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Abstract: (350 words) 

 

Background and Objective 

The input data distributions of EEG-based BCI systems can change during intra-session transitions, due 

to nonstationarity caused by features covariate shifts, thus compromising BCI performance. 

We aimed to identify the most robust spatial filtering approach, among most used methods, testing them 

on calibration dataset, and test dataset recorded 30 min afterwards. In addition, we also investigated if 

their performance improved after application of Stationary Subspace Analysis (SSA). 

 

Methods 

We have recorded, in 17 healthy subjects, the calibration set at the beginning of the upper limb motor 

imagery BCI experiment and testing set separately 30 min afterwards. Both the calibration and test data 

were pre-processed and the BCI models were produced by using several selected spatial filtering 

approaches on the calibration set. Those models were subsequently evaluated on a test set. The 

differences between the accuracy estimated by cross-validated on the calibration dataset and accuracy 

on the test dataset were investigated. The same procedure was performed with, and without SSA pre-

processing step. 

 

Results 

A significant reduction in accuracy on the test dataset was observed for CSP, SPoC and SpecRCSP. For 

SLap, SpecCSP only a slight decreasing trend was observed, while FBCSP and FBCSPT largely 

maintained moderately high median accuracy >70%. In the case of application of SSA pre-processing 

the differences between accuracy observed on calibration and test dataset were reduced. In addition, 

accuracy values both on calibration and test set were slightly higher in case of SSA pre-processing and 

also in this case FBCSP and FBCSPT presented slightly better performance compared to other methods. 

 

Conclusion 

The intrinsic signal nonstationarity characteristics, caused by covariance shifts of power features 

reduced the accuracy of BCI model suggesting that this evaluation framework should be considered for 

testing simulating real life performance. FBCSP and FBSCPT approaches showed to be more robust to 

feature covariance shift. SSA can improve the models performance and reduce accuracy decline from 

calibration to test set. 
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Highlights 

 

● This study investigates the performance of several spatial-filtering approaches on calibration 

and test set acquired 30 min after the calibration, mimicking the real BCI scenarios. 

● EEG extracted feature covariance shifts lead to the BCI model accuracy deterioration, even 

after 30 minutes of a break. 

● FBCSP and FBSCPT showed to be more robust to feature covariance shift largely 

maintaining the original performance characterized by moderately high accuracy (>70%). 

● Stationary Subspace Analysis pre-processing improved the models performance and also 

reduced the gap between calibration and test set observed BCI model accuracies.   
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1. Introduction 

 

The use of noninvasive EEG brain-computer interfaces (BCI) application has increased in the last few 

years. Today due to advanced techniques of signal processing and hardware accessibility we are able to 

create more reliable systems that open space for the development of innovative clinical and non-clinical 

BCI procedures [1–4].  

Various studies [5–7] reported induced changes on sensorimotor rhythms and positive effects of 

different BCI treatment approaches on different pathologies, such as Parkinson’s disease [8,9], Stroke 

[10] Autism-spectrum disorder [11,12], ADHD [13], etc. However, it is natural that the effectiveness 

of BCI treatment is also related to the technical realization of the system and its capability of detecting 

EEG sensorimotor rhythms (SMR) generated during Motor-Imagery (MI) used as a feedback signal.  

The correct interpretation of the neural information extracted from electroencephalogram (EEG) is a 

cornerstone of the sensorimotor BCI. Therefore, is of great importance enhancing sensitivity to 

particular brain sources, improving source localization and suppressing artifacts [14]. The proper 

channel selection realized by applying spatial filtering plays a pivotal role in making a system more 

sensitive to SMR, and less sensitive to other non-related brain activities and noises. Spatial filters and 

their application in BCI were largely studied [15–20]. Data-independent spatial filters like Surface 

Laplacian with fixed weights [15,21,22] were largely used due to its simplicity, but it was found 

sensitive to anatomical differences and cross-subject variability [23,24]. Data-driven filters spatial such 

as CSP and its variants were designed to overcome the aforementioned limits. On the other side, it is 

also reported [18] that CSP is sensitive towards noisy training data [25], nonstationarities [26] and small 

datasets [27,28]. Most BCI studies related to spatial filtering techniques were based only on the 

evaluation performed on calibration (training) and test set derived from the same EEG recording. In 

real-life BCI applications, the online session is performed about 20 minutes after the initial calibration 

session and therefore disregard a time-varying feature’s distribution, such as intrinsic signal 

nonstationarity characteristic for EEG, caused by power feature covariance shifts [29,30], that 

compromise BCI performance. 

Therefore, the aim of our study was to identify the most robust spatial filtering approach, among most 

used methods, in the real BCI procedure testing them on data deriving from two different recording 

sessions in order to test how nonstationarity affects their performance. In addition, we also investigated 

if their performance improved after application of stationary subspace analysis. 
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2. Materials and Methods 

 

2.1 Study population 

Twenty healthy subjects have participated in the study (age range 19–26 years, mean±1SD = 22 ± 1.9). 

All subjects were right-handed, BCI naïve and with no history of neurological disorders, and in 

particular without impaired motor functions. 

The study was conducted within the MEMORI-net Interreg V-A ITS-SLO project. All recruited subjects 

gave their signed informed consent to participate in the study. The study protocol was approved by the 

Regional Ethical Committee CEUR (Comitato Etico Unico Regionale, FVG, Italy) with approval 

number 118/2018. The research was conducted according to the principles of the Declaration of 

Helsinki. 

 

2.2 Study design and BCI protocol 

To emphasize the real-life Motor-Imagery BCI (MI-BCI) scenarios we have recorded training and 

testing set separately.  The training set had been collected at the beginning of the experiment, whereas 

the test set subsequently has been acquired 30min afterwards, as in Figure 1A. During the break, the 

participants were resting in a chair. 
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Figure 1. A) Graphical representation of the experimental design; B) Time-sequence of stimuli 

presentation; C) BCI modelling block diagram; D) Block-diagram of applied BCI processing steps. 

Dark pink color and shadow green represent the processing pipeline of calibration data and test data, 

respectively. Both the calibration and test data were pre-processed and the produced models on the 

calibration set were additionally evaluated on a test set. The same procedure was performed with and 

without stationary subset analysis (SSA) pre-processing step. 

 

For both calibration and test dataset, subjects had to perform 70 tasks (35 repetitions of right-hand MI 

task and 35 reparations of “rest” task, randomly), as in Figure 1B. The stimulus consisted of the 

fixation cross on the screen to draw participant attention for two seconds, followed by the instruction 



© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 

http://creativecommons.org/licenses/by-nc-nd/4.0/ 

 

to imagine the right hand (MI) or stay in “rest” and it was presented for 5 seconds (Figure 1B). The 

inter-trial period was from 1 to 2 seconds. The adopted single right-hand vs “rest” design was chosen 

considering the applications of BCI techniques in neurorehabilitation to target a specific motor area 

during a specific rehabilitation task, as reported previously [3,31,32]. Both conditions (MI and “rest”) 

had the same size of 5 seconds, as shown in Figure 1 B. For the MI task the still image of the right 

hand was presented, while for the “rest” condition the green circle was displayed. 

The experiment was performed, and data was acquired by locally designed software “NeuroTS” 

available at https://github.com/miladinovic/NeuroTS. The NeuroTS allows both stimulus presentation 

for calibration and feedback for online sessions. In this study we used only stimuli presentation 

feature, both during calibration and test sessions. 

 

The acquisition of 12 channel EEG was performed using SAM 32FO amplifier (Micromed S.p.A., Italy) 

and Ag/AgCl electrodes (FC3, FC4, C4, C3, CP3, CP4, C2, C4, C6, C5, O1, O2). The signals were 

recorded with 256 Hz sample frequency and subsequently pre-processed with the 6-32Hz 4th order 

Butterworth bandpass filter and resampled to 128Hz. The signal was epoched from 0.5 to 4.5 seconds 

relative to the presentation of the cue on the screen.   

The aforementioned evaluation procedure was performed firstly without SSA pre-processing, as a 

standard procedure, and secondly with SSA pre-processing. 

 

The pre-processing step included initial resampling, filtering and epoching before the BCI modelling 

(Figure 1C and 1D). The procedure was performed firstly without Stationary Subspace Analysis (SSA) 

pre-processing, as a standard procedure, and secondly with SSA pre-processing (Figure 1D). 

Subsequent BCI modelling (Figure 1C) performed both with and without SSA, encompassed spatial 

filtering, feature extraction and classification, and has been performed on the EEG sensor space. The 

BCI modelling has been performed on the selected approaches and their performances have been 

estimated using cross-validation. Finally, for the real model performances have been evaluated on the 

separate EEG test set.  

 

2.3 Stationary Subspace Analysis  

 

The additional pre-processing of factorization of the multivariate EEG data into its stationary and non-

stationary components has been performed with the analytical Stationary Subspace Analysis algorithm 

presented in [33,34]. In particular, we assume that the system with D sources consists of d stationary 

source signals 𝑠𝕤(𝑡) = [𝑠1(𝑡), 𝑠2(𝑡), … , 𝑠𝑑(𝑡)]⊤(named 𝕤-sources) and D - d nonstationary source 

signals 𝑠𝕟(𝑡) = [𝑠𝑑+1(𝑡), 𝑠𝑑+2(𝑡), … , 𝑠𝐷(𝑡)]⊤(also named 𝕟-sources).  The observed signals 𝑥(𝑡) 

can expressed as a linear superposition of the sources that are non necessary independent, and A 

is an invertible matrix  
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𝑥(𝑡) = 𝐴𝑠(𝑡) = [𝐴𝕤   𝐴𝕟][𝑠𝕤(𝑡) 𝑠𝕟(𝑡)]𝑇 ,   (1) 

 

The spaces spanned by 𝐴𝕤 and   𝐴𝕟are called 𝕤- and 𝕟-space, respectively. The goal is to find a 

linear transformation Â
−1

that separates the 𝕤-sources from the 𝕟-sources, factorizing 𝑥(𝑡) 

according to Eq. (1). Therefore, we write the estimated demixing matrix as Â
−1

=B̂W where 𝑊 =

𝐶𝑜𝑣(𝑥)−
1

2is a whitening matrix and B̂ is an orthogonal matrix. 

An optimization procedure [33,34] was used to determine the rotation part of B̂ during which the 

first d components of estimated sources ŝ(𝑥) = 𝐵̂𝑊𝑥(𝑡), are as stationary as possible. 

Therefore, we divided the data into N consecutive epochs 𝑋1, … , 𝑋𝑁 ⊂ ℜ𝐷and selected estimated 

sources as stationary if their joint distribution didn’t change over all epochs.  The detailed 

explanation of the algorithm can be found in [34].  

In our work, the SSA pre-processing has been performed as an additional step before applying 

spatial filtering, as proposed in [35]. Before applying the SSA, EEG was epoched to MI and “rest” 

tasks, to ensure that differences between “rest” and MI are not counted as non-stationarity. 

Finally, the algorithm outputs the set of ranked twelve sources according to their stationarity, and 

70% of them have been selected for further BCI modelling, whereas 30% marked as non-

stationary were discarded. The 70-30% cut-off, which was fixed for all participants and methods, 

was considered as a best trade-off between a discriminatory power of the model and the 

maintenance of the performance (accuracy) over time. 

 

2.4 BCI approaches 

 

In this study the following approaches were included: Surface Laplacian  (SLap), Common 

Spatial Pattern (CSP), Filter Bank Common Spatial Pattern (FBCSP), Filter Bank Common Spatial 

Pattern Time (FBCSPT), Source Power Co-modulation (SPoC), Spectrally Weighted Common Spatial 

Patterns (SpecCSP),  Spectrally Weighted Regularized Common Spatial Patterns (SpecRCSP). All 

aforelisted approaches fulfilled the following inclusion criteria: 1) noise robustness,  2) reported 

resilience to a non-stationarity between calibration data and online data 3) processing delay (the 

maximal real-time cannot exceed 300ms), 4)  required a number of channels (up to 16), 4)  required 

parametrization and 5) required time for calibration (not exceeding 15min). 
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2.4.1 Surface Laplacian 

 

The Surface Laplacian (SLap) is a spatial filter and BCI paradigm based on the design of the Graz brain-

computer interface [22], in which left and right motor images were used to generate specific brain-

signals. The model uses non-adaptive and non-data driven spatial filter the Surface Laplacian [24],[35], 

and a non-adaptive spectral filter set to from 6 to 32Hz. The Surface Laplacian was implemented by 

using the five-point approximation method introduced by Hjorth in 1975 [24] and can be expressed as 

follows: 

𝑀𝑗
𝐿𝑎𝑝

= 𝑀𝑗 −
1

4
∑ 𝑀𝑘

𝑘∈𝑁𝑗

,   (2) 

where 𝑀𝑗 is the scalp potential EEG of the jth channel, and 𝑁𝑗 is an index set of the four adjacent 

channels (i.e. FC3,C5,C1,CP3 and FC4,C6,C2,CP4 are four surrounding channels of the C3 and C4 

respectively). The filter also acts as a spatial high pass filter, and because of its properties, it enhances 

neuronal activity on the channels close to the motor cortex ( C3 & C4 )  [37–39] and at the same time, 

it reduces the diffused non-task related oscillatory activity [15]. However, it is robust to the non-

stationarity of the data and high power EEG artifacts [23]. It also served as the idea for further data-

driven and adaptive algorithms, such as Common Spatial Patterns (CSP) and its further derivatives 

(FBCSP, SpecCSP etc). 

 

2.4.2 Filter Bank Common Spatial Patterns - (FB)CSP  

The CSP (Common Spatial Pattern) paradigm [19] is an extension of Slap, and it is initially described 

in [40] and applied to EEG in [41]. The improvement of this modelling is adaptive data-driven filtering 

which is computed using the CSP algorithm. The adaptive filtering projects the original channel space 

onto new lower dimension space. The linear mapping is obtained by optimizing the variance (power) 

to be maximally informative with respect to the MI task. The algorithm uses the pre-class signal 

covariance matrices and solves generalized eigenvalue problem. The FBCSP can be seen as an 

extension of the basic CSP approach. A series of spatial filters are implemented for different frequency 

subranges Figure 2, thus creating a specific CSP for a narrow band that suits the oscillatory processes 

in different frequency bands and on distinct spatial locations.  

One additional implementation named FBCSPT (FBCSP Time) extends the idea to the time domain 

(Figure 2), where for each spectral subband is paired with the temporal windows. The FBCSPT, in that 

case, captures not only complex EEG dynamics in the spatial and frequency domain, but extends to the 

interaction between bands in frequency, spatial and time domain. In summary, for CSP the following 

configuration was used: bandpass filter 6-32Hz with 3 patterns per class. In the case of FBCSP, there 

are 6 subbands in the range of 6-32Hz with 6Hz bandwidth and 2Hz overlap, followed by a 7th covering 
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the whole spectra, therefore, there are 3 patterns per class per filter. In the case of FBCSPT, the same 

configuration of FBCSP was used accompanied by the time-windows as in Figure 2.  

 

Figure 2. Schematic representation of FBCSP spatial filtering configuration (FBCSP 𝑇1, … , 𝑇7 =
0.5 –  4.5 𝑠𝑒𝑐, FBCSPT 𝑇1, 𝑇2 = 0.5 –  3.0𝑠𝑒𝑐, 𝑇3, 𝑇4, 𝑇5, 𝑇6 = 1.5 –  4.5𝑠𝑒𝑐, 𝑇7 = 0.5 –  4.5𝑠𝑒𝑐) 
 

2.4.3 Spectrally Weighted Common Spatial Patterns 

The Spectrally Weighted Common Spatial Patterns (SpecCSP) [19,20] is an advanced paradigm for 

oscillatory processes using the spectrally weighted CSP algorithm. The approach is designed for the 

most oscillatory processes and generally gives better results for MI-based BCI than a CSP with a 

suitably unrestricted spectral filter (e.g. wideband) [19,20]. Therefore, it is useful in cases where the 

frequency band and conjectured oscillatory activity is unknown. The algorithm optimizes the variance 

(power) to be maximally informative by the iterative alternation of spectral and spatial filters. The most 

significant disadvantage of this approach is that it is slower than CSP [20] though in some 

implementations it is possible to reduce the search space by introducing a prior of the expected location 

and spectral band, as in the case of MI where the spectral prior is set in the range 6 to 32Hz producing 

3 patterns per class. 

2.4.4 Spectrally Weighted Regularized Common Spatial Patterns 

This approach is a combination of the RCSP [16] and the SpecCSP [19,20] approaches. The Spectrally 

Weighted Regularized Common Spatial Patterns (SpecRCSP) is an extension of the standard CSP and 

Tikhonov Regularized CSP (TRCSP) [42] methods to include covariance shrinkage. In addition to the 

regularization mentioned above instead of the Welch spectral estimate method [47], this approach uses 

multi-taper spectral estimation [43]. The drawback of SpecRCSP is that it is significantly slower than 

CSP, but in the case of the Motor Imagery, the search space can be optimized by providing a spectral 

band that comprises alpha and beta (6 to 32Hz). Similar approaches that can adapt the spectral features 

to a process of interest are Common Sparse Spectral Spatial Pattern [18], r^2-based heuristics [17], 
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partially based on cross-validation automated parameter search or semi-automated selection based on 

user's visual feature inspection. The Dual-Augmented Lagrange paradigm is one of the competitive 

methods specialized in the domains of the complex frequency band interaction and time domain 

dynamics [44,45], however, the results are not comparable to spatial filtering techniques because the 

approach merges the classification and optimization strategies, and cannot be used with the same 

classifier as other methods. For SpecRCSP we set the spectral prior from 6 to 32Hz, with 3 patterns per 

class, and for power estimation the number of tapers we set to 10. The covariance shrinkage  and 

Tikhonov Regularization applied in SpecRCSP have been tuned by solving the problems analytically 

 

2.4.5 Source Power Comodulation 

The Source Power Comodulation (SPoC) approach [46,47] has been designed to decompose EEG data 

into components using a target variable to guide decomposition. This approach has advantages over 

blind source separation methods since it has more information to guide separation. SPoC can be seen 

as further development of the CSP, but instead being applied to the raw EEG data (sensor space), it 

incorporates source component decomposition. The result of BCI modelling is a set of spatial filters 

which optimize the co-modulation between the target and the power time course of the spatially filtered 

EEG signal.  

The advantage of the SPoC approach is the presence of the target variable, a scalar function of time, 

that can be defined as a behavioural measure as the output of the central nervous activity (e.g. sensory 

response, reaction time, motor and visually evoked potentials, etc.) or parameters of stimulus, where 

the goal is to correlate stimulus properties with the neuronal properties, or binary as in the case of MI 

and “rest”. 

 

2.5 Shrinkage Linear Discriminant Analysis Classifier 

The log variance features obtained by using each of the aforementioned approaches were fed into the 

sLDA (Shrinkage Linear-Discriminant Analysis) classifier.  

The sLDA was chosen as one of the most popular types of classifiers for EEG based-BCIs [48]. The 

shrinkage sLDA classifier [49,50] has been shown to be effective with little training data, and thus 

effective for EEG-based BCI design. The shrinkage parameter was obtained by optimizing the problem 

analytically. 

A dedicated free repository has been created under https://github.com/miladinovic/BCILabTS where 

the demonstration of implemented BCI pre-processing and spatial filtering techniques is available for 

further improvement and uses. 

 

 

 

 

https://github.com/miladinovic/BCILabTS
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2.6 Performance evaluation and Statistical analysis 

 

The classification accuracy on the calibration set was estimated using 10-fold 

chronological/blockwise cross-validation with 5 trials margin. In 10-fold cross-validation, the 

calibration dataset containing in total 70 task repetitions was partitioned into ten subsamples. The 9 of 

10 subsamples were used to train the model, while the remaining tasks were considered for validation 

in each run. The process was then repeated 10 times, using each of the subsamples only once as the 

validation data.  Therefore the overall cross-validation accuracy was calculated as a mean of all 10 

validation folds (i.e., including the whole 20 min period). Subsequently, the accuracy of created models 

was calculated on the unseen data test set and compared to those obtained by 10-fold cross-validation 

on the calibration set. 

The aforementioned evaluation procedure was performed firstly without SSA pre-processing, as a 

standard procedure, and secondly with SSA pre-processing. The difference between the estimated 

calibration set and real accuracy on tests were assessed by using the Wilcoxon signed-rank test. 

 

 

3. Results 

 

Median and interquartile range (IQR) values of accuracies observed for each BCI approach, with and 

without SSA, on calibration and test dataset, as well as their comparison, are reported in Table 1. Figure 

3 reports a comparison between the accuracies obtained on the calibration and test data without SSA 

(Figure 3A), the same comparison obtained with SSA pre-processing (Figure 3B), as well as comparison 

of performance on test set with and without SSA (Figure 3C).  

In Figure 3A it can be observed a large dispersion around the identity line with a trend of lower accuracy 

on test dataset especially in CSP, SPoC and SpecRCSP. Indeed, classification accuracy resulted 

significantly lower on test dataset compared to calibration in CSP, SPoC and SpecRCSP (p-value = 

0.028, 0.035 and 0.016, respectively). For SLap, SpecCSP only a slight decreasing trend was observed, 

while FBCSP and FBCSPT maintained moderately high median accuracy >70% (Table 1). In the case 

of application of SSA pre-processing the differences between accuracy observed on calibration and test 

dataset were reduced for all methods except SLap approach (Table 1, Figure 3B). In addition, accuracy 

values both on calibration and test set were slightly higher in case of SSA pre-processing (Figure 3C, 

Table 1) and also in this case FBCSP and FBCSPT presented slightly better performance compared to 

other methods. 
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Table 1. Median and IQR values of accuracies calculated for each BCI approach, with and without SSA 

pre-processing, on calibration and test dataset, as well as their comparison. IQR- interquartile range; * 

p-value<0.05. 

  SLap CSP FBCSP FBCSPT SPoC SpecCSP SpecRCSP  

Accuracy (%) 

calib - Median (IQR) 

69.2 

(61.3-76.9) 

74.2  

(68.1-85.4) 

72.5 

(62.3-80.6) 

74.2 

( 62.3-82.5) 

74.2 

(67.5-85.4) 

69.2  

(61.7-77.7) 

71.7 

( 58.1- 77.5) 

Accuracy (%) 

test - Median (IQR) 

64.1 

(55.8-72.5) 

66.7 

(57.7-82.1) 

70.2 

(58.4-87.8) 

74.1 

(58.4-80.8) 

66.7 

(57.7-80.1) 

66.7 

(53.2-74.4) 

59.0 

(51.3-71.8) 

calib vs test  (p-value) 0.381 0.028* 0.636 0.813 0.035* 0.356 0.017* 

 +SSA pre-processing 

 SSA+SLap SSA+CSP SSA+FBCS

P 

SSA+FBCS

PT 

SSA+SPoC SSA+SpecC

SP 

SSA+SpecR

CSP 

Accuracy (%) 

calib - Median (IQR) 

72.0 

(61.5-78.9) 

75.7 

(66.0-82.9) 

76.0 

(70.0-81.4) 

74.3 

(69.6-81.1) 

75.7 

(66.0-82.9) 

72.9 

(60.0-82.1) 

70.0 

(54.2-81.1) 

Accuracy (%) 

test - Median (IQR) 

64.3 

(57.4-72.9) 

71.4 

(63.6-81.6) 

74.3 

(70.0-80.7) 

75.7 

(62.1-82.2) 

71.4 

(62.7-84.8) 

68.6 

(63.6-81.6) 

67.1 

(60.4-76.3) 

calib vs test (p-value) 0.085 0.158 0.486 0.408 0.140 0.772 0.938 

 

 
Figure 3. (A) Comparison between accuracy obtained on calibration and test data for each BCI 

approach. (B) Comparison between accuracy obtained on calibration and test data for each BCI 

approach after the Stationary-Subspace Analysis (SSA) pre-processing (C) Comparison of accuracy 

obtained on test data between before and after applying SSA pre-processing for each BCI approach. 
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4. Discussion 

 

In everyday practice, BCI online sessions are performed at least 20 minutes after the initial calibration 

session and therefore intrinsic signal nonstationarity characteristic for extracted EEG features may 

compromise BCI performance. This study evaluated the performance of several spatial-filtering 

approaches on calibration and test set acquired 30 min after the calibration, mimicking the real BCI 

scenarios. 

The main finding of this study is that EEG extracted feature nonstationarities lead to the BCI model 

accuracy deterioration, even after 30 minutes of a break. These feature changes had a different impact 

on the selected spatial filtering approaches. CSP, SPoC and SpecRCSP showed significantly lower 

accuracy on the test set compared to estimated accuracy on the calibration set. On the other hand, 

FBCSP and FBSCPT showed to be more robust to feature covariance shift largely maintaining the 

original performance characterized by moderately high accuracy. Furthermore, we showed that the 

models produced after SSA pre-processing better maintained the classification performance and, thus, 

reduced the gap between calibration and test set accuracies. The effect of the SSA pre-processing 

confirms the existence of nonstationarity caused by covariance shift which violates Machine-Learning 

basic assumptions of invariant feature distribution between calibration and test test.  

The origin of EEG power feature nonstationarities may be caused by various events, such as changes 

in the participant's attention, fatigue due to the task of electrode placement related [51]. Furthermore, 

the nonstationarity is also related to the change in neural assemblies that are related to the requested 

cognitive task [52]. In addition, it is well-known that due to non-stationarity based covariate shifts, the 

input data distributions of EEG-based BCI systems change during inter- and intra-session transitions, 

which poses great difficulty for developments of online adaptive data-driven systems [34]. Although 

the aforementioned causes of EEG nonstationarity, that could contribute to performance deterioration 

over time, are well known, there is little data on how different spatial filtering techniques behave in 

response to it.  

In this study we quantified the performance decline of widely used spatial filtering methods on the 

dedicated 30min delayed experimental dataset. The assessed decline points out the importance of a more 

appropriate evaluation framework in order to evaluate the real-life BCI performance. The results also 

suggest the use of methods which are intrinsically more robust to the EEG nonstationarities, as well as 

the pre-processing techniques as SSA. The improvement obtained after the application of the SSA 

confirmed the covariance shift presence and its impact on the observed performance decline. 

The overall better performance of FBCSP can be explained by its mechanism that allows capturing 

interactions between frequency subbands, and in the case of FBCSPT additional interaction of temporal 

dynamics in defined time-frequency windows. These interactions, at least at the level of the spatial-
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filter design, are not captured by SLap, SPoC and CSP.  Although, that data driven spatial-filtering 

techniques discard a part of non-stationarity by optimizing the variance only in relation to the 

experimental task, this process is not guaranteed. We can observe that FBCSP and FBCSPT are less 

prone to the time-varying effect probably due to intrinsic data-driving mechanisms that operate on small 

frequency subbands. Despite their moderately higher performance, the FBCSP objective function is 

defined to optimize variance (power) and not to eliminate feature covariance shifts, as in the case of 

SSA. Figure 4 demonstrates the effect of SSA pre-processing applied before spatial filtering. We can 

observe that the covariance of the features are less prominent and that nonstationarities are reduced. 

 

Figure 4. Feature covariance shift of FBCSP (right panel) and with SSA pre-processing (left panel). 

The blue lines depicts the LDA class separation boundary produced on the calibration set, whilst the 

red line represents the LDA boundary fit on the test set. 

 

The study shows that there are considerable differences between estimated accuracy using cross-

validation and the accuracy obtained on the separate test set. This implies that standardization of the 

BCI validation framework is required. Establishing a clear validation framework is even more important 

for evaluation of BCI approaches on clinical populations where due neurophysiological patalogies 

alternation of oscillatory activity might be present [53]. Furthermore, it is notable that preprocessing 

with SSA reduces the gap, suggesting that this step should become a part of standard signal processing 

pipeline for BCI purposes. Additionally, SSA preprocessing can facilitate session-to-session or subject-

to-subject transfer learning, by increasing the calibration dataset and reducing the time spent on initial 

calibration set before the experiment. However, the consideration of only the stationary part of the signal 

might introduce a decrease of discriminative power of the BCI models. The nonstationarity cannot 

always be treated as undesirable, since it might also represent positive changes in biological systems, 

such as, learning neuroplasticity, improvement of motor-imagination skills, increase of attention during 

experimental time, etc. As a proof-of-concept in our study we fixed the portion of non-stationarity 
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sources, but we believe that carefully selected proportion as a trade-off of BCI discriminatory power 

and neurophysiological goal (i.e. motor rehabilitation, increase of attention, etc) for each approach and 

subject will yield to better performance. Therefore, the development and use of BCI models must often 

balance various competing objectives.  

Furthermore, it is worth mentioning that certain types of regularization usually sacrifice train accuracy 

for generalization, and hypothetically reduces the gap between estimated and real performance of a BCI 

model. Therefore, the regularization on the level of the classifier, as suggested in recent review, should 

be always preferred [48]. Additionally, the introduction of some a priori knowledge can increase model 

performance on unseen test data and create more robust BCI models. Penalizing the channels that are 

irrelevant for the task proposed in [54], increases overall model accuracy. A selection of the temporal 

aspect (i.e. the starting points of the time windows of MI task for both training and testing samples) as 

proposed in [55,56] can further improve model accuracy and possibly make BCI models less affected 

by the power feature covariance shift. 

The limitation of this study is that each participant has performed only one BCI session, preventing us 

to investigate how SSA pre-processing and spatial filtering techniques behave during the transfer 

learning. The small number of channels is a limitation since it prevents us from exploring in more detail 

the neuro plausibility of the generated features. However, the results are obtained on a dedicated dataset 

acquired to demonstrate the real-life BCI scenario. 

 

5. Conclusions 

The results of this study showed that intrinsic signal nonstationarity characteristics, caused by 

covariance shifts of power features, reduce the accuracy of BCI model on the data acquired 30 minutes 

after the BCI calibration, suggesting that this evaluation framework should be considered  for testing 

simulating real life performance. FBCSP and FBSCPT approaches showed to be more robust to feature 

covariance shift largely maintaining the original performance characterized by moderately high 

accuracy. Stationary Subspace Analysis pre-processing can improve the model performance and reduce 

accuracy decline from calibration to test set. 
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