
A. Cuzzocrea et al./Journal of Visual Language and Computing(2020)

Journal of Visual Language and Computing

journal homepage: www.ksiresearch.org/jvlc

An Effective and Efficient Machine-Learning-Based Framework for
Supporting Event Detection and Analysis in Complex Environments

Alfredo Cuzzocreaa,1, Enzo Mumolob,2

aiDEA Lab, University of Calabria, Rende, Italy
bUniversity of Trieste, Trieste, Italy

A R T I C L E I N F O

Article History:
Submitted 4.8.2019 
Revised 4.30.2019 
Second Revision 5.20.2020 
Accepted 7.21.2020

Keywords:
fall detection
fall classification
Neural Network
MEMS accelerometer
Monte Carlo algorithm

A B S T R A C T

In this paper we describe a falls detection and classification algorithm for discriminating falls from
daily life activities using a MEMS accelerometer. The algorithm is based on a shallow Neural Network
with three hidden layers, used as fall/non fally classifier, trained with daily life activities features and
fall features. The novelty of this algorithm is that synthetic falls are generated as multivariate random
Gaussian features, so only real daily life features must be collected during some day of normal living.
Moreover, the features related to synthetic fall events are generated as complement of normal features.
First of all, the features acquired during daily life are clustered by Principal Component Analysis and
no Fall activities shall be recorded. The complement set of the normal features is found and used as a
mask for Monte Carlo generation of synthetic fall. The two feature sets, namely the features recorded
from daily life activities and those artificially generated are used to train the Neural Network. This
approach is suitable for a practical utilization of a Neural Network based fall detection characterized
by high Recall-Precision rate.

© 2020 KSI Research

1. Introduction
The detection of falls of the elderly and people with de-

seases like epilepsy or Parkinson or simple people with mo-
tor difficulties, is today a problem of great public interest.
This generated a wide range of research and led to the devel-
opment of various falls detection and tele-monitoring sys-
tems to allow prompt intervention when a fall occurs. Stud-
ies in the past years have shown that 1∕3 of Senior citizens
over age 65 ([28]) are often victims of undetected falls and
most of their injuries are due to a lack of intervention. Gen-
erally speaking the classification between daily life activities
and falls is a difficult task because many daily life activities
look like fall (for example running, sitting in a car or lying
in bed) and many falls may look like daily life activities. All
the types of errors of these systems are of great importance.
In case of False Positive error, users are not motivated to use
the falls detection system because in many normal life activ-
ities are wrongly detected as falls. In those cases, the oper-
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ator soon gets tired of the false alarms. On the other hand,
in case of False Negatives errors it happens that the system
leads to lack of interventions in case of fall. Of course this
situation is followed by problems of serious injury and also
of mortality.

Generally speaking, while it is quite simple to gather ac-
celerometer data during Normal Daily Living (Daily Life
Activities or DLA), it is very difficult if not impossible to
collect data during Falls, so the question is: how can the false
positive rate be reduced if enough fall data is not available?
The answer to this question is that we produce synthetic fall
data starting from data collected during normal daily living.

Our approach reduces the amount of False Positives com-
pared to threshold based systems by performing extensive
training of a neural network if large quantities of features
are gathered during normal life activities.

In the last decade, there has been a great deal of research
that has examined the use of inertial sensors such as ac-
celerometers and/or gyroscopes to realize systems for auto-
matic detection of falls. The goal of these systems is to de-
tect the falls of patients who have any difficulty in walking
to quickly alert the operators who provide a suitable assis-
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tance. The characteristics these systems must have are on
one side low cost, consumption and size, and on the other
side high performance. While the first characteristics are al-
ways better met, the performance is still unsatisfactory. Typ-
ically, performance is measured in false positives and false
negatives. False positives, if excessive, could demotivate the
use of these systems because the recipient of a fall warning
could get tired of it. Clearly, false negatives are the most
dangerous for the patient’s health because they correspond
to missed falls. Normally these errors are measured by Sen-
sitivity (ability to detect actual falls) and Specificity (ability
to avoid false positives) or equivalently Recall and Precision.
From the literature, the existing technology for falls detec-
tion systems can be roughly classified into three categories.

• With wearable sensors: These systems use a triaxial
accelerometer or gyroscope or a combination of both
to estimate the posture of the subject’s body. The sen-
sors are placed in different places, such as the waist,
the thigh, the wrist, the shoes. Many systems use the
smart-phones inertial sensors.

• With environmental sensors: The environmental sen-
sors are nothing more than sensors positioned around
the subject. Floor sensors such as pressure sensors
on the mat, microphones, infrared sensors, microwave
motion detectors are used to detect the fall. The clas-
sifiers of neural networks are used to classify daily ac-
tivities.

• With image processing: In such methods, a camera is
used to monitor body postures. Falls are detected us-
ing various image processing techniques such as pat-
tern matching, posture recognition, skeleton extrac-
tion, background subtraction, optical flow processing,
etc.

A fall can be described as the rapid change from standing
or sitting towards an elongated position in earth or almost
elongated [27]. This definition has been used in many stud-
ies. The paper is organized as follows. In Section 2 we de-
scribe the state of the art. In Section 3 we provide the main
features of the accelerometer. In Section 4 we introduce pre-
liminary definitions useful to describe our work. In Section
5 we describe our main approach. In Section 6 we provide
the proposed metrics for performance evaluation. In Section
7 we provide the experimental evaluation and assessment of
our proposed framework. Finally, in Section 8 we discuss
concluding remarks and future work of our research. A pre-
liminary version of this paper appears in the short paper [7].

2. Previous Work
The algorithms used in systems with wearable sensors

can be divided into approaches that use thresholds based
heuristics and approaches that use machine learning tools
[26]. The latter may be k-Nearest Neighbor (kNN), neural
networks, hidden Markov models, or the two classes clas-
sification schemes based on the Support Vector Machines

(SVM) classifiers. In all cases, however, it is important to
have both falls and daily life activity features. In the case
that the approaches are based on thresholds, the availability
of both types of data is important to find optimal thresholds,
while in the other case the data are important for correctly
training the machine learning algorithms.

The thresholds-based heuristics approaches are methods
that use thresholds and appropriate functions derived from
inertial parameters. The simplest approach to detecting a
fall could be to detect the ground position of the person,
by means of a horizontal inclination detection sensor. This
method is suitable for monitoring “isolated subjects” but less
suitable for the detection of falls of an elderly person in his
home environment as the hours of sleep are not regular. There-
fore this method provides many “false positives”. A comple-
mentary solution is to detect the person lying on the floor, us-
ing floor tiles equipped with sensors. But when the falls do
not end on earth, or if the floor does not have these sensors,
obviously they are not detectable. When it falls, the person
often hits the ground or an obstacle. The “shock impact”
causes an intense inversion of the polarity of the accelera-
tion vector in the direction of the trajectory, which can be
detected with an accelerometer or a shock detector, which
is actually a threshold accelerometer. Although most of the
falls occur in the “front” plane (forward or backward), the
direction of the trajectory of fall and is obviously variable
from one fall to another. Also the position of the sensor on
the body relative to the point of impact modifies the signal
recorded at the moment of shock. The lack of movement
can be used to detect the fall as, after the “serious” fall, in
which the person can be seriously injured, they often remain
immobilized in one position. A motion / vibration sensor,
positioned on the body (e.g., wrist or ankle), can be used
or, again more simply, infrared sensors of presence dissemi-
nated in the home. The choice of latency time (the delay be-
fore the decision) that should be long enough to reduce “false
positives”, which translates into a longer delay before inter-
vention, represents a critical problem for these approaches.
As discussed earlier, during a fall there is a temporary “fall
free” period, during which the vertical speed increases lin-
early over time due to gravitational acceleration. If you mea-
sure the vertical speed of the normal movements of the per-
son (getting up, lowering, sitting down), you can discrimi-
nate these speeds from what you do during the fall, which
would exceed an appropriate threshold. The intrinsic of an-
alytical methods lies in the choice of this threshold, which if
too low causes “false positives” and if too high causes “false
negatives”. Also this threshold differs from subject to sub-
ject. Image processing of video signals can also be used to
detect one fall identifying the lying posture using analysis
of the visual scene or detecting brusque movements using
the revelation of movements with respect to the background.
The latter method usually consists in subtracting successive
images to keep only the variations, which are then sorted ac-
cording to their direction and or their width. While these
techniques are well established in controlled environments
(e.g., laboratory), they must be modified in environments
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uncontrolled where parameters such as lighting or framing
can be arbitrary. Furthermore, if the subject moves in a 3-
dimensional space, it may need more complex techniques,
namely the use of 2 cameras (“VisionStereo”). These im-
age techniques are absolutely feasible at present, both tech-
nically and economically, thanks to the presence on the mar-
ket of low cost cameras (web cam), with the possibility to
transmit images in wireless mode over short distances and
availability of appropriate processing algorithms. However
the acceptance of these technologies for images poses big
problems of privacy, as it requires the positioning of video
cameras in the living space of the person, and in particular
in the bedroom and the bathroom.

An alternative to heuristics approaches, machine learn-
ing methods can be used to detect falls. These methods are
based on the data acquired on the real working system, used
in a preliminary training phase. “Supervised” or “unsuper-
vised” classification algorithms can be used. In case of clas-
sification algorithms with “supervised” learning, the person
wearing the device performs a series of voluntary actions in
order to identify the parameters in the normal cases. In the
case of "unsupervised" learning, it is possible to record the
movements of the person, within a few hours or several days,
and then perform a statistical analysis of the measured speed.
These approaches to developing fall detection algorithms are
based on observing of the data (the training period) and then
on the classification. The choice of classification algorithms
is very broad. If you use a supervised method, a simpler
choice is to train a neural network, which will then be used
to automatically classify the signal. Only the situations en-
countered during training can be recognized, all others can
be shuffled into a class called "others" if the algorithm " is
" unsupervised ", falls can be isolated if the training period
is much longer than the fall event. Furthermore, it is likely
that the first event fall is not detected since its class is still
unknown before its premiere appearance.

Regarding the thresholds based heuristics approaches,
Bourke et al. [3] uses signals from triaxial accelerome-
ters mounted on the trunk and the thigh to distinguish falls
from the Activities of Daily Living (ADLs). They propose a
higher fall threshold (UFT) and a lower fall threshold (LFT)
in an attempt to optimize the balance of false positives and
false negatives. Likewise, Kangas et al. [16] attached a tri-
axial accelerometer to the waist, wrist and head of volun-
teers who performed simulated drops and ADLs in labora-
tory. Their algorithms considered the phases of pre-impact,
impact and post-impact of the fall, separately and in com-
bination, and achieved up to 100% of specificity and sensi-
tivity of 95%, using a single sensor mounted at the waist.
However, this algorithm has not been tested in real environ-
ments. The only study that examined its accuracy in the real
world was conducted by Bagala et al. [9], which evaluated
fall detection methods (including the Bourke and Kangas al-
gorithms described above) using data from real falls, achiev-
ing much better results. In laboratory settings, the develop-
ment of improved algorithms for automatic fall detection in
the elderly requires an understanding of real-life fallout sce-

narios in older adults and the integration of such informa-
tion into the design of laboratory experiments. The com-
mon fall scenarios are often absent in the majority, if not in
all, of the previous laboratory experiments of fall, and the
consequent discrepancy in the sensor data is, perhaps, the
main cause of the lack of accuracy of the fall detection al-
gorithms, when tested on real scenarios. In [12] a system is
described that uses a triaxial accelerometer and gyroscope.
The detection algorithm uses three thresholds: one to rec-
ognize pre-fall situations, one to detect the maximum of the
acceleration vector module and one to detect the maximum
angular velocity. The algorithm described in [13] also uses
three thresholds, one for the local minima of the accelera-
tion module and two for the local maxima of the acceleration
module and the angular velocity module. Systems based on
machine learning algorithms use classifiers that are trained
with both ADL and falls data. However, in a realistic con-
text, due to the lack of sufficient availability of falls data and
the lack of knowledge and understanding of what could be
the falls, approaches based on the detection of anomalies and
classification of a single class can be used. These techniques
can not identify falls directly because fall data is not available
for classifier training. However, they can identify falls indi-
rectly by classifying them as abnormal activities. In these
approaches, therefore, abnormal activities are classified as
deviations from normal behavior. Naturally, the concept of
normal activities must be clearly defined to identify abnor-
mal activities. Moreover, even if the data of normal activi-
ties are not sufficient, then these techniques can produce ex-
cessive false positives. Recent research projects [5], [25],
[19] show that falls can be identified without actually ac-
quiring them. As evidenced by Klenk et al. [14], simulated
falls differ significantly from real-world falls. Thus, having
simulated falls in the training data set could lead to achieve
classifiers that show different behaviors with real-world falls
However, other authors such as Zhou and others [24] have
presented a method to detect falls using transitions between
activities to model falls. Zhou and others trained supervised
classifiers using the normal activities collected by a mobile
device, then used transitions between these activities to train
a One-class Support Vector Machine (OSVM) and showed
that it performs better than an OSVM trained only with ac-
tivities normal. Micucci et al. [25] evaluates methods of de-
tecting falls that do not require dropping data during train-
ing on different data sets collected using the smart-phone
accelerometer. Their results show that in most cases, the
One Class k-Nearest approach Neighbor classifier OCNN
behaves better or equivalently to supervised SVM and KNN
classifiers that require both types of data, i.e. data for nor-
mal and abnormal activities. In other words, Micucci et al.
use the one-class k-Nearest Neighbor (kNN) classifier and
the one-class SVM classifier. These classifiers have been
trained only with ADL and FALL instances. If the anomaly
score is higher than a given threshold, the new instance is
classified as an anomaly / fall, otherwise is classified as an
ADL. Micucci et al compares the anomaly detectors with a
two classes kNN and a two-classes radial basis SVM. These
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classifiers have been trained and tested with both instances
of ADL and FALL. This is the case that we are looking for in
a real scenario. The main contribution of [25] is the discov-
ery that to design an effective method of detection of falls, it
is not necessary to acquire data of falls but it is sufficient to
classify the test data as anomalous. As for the HMM models,
the traditional way to detect unseen abnormal activities ap-
pears as a model of normal activity using an HMM, appears
the likelihood of a test sequence with the trained models and
if it is below a pre-defined threshold then identify i t as an
anomalous activity [23]. Another common method to detect
anomalous activities is to model the normal activities by a
common HMM instead of modeling them separately. In [20]
two HMM algorithms are presented that are normal HMM,
in which the system noise covariance of the normal dynam-
ics is used to determine the region with highest likelihood
which are far from normality based on which events can be
classified a s ’ not n ormal’. T heir r esults s how h igh detec-
tion rates for falls on two activity recognition data sets, albeit
with an increase in the number of false alarms. In [19], Khan
et al. experimentally show that this approach can give better
results than supervised classification with limited fall data.
When the number of fall data increases, the performance of
supervised classifiers i mproves, b ut falling d ata collection
can take a long time.

3. Accelerometer Features
The output of the MEMs accelerometer are the three com-

ponent of the acceleration vector according to the three axis
𝑥, 𝑦, 𝑧, namely 𝑎𝑥, 𝑎𝑦, 𝑎𝑧, each of them related to the current
time instant. From this signal, many features are extracted,
see for example [17, 30]. We first compute the modulus of

the acceleration vector, namely 𝐴𝑐𝑐 =
√

𝑎2
𝑥
+ 𝑎2

𝑦
+ 𝑎2

𝑧
. Let

us give a look to Figure 1 which is the time evolution of 𝐴𝑐𝑐

for a typical fall. In this case, it is a Fall backward while
trying to sit on a chair, taken from Mobifall v.2. It is worth
noting that the overall time frame is the typical fall time.
Here we choose the following measures: the maximum value
of the modulus, labeled as Peak in Figure 1, the length be-
tween the two arrows, labeled as Base, and the modulus of
the slopes of the three components within the signal frame.
The slope is computed as follows. Calling 𝑡𝑖1, 𝑡

𝑖
1+𝑁 the first

and last time instant of the 𝑁 samples 𝑖-th frame, let us con-
sider the values:

𝑚𝑎𝑥𝑎𝑥
= 𝑚𝑎𝑥{𝑎𝑥(𝑡𝑖1),… , 𝑎𝑥(𝑡𝑖1+𝑁},

𝑚𝑖𝑛𝑎𝑥
= 𝑚𝑖𝑛{𝑎𝑥(𝑡𝑖1),… , 𝑎𝑥(𝑡𝑖1+𝑁 )},

𝑚𝑎𝑥𝑎𝑦
= 𝑚𝑎𝑥{𝑎𝑦(𝑡𝑖1),… , 𝑎𝑦(𝑡𝑖1+𝑁},

𝑚𝑖𝑛𝑎𝑦
= 𝑚𝑖𝑛{𝑎𝑦(𝑡𝑖1),… , 𝑎𝑦(𝑡𝑖1+𝑁 )},

𝑚𝑎𝑥𝑎𝑧
= 𝑚𝑎𝑥{𝑎𝑧(𝑡𝑖1),… , 𝑎𝑧(𝑡𝑖1+𝑁 )},

𝑚𝑖𝑛𝑎𝑧
= 𝑚𝑖𝑛{𝑎𝑧(𝑡𝑖1),… , 𝑎𝑧(𝑡𝑖1+𝑁 )}.

Then, in the interval 𝑡𝑖1, 𝑡
𝑖
1+𝑁 , the slopes of the three com-

ponents are: 𝑠𝑙𝑜𝑝𝑒𝑥 = 𝑚𝑎𝑥𝑎𝑥 − 𝑚𝑖𝑛𝑎𝑥, 𝑠𝑙𝑜𝑝𝑒𝑦 = 𝑚𝑎𝑥𝑎𝑦 −
𝑚𝑖𝑛𝑎𝑦, 𝑠𝑙𝑜𝑝𝑒𝑧 = 𝑚𝑎𝑥𝑎𝑧 − 𝑚𝑖𝑛𝑎𝑧. The modulus of the slope

Peak

Base
Peak1
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component is

𝑆𝑙𝑜𝑝𝑒 =
√

𝑠𝑙𝑜𝑝𝑒2
𝑥
+ 𝑠𝑙𝑜𝑝𝑒2

𝑦
+ 𝑠𝑙𝑜𝑝𝑒2

𝑧
(1)

Another feature we use is the Ratio of the Peak over Base,
as described in (2)

𝑅𝑎𝑡𝑖𝑜 = 𝑃𝑒𝑎𝑘

𝐵𝑎𝑠𝑒
(2)

These features have been chosen because they require very
low computation, and so they can be used also on embedded
processors with very little computational power.

4. Preliminary Definitions
We now make some preliminary definitions useful in Sec-

tion 5. Assume we use𝑁 features describing Falls and ADL.
The Features Space (𝐹𝑠𝑆) is an hyper-cuboid with 2𝑁

vertices and 2 ⋅𝑁 sides where all the original features points
lie. Calling 𝑚𝑎𝑥(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑖), and 𝑚𝑖𝑛(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑖) respectively
the maximum and minimum values the 𝑖 − 𝑡ℎ feature can
reach in the current case, the length of the first side of the hy-
percuboid is 𝑚𝑎𝑥(𝑓𝑒𝑎𝑡𝑢𝑟𝑒1)−𝑚𝑖𝑛(𝑓𝑒𝑎𝑡𝑢𝑟𝑒1), of the second
side is𝑚𝑎𝑥(𝑓𝑒𝑎𝑡𝑢𝑟𝑒2)−𝑚𝑖𝑛(𝑓𝑒𝑎𝑡𝑢𝑟𝑒2) and so forth. The two
vertices 𝑉1 and 𝑉2 with respectively the minimum and max-
imum Euclidean distance from the origin have coordinates
𝑉1 = (𝑚𝑖𝑛(𝑓𝑒𝑎𝑡𝑢𝑟𝑒1), 𝑚𝑖𝑛(𝑓𝑒𝑎𝑡𝑢𝑟𝑒2),… , 𝑚𝑖𝑛(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑁 )),
𝑉2 = (𝑚𝑎𝑥(𝑓𝑒𝑎𝑡𝑢𝑟𝑒1), 𝑚𝑎𝑥(𝑓𝑒𝑎𝑡𝑢𝑟𝑒2),… , 𝑚𝑎𝑥(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑁 ))
respectively. Of course, if we have only two features, 𝐹𝑠𝑆

is a rectangle and if we have three features, 𝐹𝑠𝑆 is a 3D
cuboid.

𝐷𝐿𝐴𝑆 ∈ 𝐹𝑠𝐹 is a set whose elements are vectors of
features collected in one or more days of Daily Living Ac-
tivities (DLA).

𝐹𝐴𝑆 ∈ 𝐹𝑠𝐹 is a set whose elements are vectors of fea-
tures collected during Fall Events.
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In Figure (2) we report an example of 𝐹𝑠𝐹 , 𝐷𝐿𝐴𝑆,
𝐹𝐴𝑆 and vertices 𝑉1, 𝑉2 for two and three features respec-
tively. 𝑆𝑦𝑛𝐹𝑆 ∈ 𝐹𝑠𝐹 is a set whose elements are features
representing Synthetic Falls, and 𝐶𝑆𝐹𝑆 is its Cardinality, i.e.
the number of its elements. The contours of such sets will
be used as 𝑀𝑎𝑠𝑘𝑠 in Monte Carlo synthetic generation of
falls. As stated before, our assumption is that 𝑆𝑦𝑛𝐹𝑆 can
be viewed approximately as a complement to 𝐴𝐷𝐿𝑆, pro-
vided that certain conditions are verified. 𝑆𝑦𝑛𝐹𝑆 is repre-
sented by an 𝑁-dimensional sphere with center in 𝑉2, which
is the vertices of 𝐹𝑠𝑆 most distant from the origin. The ra-
dius of𝑆𝐹𝑆, initially equal to zero, is found with an iterative
approach which increase its value until the desired number
of elements of 𝐷𝐴𝐿𝑆 are included in it. In other words,
𝑆𝑦𝑛𝐹𝑆 is defined as follows:

𝑆𝑦𝑛𝐹𝑆 = {𝑧|𝑧 ∈ ̄𝐷𝐿𝐴𝑆 ∪ 𝑆𝐸𝐷𝐿𝐴𝑆 ∧ 𝐶𝑆𝐹𝑆 ≤ 𝛾}

where 𝑆𝐸𝐷𝐿𝐴𝑆 set contains some elements of 𝐷𝐿𝐴𝑆,
chosen as explained shortly.

Let us look at the Figure 2 and Figure 3. Here we assume
that only two features are used, so the sets can be drawn as a

������ 	� ������� �	 ��� ���� ���� ���� ���� ��� ��!�����

"��
�������

2D plane. The points represented with squares are 𝐴𝐷𝐿 el-
ements. The circles’ boundaries are related to some 𝑆𝐹𝑆

with different Cardinalities and define two 𝑀𝑎𝑠𝑘𝑠 which
will be noted as 𝑀𝑎𝑠𝑘𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦. We recall now the defi-
nition of Delation, which is a useful operator from Binary
Morphology [18, 22]. The Delation of a given matrix 𝐴 by
a structuring element 𝐵, represented with the ⊕ symbol is
defined as follows: 𝐴⊕ 𝐵 = {𝑥|𝐵 ∩ 𝐴 ≠ ∅}.

5. Description of the Approach
Our goal is to generate synthetic falls by using a Monte

Carlo algorithm. In other words𝑁-dimensional random vec-
tors from Gaussian Distribution are generated and filtered by
the Masks described above so that only the vectors falling
within the Mask are retained. In order to reduce the com-
putational complexity of the Monte Carlo algorithm, binary
operations are performed.

First of all, Principal Component Analysis [1, 15] of the
data contained in 𝐷𝐿𝐴𝑆 set is performed in order to cluster
DLA data. To clarify the algorithm description let us assume
that only two features are used. Using the data of Figure 2 by
PCA we approximate the shape of the data with the ellipse
depicted in Figure 4. It is worth observing that the major and
minor axis of the ellipse are the first and second components
of the data.

The binary operation starts by a binary version of the
PCA ellipse, which is simply a projection of the PCA ellipse
on a 100 × 100 binary matrix. It is worth noting that here
we make use of binary data for complexity reduction. The
ellipse is filled with ones. This is shown in Figure 5, where
the binary matrix corresponding to Figure 4 is depicted. The
set whose elements are the pixels inside the binary ellipse
is called 𝐵𝐸 for binary ellipse. Then, a mask is generated
with Morphological Delation using n-dimensional polytope
structuring elements. It is worth noting that we use delation
instead cicles because the shapes are easier to binarize. In
the 2D example we use an octagon. Starting from an oc-
tagon in 𝑉2, a rough approximation of the spherical bound-
aries shown in Figure 2 are obtained using the following it-
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eration: 𝑚𝑎𝑠𝑘 = 𝑚𝑎𝑠𝑘 ⊕ 𝑜𝑐𝑡𝑎𝑔𝑜𝑛. Let 𝑀 be the set of
pixels set to one in the mask. Then we estimate the number
of pixels of the intersection between the mask and the binary
ellipse by performing the set operation 𝐿𝑒𝑛(𝑀 ∩𝐵𝐸). Now
we introduce the threshold 𝛾 such that the number of pixels
in the intersection between mask and binary ellipse be ≤ 𝛾 .
A loop is performed such as:

while 𝐿𝑒𝑛(𝑀 ∩ 𝐵𝐸) ≤ 𝛾 then 𝑀 = 𝑀 ⊕𝐵 (3)

where 𝐵 is an octagon structuring element. In the upper
panel of Figure 6, a sequence of Masks (the black surface) for
different values if 𝛾 is reported. The panel at the bottom of
Figure 6 shows the corresponding result of the set operation
𝑀 ∩ 𝐸. The number of pixels of 𝑀 ∩ 𝐸 increases until the
area is greater than the threshold 𝛾 .

Synthetic falls, finally, are generated as random vectors
𝑋 =

[
𝑋1 …𝑋𝑛

]𝑇
, where𝑋1 = feature1,… , 𝑋𝑁 = feature𝑁 ,

according to the Gaussian multidimensional probability dis-
tribution 𝑁 − 𝐺𝑎𝑢𝑠𝑠 reported in (4).

𝑝(𝑥;𝜇,Σ2) = 1
(2𝜋)𝑛∕2|Σ|1∕2 𝑒

(
−1

2 (𝑋−𝜇)𝑇 Σ−1(𝑋−𝜇)
)

(4)

Loop 1 Loop 23 Loop 24 Loop 25

Area=0 Area=19 Area=46 Area=75

������ 
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In (4) the mean is estimated as

𝜇 = [
𝑚𝑎𝑥(feature1) + 𝑚𝑖𝑛(feature1)

2
,…

… ,
𝑚𝑎𝑥(feature𝑁 ) + 𝑚𝑖𝑛(feature𝑁 )

2
] (5)

so 𝜇 ∈ 𝐑𝑛. Morover, in (4) the covariance matrix is an
𝑁 × 𝑁 symmetric matrix. The diagonal elements are the
variances of each feature. It is estimated as follows:

Σ(𝑖, 𝑖) =
(𝑚𝑎𝑥(feature𝑖) − 𝑚𝑖𝑛(feature𝑖)2)

4
. (6)

All the other elements are equal to zero. In Figure 7 we re-
port an example of random generation of features according
to the bi-variate Gaussian distribution.

Finally we evaluate the synthetic fall features as intersec-
tion of the random bi-variate features with the feature Space
and the binary Mask. The synthetic falls features are re-
ported in the example shown in Figure 8 where also the real
fall features are reported for a first comparison.

In Figure 9 we recall that the neural network has input
data derived from the sensors. Then we have three hidden
layers and one exit layer. The dimension of this network
allows to perform the network training using usual back-
propagation.

The key point of our approach is the following. The neu-
ral network is trained with three features, namely Ratio, Base
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and Peak1 extracted from ADL and falls. The DAL output of
the network is set to zero during daily living features and the
FALL output is set to one for synthetic falls features. When
a real fall happens, the network should be able to detect it by
looking which output is greater tahn the other.

It is worth recalling that the problem with training such
neural network classifier is, in practice, we have only real
ADL features and it is not easy to have real falls. To solve
this difficulty, we generate features which are classified as
Falls. In other words, we generate features which are points
in the set that is complement to the set of the DAL set.

6. Metrics for Performance Evaluation
The starting point for measuring the quality of a classifier

is to obtain the rate of false positive (fp), false negative (fn),
true positive (tp) and true negative (tn) from the classifier.
In our case of a falls detector, let us suppose that there is a
fall. If the detector detects it, a tp is measured. If it does
not detect it, we have a fn. For example, on 100 actual fall
events, the detector could have 80 tp and 20 fn. If there has
not been a fall, the detector could say that there was a fall
(fp) or that there was no fall (tn). So on 100 non-fall events,
we could have 80 tn and 20 fp.

In other words:

• TP (true positive): This is a situation in which a fall
occurs and the system correctly detects it.

• FN (false negative): In this situation we have the fall
happens, but the device does not announce it.

• TN (true negative): This is the situation in which a
fall does not occur and the system correctly detects
that there has not been a fall.

• FP (false positive): In this situation the fall does not
happen but the device incorrectly announces that it has
detected a fall.

These measures are also called:
tp → hit fn → correct rejection
fp → false alarm
tn → miss
It is sometimes convenient to measure errors in a more

concise way. The most used measures are:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑡𝑝

𝑡𝑝 + 𝑓𝑝

This parameter measures the following quantity: the propor-
tion of positive responses that have really fallen.

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑡𝑝

𝑡𝑝 + 𝑓𝑛

This parameter represents the system’s ability to detect a fall
every time it occurs. The algorithm is good if the recall ap-
proaches 1 because in this case there are no false negatives.
In other words, this parameter measures the proportion of
falls that have been correctly identified.

7. Experimental Results
First we give a look to the data sets used for experiments.

The first is the MobiAct v2.0 data set [10]. MobiAct contains
data of four different types of falls and nine different daily
living activities from a total of 57 subjects with more than
2500 trials. As well as being used to obtain experimental
results, in this paper MobiAct is used as representative data
set in all the Figures.

The second is UMAFall, which contains data from 17
subjects performing 8 different types of ADL and 3 different
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types of falls. Sensing point of MobiAct and UMAFall is the
right trouser pocket.

The third data set used for experimental result is the Sis-
Fall [11, 29], selecting data related to the waist sensor point.
It was generated with 38 participants performing repetitions
of 19 ADL and 15 fall types.

We first obtain False Positive, and Negative as well as
True positive and True Negative. All the results reported in
the following are averaged over these data sets. Of course as
usual we try an input signal from the test section of the data
sets and we look if the output is correct or not. These results
are reported in Figure 10 and in Figure 11.

Then we obtain the values of Recall and Precision, re-
ported in Figure 12.

These performances have been compared with the Bourke
algorithm [3], which is three threshold based. To find the
optimum values of the thresholds, we noticed that the most

important threshold is the third one, so we found its perfor-
mances at various values of the third threshold. The results
are reported in Figure 13 which shows that the values of Re-
call/Precision are quite lower than our algorithm.

8. Final Remarks and Future work
Many fall detection systems are based on thresholds ap-

plied on features derived from inertial sensors. In this paper
we report a novel algorithm which is able to achieve high per-
formance, namely an equal Recall and Precision value more
of 90% and a false error rate in this point less than 8%. The
main feature of this algorithm are that it only requires col-
lecting features in periods of normal daily living and then,
from these features, it estimates features of artificial falls.
The availability of many features which describe normal and
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fall events allow to use Machine Learning approaches which
are very powerful classifiers provided that sufficient amount
of data is given. An important aspects of the described ap-
proach is that we use only one type of inertial sensor, namely
the accelerometer. Future work will be focused on the fusion
of the described results obtained with only an accelerome-
ter with other types of inertial sensors, for example a gyro-
scope or a magnetometer. In this way many other data could
be given to the neural network. The computation complex-
ity is very low because it needs only to compute a trained
neural network, so it can be performed in real time. More-
over, we used only three features. It would be interesting to
see how much the performance increase if other features are
used, hence leading to a feature hyperspace as indicated in
Section 3. Another possible direction of research consists in
making our algorithm compliant with emerging features of
novel big data systems (e.g., [21, 31, 4, 32, 2, 6, 8]).
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