands such as
monitoring, prediction, diagnosis, and optimization in a fast
and portable way .

4) Interpretability: The interactive mechanism between the
expert experience of industrial production and machine learn-
ing models should be established in conjunction with the
existing IAI methods. Interpretable IAI includes aspects of
explainable feature extraction, explainable machine learning
architecture and explainable result evaluation. Essentially, the
reasoning process and decision making of the models be-
come transparent, and the users can understand, trust, and
manage smart manufacturing systems effectively. In 2016, the
U.S. Defense Advanced Research Projects Agency (DARPA)
proposed an explainable-AI program to emphasize human-
computer interaction in IAI [74]. Lundberg et al. [75] proposed
tree-based models with a certain level of interpretability based
on game theory for feature attributes. In terms of the time-
series data acquired by sensors (e.g., acceleration, voltage,
current, and temperature), shapelets method proposed by [76]
explored a maximally discriminative sub-sequence of a class
of time series data. The identified sub-sequence can be con-
sidered as interpretable features to domain experts. As for
the image, video, and text data, a recent new concept of
machine learning termed attention-mechanism [77] evaluates
the specific weights associated with the network layers in
determining the relative importance of features among the
whole image/video/text, thus ensuring prediction results with
higher robustness and interpretability.

IX. CONCLUSIONS

Smart manufacturing is expected to be the next generation of
industrial manufacturing. IAI that incorporates AI technologies
and the domain knowledge of industry is the primary force
that supports AI-powered manufacturing. In general, industrial
intelligentization is the inevitable trend of development driven
by two leading factors. First, advanced technologies including
IoT, cloud computing and cyber technologies enable highly

efficient data collection, transmission, storage and manage-
ment, thus accelerating the generation of massive data. As a
result, big data form the foundation for industrial intelligen-
tization. Second, AI technologies such as machine learning,
deep learning, transfer learning, etc. have seen substantial
development over the past few decades. These methods are
characterized by two major attributes that strongly promote
the development of smart manufacturing. First of all, most AI
algorithms are data-driven, enabling them to make the best use
of the availability of big data. In addition, IAI technologies are
powered by the end-to-end framework, offering satisfactory
performance with low demand of domain knowledge that
becomes increasingly difficult to learn from highly com-
plex manufacturing systems in modern industries. Hence, IAI
makes industrial intelligentization possible by providing the
technological backbone. Overall, IAI technologies bring novel
manufacturing modes that possess intelligent characteristics
such as self-perception, self-comparison, self-prediction, self-
adaptation and self-optimization. Consequently, AI-powered
manufacturing is equipped with highly efficient and reliable
production chains from manufacturing process to end product
logistics.

Production monitoring is one of the key links in the
complete production chain, which involves fault diagnosis,
remaining useful life prediction and quality inspection. With
the development of smart manufacturing, IAI technologies
have been widely applied in these three areas where machine
learning or deep learning based methods are two major tech-
nological drivers. In general, FD, RUL and QI apply common
AI based methods (e.g., CNN, GAN, attention mechanism,
GNN) to accomplish different tasks while these methods are
customized with respect to specific applications. Overall, IAI
technologies present remarkable performance in production
monitoring and show great potential in the future.

It is believed that the future development of IAI will focus
on four aspects, i.e., robustness, generalization, interpretability
and analyzability. The former two aim to further improve the
applicability of IAI technologies in real world applications.
More specifically, IAI algorithms should be robust to uncer-
tainties originating from systems, data, environment, etc. In
addition, they are expected to be applicable across different
domains for diverse tasks such as monitoring, prediction
and diagnosis. As a field that emphasizes risk assessment,
industrial manufacturing especially requires causality analysis
for model reasoning and decision making. The development of
interpretable IAI technologies is attracting increasing attention
in smart manufacturing. There is also a trend towards using
IAI not only for decision support but also as part of a
feedback loop with the ultimate goal of autonomous industrial
plants, which requires both interpretable and analyzable IAI.
The developed models should be analyzed like traditional
control systems by considering stability and closed loop signal
behavior before commissioning. Analyzable IAI promotes the
shift from being focused mainly on quality monitoring and
equipment maintenance towards comprehensive plant opera-
tions in real world.
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