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Abstract
The research activity reported in this thesis concerns the numerical characterization of the
hydrodynamics and the hydroacoustics of a Notional submarine geometry; the selected
geometry is the model developed by the Defence Science and Technology Organization
(DSTO) currently known as the BB2 submarine. It is representative of a Diesel sub-
marine, with a large casing, two fore fins placed on the side of the sail and an X-form
rudder arrangement. Simulations are performed at model scale with flow conditions mim-
icking those of a classical wind-tunnel test. Preparatory Wall-Resolved and Wall-Modeled
Reynolds Averaged Navier-Stokes Simulations (hereafter denoted as WR- and WM-RANS,
respectively) have been performed at two speeds, corresponding to length based (model
scale) Reynolds numbers of ReL = 9.57 × 106 and ReL = 1.2 × 106. WM-RANS solution
was used to initialize Wall-Modeled Large-Eddy Simulation (WMLES) at ReL = 1.2×106.
For what LES simulation concerns, the grid utilized is composed of approximately 40 mil-
lion cells. The grid cells in a layer surrounding the submarine surface and in its wake are
of hexahedral shape. The hydroacoustic analysis is based on the Acoustic-Analogy (AA),
which allows to decouple the fluid dynamic simulation from the acoustic estimation. The
acoustic pressure is governed by the Ffowcs Williams and Hawkings (FW-H) equation,
that, in the present case, has been considered in its advective formulation, which is the
most suitable form for wind-tunnel-like problems. The non-linear quadrupole term is es-
timated by the fluid-dynamic data from the WMLES. The quasi-axisymmetric turbulent
boundary layer predicted by LES exhibits a skin-friction coefficient (Cf ) lower compared
to a planar turbulent boundary layer under similar conditions, as well as to the WR-
RANS solution. On the other hand, WM-RANS overestimates Cf . Concerning the wake,
LES predictions are in a good agreement with available data in literature, up to 18 D

downstream (with D the diameter of the submarine). In accordance with the equilibrium
self-similarity theory, the mean streamwise velocity profiles, when made non-dimensional
with the characteristic velocity and length scales of the wake, collapse into a single curve.
Moreover, it has been determined that the wake is in a state of evolution to local high-Re
regime (i.e. no shift from high- to low-Re solution was observed). Finally, it has been high-
lighted that, turbulence furnishes the most important contribution to the hydroacoustic
noise. The contribution to the noise of the pressure load on the submarine surface results
negligible compared to the non-linear effects. Sound pressure level spectra at the sail side
are characterized by peak at 1 Hz. High frequency noise increases downstream as result
of the eddies breaking up process in the wake.
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Sommario
Il lavoro di ricerca riportato nella presente tesi riguarda la caratterizzazione idrod-

inamica e idroacustica di una geometria non classificata di sottomarino, tramite simu-
lazioni numeriche. La geometria in esame è il modello sviluppato dal ”Defence Science
and Technology Organization (DSTO)”, noto come BB2. Questo modello è rappresen-
tativo di un sottomarino diesel, con un largo ”casing”, due timoni anteriori posizionati
sulla torretta e quattro timoni posteriori disposti ad ”X”. Le simulazioni sono state effet-
tuate in scala modello e le condizioni di flusso sono quelle di un classico test in galleria
del vento. Sono state effettuate delle simulazioni preparatorie utilizzando metodologie
numeriche basate sulle equazioni di Navier-Stokes mediate alla Reynolds (RANS). Sono
stati utilizzati due approcci differenti: in un caso, le equazioni RANS sono state integrate
lungo tutta l’altezza dello strato limite (approccio ”wall-resolved”, WR-RANS); nell’altro
caso, il comportamento del flusso nella zona vicino alle pareti solide è stato approssimato
tramite i cosiddetti ”modelli di parete” (approccio ”wall-modeled”, WM-RANS). Le sim-
ulazioni sono state effettuate per due diverse velocità del flusso, alle quali corrispondono
i numeri di Reynolds (basati sulla lunghezza del sottomarino, L): ReL = 9.57 × 106 e
ReL = 1.2 × 106. La soluzione ottenuta utilizzando l’approccio WM-RANS è stata uti-
lizzata per inizializzare il calcolo della simulazione LES, anch’essa effettuata utilizzando
modelli di parete (WMLES); quest’ultima analisi è stata condotta a ReL = 1.2 × 106. Per
quanto concerne la simulazione LES, la griglia utilizzata è composta da 40 milioni di celle
circa. Le celle della griglia attorno al sottomarino e in scia sono sostanzialmente ortogo-
nali con fattore di forma vicino ad uno. L’analisi idroacustica è basata sulla tecnica delle
”Analogie-Acustiche” (AA) che permette di disaccoppiare la simulazione fluidodinamica
dal calcolo acustico. Nell’ambito delle AA, la pressione acustica è governata dall’equazione
di Ffowcs Williams e Hawkings (FW-H) che, nel presente lavoro, è stata considerata nella
sua formulazione advettiva, adatta all’analisi di problemi con condizioni di flusso simili a
quelle di un test in galleria del vento (come nel caso in esame). Il termine di quadrupolo
acustico, non lineare, è calcolato a partire dai dati fluidodinamici forniti dalla LES. Lo
strato limite, quasi assialsimmetrico, predetto dalla LES esibisce un coefficiente di at-
trito (Cf ) minore rispetto quello di uno strato limite piano, a parità di Reynolds; anche
confrontata con la soluzione WR-RANS, la simulazione WMLES mostra una sottostima
del contributo viscoso alla resistenza. Al contrario, la RANS con modelli parete mostra
una sovrastima del valore di Cf . Per quanto riguarda la scia, le stime fornite dalla LES
mostrano un buon accordo con i dati presenti in letteratura; l’accordo è buono anche a
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notevoli distanze dal sottomarino (fino ad una distanza pari a 18 D a valle del corpo,
dove con D si è indicato il diametro del corpo centrale dello scafo). I profili di velocità
assiale media, opportunamente scalati con le grandezze caratteristiche della scia (velocità
e lunghezza) collassano su un’unica curva, come indicato dalla teoria dell’auto-similarità
in equilibrio. Inoltre, è stato osservato che la scia mostra uno stato di evoluzione verso
un regime di alto-Reynolds locale; questo vuol dire che non si è osservata nessuna tran-
sizione da regime ad alto a regime a basso Reynolds. E’ stato infine evidenziato che i moti
turbolenti (di dimensioni comparabili con D) forniscono il contributo più importante al
rumore idrodinamico. Il rumore provocato dal carico di pressione sulla superficie del sot-
tomarino risulta trascurabile se comprato agli effetti non lineari. Gli spettri della pressione
acustica in corrispondenza della torretta sono caratterizzati da un picco alla frequenza di
1Hz. Il rumore alle alte frequenze aumenta a valle del corpo come risultato del processo di
evoluzione verso strutture turbolente sempre più piccole, a scapito di quelle di dimensioni
maggiori.
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1 Introduction

1.1 Introduction and literature review
The present research work addresses the numerical simulation of the turbulent flow
around a notional submarine geometry (namely the BB2 Joubert (2004, 2006)) to-
gether with the characterization of its own hydroacoustic signature. This geometry
is representative of a Diesel submarine, with a large casing, two fore fins placed on
the side of the sail and an X-form rudder arrangement (Overpelt et al., 2015). The
BB2 geometry has been chosen since it has been and it is still considered for several
experimental and numerical research activity; therefore, a large amount of data are
available. Among others, Kumar et al. (2012) performed a particle image velocime-
try measurements, while Quick et al. (2012); Quick & Woodyatt (2014) performed
load measurements. Anderson et al. (2012) reported accurate skin-friction coefficient
measurements (using different tripping strategies), while in Anderson et al. (2012);
Fureby et al. (2016); Lee et al. (2019) can be found interesting flow visualization.
Moreover, the BB2 is also the object of various CFD studies, as, for example, within
the NATO AVT-301 collaboration group for flow field prediction for maneuvering
underwater vehicles (Toxopeus, 2017).

The fluid flow is resolved using Wall-Modeled Large-Eddy Simulation (WMLES)
method. WMLES opens to high-fidelity hydroacoustic signature characterization of
the submarine, in straight-ahead flight, using the acoustic analogies.

From hydrodynamic and hydroacoustic perspectives, nowadays submarines can
be considered among the most complex marine vessels, because of their own intricate
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Introduction

fluid dynamics, which is the result of three-dimensional interaction between the sail
and hull wakes, the presence of turbulent boundary layer and massive separations.
Also, propeller’s wake and cavitation phenomenon may represent a rich source of
noise and the hydroacoustic signature detection is of fundamental importance for
military purposes (Renilson, 2018).

Because of the flow complexity and the importance of minimizing the noise emis-
sion, the design of submarines is oriented toward optimization, and the noise gen-
erated should not be considered as an unavoidable ”processing waste”. Thus, the
development of reliable and accurate predictive tools assumes a central role in the
optimization and understanding of hydrodynamics and hydroacoustics of underwa-
ter vehicles, and computational sciences are becoming the ”Swiss Army Knife” of
design engineers. In particular, among other things, the role of the computational
hydroacoustic (CHA) is to investigate the sound generated as a consequence of the
solid-flow interaction. CHA is still relatively unexplored respect to CFD.

A very efficient way to deal with this problem is decoupling the fluid-dynamic
and the hydro-acoustic solution processes. This is known as hybrid-approach and it
is alternative to the direct method, which requires the direct solution of the compress-
ible Navier-Stokes equations, or any approximation of them. To be noted that for
incompressible flows, it is not possible to determine the acoustic pressure using an
incompressible solver as direct solution; however, when Ma << 1, it is still possible
to make a comparison between the pressure field from an incompressible solver and
the sound pressure from an acoustic solver (Ianniello et al., 2013).

Hybrid-approaches are also known as acoustic-analogies (AA). The idea behind
the acoustic analogy is that of feeding the hydro-acoustic solver with fluid dynamic
fields, constituting the noise source and then to radiate the noise in the far field
solving the integral form of an inhomogeneous wave equation. Sir Michael James
Lighthill is considered the pioneer of acoustic analogies. He was a British math-
ematician working in applied science. In his work (Lighthill, 1952) he derived an
inhomogeneous wave equation starting from the fundamental principles of fluid me-
chanics, i.e. mass and momentum conservation laws. Lighthill’s work was first
extended by Curle (Curle, 1955), who derived a new formulation including solid
reflecting boundaries in the flow. Later, thanks to the work of the two English pro-
fessors Ffowcs-Williams and Hawkings (Ffowcs-Williams & Hawkings, 1969), relative
motion between flow and rigid body was included in the formulation. It is worth
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Introduction

to underline that it is possible to derive Lighthill and Curle equations starting from
the FW-H equation. The original FW-H is a partial differential equation, but gener-
ally scientists and engineers prefer to consider its integral formulation that is better
suited for numerical implementations. These formulations, known as Formulations
1 and 1A (Farassat, 1975, 1981; Farassat & Succi, 1980), are commonly employed in
rotor and propeller noise studies. In the FW-H equation (1A), the acoustic pressure
is composed of a number of forcing terms: two of them are surface integrals and are
calculated on the surface of the solid body. They are the linear terms and represent
the noise generated by the fluid displaced by the body in motion (thickness com-
ponent) and the noise coming from the fluid dynamic pressure acting on the body
surface (loading component). The other terms are volume integral and contribute
for the non linear sources, namely the pressure and velocity disturbance around
the body; they are also known as quadrupole terms. Generally, their computation
is omitted and the reason is twofold. First of all, these integrals contain terms to
be evaluated at specific times (time-delay) depending on the compressibility of the
flow, and their evaluation is very expensive in terms of computational time and data
storage. For this reason an alternative computationally-cheaper porous formulation
has been developed (Lyrintzis, 1994; Francescantonio, 1997). The second reason is
more related to history: in Computational AeroAcoustic CAA (developed before
than CHA) the non-linear quadrupole term was generally omitted, being in general
less important than the linear contribution. In transonic or supersonic regime the
difficulties related to the calculation of the quadrupole term was the driving force
for the development of the porous formulation. When lately CHA started to gain
popularity between researchers, the experience gained in the CAA field was brought
uncritically in the hydro-problems (Ianniello et al., 2013), where the speeds are
typically very low and the speed of sound is very large. This led to a general under-
estimation of the noise produced in hydrodynamic applications. Recently Cianferra
et al (Cianferra et al., 2019a) clarified this issue and provided a general criterion for
an accurate and efficient evaluation of the quadrupole terms.

To obtain the hydro-acoustic solution using the acoustic analogies it is necessary
to get a good hydro-dynamic solution, which successively has to be post-processed
by the acoustic solver. In principle one may obtain the fluid-dynamic field through
direct numerical simulation (DNS) of the Navier-Stokes equations. Unfortunately
this is computationally-unfeasible for most flows in the turbulent regime, since the
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computational cost increases as Re3.5 in wall-bounded turbulence (Re is the Reynolds
number of the flow) (Piomelli & Balaras, 2002). On the opposite side, the Reynolds-
averaged Navier-Stokes equations either in their steady-state formulation (RANS)
or in the unsteady one (URANS) provide the mean turbulent field. In this case the
effect of turbulent fluctuations on the acoustic signature is hardly detectable, since
the turbulent fluctuations are not resolved at all (in the RANS approach only their
effects on the mean flow are considered by a suitable model). In between, Large-
Eddy Simulation (LES) or Detached Eddy-Simulation (DES) provide the unsteady
3D turbulent field at a reasonable computational cost even in the high-Re number
limit. In LES, the large and energy-carrying scales of turbulence are solved by an
unsteady 3D simulation, while the smallest ones, more isotropic and dissipative,
are modeled through a suitable subgrid scale parametrization. Without going into
details, as discussed in (Piomelli & Balaras, 2002) LES suffers when simulating
wall-bounded flows because of the thin viscous sublayer which needs to be resolved.
The computational cost required to solve the boundary layer with LES increases
with Re2.5, a bit less than a that of a DNS, still unaffordable for high Re-number
flows. Nowadays this problem is address by modeling the near wall region through
the use of special functions (wall-layer models) allowing for a dramatic reduction of
the the computational cost up to acceptable levels. In this case the simulation is
named Wall-Modeled LES (WMLES). A very recent example of WMLES employed
in conjunction with the FW-H equation for the characterization of the acoustic
signature of a ship propeller can be found in (Cianferra et al., 2019b).

In most applications when dealing with acoustic, the fluid-dynamic field is gen-
erally computed solving the Unsteady Reynolds-Averaged Navier-Stokes equations
(URANS). In subsonic aeroacoustic the mean flow might be sufficiently accurate for
a good acoustic simulation. Using RANS/URANS, most of the important informa-
tion on the frequency content of the resulting noise is lost (Piomelli et al., 1997).
For example, in Ianniello (2016) the authors clearly discuss the reasons why RANS
simulations are not adequate for the hydro-acoustic investigation of turbulent flows.
This because they are unable to feed the quadruple term with turbulent fluctuating
fields, losing the information related to sound generated by turbulence, which in in-
compressible fluids it is not negligible. At this scope, LES or also DES are promising
techniques to apply in the acoustic research field.

Even if computational fluid dynamic is already a mature field, CFD engineers
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and scientist need experimental data to validate their results. It is very common
to simulate wind-tunnels representation of full-scale problems. In this case the am-
bient medium is in motion and the observer is stationary. A first consequence of
this approach are the difficulties arising when comparing experiments carried out in
different flow conditions. The second consequence, inherent the CHA, is that the
wave equation has to be written in its convective form. Najafy-Yazdi et al. (2010)
proposed an extension of the two surface integral of FWH-equation and related for-
mulations contained in the works of Farassat (1981) and Farassat & Succi (1980) to
sound propagation in moving medium, using a convective form of the wave equation.
This is known as formulation 1C. Recently Cianferra et al. (2019a) formulated the
volume term of FWH equation in the convective form formulation 1D. This al-
lows for avoiding the use of the porous methods which suffers from the choice of the
position of the porous surface itself.

Fischer et al. (2017) performed aeroacoustic test on a BB2 model using 64 mi-
crophones randomly located at the DST Group’s Low Speed Wind Tunnel. The
model was studied at different pitch and yaw angles and at two flow speeds. Spec-
tra obtained with and without the model in the tunnel were compared and it was
observed that the noise from the model is the same as the background except at one
single frequency and only for the highest flow speed where a peak is observed when
the model is present.

In this work we apply the acoustic-analogy in its formulation 1D for the char-
acterization of the hydro-acoustic signature of a fully appended un-propelled BB2
submarine; the flow field is determined before by using WMLES. As mentioned
above, the turbulent flow around a submarine, even in a simple straight ahead ad-
vancement, is rather complex. Considering the bare hull configuration in straight
ahead conditions, starting from the nose of the submarine, a first stagnation point
occurs at the bow; here the velocity approaches to zero and the pressure coefficient
increases to a maximum. The boundary layer is initially laminar and the flow de-
velops under an adverse pressure gradient. At about 0.1L (with L the submarine
length) from the bow, the boundary layer undergoes to a transition to turbulent
and the pressure gradient in streamwise direction goes rapidly to zero. Despite the
circumferential pressure gradient is not uniform, the friction coefficient resembles
that of a canonical zero-pressure-gradient turbulent boundary layer flow over a flat
plate. Moving downstream, close to the stern, the flow separates and a turbulent
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Figure 1.1: Visualization of the turbulent flow around the BB2 submarine at
Reynolds number ReL = 1.2×106: flow patterns. Iso-surfaces of Q-criterion colored
by the pressure coefficient

axisymmetric two-dimensional wake develops. As suggested by Townsend (1956),
sufficiently far from the generator the wake reaches a state of moving-equilibrium
and becomes self-similar. Under these conditions, the mean velocity profile can be
described using a velocity scale u0 and a length scale l0 only. The same doesn’t hold
for the Reynolds stresses that in the wake never attain self-similarity, as discussed
in Jiménez et al. (2010a), Posa & Balaras (2016) and Kumar & Mahesh (2018). The
presence of the appendages makes the flow substantially more complex, as shown in
figure 1.1.

The appendages substantially modify the turbulent field compared to an archety-
pal axial-symmetric body, in fact, the shear layer from the trailing edge of the fins
affects the wake. This was shown experimentally by Jiménez et al. (2010b) and nu-
merically by Posa & Balaras (2016). Further, the sail on the upper side of the hull
generates an adverse pressure gradient that determines the formation of a horse-shoe
vortex. This vortex structure surrounds the sail and it is advected downstream by
the free stream current, interacting with the boundary layer over the hull. From the
top side of the sail, additional vortices develop from the trailing edge and from the
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widest section of the sail (Fureby et al., 2016). The wake, on the side of the sail, can
not be considered axisymmetric due to the sail-wake effect on the velocity deficit at
the center line of the wake.

Further, three dimensional vortical structures arise from the sail, from the hor-
izontal hydroplanes and from the rudders, whereas a couple of counter rotating
vortices develop from the bottom of the hull. Among these complex processes, tur-
bulent wakes and boundary layers can be considered the fundamental fluid dynamic
canonical flows developing around streamlined bodies as submarine ships. The wakes
from such vehicles differ from the wakes over bluff bodies attaining self-similarity
quicker as suggested by Kumar & Mahesh (2018). Far downstream the stern the
wake attains self-similarity and Reynolds number independence. Kumar & Mahesh
(2018) showed that for streamlined bodies the axisymmetric wake follows a high-Re
equilibrium self-similar solution close to the stern while away from the stern, in a
short streamwise distance, it decades to a different low-Re behavior.

From a more practical perspective, wakes can be considered the footprint left
by a submarine. They propagates downstream for very long distances leaving an
unavoidable trace. This is the reason why the characterization of the wakes is of
fundamental importance in military engineering applications.

Numerical simulations of turbulent wakes require a fine computational grid ex-
tending far away downstream the body generator. For example, in the recent works
of Posa & Balaras (2016) and Kumar & Mahesh (2018), huge grids have been em-
ployed to solve the boundary layer up to the viscous sub-layer and to capture the
wake till 15 submarine’s diameters beyond the stern. The authors investigated the
flow of the idealized submarine shape named DARPA Suboff (DSub) (C.Groves
et al., 1989), moving straight ahead. The Suboff model is archetypal of a nuclear
submarine. Both used LES and, for these reasons, the above mentioned works, can
be considered as benchmark cases.

In the past, due to limited computational resources, the majority of the numerical
works regarding submarines flow analysis were conducted using Reynolds-averaged
Navier-Stokes (RANS) techniques. Today RANS simulation are still largely em-
ployed in numerical maneuvering studies for both surface vessels and submarines.
For example, (Broglia et al., 2015) performed an in-depth analysis of the maneuver-
ability characteristics of a surface vessel in a conventional twin-rudders twin-skrews
configuration and in (G. Dubbioso & Broglia, 2016) for a less conventional single-
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rudder twin-skrews one. In these works Di Mascio et al. (2007); Broglia et al. (2014);
Dubbioso et al. (2017) an in-house developed URANS solver has been used, and then
it was coupled with a suitable model for the propellers (Broglia et al., 2013). The
same tool has been used for the analysis of the maneuverability of a submarine in
two different stern appendage configurations in Dubbioso et al. (2017). For what
submarine geometries concerns, self-propelled horizontal and vertical maneuvers of
the DSub submarine were investigated by Martin et al. (2015), whereas, Bettle et al.
(2009) studied the buoyantly rising maneuver of the DRDC-STR submarine model.
Free running maneuvers were investigated in Carrica et al. (2016, 2018).

Nowadays the growing availability of High-Performance Computing HPC re-
sources allows investigation of the complex flow field around submarines using DES
and even both wall resolved and wall modelled LES. Some interesting works, such
those by Alin et al. (2010) and Bhushan et al. (2013) provide an interesting com-
parisons between LES, DES and RANS predictions for the DSub geometry. DES
and RANS approaches have been adopted by Chase et al. (2013) and Chase & Car-
rica (2013) for the analysis of the flow field and the performances of the DSub in
self-propulsion, in captive steady turn and horizontal overshoot maneuvers.

Posa & Balaras (2016) performed LES for the flow over the fully appended DSub
at 0 yaw angle and Reynolds number equal to ReL = 1.2 × 106 using a 2.8 billion
nodes grid. The authors used a direct-forcing immersed boundary method (Posa &
Balaras (2014)) solving the governing equations over a staggered grid in cylindrical
coordinates. They adopted the Wall-Adapting Local Eddy-Viscosity (WALE) sub-
grid scale model of Nicoud & Ducros (1999), which it has to be proven to be as
accurate as any dynamic model at a lower computational expense. Posa & Balaras
(2016) carried out a comprehensive analysis of the flow. The mean velocity and
Reynolds stress fields were calculated and validated against experimental and DNS
data. Mean velocity and Reynolds stress profiles in the intermediate wake, at 6
submarine’s diameters downstream, were compared with experimental data from
Jiménez et al. (2010b). The authors also discussed the bimodal behavior of the
wake and the evolution downstream towards self-similarity.

Kumar & Mahesh (2018) investigated the axisymmetric body of revolution, i.e.
the submarine DSub without the appendages and propeller, using a body fitted
unstructured grid, at Reynolds number ReL = 1.1 × 106 based on the length of
the hull and the free-stream velocity. They used the dynamic Smagorinsky sub-grid
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scale stress model (Germano et al. (1991), Lilly (1992)). The algorithm ensured
good conservation properties despite the unstructured mesh. A deep analysis of the
turbulent boundary layer and of the wake till 15 diameters downstream was carried
out. They both found a good agreement with the experimental data of Jiménez
et al. (2010b) and Jiménez et al. (2010a), Jiménez et al. (2010b) respectively.

As discussed above, to make LES more affordable at high Reynolds number,
WMLES approach can be used. Two main families can be identified: the hybrid
RANS/LES models and the wall-stress models. In the present thesis we follow
the second strategy. Review papers on the use of wall-layer models in conjunction
with LES are given in Piomelli & Balaras (2002) and Larsson et al. (2016). It
is well known that WMLES suffers from the log-layer mismatch (Larsson et al.
(2016), Mukha (2018)) which causes a shifting (upward or downward) of the mean
velocity profile, scaled using friction velocity uτ . This is strongly related to the wall
shear-stress value modeled by the wall function and influences the drag force, the
separation point and the wake.

WMLES has been successfully applied to the analysis of the flow around a sub-
marine model by (Anderson et al., 2012; Fureby et al., 2016); they investigated the
BB1 model (which is a geometry similar to the BB2, the major difference is the
absence of the forward planes), at 0 and 10 degrees yaw and at Reynolds num-
ber ReL = 4.5 × 106. In their work, numerical simulations using WMLES and
RANS were validated against experimental data in low speed wind tunnel tests at
ReL = 2.7 × 106. The focus of the work was on the sail wake and the fin-tip vortex
displacement. The solution was obtained using the OpenFOAM toolkit and dis-
cretizing the equations on an unstructured grid composed of 340 ·106 cells and using
wall-stress models as boundary conditions at the solid surfaces. The authors used
the sub-grid scale Mixed Model (MM) and the Localized Dynamic Kinetic energy
Model (LDKM). Friction coefficient along the hull was not shown or even mentioned.
It has to be highlighted that in a following papers (Norrison et al., 2016) and (Pet-
terson et al., 2018), WMLES was employed for the analysis of the self-propelled
submarine advancing in straight ahead motion.

Large-eddy simulation data can be processed to characterize the hydro-acoustic
field, although, to the best of our knowledge, this represents a novelty in literature.

To summarize, the present work focuses on WMLES of the BB2 submarine model
at Reynolds number equal to ReL = 1.2 × 106, paying special attention to the
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axisymmetric wake development. The flow conditions are the same as in Jiménez
et al. (2010b) and Posa & Balaras (2016). Modeling the near-wall flow allows for
substantial reduction of the computational cells up to about 40 · 106, making the
simulation more affordable. We apply the acoustic-analogy in the formulation 1D
and characterize the hydro-acoustic signature of a fully appended BB2 submarine.
To be noted that the the presence of propeller is not considered in the present study
for a main reason. Since this is the first literature study where the acoustic signature
of the BB2 submarine is investigated, it is more convenient to focus on the main
body in order to obtain a full characterization. To be noted that the interaction
with the propeller may vary the acoustic signature also in view of the characteristics
of the propeller.

The thesis is organized as follows. Chapter 1 introduces the problem (in sec-
tion 1.1), the tools related to fluid dynamic analysis (in section 1.4 and 1.4.10) and
to hydroacoustics (in section 1.5). Section 1.2 reports the motivations for the study.
Chapter 2 shows the results of RANS simulations at Reynolds number 9.57 × 106

and 1.2×106, and a comparison between the solution obtained with a wall-resolving
grid and the solution obtained using wall-layer models. Chapter 3 describes the wall-
modeled large-eddy simulation model and the results of simulations are reported. In
Chapter 4 the noise signature of the BB2 is evaluated. Finally concluding remarks
and suggestions for future research are reported in chapter 5.

1.2 Motivations
The motivations for this work are twofold. As explained in section 1.1, the acous-
tic signature of submarines is, among others, of great military interest. Applying
the advective form of the FW-H equation to the BB2 submarine allows to provide
a complete computational hydro-acoustics characterization, including also the con-
tribution of the non-linear quadrupole terms on acoustic noise. In the past, the
computation of non-linear term has been often omitted because considered unim-
portant with respect to the linear terms. Recent advancements in the field clarified
their role in the correct evaluation of the turbulence induced noise. The study is car-
ried out focusing on the submarine in its own basic configuration without propeller
for two reasons: first to highlight the acoustic properties of the hull by itself; second
because of more practical reasons, in fact to reduce the possibility to be detected
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by surface ships which make use of SONAR, submarines may advance in silence
running, by shutting down nonessential source of noise and reducing the speed to
minimize propeller noise. In this configuration, the wake is the main source of noise.

To the best of our knowledge, both the methodology and the application repre-
sent a novelty in literature.

The second motivation is to show that approximating the near-wall flow using
the well-known wall-layer models yields an accurate hydrodynamic representation
of the turbulent wake in the far field. Wall-modeling allows to move the limited
available computational resources from the turbulent boundary layer (as in the case
of WR-LES discussed in section 1.1) to the solution of the turbulent wake, making
such simulation more affordable.

1.3 Short description about the BB2 submarine
The Joubert (Joubert, 2004, 2006) hull form was developed to provide a notional
representation for a diesel electric submarine, with large casing, fin, and an X-
form rudder arrangement. The most recent modification is known as model ”BB2”
(previous hull form modification is known as ”BB1”). The design has an overall
length of Loa = 70.2 m. Hereafter we refer to L or Loa. The model length here
considered it is L=3.826 m. Table 1.1 reports additional geometrical characteristic
lengths. The nose shape (derived from a NACA0018 forebody) was designed with
the aim of maintaining natural laminar flow over the bow. It is axisymmetric for
the first 0.070L. The sail shape is that of a NACA0022 with a height of 0.080L. On
the sail there are two NACA0015 hydroplanes (Lee et al., 2019).

Description Symbol Magnitude Unit
Length overall submerged Loa or L 70.2 3.8260 m
Depth to deck D 10.6 0.5777 m
Depth to top of sail Dsail 16.2 0.8829 m

Table 1.1: Submarine geometry (model scale 1 : 18.348 )
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1.4 Fluid-Dynamics: mathematical background
In this section we provide the mathematical formulations together with the turbu-
lence closure approaches employed in the present research work.

1.4.1 Governing equations
Present work deals with incompressible flow, namely the flow of water around a
submarine. In absence of vertical variation of density, the fluid motion in incom-
pressible flow conditions can be completely described by the continuity equation,
which expresses the conservation of the mass, and the momentum equations. This
set of equations constitute a non linear system of partially differential equations.

For isothermal incompressible fluids (ρ is constant) the conservation laws can be
written in the following conservative form:
- Continuity equation

∂Ui

∂xi

= 0 (1.1)

- Momentum equation

∂Ui

∂t
+ ∂

∂xj

(UiUj) = −1
ρ

∂p

∂xi

+ ν
∂2Ui

∂xj∂xj

(1.2)

where:
- i, j, k=1, 2, 3
- Ui is the velocity component along the xi direction [ms−1]. It is a three dimensional
vector field depending on position x and time t
- ν is the kinematic viscosity [m2s−1]
- p is the kinematic pressure [m2s−2] and is equal to P

ρ

In equation 1.2, constitutive relations for Newtonian fluids were applied and the
gravity force term was omitted, since unimportant in the absence of both density
variations and free-surface effects.

The previous set of equations has to be equipped with suitable initial and bound-
ary conditions (usually we refer to Dirichlet, Neumann or Robin boundary conditions
types (Salsa, 2008)).
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Figure 1.2: Time-signal of axial velocity U(t) ( ) at distance y/δ=0.0105 from
the bottom wall of a doubly-periodic channel at Reτ =180. Time-averaged signal
〈U(t)〉 ( )

1.4.2 Turbulence modeling
Most of the engineering fluid-dynamic problems are characterized by rather high
Reynolds numbers and we define such flows as ”turbulent”. We may encounter
turbulent flows in many applications and in many day-life actions. Despite that,
we do not have unique definition of what Turbulence is. A recent definition of
turbulence is a flow characterized by the presence of coherent structures (eddies)
evolving randomly in space and time. The coherence is associated to a number
of unstable vortex structures which, on average, tend to be destroyed generating
smaller and smaller structures up to the scales where energy is dissipated. This
process causes energy dissipation from one side and rapid mixing from the other side.
Although chaotic in nature (meaning that a turbulent field cannot be reproduced in
a deterministic way), turbulence can be considered an ergodic process and afforded
using statistical analysis. For example, we consider velocity signal sampled in a
canonical plane channel flow (the flow driven by a steady pressure gradient and
developing between two parallel and infinite plates), as shown in figure 1.2.
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To characterize this random signal, under the assumption of ergodic process, we
can calculate the mean value ( ), its second, third and fourth order statistics,
PDFs, two-point correlations, etc.

A turbulent flow has the ability to transport and mix fluid much more effectively
then a comparable laminar one (Pope, 2000). Turbulent flows are always three-
dimensional and time dependent, even when external conditions do not change.
Turbulence is a multi-scale phenomena: it goes from the smallest turbulent ed-
dies characterized by Kolmogorov micro-scales η, to the geometry dimensions scale.
Moreover, also time scales vary intensely. These few considerations clearly show that
to simulate a turbulent flow is a demanding and challenging task, and its complex-
ity and computational cost increase exponentially with the flow Reynolds number
(Re = UL/ν where U and L are a velocity and length scale of the flow and ν is the
kinematic viscosity).

There are many possible ways to simulate a turbulent flows. The first, Direct
Numerical Simulation (DNS) (Davidson, 2004) numerically integrates the governing
equations 1.1 and 1.2 over the whole range of turbulent scales. The requirements on
mesh resolution and time-step size put very high demands on the computer resources,
making it unsuitable for engineering applications. The computational cost has been
estimated to increase with Re3 in free-shear flows and with Re3.5 in wall bounded
flows (see (Piomelli & Balaras, 2002) and literature therein reported). This makes
unaffordable DNS at engineering values of Re.

On the opposite side of DNS, we find the Reynolds-Averaged Navier-Stokes equa-
tions (RANS). These equations, are derived from the original Navier-Stokes equa-
tions, after an operation of decomposition of the total field in an average part and a
fluctuating one. RANS are the equations expressing conservation laws for the mean
flow, and the effect of turbulence is quantified by the Reynolds stress tensor, which,
indeed represents the contribution of turbulence to the mean field. Although the
RANS approach is the tool most used in engineering, it suffers because of inaccuracy
associated to the turbulence models. To be highlighted that the asymptotic behavior
of a RANS solution, still remains a solution of the mean field, where the approxi-
mation error associated to the grid resolution have been eliminated, still containing
the errors associated with the turbulence model employed. In between RANS and
DNS we find Large-Eddy Simulations (LES). LES resolves the governing equations
up to a filter length scale, modeling the unresolved part by means of a sub-filter scale
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model. The underlying idea of LES is that the large and energy carrying scales of
turbulence, which depend on the peculiarities of the flow field, are resolved directly
through an unsteady and 3D simulation, whereas the small and more isotropic scales
are parametrized using a subgrid scale model. To be noted that the asymptotic be-
havior of a LES is a DNS. To derive the LES equations it is necessary to filter the
Navier-Stokes equations, using a low-pass filter which removes the high wave-number
eddies (the smallest one). LES is still a highly computationally expensive tool to be
applied extensively in engineering applications, nevertheless its usage is fast growing
also in industrial applications.

A special class of unsteady RANS is that developed by Menter & Egorov (2010)
where the model is able to adapt to the scale which is resolving, furnishing a LES-
type behavior, without giving any information about the grid size in the model.

An overview of the most common turbulence modeling approaches is shown
schematically (for the sake of clearness, the computational cost does not increase
linearly between different approaches) in figure 1.3, where the common acronyms
are explained below:

• RANS Reynolds-Averaged Navier-Stokes equations

• URANS Unsteady RANS

• PANS Partially-Averaged Navier-Stokes equations (Girimaji & Suman, 2012)

• SAS Scale-Adapting Simulations (Menter & Egorov, 2010)

• DES Detached-Eddy Simulation (Spalart, 2009)

• LES Large-Eddy Simulation

• DNS Direct Navier-Stokes Simulation

Within the general classes of methodologies (DES, RANS, LES) there are a large
number of different derivations, turbulence and sub-grid scale models. The reader
interested in these topics can find detailed information about turbulence modeling
in Davidson (2004), Pope (2000), Wilcox (1994).
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Figure 1.3: Most common approaches in numerical solution of turbulent flows

1.4.3 Averaging in computational fluid-dynamic
Reynolds first introduced the concept of averaging in modern fluid-dynamic in terms
of math relations. In turbulence we can recognize three time of averages: time
average, space average and ensemble average. Time averaging is most suitable for
stationary turbulent flows; In that case, if we consider a field variable F (x, t), its
time average 〈F (x)〉 is given by

〈F (x)〉 = lim
T →∞

1
T

∫ t+T

t
F (x, t)dt (1.3)

Space average is convenient when turbulence is homogeneous in one or more direc-
tions; In the case the flow is homogeneous in all directions we can write the averaged
field 〈F (x)〉 as

〈F (x)〉 = lim
V →∞

1
V

∫∫∫
V

F (x, t)dV (1.4)

Ensemble average is the average of the same quantities for N repetitions of the
same experiment. It is summation of Fi(x, t) over all experiments and we can write
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it as:

〈F (x)〉 = lim
N→∞

1
N

N∑
i=1

Fi(x, t) (1.5)

The results of these operation is simply called mean and will not be specified
which kind of averaged is performed to get this mean unless it is necessary to describe
a particular procedure adopted.

For more details about averages and statistical tool in turbulence the reader is
refereed to classic books as Pope (2000), Davidson (2004) and Wilcox (1994), or the
paper of Kim et al. (1986).

1.4.4 Mean-flow equations
In the previous section, it was mentioned that to describe turbulence it is possible
to use various statistical quantities as means, PDFs, etc. It is possible to derive
equations for the evolution of all of these quantities, starting from Navier-Stokes
equations. The most basic of these equations are those that govern the mean velocity
field 〈U(x, t)〉.

The first step is to decompose the instantaneous quantity (i.e. velocity compo-
nent) U(x, t) onto the sum of its mean value 〈U(x, t)〉 and its fluctuation:

u(x, t) ≡ U(x, t) − 〈U(x, t)〉 (1.6)

Despite its apparent simplicity, equation 1.6 is one of the most important achieve-
ment in turbulence and fluid mechanics. It is the mathematical translation of what
Leonardo da Vinci observed and sketched many years before. John L. Lumley (Cor-
nell University) translated one of da Vinci’s expressions as follows (Tennekes &
Lumley, 1972): ”Observe the motion of the surface of the water, which resembles
that of hair, which has two motions, of which one is caused by the weight of the
hair, the other by the direction of the curls; thus the water has eddying motions, one
part of which is due to the principal current, the other to the random and reverse
motion.”

”So moving water strives to maintain the course pursuant to the power which
occasions it and, if it finds an obstacle in its path, completes the span of the course
it has commenced by a circular and revolving movement.”
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”... The small eddies are almost numberless, and large things are rotated only by
large eddies and not by small ones, and small things are turned by both small eddies
and large” .

Combining equation 1.6 and the continuity equation 1.1 follows that both 〈U(x, t)〉
and u(x, t) are solenoidal. It means that

∇ · 〈U〉 = 0 (1.7)

and then
∇ · u = 0 (1.8)

To take the equation 1.2 of momentum for the mean flow is not trivial because of
the non linear convective term. To do that, it is necessary to start from the variation
of momentum within a control volume. Under the assumption of incompressible
flows:

∂Uj

∂t
+ ∂(UjUi)

∂xi

(1.9)

and perform the average
∂〈Uj〉

∂t
+ ∂〈UjUi〉

∂xi

. (1.10)

Applying the Reynolds decomposition to the non-linear term we obtain

〈UjUi〉 = 〈Uj〉〈Ui〉 + 〈ujui〉 (1.11)

The tensor 〈ujui〉 is known as Reynolds-stress tensor, and we denote it as τij.
Moving from the Eulerian to the Lagrangian framework, we can obtain the mean
substantial derivative which, given a property φ(x, t), represents its rate of change
following a point moving with the local mean velocity:〈

DUj

Dt

〉
= ∂〈Uj〉

∂t
+ 〈Ui〉

∂〈Uj〉
∂xi

+ ∂

∂xi

〈ujui〉 (1.12)

The time-averaged LHS of equation 1.2 is simply equal to

= −∂〈p〉
∂xi

+ ∂

∂xj

(2νS̄ij) (1.13)

where
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S̄ij is the mean rate of strain tensor

〈p〉 is a mean kinematic pressure

Writing down and manipulating the last two equations we get the Reynolds-
averaged Navier-Stokes equation (RANS)

∂〈Uj〉
∂t

+ 〈Ui〉
∂〈Uj〉
∂xi

= −∂〈p〉
∂xi

+ ∂

∂xj

(2νS̄ij − 〈ujui〉) (1.14)

To be noted that the time derivative of mean velocity means that the problem
is not steady in a statistical sense, and the average is taken over a turbulent time
scale which is much smaller than the time scale of inertial unsteadiness in the flow.

1.4.5 The closure problem
In previous section 1.4.4 we derived the Reynolds Averaged Navier-Stokes equations
taking the time average of the momentum and continuity equations. In these equa-
tions the unknown are the mean velocity field and the mean pressure. Solve the
mean flow is far computationally cheaper compared with any scale-resolving simu-
lation. For industry purpose analysis mean flow could be sufficient for most of the
cases. Unfortunately, mean-flow equations are not in a close-form: the Reynolds
stress tensor is symmetric and accounts for six additional unknown terms. After
the averaging process, the equations available are still four, the continuity and the
three components of momentum equations, and the system is not closed yet. To
close this system we must find the exact number of equations to solve for our un-
knowns. This is known in literature as the ’closure problem’, denoting the fact that
equations written at the order ’n’ introduce new variables at the order ’n+1’. As an
example, the mean flow equations (1st-order) introduce unknown at the 2nd-order,
the Reynolds stresses.

The Reynolds stresses need a parametrization so that over the latter 40 years
a large amount of models have been developed and used in a wide class of flow
fields. Turbulence modeling has to provide the necessary physical information to
derive approximations of the unknowns in terms of the known quantities and close
the system.
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Practical terminology refers to algebraic (zero-equations models), one-equations
models, two-equations models and Stress transport models. We define n-equation
model a model that requires the solution of n additional differential transport equa-
tions in addition to conservation of mass, momentum and energy. Hereafter we
briefly mention some of them.

1.4.6 Eddy-viscosity hypothesis
Eddy-viscosity hypothesis prescribes Reynolds stresses as a function of turbulent-

viscosity mean velocity gradients, it is:

〈uiuj〉 = 2
3kδij − νt

(
∂〈Ui〉
∂xj

+ ∂〈Uj〉
∂xi

)
(1.15)

Where νt is the eddy-viscosity, k is the turbulent kinetic energy and δij is the Kro-
necker’s delta.

The tensor aij, defined as aij ≡ 〈uiuj〉 − 2
3kδij, corresponds to the anisotropic

part of Reynolds stress tensor and it is in charge of transport momentum. We could
now express Reynolds stress anisotropy through the mean rate of strain tensor and
obtain a more familiar expression:

aij = −2νtS̄ij (1.16)

After this hypothesis the Reynolds averaged Navier-Stokes equations apparently
become totally similar to Navier-Stokes equations:

∂〈Ui〉
∂t

+ 〈Ui〉
∂

∂xj

〈Ui〉 = −1
ρ

∂p?

∂xi

+ νeff
∂2〈Ui〉
∂xj∂xj

(1.17)

where νeff = ν + νt and p? is a modified pressure p? = 〈p〉 + 2
3kδij (for simplicity

we will refer to p? as p)
This hypothesis is particularly poor from a mathematical point of view and it is

correct just in few cases. Nevertheless it remains still the most convenient closure
to the averaged Navier-Stokes equations. We actually move our unknown from a
tensor, 〈uiuj〉 to a scalar function of time and space, νt constraining the principal
axes of the Reynolds stresses to those of the mean rate-of-strain tensor.
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1.4.7 Two equation turbulence models
A short description of the turbulent models utilized in this thesis follows. The reader
interested in the particular topic is addressed to the classical book of Wilcox (1994).

k − ε family turbulence model

Two-equation k − ε models are widely used. In history of turbulence modeling they
were developed just after simpler algebraic turbulence length-scale model, giving the
mathematical formulation deeper insight about the physics of turbulence. Over the
years, several different versions were developed, trying to overcome the limitations
of the previous formulations or to be more general. Despite the strength applied
in this field, still we do not have a universal model, and is a task of the CFD-user
to choose the right one. We might additionally say that CFD is nowadays a large
community, and this kind of information are largely available.

Standard k − ε The standard k − ε (Launder & Spalding, 1974) two-equations
RANS model solves two transport equation for turbulence quantities k and ε. From
dimensional point of view we can form a quantity of the dimensions of νt by simply
combing k2/ε. And so we can derive νT from k and ε. The constant, Cµ = 0.09,
fit νt to appropriate values (it actually can be derived from turbulent channel flow
DNS data freely available for download, as done in Pope (2000).

The model equation for turbulent kinetic energy k is:

∂k

∂t
+ ∂k〈Ui〉

∂xi

= ∂

∂xj

[
νT

σk

∂k

∂xj

]
+ P − ε (1.18)

The LHS of the equation takes into account the rate of change of k plus its
convective transport and sets it equal to diffusion of turbulent kinetic energy plus
its rate of production minus turbulence kinetic energy destroyed by unity of time.
The same rationale can be applied to ε, which is:

∂ε

∂t
+ ∂ε〈Ui〉

∂xi

= ∂

∂xj

[
νT

σε

∂ε

∂xj

]
+ C1ε

ε

k
P − C2ε

ε2

k
(1.19)

P - is the rate of production of turbulent kinetic energy
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νt ≡ Cµ
k2

ε

In the equations are also present four additional constants, namely: σk, σε, C1ε,
C2ε. Their value is set by using data fitting from experiments of many turbulent
flows, they are: σk = 1.00, σε = 1.30, C1ε = 1.44, C2ε = 1.92.

k − ω SST

The Russian scientist A. Kolmogorov, lately in 1942, introduced a new quantity ω
to describe the rate of dissipation of energy for unit volume and time that, together
with the model equation for k allows to close the system of equation under the
Boussinesq eddy-viscosity approximation (1877). Kolmogorov’s k − ω model has
been developed and improved for decades becoming, in its latter version which is
called Shear Stress Transport (SST), one of the most used turbulence model in
RANS simulations environment. SST model was introduce by Menter in 1994 and
it combines the k-ω turbulence model and k-ε turbulence model in a way that the
first is used to solve boundary layer switching then to k-ε in the free shear flow.

Transport equations of turbulence kinetic energy and specific dissipation rate are
shown below.

∂(ρ k)
∂t

+ ∂(ρ 〈Uj〉 k)
∂xj

= P − β∗ ρ ω k + ∂

∂xj

[
(µ + σkµt)

∂k

∂xj

]
∂(ρ ω)

∂t
+ ∂(ρ 〈Uj〉 ω)

∂xj

= γ

νt

P − β ρ ω2 + ∂

∂xj

[
(µ + σωµt)

∂ω

∂xj

]
+ 2(1 − F1)

ρσω2

ω

∂k

∂xj

∂ω

∂xj

Where,

P = τij
∂〈Ui〉
∂xj

τij = µt

(
2Sij − 2

3
∂〈Uk〉
∂xk

δij

)
− 2

3ρkδij

Sij = 1
2

(
∂〈Ui〉
∂xj

+ ∂〈Uj〉
∂xi

)
µt = ρa1k

max(a1ω, ΩF2)
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φ = F1φ1 + (1 − F1)φ2

F1 = tanh (arg1
4)

arg1 = min
[
max

( √
k

β∗ωd
, 500ν

d2ω

)
, 4ρσω2k

CDkωd2

]
CDkω = max

(
2ρσω2

1
ω

∂k
∂xj

∂ω
∂xj

, 10−20
)

F2 = tanh (arg2
2)

arg2 = max
(
2

√
k

β∗ωd
, 500ν

d2ω

)
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Andrey N. Kolmogorv it is considered a great scientist for his contributes to pure
math and turbulence (Davidson et al., 2011). During my master’s degree study at
the university I was simply amazed by his work about scales of turbulence. For this
reason, when I had the possibility, I did not lost the chance to ”meet” him. Hereby
a picture I took personally:

Figure 1.4: A. N. Kolmogorov’s memorial in Novodevichy cemetery, Moscow

To summarize, RANS constitute an invaluable tool for prediction of turbulent
flow. They validity and accuracy is mostly associated to the characteristics of the
turbulence model. Very complex flow fields, like those characterized by massive
separation substantial three-dimensionality, rotation, stratification etc. can hardly
be represented by eddy-viscosity type models, or by even more complex 2nd-order
models. This mainly because the fact a turbulence model in the RANS framework
has to represent the entire turbulent spectrum even in presence of very complex
physical processes. To overcome these issues, eddy-resolving methodologies have
been developed; among the others, LES is one of the most popular.
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1.4.8 Filtered Navier-Stokes equations
In LES the large three-dimensional unsteady turbulent motions are directly repre-
sented, modeling the effect of the smaller and more isotropic scales of motion on the
larger and more energetic ones. As stated in Pope (2000), there are four conceptual
steps in LES:

1. To decompose the velocity U(x, t) into a sum of a filtered (resolved) compo-
nent U(x, t) and a residual or subfilter-scale (SFS) or subgrid-scale (SGS),
component u(x, t), a filtering operation has to be defined.

2. The equations for the evolution of the filtered velocity field are derived from
the Navier-Stokes equations. The momentum equation containing the residual
stress tensor (SFS stress tensor) that arises from the residual motions.

3. Closure is obtained by modeling the SFS stress tensor, most simply by an
eddy-viscosity model, that conceptually is the same done for RANS closure.

4. The model filtered equations are solved numerically for U(x, t), which provides
an approximation to the large-scale motions in one realization of the turbulent
flow.

The filtering operation is usually said ”implicit” when the grid resolution and
the discretization error attenuate the high wave numbers and no filter is directly
applied to the resolved quantities. Otherwise the resolved quantities are directly
filtered out, as happens using an explicit filter, see Bose et al. (2010). In particular,
referring to the momentum equation for incompressible flows, which reads as

∂Ui

∂t
+ ∂

∂xj

(UiUj) = −1
ρ

∂p

∂xi

+ ν∇2Ui (1.20)

we know that we have to solve it down up to the Kolmogorov scales, for both
time and space; it is the approach of DNS. Solving on a grid coarser than the
Kolmogorov length scale η, and advancing in time using a time-step larger than τη,
the characteristic time of the smaller scales, the relation 1.20 turns to be unbalanced.
In this case the simulated physics is not the one predicted from the momentum
equation. This can be solved modeling extra terms able to account the effect of the
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not resolved scales. From a mathematical point of view, the only way to get till this
point coherently is applying a generic low-pass filter, G, operation to the Navier-
Stokes equations (Bose et al., 2010), otherwise each term in the LES equation would
be subject to a different one-dimensional (1D) filter, making the actual equation to
be solved, not rigorously derivable from the Navier-Stokes equations.

Filtering and differentiation commute, so that we obtain:

∂Ūi

∂t
+ ∂

∂xj

(UiUj) = −1
ρ

∂p̄

∂xi

+ ν∇2Ūi (1.21)

where Ū is soleinodal. This can be rewritten in a more familiar form

Ūi(xi, t) =
∫

Ω
G(xi, x′

i, ∆)Ui(x′
i, t)dx′

i, (1.22)

∂Ūi

∂t
+ ∂

∂xj

(ŪiŪj) = −1
ρ

∂p̄

∂xi

+ 1
ρ

∂τR
ij

∂xi

+ ν∇2Ūi, (1.23)

τR
ij = ρ(ŪiŪj − UiUj), (1.24)

∂Ūi

∂xi

= 0 (1.25)

which looks similar to Reynolds-averaged momentum equation 1.17, which in
turns was similar to the classic momentum equation 1.2. The same apparent struc-
ture with very different physical meanings.

Thus filtering leads to the introduction of fictitious stresses, called residual
stresses, which are apparently analogous to Reynolds stress introduced when time-
averaging the Navier-Stokes equations (RANS). The residual stresses are the con-
tribution of the resolved scales to the resolved instantaneous motion. The filter
resolution (we understood already which is closely related to the local grid spacing)
should lie in the inertial subrange. The unknown residual stresses have to be mod-
eled. The most popular method to account for the unresolved scales is to use an
eddy-viscosity model which is based on the eddy-viscosity hypothesis to relate the
resolved stress to the rate of strain tensor, in analogy with the molecular viscous
stress in laminar flows. In this case we write the residual stresses as

τR
ij = 2ρνRSij + 1

3δijτ
R
kk = 2ρνrSij + 2

3krδij (1.26)
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where νr (sometimes νsgs or νT ) is the eddy viscosity of the residual motion and
kr (sometimes ksgs) is the residual kinetic energy. This yields

∂Ūi

∂t
+ ∂

∂xj

(ŪiŪj) = −1
ρ

∂p̄?

∂xi

+ 2 ∂

∂xi

[
(ν + νr)Sij

]
, (1.27)

where p̄? is a modified pressure (we will refer to p? simply as p) and Sij is the
filtered rate of strain tensor, which can be written as

Sij ≡ 1
2

(
∂U i

∂xj

+ ∂U i

∂xj

)
. (1.28)

From this follow the definition of the characteristic rate of strain

S ≡ (2SijSij)1/2 (1.29)

The last step is to prescribe νr. Physical arguments suggest that νr should
be determined by the most energetic of the unresolved eddies (Davidson, 2004), it
means eddies of a scale a little smaller than ∆=L. Using dimensional arguments
νr ∼ L(v2

L)1/2, where (v2
L)1/2 is the kinetic energy of eddies of size L. In the

Smagorinsky model, which was developed in the meteorological community in the
sixties, v2

L is taken to be of the order of L2(SijSij). Thus νr is

νr = C2
SL2(2SijSij)1/2. (1.30)

The dimensionless constant Cs, which is usually set to a value of ∼ 0.1, is called
Smagorinsky coefficient. This model, which has been popular for some time, seems
to work fine for isotropic turbulence and free shear flows, being too dissipative near
walls. This because the eddy viscosity has an nonphysical behavior when approach-
ing the wall. This drawback was eliminated relaxing the eddy viscosity to zero in the
wall region, according to an exponential decay (the van Driest function, see (Pope,
2000). We tested it together with the one-equation eddy viscosity SGS model, often
called ”k-equation” them solving the canonical turbulent channel flow, in appendix.
Note: Equations 1.23 and 1.17 looks similar. We know that they has been derived
in a completely different way. We take memory on the processes of derivation of the
equations using •̄ or 〈•〉 symbols. So a question arises spontaneously: if they look
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similar why do they behave completely differently? Menter & Egorov (2010) an-
swered this question by developing the ”K Square-root-K L” model (KSKL), which
is actually able to resolve the scales of turbulence. They claimed that classical
URANS behavior of current turbulence models is not a result of the averaging pro-
cedure applied to the equations, as widely thought in the community, but of the
specific way RANS models were formulated in the past.

1.4.9 Sub-grid scale models
Smagorinsky SGS model

The Smagorinsky subgrid scale (SGS) model is based on the eddy viscosity assump-
tion, which postulates a linear relationship between the SGS shear stress and the
resolved rate of strain tensor. Starting from equations 1.25 and 1.26, moved the
unknown from τR

ij to νr. In OpenFOAM νr is calculated as

νr = Ck∆
√

kr

where Ck is a model constant whose default value is 0.094 and ∆ is the grid size
that define the subgrid length scale, which can be calculated with different methods
(in this case we used cubeRootVol). The SGS kinetic energy kr is computed with
the assumption of the balance between the subgrid scale energy production and
dissipation (local equilibrium), solving for kr the following equation

Sij : τR
ij + Ce

k1.5
r

∆ = 0

where the operator : is a double inner product of two second-rank tensors that can
be evaluated as the sum of the nine products of the tensor components.

The wall-adapting local eddy-viscosity sub-filter scale model

The wall-adapting local eddy-viscosity, shortly WALE, was developed by Nicoud &
Ducros (1999). This model has many advantages and for this reason is becoming
popular in the LES community.
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The authors suggested to account for both strain rate and rotational rate. The
derivation of the model starts looking at a common structure of many SFS model:

νT = Cm∆2ÕP (~x, t), (1.31)

where ÕP it is an operator defined from the resolved scales.
It is clear the definition of the operator is of fundamental importance in modeling

the subgrid scales. In this case it was proposed with the following characteristics:

• Galilean invariant

• to be easily adapting to any computational grid

• function of both strain rate and rotation rate

• goes to zero at the wall, so the use of work around as Van Driest dumping
function is not required.

For analogy with other model, the velocity gradient tensor is a building block of
this operator. In particular, considering the traceless symmetric part of the square
of the velocity gradient tensor

Sd
ij = 1

2(g̃2
ij + g̃2

ji) − 1
3δij g̃

2
kk (1.32)

g̃2
ij = g̃ik g̃kj (1.33)

After some math

νT =
(
Cw∆

)2
(
Sd

ijS
d
ij

)3/2

(
S̃ij S̃ij

)5/2
+
(
Sd

ij Sd
ij

)5/4 (1.34)

The WALE model formulation accounts for rotational rate, naturally goes to 0
with the expected slope at the wall, without the need for any ad hoc methods and
it is computationally cheap.
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1.4.10 Two different approaches: wall-resolving and wall-
modeling

For wall-bounded flows, the near-wall region is characterized by high gradients that
must be numerically resolved requiring the grid to be designed properly. In 3D-flows
this might results in an high computational cost. It follows that when approaching
a CFD analysis, a decision has to be taken before starting working on the grid
topology (let’s focus on body-fitted grid simulations), namely how to treat the near-
wall region. In RANS’s word, conceptually, there are two ways:

• To solve the RANS equations up to the inferior limit of the viscous sub-layer.

• To use a mathematical model, called wall-function, and solve the RANS equa-
tion up to a certain distance from the solid boundary, where the mathematical
model is true.

The advantage of resolving the wall-layer is to get a more accurate solution. As
already said, this is paid in terms of an higher computational cost, and the more
the Reynolds number increases the more the wall-layer needs to be refined. Another
drawback is that refining the cells towards the solid wall determines an increasing
of the cell aspect-ratio and this might cause numerical instabilities.

At this stage, it clearly appears the advantage of avoiding to solve the viscous
sublayer, especially for very high Re numbers.

To that scope the law of the wall is applied in the near-wall region. It states
that statistically, the velocity of a turbulent flow at a certain distance from a solid
boundary, is proportional to the logarithm of the distance from that point to the
solid boundary. This is a self-similar solution for the mean velocity parallel to
the boundary, and its application allows to determine with good approximation the
velocity and the wall-shear stress. The limitation of this formulation are that it is
valid only for very high Reynolds flows (say Re > 105 ÷ 106) and the flow has to be
attached where the law is applied (Wilcox, 1994).

In general the ideal flow conditions should be as close as possible to a those that
allow the developing of a turbulent boundary layer on a flat surface. In practice,
wall-functions are widely applied especially in industrial applications.

In LES word, from operative point of view, the strategy is similar. So what
one does is to create a grid with big cells close to the wall and apply as boundary
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condition to some flow quantity the log-low. However, conceptually the difference
with RANS is huge. In RANS we are solving the time averaged Navier-Stokes
equation and applying a statistical law makes not problems. In LES we are solving
the filtered Navier-Stokes equation and we should take care that, in the point where
we are applying the log-low, these statistical behavior holds. The flow dynamics in
the near-wall determined by the dynamic of the eddies. In a statistical way their
behavior is that predicted from the law of the wall, but this might be not true if we
analyze their dynamic taking few snapshots at different times. What we could see it
is large quantities of eddies going through their own life, so they are created, develop
and break down. Said that, if the grid cells are large enough to contain ”many” of
these eddies, or better a sample large enough, the inner layer can be assumed to be
governed by the Reynolds-averaged Navier-Stokes equations, rather than the filtered
Navier-Stokes equations solved in LES in the outer layer, and statistical arguments
hold. Another way to explain that comes from thermodynamics. At the micro-
nanoscale particles, such as atoms, molecules, and electrons, constituent in the body
whose temperature is to be measured are in motion. They represent our eddies. We
could measure their velocity and kinetic energy. At the macroscopic scale we are
not interested in the single particle but at the whole average behavior, which can
be represented by the temperature function or, in our case by the wall-function. A
more comprehensive review of this topic can be found in Piomelli & Balaras (2002);
Larsson et al. (2016). Further specific details regarding the application of the law of
the wall to the present case will be given in sections 2.2.9 and 2.3.8.

1.5 Hydroacoustics: mathematical background
In this section we will go into a quick review of computational hydroacoustics (CHA),
as it is relatively unexplored field. In particular, we briefly recall the governing
equations of CHA and the computational techniques over which our radiated noise
estimation is based.

1.5.1 Hydroacoustic noise in the oceans
Noise at sea is the result of the ambient noise and the noise generated by ships, whose
the propellers and engines contribute mostly. There are many reasons why we should
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investigate hydro-acoustic noise level. Among them, the environmental acoustic
noise level should be kept below a reasonable level for protection of the animal
species living in the oceans. Sailors and passengers of ships should also travel with a
comfortable feeling (Ianniello et al., 2013; Ianniello, 2016). Moreover, military ships
need to advance in silent running in order to hide themselves from sonars. Marine
propellers are among the most important noise generators. They operate at very
low Mach numbers and create a persistent turbulent wake (which sums to the wake
generated by the ship’s hull), which is not avoidable effect, and cavitation bubbles.
The wake is a quadrupole noise source and propagates downstream in the far field.
Cavitation bubbles act on the near field and excite only short bands of the spectra
(Ianniello, 2016). Both constitute noise sources and are design-dependent; for these
reasons, and for the limited availability computational resources, we preferred to
focus this work on the acoustic noise of the wake generated by the BB2 geometry.

The hydroacoustic noise is usually characterized in laboratory tests or numeri-
cally. Both these two approaches usually give a simplified description of the hydroa-
coustic signature. Experiments are generally carried out inside a closed ambient and
the reflection of the acoustic waves upon the solid surfaces influences measurement
of the far field noise (Fischer et al., 2017). Additionally, the physical conditions of
the water and the operative conditions can not be completely reproduced (just think
about stratification, salinity, temperature gradient). On the other hand, computa-
tional simulations of noise in principle do not suffer of such issues. For example,
stratification and temperature gradient might be properly taken into account. Con-
versely, these kind of simulations are still limited almost to the academic field because
of the fluid-dynamic solution, being extremely complicated and expensive.

In the next sections the basic equations of computational hydroacoustics will be
presented. In the derivation of the the mathematical formulation, the focus is given
on the particular practical application of submarine in a moving medium.

1.5.2 Towards Ffowcs Williams and Hawkings equation
The direct computation of the acoustic sound requires the solution of the three-
dimensional, compressible, unsteady Navier-Stokes equations. This approach would
require facing with several issues. For example, in a direct acoustic simulation, the
computational domain should be wide enough (and well resolved) to extend the
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acoustic analysis in the far field avoiding spurious reflections form the non-physical
boundaries. If the fluid considered is water, density is constant, and the use of a
compressible solver is not appropriate. The time-step for a direct acoustic analy-
sis would be much smaller than the one required by the fluid-dynamic counterpart,
especially if the fluid considered is water. Fortunately, it can be assumed that the
radiating sound has no influence on the flow itself and this allows to uncouple the
fluid dynamic solution from the acoustic one. This kind of technique is usually re-
ferred as acoustic analogy and is considered as ”hybrid” methodology. This means
that, the solution of the flow equations can be addressed choosing the most appro-
priate fluid dynamic solver, i.e. compressible or incompressible, depending on the
characteristics of the flow. The resulting solution will be treated as a source of noise
and radiated in the domain by an inhomogeneous wave equation.

Lighthill (1952) proposed a way to calculate the turbulence induced sound by
considering turbulence as a distribution of noise sources in a medium at rest, and
radiating it in the far field using mass and momentum conservation laws, re-written
as an inhomogeneous wave equation. In this formulation, the presence of solid bodies
is not considered. This approach allows avoiding the solution of the compressible
Navier-Stokes equations and to treat the numerical acoustic problem as a post-
process of the known fluid dynamic field.

Lighthill’s work started from the flow equations, where the momentum equation
has been written in a more convenient form:

∂ρ

∂t
+ ∂ (ρ Ui)

∂xi

= 0 (1.35)

∂(ρ Ui)
∂t

+ ∂

∂xj

(ρ UiUj + p δij) = 0 (1.36)

Taking the time derivative of mass conservation equation and eliminating the
term (ρ Ui) yields to:

∂2 ρ

∂ t2 = ∂2

∂xi∂xj

(ρUiUj + pδij) (1.37)

which can be written in the form of inhomogeneous wave equation:
∂2 ρ

∂ t2 − c2
0∇2ρ = ∂2

∂xi∂xj

(Tij), (1.38)

33



Introduction

where Tij = ρ UiUj + pδij − c0ρδij is the Lighthill’s tensor.
Equation 1.38 can be rewritten in compact form using the d’Alembertian oper-

ator, denoted by �2:

c2
0 �

2ρ = ∂2

∂xi∂xj

(Tij),

As a measure of the acoustic noise amplitude, it is convenient to replace the
dependent variable ρ with ρ̃ = ρ − ρ0, which indicates the density perturbation with
respect to an initial state. Same reasoning applies to the pressure, thus substituting
p δij with p̃ δij = (p − p0) δij.

Finally we obtain:

c2
0 �

2ρ̃(x, t) = ∂2

∂xi∂xj

(Tij), (1.39)

This equation describes acoustic pressure propagation in a medium at rest where
the only source considered is the quadruple noise Tij, which accounts for all the non-
linear sources, as turbulence, shocks or cavitation.

The most natural evolution of Lighthill’s work has been developed by Curle
(1955) in the work ”The influence of solid boundaries upon aerodynamic sound”,
where the presence of a solid reflecting bodies has been considered for the first time
in literature. Ffowcs-Williams & Hawkings (1969) (FWH) extended and generalized
the work of Curle, deriving an equation able to predict the sound generated by a
rigid body moving in a fluid medium.

The body is described by a surface f(x, t) = 0, with outward normal vector given
by n̂.

1.5.3 FW-H equation
To derive the FWH equation in differential form, it is needed to proceed similarly
to Lighthill (1952), including the terms relative to the fluid-body interaction in the
mass and momentum equations. This is shown in equation 1.40:

�2p′(x, t) = ∂
∂t

(
ρ0vnδ(f)

)
− ∂

∂xi

(
p̃n̂jδ(f)

)
+ ∂2

∂xi∂xj

[(
ρuiuj + (p̃ − c2

0)δij

)
H(f)

]
(1.40)

This result is based on the assumption that the contribution to the noise of the
viscous effects is small compared to the contribution of the pressure, of massive
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separations and turbulence. This implies that only pressure field determines the
interaction between the body and the flow. In LHS equation 1.40, pressure is the
argument of �2 operator (instead of the density). p′ represents the acoustic pressure.
If we assume the flow to be isentropic then p′ = c2

0ρ̃. The mechanisms of propagation
of the acoustic pressure appear on RHS of equation 1.40. The first term is called
thickness and accounts for the displacement of fluid given by the motion of the body.
vn is the body velocity projected in direction normal to the body surface f(x, t) = 0.
δ(f) is the Dirac function, it is 1 at the body and 0 elsewhere. The second term is
known as loading; it represents the sound generated by the pressure forces on the
rigid body surface. The last term is called quadrupole. We already met it in Lighthill
(1952) analysis. At this stage it is multiplied by the Heaviside function, to force it
to be null at the body surface.

1.5.4 Formulations 1 and 1A
Equation 1.40 can be turned into integral form using free-space Green function
(Farassat, 1975). The Green function of the wave equation in the unbounded three
dimensional space is given by:

G(x, t; y, τ) =

0 τ > t

δ(τ − t + r/c0)/(4πr) τ ≤ t
(1.41)

The two couples (x, t) and (y, τ) describe the position in time of the observer and
the source. The distance observer-source is indicated by r = |x − y|. Usually
g = τ − t + r/c0.

As explained in Farassat (2007), the surface g = (τ − t + r/c0)/(4πr) = 0 can
be visualized as a contracting sphere. It has maximum extension ”in the past”, for
τ = −∞, and for τ = t − r/c0 it is zero. The solution of the inhomogeneous wave
equation leads to sound pressure level expression. This is an integral-differential
equation which formally has the aspect of

p′(x, t) = p′
T (x, t) + p′

L(x, t) + p′
Q(x, t) (1.42)

where T stands for ”thickness”, L for ”loading” and Q is the quadruple term.
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The first two terms are:

4πp′
T (x, t) = ∂

∂t

∫
S

[
ρ0vn

r |1 − Mr|

]
τ

dS (1.43)

4πp′
L(x, t) = 1

c0

∂

∂t

∫
S

[
p̃n̂ · r̂

r |1 − Mr|

]
τ

dS +
∫

S

[
p̃n̂ · r̂

r2 |1 − Mr|

]
τ

dS (1.44)

These two relations constitute the formulation 1, derived by Farassat (1975), where
r̂ is the unit vector in direction of r and Mr is the projection of Mach vector in
direction observe-source. Few observations:

• The kernls of the integral terms are all evaluated at emission time τ

• In the loading term two contributes appear: one proportional to r−1 acting in
the far field; others characterized by r−2-behavior which prevails in the near
field.

• Time difference between emission τ and receiving of the signal t is called
compressibility delay and indicates the sound travels at finite speed.

• Formulation 1 takes into account only the contribution of the thickness and
loading components.

From a computational point of view, formulation 1 is not convenient because the
time-derivatives are computed out the integrals, bringing numerical inaccuracy in
the solution. For this reason, Farassat (1981) proposed a new formulation, where
commutation between derivation and integration is performed. This is known as
formulation 1A.

4πp′
T (x, t) =

∫
S

[
ρ0v̇n

r |1 − Mr|2

]
τ

dS +
∫

S

[
ρ0vn(rṀir̂i + c0Mr − c0M

2)
r |1 − Mr|3

]
τ

dS (1.45)

4πp′
L(x, t) = 1

c0

∫
S

[ ˙̃p cos θ + p̃ ˙̂nir̂i

r |1 − Mr|2

]
τ

dS +
∫

S

[
p̃ cos θ − p̃Mn

r2 |1 − Mr|2

]
τ

dS

+
∫

S

[
p̃ cos θ

r2 |1 − Mr|3
(
rṀir̂i + c0Mr − c0M

2
)]

τ

dS

(1.46)

where v̇n = v̇in̂i + vi
˙̂ni, θ is the angle formed by the two directions n̂ and r̂.
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Figure 1.5: Schematic representation of the porous surface f , enclosing a solid body,
inside the computational domain V

1.5.5 The porous formulation
The surface f can be identified with the body surface or might be an external
porous (or equivalently permeable) surface, containing the body (Francescantonio,
1997) (Lyrintzis, 1994) within its boundaries, as schematically shown in figure 1.5.
This means that the flow is allowed to cross f with velocity un, which in turns may
be in motion with its own velocity v. In general un 6= vn. The surface f is contained
itself into the fluid-dynamic grid, keeping enough away from the boundaries. In
this case, the acoustic solution is radiated towards f , whose task is to capture
the contributes to the noise deriving from the linear terms and the fraction of the
volume quadrupole term contained within f . In addition, the computation of the
volume term for the computational domain outside the porous surface should be
done. Obviously, the larger is f , the less the contribution of the volume integral
will be important. In the limit it will be negligible. This offers a convenient way to
resolve the acoustic problem, which might require to resolve only surface integrals.
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The porous formulation of the FW-H integral equation assumes the form:

4πp̂2D(x, t) = ∂

∂t

∫
f=0

[
ρ0Uin̂i

r |1 − Mr|

]
τ

dSp + 1
c0

∂

∂t

∫
f=0

[
Lijn̂j r̂i

r |1 − Mr|

]
τ

dSp+
∫

f=0

[
Lijn̂j r̂i

r2 |1 − Mr|

]
τ

dSp + p̂3D|V −(f<0),

(1.47)

Where the terms Ui = (1 − ρ
ρ0

)vi + ρ
ρ0

ui and Lij = P̃ijn̂j + ρui(un − vn) allow
to maintain a structure of the equation similar to that already seen. One of the
drawbacks of this formulation is that the surface should enclose all possible noise
sources. In practice this is sometimes not possible (or really difficult to realize), as for
example in the case of a turbulent wake, which propagates downstream for distances
larger than the porous surface (as we saw in chapter 3). When the turbulent wake
crosses the porous surface it generates spurious contribution to noise (Cianferra et al.,
2019a). This is know as ”end-cap problem”. Another feature of this formulation is
the need for a convergence study, as the solution might depend upon the dimensions
of the arbitrary chosen surface f surrounding the acoustic fluid-dynamic sources and
from the grid resolution enclosed into the porous surface. Nevertheless, today the
porous formulation is the standard approach implemented in computational acoustic
solvers.

1.5.6 Formulations 1C and 1D. The advective FW-H equa-
tion

Lighthill’s work has been subject to continuous improvements. After Farassat (1975)
and Farassat (1981), the prediction of sound pressure level was made possible for
problems of a moving body in quiescent medium. The classical FW-H equation
and its 1 and 1A formulations do not explicitly take into account the presence of a
mean flow. In the case of mean flow we talk about wind tunnel problem (Najafy-
Yazdi et al., 2010). The acoustic solution to this problem applying formulation
1A requires to transform the given wind-tunnel problem into a moving-observer
problem, where the observer is assumed to be moving at a constant speed in a
quiescent environment. Morino (1974) proposed a different approach, where the
presence of the mean flow explicitly appears into the resolving wave equation in
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advective form. Casalino (2003) proposed to change the time derivative of the FW-
H with Lagrangian derivative:

∂

∂t
→ ∂

∂t
+ U0

∂

∂x1
(1.48)

Obviously this substitution applied tout court to FW-H equation is not sufficient to
get the correct results. Thus, to arrive to the FW-H in advective form it is necessary
to repeat the whole procedure, starting from conservation laws written in advective
form. The process of derivation of FW-H in advective form is done in Najafy-Yazdi
et al. (2010). The author limited the analysis to the only linear terms and, using
Green function (also in advective form), derived the acoustic pressure.

4πp̂2D(x, t) = ∂

∂t

∫
f=0

[(
1 − M0r̂1

)ρ0uin̂i

r∗

]
τ

dS − U∞

∫
f=0

[
ρ0uin̂ir̂

∗
1

r∗2

]
τ

dS

+ 1
c0

∂

∂t

∫
f=0

[
Lijn̂j r̂i

r∗

]
τ

dS +
∫

f=0

[
Lijn̂j r̂

∗
i

r∗2

]
τ

dS,

(1.49)

where the second order tensor Lij is given by:

Lij = [ρ0ui(uj + U∞δ1j) + Pij]. (1.50)

and Pij = p̃δij − σij ≈ p̃δij. This is know as formulation 1C. In this case the
surface f is stationary but permeable.

When both the observer and the source are stationary (v = 0), the surface
f coincides with the solid wall of the immersed body (therefore the non-porosity
condition is verified un = vn), and the medium is moving at finite velocity, the
equation 1.49 assumes the simpler form of advective Curle’s equation (this happens
also in the present study about BB2).

4πp̂2D(x, t) = 1
c0

∂

∂t

∫
f=0

[
p̃n̂ir̂i

r∗

]
τ

dS +
∫

f=0

[
p̃n̂ir̂

∗
i

r∗2

]
τ

dS, (1.51)

The work of Najafy-Yazdi et al. (2010) excludes the quadruple term because
considered negligible with respect to thickness and loading terms. This last state-
ment can be considered true in many applications, but not in hydroacoustic, where
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the quadruple term has the same dignity (or even more) of the other terms. Cian-
ferra et al. (2019a) extended the work of Najafy-Yazdi et al. (2010) to include the
quadruple term. We name this formulation as formulation 1D.

In formulation 1D, the acoustic pressure from the quadruple term is given by:

4πp̂3D(x, t) = 1
c02

∂2

∂t2

∫
f>0

[
Tij

(
r̂ir̂j

r∗

)]
τ

dV

+ 1
c0

∂

∂t

∫
f>0

[
Tij

(
2 r̂ir̂j

∗

r∗2 + r̂∗
ir̂j

∗Rij
∗

β2 r∗2

)]
τ

dV

+
∫

f>0

[
Tij

(
3 r̂ir̂j

∗

r∗3

)]
τ

dV

(1.52)

where:
Tij = ρ0uiuj + (p̃ − c0

2ρ̃)δij (1.53)

and τ = t − r/c0 = t − |x(t)−y(τ)|
c0

.

1.5.7 Compressibility delays
Compressibility delay indicates that, because sound travels at finite speed, the ob-
server receives the signals emitted by all sources at the times τ < t, only at time
t. This can be seen by looking at the general structure of equations 1.49 and 1.52.
Taking for example the linear term we have:

p̂(x, t) ∝
∫

f=0
[· · ·]τ dS,

where the sum in the space of the kernels of the integrals, evaluated at times τ , gives
the sound pressure level in one point at a certain time step.

To perform this kind of integral (i.e. considering also the compressibility delay)
requires huge amount of computational time and memory and, for this reason, it is
preferable to avoid it where is possible. In particular in cases the compressibility
delay is negligible, time delay can be neglected and volume integration becomes This
scenario can be reached as a trade off between the range of frequencies considered
(not all the frequency band is relevant to engineering applications) and the distance
source-observer. To discriminate whether time delays can be omitted, Cianferra
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et al. (2019a) proposed a parameter called Maximum Frequency Parameter. MFP
states that if:

1
MFP

= ∆del fmax < 1, (1.54)

then the effect of compressibility can be omitted and the sound pressure wave can
be considered traveling at infinite speed. In equation 1.54 fmax is the maximum
frequency of the fluid dynamic phenomena and ∆del is given by:

∆del =
max
y∈S

|y − xmic| − min
y∈S

|y − xmic|

c0
. (1.55)

From practical point of view, it is necessary to know the highest significant frequency
of the problem. If the product fmax ∆del > 1 , then it is possible to reduce ∆del,
which is a measure of the distance between source and observer.
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2 RANS of the BB2 submarine

2.1 Overview
In the present chapter Reynolds-Averaged Navier-Stokes simulation results will be
analyzed and discussed. Qualitative description of the flow generated around the
BB2 was addressed in section 1.1 relatively to figure 1.1. The flow has been stud-
ied at two different Reynolds number ReL = 9.57 × 106 and ReL = 1.2 × 106 and
using two different methodologies: resolving the RANS equations up to the viscous
sub-layer (WR-RANS) and using mathematical models (wall-functions) to predict
the flow behavior at the wall (WM-RANS). In all cases, we use the OpenFOAM
framework which solves the governing equations using finite volume discretization
over unstructured grids. Initially the analysis was conducted at high Reynolds num-
ber, accordingly to the prescription of the AVT-301 NATO work group. At this flow
regime numerical results for comparison purposes were largely available, allowing
us also to set up the OpenFOAM environment correctly. Afterwards, pursuing the
purpose to perform a Wall-Modeled Large-Eddy Simulation, followed by an hydro-
acoustic analysis, we decided to switch to a lower Reynolds number regime. The
reason was twofold. The first reason was the available literature about LES of sub-
marines, which is mostly focused on Reynolds number of the order of one million.
The second reason was dictated by the availability of computational resources, which
must be carefully considered before starting such an analysis. Returning to RANS
simulations, we will show that, at high Reynolds with the submarine advancing
straight-ahead, the utilization of wall-functions is a reliable approach. On the other
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hand, at the lower Reynolds number, this strategy appears less robust because of
regions of laminar flow and transitional turbulence with the results depending also
on the particular discretization scheme adopted.

2.1.1 Reference frame, local and global quantities
Figure 2.1(a) shows the computational domain size. In y- and z-directions the
domain bounds are at ± 13D. Figure 2.1(b) shows the global coordinate system.
The origin of this right-handed coordinate system is located at the intersection of
the longitudinal axis of symmetry of the hull, midship and centre-plane, with x
directed forward, y to port side and z vertically upward. Global quantities as forces
and moments are provided in dimensionless form and refereed to the reference frame
already mentioned.

(a) Computational domain (b) Reference frame, forces and moments

Figure 2.1: Computational domain and Reference frame

We will refer to the following list of forces and moments:

� Non-dimensional frictional resistance X ′
f

� Non-dimensional pressure resistance X ′
p

� Non-dimensional total resistance X ′
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� Non-dimensional vertical force Z ′

� Non-dimensional pitch moment force M ′

All integral forces X, Y , Z and moment K, M , N are directed as shown in figure 2.1
and they are made non-dimensional as:

X ′, Y ′, Z ′ = X, Y, Z
1
2ρU2

∞L2
oa

K ′, M ′, N ′ = K, M, N
1
2ρU2

∞L3
oa

In agreement with the NATO work-group AVT-301, the results of RANS simu-
lations will be reported in non-dimensional form. They are listed in table 2.1

Original variable Data reduction Name

Cartesian coordinates {x′, y′, z′} = {x, y, z}/Loa x, y, z

velocities 〈U〉/U∞ u, v, w

vorticity ω′
{x,y,z} = ω{x,y,z} · Loa/U∞ vortx, vorty, vortz

pressure Cp = (p − p∞)/(1
2ρU2

∞) Cp

skin friction Cf = τx/(1
2ρU2

∞) Cf

turbulent kinetic energy k′ = k/U2
∞ k′

Table 2.1: Flow quantities

RANS local results are provided at submarine’s hull surface and in W, P, Y and
H planes, which are shown in figure 2.2 and described in table 2.2.
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Figure 2.2: Definition of planes W, P, Y, H

Name Location Description

W x/Loa=0.5 Behind sail plane
P x/Loa=0.0189 Propeller plane
Y y/Loa=0 ZX symmetry plane (transverse plane)
H z/Loa=0 XY symmetry plane (horizontal plane)

Table 2.2: Reference planes

2.1.2 Spatial discretization: RANS Grids
RANS simulations were performed on different grids. The grids differ in topology,
cell/point density, near-wall resolution (i.e. the distance of the cell-center of wall-
adjacent cell from the wall). Table 2.3 reports these information. GR1 and GR2

45



RANS of the BB2 submarine

are multi-blocks structured grids. GR1, contains an unstructured block, populated
by only tetrahedral cells and surrounding the structured core and occupies the far
field. For this reason we still classify it as a multi-block structured grid (although
OpenFOAM treats all the grids as unstructured). Tetrahedral meshes with prism
boundary-layer cells around the fuselage will be named ”hybrid-grids”. GR1 was
shared in AVT-301 work group from the Defence Research and Development
Canada. In particular, they provided the Pointwise 1 file of the grid and we modified
it to our purposes. GR2 was shared by Marin in OpenFOAM format and was not
modifiable.

Grid topology Grid ID-code N. cells (×106) Wall treatment hull 〈y+〉 Re

GR1

GR1a 24.5 WR 0.088 9.57 × 106

GR1b 20.3 WM 26.5 9.57 × 106

GR1c 24.4 WR 0.28 1.2 × 106

GR1d 15.8 WM 50 1.2 × 106

GR2
GR2a 14.5 WR 1 9.57 · 106

GR2b 7.5 WR 1.3 9.57 × 106

GR2c 3.5 WR 1.7 9.57 × 106

Table 2.3: RANS grids information

2.2 RANS of the BB2 at Re=9,570,000
In the present section RANS simulations for the BB2 submarine in its fully appended
configuration will be discussed. Computations are pursued at model scale, with
Reynolds number equal to:

ReL = U∞L

ν
= 3 m/s × 3.826 m

1.2 · 10−6 m2/s
= 9.57 · 106

We will proceed making a comparison between the results obtained using the grids
GR1a and GR1b. The grid GR1a is designed to solve the RANS equations up to the
submarine surface, where the mathematical boundary condition of impermeability
is prescribed on the velocity field. In this case the averaged value of y+ = uτ y

ν
is

1Pointwise is a commercial software for general purposes grid generation
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of the order of O (10−1). The grid GR1b is tough to use wall-functions. We use
the OpenFOAM ’s native nutUSpaldingWallFunction that calculates uτ solving the
Spalding’s continuous law of the wall:

y+ = u+ + 1
E

[
eκ u+ − 1 − κu+ − (κ u+)2

2! − (κ u+)3

3!

]

where u+ = 〈U〉
uτ

, κ=0.41 is the von Karman constant, E=9.8 is a model constant.
The turbulence model utilized is the Shear Stress Transport k − ω.

2.2.1 Computational framework
The solution algorithm for pressure-velocity coupling used is the Semi-Implicit Method
for Pressure-Linked Equations Consistent (SIMPLEC) (Patankar, 1980). The solver
used for the pressure is the standard OpenFOAM multigrid GAMG with Gauss-
Seidel smoother. The solver used for the momentum and the other transport equa-
tions is a stabilized preconditioned bi-conjugate gradient, PBiCGStab (for asym-
metric matrices), with preconditioner diagonal incomplete-LU DILU (asymmetric).

Table 2.4 reports the relevant information about spatial discretization schemes
used in RANS computations. Obviously this is not the only possible choice. Based
on our experience the combination of schemes shown in the Table 2.4 gives better
results for the large variety of flow conditions investigated in the present research.
To arrive to this choice, an intensive campaign of numerical tests was carried out,
simulating the turbulent flow at different values of the Reynolds number and using
a variety of strategies for the treatment of the near wall flow.

Item Discretization Type Accuracy Order

∇U Gauss cellMDLimited leastSquares least squares limited II
∇ {p, k, ω} Gauss linear central differencing II
∇ · (φ, U) bounded Gauss linearUpwind ∇〈U〉 bounded upwind second order II
∇ · k bounded Gauss upwind bounded upwind I
∇ · ω bounded Gauss upwind bounded upwind I
∇ · ν(∇U)T Gauss linear unbounded central differencing II
∇2 Gauss linear corrected unbounded central differencing II

Table 2.4: Discretization schemes for the RANS simulations at ReL = 9.57 × 106

Initial conditions are assigned as follow:
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� U = −3 m
s

, mean velocity field

� p = 0 m2

s2 , mean kinematic pressure

� k = 3
2(I uref )2 = 0.00135 m2

s2 , turbulent kinetic energy (with I the turbulence
intensity)

� ω = k
ν

(
νt

ν

)−1
≈ 1125 s−1, specific dissipation rate (with ν the fluid viscosity

and νt the eddy-viscosity)

The boundary conditions prescribed are listed in Table 2.5, grouped by patches.
With sub-walls it is intended all the solid boundaries of the submarine: hull, sail,
sail plane, rudders.

Inlet Outlet Sub-walls WR Sub-walls WM

U
[

m
s

]
-3 zero gradient noSlip noSlip

p
[

m2

s2

]
zero gradient 0 zero gradient zero gradient

k
[

m2

s2

]
0.00135 zero gradient 0 kqRWallFunction

ω [s−1] 1125 zero gradient omegaWallFunction -

νt

[
m2

s

]
calculated calculated 0 nutUSpaldingWallFunction

Table 2.5: Boundary conditions for the RANS simulations at ReL = 9.57 × 106

2.2.2 Residuals and forces
Figures 2.3 (a) and (b) show the residual convergence history for both simulations.
We see a smooth convergence. Looking at figure 2.3 (a), after about 4000 iterations
the residuals drop of four orders of magnitude. The convergence history it is similar
for all the fluid-dynamic variables. Figure 2.3 (b) shows that after about 3000 itera-
tions residuals values of the simulation WM were not changing anymore. Although
not shown explicitly, forces and moments also have reached convergence for both
cases (a) and (b). Table 2.6 shows a comparison of the forces and moments between
present simulations and with the average value of all the simulations presented in
the framework of the AVT-301 group. The usage of wall functions results in higher
values of the vertical and streamwise forces.
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(a) Wall-resolved approach (b) Wall-modeled approach

Figure 2.3: Linear solver residuals: p ( ), Ux ( ), Uy ( ), Uz ( ),
k ( ), ω ( )

Wall-resolved Wall-modeled AVT-301 Average

−X ′
p × 103 0.218 0.242 -

−X ′
f × 103 1.384 1.428 -

−X ′ × 103 1.602 1.668 1.590
Z ′ × 103 1.361 1.369 0.130

−M ′ × 103 0.074 0.080 0.090

Table 2.6: Forces and moments for the RANS simulations at ReL = 9.57 × 106

2.2.3 Hull
Figure 2.4 shows the grid GR1a at the solid surface of the submarine. The cells
are hexahedral, characterized by low skewness. When using wall-layer models, the
topology is exactly the same of GR1a, and the difference is in the height of the first
cell at the wall. Figure 2.4(a) shows cell clustering at the junctions between the
sail and the hull and between the sail and the sailplane. The contour plots of y+

in figure 2.5 show the grids both to be properly designed at the wall for solve the
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(a) Sail view (b) Rudders view

(c) Front top view

Figure 2.4: Surface mesh on submarine used in wall-resolving simulation

boundary layer or to model it, respectively: in figure 2.5(a) y+ is everywhere below
unity and this ensures solution of the RANS equations up to the viscous sub-layer.
Within a distance equal to 10 δν from the submarine surfaces, the grid contains 20
cells. This guarantees a good resolution of the velocity gradients close to the wall.

Figure 2.6 shows a comparison of the pressure coefficient contours along the
submarine. The two fields appear almost identical. A more detailed analysis about
the behavior of the pressure on the submarine will be carried out using curves
obtained as intersection between the submarine and the plane Y, in subsection 2.2.8.
Similarly, the two simulations provide a distribution of the skin-friction coefficient Cf
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(a) Wall-resolved approach (b) Wall-modeled approach

Figure 2.5: y+ contours on submarine

in very good agreement with reference data (see figure 2.7). The solution obtained
using wall-layer model slightly overpredicts the skin-friction coefficient at the top of
the sail, at the front side and at the stern, just before the rudders. A quantitative
analysis is carried out in subsection 2.2.8. Around the sail, at the junction with the
hull, a horse-shore vortex develops and it is then convected downstream over the
upper side of the hull. In this case, its trace is visible observing the contour of τw

as a thin longitudinal structure with very low wall-shear stress magnitude |τw|.

2.2.4 Grid in planes W, P and Y
Before starting the analysis of the velocity field, turbulent kinetic energy and vortici-
ty at the three planes W, P and Y, it is worth to look at the mesh at these locations
(figure 2.8). The grid shown is GR1a. The grid used for the simulation WM has
the same topology and fewer cells clustered at the solid surfaces. In figure 2.8 (c) it
is possible to see the part of the computational domain filled with tetrahedra. At
the interface between hexahedra and tetrahedra the mesh quality has its minimum
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(a) Wall-resolved approach (b) Wall-modeled approach

Figure 2.6: Pressure coefficient Cp contours on submarine

(a) Wall-resolved approach (b) Wall-modeled approach

Figure 2.7: Non-dimensional wall-shear stress contours on the hull
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value in terms of non-orthogonality, equal to 74, as calculated by the OpenFOAM
tool called checkMesh. In OpenFOAM the non-orthogonality is the angle between
the line passing through the centers of two adjacent cells, and the vector normal to
the face they share. The general recommendation of OpenFOAM developers is to
avoid using grid with orthogonality less than 20. In figure 2.8 (d) shows the mesh
at the propeller (left) and the sailplane (right) planes.

2.2.5 Behind sail plane
Figure 2.9 shows non dimensional axial velocity u = −Ux/U∞ contours over the plane
behind the sail (i.e. plane W at x/L=0.5), for the two simulations WR and WM.
We are looking at the sail wake at the turbulent boundary layer on the main body.
At z/L=0.085, y/L=± 0.03 we see the two symmetric footprints of the horseshoe
vortex and at z/L=0.15, y/L=0 we observe the presence of the footprints of the fin-
tip vortex. The horseshoe vortex and the fin-tip vortex, whose legs are composed
of a couple of counter rotating vortices, are easy to recognize also in figure 2.11, as
zones of high x-vorticity. In case of simulation with wall-layer model, the sailplane
wake is rapidly lost. In fact, its extension in y-direction is just l ≈ 0.02 L while in
case of wall-resolving simulation it is about twice. The footprints of the horseshoe
vortex are elongated, pointing at the symmetry axes, y=0, while they appear well
rounded when modeling the boundary layer.

Figure 2.10 shows the turbulent kinetic energy k contour plot that is given solving
the model equation for the turbulence kinetic energy of the Shear Stress Transport
k − ω model. The divergence term of k is solved using a first order upwind scheme
which produces numerical diffusivity visible in figures 2.10 and 2.13.

2.2.6 Propeller plane
In the propeller plane P the wake is composed of three elements: the sail wake,
where the sailplane wake faded away, the wake from the hull, that from the initially
cylindrical shape turned to quasi-square, and the rudders wake. The RANS equa-
tions predict the maximum level of turbulence at the junction between the hull and
the rudders. An explanation of that resides on the increasing of velocity gradients
due to the proximity of the rudders and the hull (in circumferential direction), and
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(a) behind sail plane (b) propeller plane

(c) transverse plane

(d) Sail and Rudders view

Figure 2.8: Grid view on different planes
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(a) Wall-resolved approach (b) Wall-modeled approach

Figure 2.9: Contours of streamwise velocity u at plane W

(a) Wall-resolved approach (b) Wall-modeled approach

Figure 2.10: Contours of turbulent kinetic energy k at plane W
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(a) Wall-resolved approach (b) Wall-modeled approach

Figure 2.11: Contours of x-vorticity ωx at plane W

because of the adverse streamwise pressure gradient. Velocity gradients activate the
production term in the model equation of turbulent kinetic energy.

2.2.7 Transverse plane
In transverse plane of figures 2.15 (a, b) we show the development of the axisym-
metric wake downstream, up to a distance L from the stern. A deep analysis of
the axisymmetric wake will be carried out when treating the large-eddy simulation
results. In the P plane the two solutions appear in very good agreement for u, k
and ωy, as shown in the next figures 2.15 (c, d) and 2.15 (e, f).

2.2.8 Slices
In this section we present the analysis of the pressure coefficient and of the skin-
friction factor along the submarine’s surface, along curves given by the intersection
of the plane Y with the submarine surface. A comparison between wall-resolving
and wall-modeled solution is also carried out.
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(a) Wall-resolved approach (b) Wall-modeled approach

Figure 2.12: Contours of streamwise velocity u at plane P

(a) Wall-resolved approach (b) Wall-modeled approach

Figure 2.13: Contours of turbulent kinetic energy k at plane P
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(a) Wall-resolved approach (b) Wall-modeled approach

Figure 2.14: Contours of x-vorticity ωx at plane P

Figure 2.16 shows the pressure coefficient Cp along the upper side of the sub-
marine for Y=0. We start from the bow, x/L=1, along the flow direction. At the
bow, the pressure is maximum and Cp = 1. Then, it rapidly decreases related to
a flow acceleration moving downstream. For x/L ≈0.8, d Cp/dx = 0 and pressure
coefficient turns to grow again up to unity, at the sail. Beyond the sail, where the
hull diameter is constant (from about x/L = 0.55) pressure decreases along the hull,
reaching a local minimum at x/L = 0.3. From this point on, Cp increases till the
stern. Figure 2.16(b) shows that the solution obtained using wall-model can predict
only one vortex at x/L=0.726, whereas the solution WR reproduces two vortices
(the primary at x/L=0.720 and the secondary at x/L=0.724). The presence of the
vortex results in a drop of Cp. With exception of these local misalignment, there is
an excellent matching between the two solutions, also in consideration of a minor
computational cost of that with wall-layer model.

Figure 2.16(c) shows the pressure coefficient Cp along the bottom side of the
hull. The shape of the hull on the bottom side (and on portside and starboard
side) is slightly different from the upper side, and there is not sail. In the range
0.8 ≤ x/L ≤ 1, on the bottom side of the hull, Cp follows a behavior similar to that
on the upper side. Then, between 0.4 ≤ x/L ≤ 0.7, Cp is approximately zero, as
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Figure 2.15: Contours of u, k and ωy at plane Y. Figures a, c and e: wall-resolving
simulations. Figures b, d and f: wall-modeled simulations
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well as its x-derivative. A zero-pressure-gradient on the hull allows comparison with
the canonical ”zero pressure gradient turbulent flat plate flow” (ZPGTFP), widely
studied in literature.

Similar arguments hold for the skin-friction coefficient Cf , as shown in figure 2.17.
The two solutions are still in very good agreement and this is not so obvious, as τw is
modeled based on the law-of-the-wall. We did not experienced issues modeling the
boundary layer with the wall shear-stress function at ReL = 9.57 × 106 but, when
decreasing Re to one half or one tenth of this, it is not easy to obtain an accurate
value of Cf . In LES context the situation is even more complicated, as will be shown
later on. The solution using shear-stress models underpredicts the maximum value
of Cf by about 50% and overpredicts the minimum value. This happens at x/L=0.7
and, as already mentioned, in case of very sharp variations we have observed the
wall-function solution to be smoothed out or cut off.

2.2.9 The law of the wall
Figure 2.16 (c) shows Cp along the bottom side of the hull, for y = 0. Around
x/L=0.5 the pressure gradient in x-direction is zero. Figure 2.19 (b) shows the
pressure coefficient in circumferential direction for x/L=0.5. At the bottom, for
ϑ = 180◦, the gradient of Cp along the circumferential direction is also zero. This
suggests comparison of the solution of the velocity field inside the boundary layer
with the analytic log-law of the wall (Pope, 2000; Davidson, 2004). The logarithmic
law of the wall holds excellently in very high-Re flows, away from high pressure
gradients and separations, sufficiently close to the impermeable smooth walls but
far away enough to neglect viscous effects (Bradshaw & Huang, 1995). The well-
known logarithmic behavior is valid from the outer edge of the viscous wall region
(y+ = uτ y

ν
≈ 30 − 50) to the outer limit of y=0.2 δ, with δ being the local boundary

layer thickness. It is:
〈U〉
uτ

= 1
κ

ln uτ y

ν
+ C (2.1)

Finally, figure 2.19 (a) shows the velocity profile u+ versus the viscous length
y+ in the case of wall-resolved and wall-modeled simulations. Using Spalding’s
formulation allows to have a relationship u+ = f(y+) from y+ ≈ 1, which it is
below the lower limit of equation 2.1. The agreement between the two simulations
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(a) Top side of the hull

(b) Zoom to the sail (c) Bottom side of the hull

Figure 2.16: Pressure coefficient Cp along the curve y = 0;
wall-resolved simulation ( ); wall-modeled simulation ( )
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(a) Top side of the hull

(b) Zoom to front side of the sail (c) Zoom to back side of the sail

Figure 2.17: Skin-friction coefficient Cf along the curve y = 0, z > 0;
wall-resolved simulation ( ); wall-modeled simulation ( )
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(a) Bottom side of the hull (b) Zoom to nose

Figure 2.18: Skin-friction coefficient Cf along the curve y = 0, z < 0;
wall-resolved simulation ( ); wall-modeled simulation ( )

is excellent, as it is the fit with theory. In this case the law-of-the-wall can be
considered valid until y+ = 0.2, δ+ = 420.

63



RANS of the BB2 submarine

(a) (b)

Figure 2.19: The law of the wall, bottom side of the hull: RANS-WR ( ),
RANS-WF ( ), u+ = y+ ( ), the log-law u+ = 2.44 ln(y+) + 5.2 ( ).
(b) Cp in circumferential direction for x/L=0.5

2.3 RANS of the BB2 at Re=1,200,000
In the present section we analyze RANS simulations for the BB2 submarine at
Reynolds number equal to ReL = 1.2 × 106 (ν = 9.565 × 10−6 m2/s). The simula-
tions run on grids GR1c and GR1d (see 2.3). The Large-Eddy Simulation will be
conducted at this Reynolds number, using the WM-RANS solution as initial condi-
tion. Reducing the Reynolds number from ReL = 9.57×106 to the present one leads
to a dramatic reduction of computational efforts so that it can be afforded with the
available resources. Another fact to consider is that increasing the Reynolds number
leads to the need of larger grids (in order to keep the same resolution), and associ-
ated to this, increases the amount of data to be stored and eventually transferred
between the cluster and the local desktop machine.

Also, at this Reynolds number, there are recent numerical works (Posa & Balaras
(2016) and Kumar & Mahesh (2018)) and experimental works (Jiménez et al. (2010a)
and Jiménez et al. (2010b)) we can use to make some comparisons. In these works
the authors employed wall-resolving LES solution of the flow around the DARPA-
SUBOFF submarine with and without appendages, at Reynolds numbers in the
range 1.1-1.2 millions (see section 1.1). The previous RANS simulations at higher Re,
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gave us know-how on setting up a suitable numeric framework for the two cases wall-
resolved WR and wall-modeled WM. Our results were compared with those obtained
by the other participants in the AVT-301 collaborative work-group. However, the
use of wall-functions when decreasing the Reynolds number is not straightforward.
We experienced many issues about setting up suitable numerical parameters for this
case and choosing the best performing turbulence model. The k − ω SST equipped
with wall-functions responded badly in estimating forces and the wall-shear stress
close to the bow. For this reason we adopted the classic k − ε turbulence model
and hereby we propose a comparison between the results from the wall-resolving
simulation obtained using k − ω SST and the wall-modeled simulation obtained
using the k − ε. Indeed it is not of our interest to evaluate all the turbulence models
on this geometry and, at this stage, we intend just to explore the RANS solutions
with and without wall models, in order to move on to the LES. As previously done
in our research we will proceed making a comparison between the results obtained
using the grids GR1c and GR1d (see table 2.3), based on the topology of Defence
Research and Development Canada.

2.3.1 Solver and numerical schemes
The solution algorithm for pressure-velocity coupling used is SIMPLEC (Semi-
Implicit Method for Pressure Linked Equations Consistent) scheme (Patankar, 1980).
The solver used for the pressure is the standard OpenFOAM multigrid GAMG with
Gauss-Seidel smoother. The solver used for the momentum and the other trans-
port equations is a stabilized preconditioned bi-conjugate gradient, PBiCGStab (for
asymmetric matrices), with preconditioner diagonal incomplete-LU DILU (asym-
metric).

Tables 2.7 and 2.8 collect all the relevant information about spatial discretization
schemes used in RANS computations. Obviously this is not the only possible choice.
Based on our tests, the combination of schemes reported gives superior behavior for
the flow conditions analyzed in the present research. Specifically an intensive cam-
paign of numerical tests was carried out, simulating the turbulent flows at different
Reynolds numbers and using a variety of strategies for the treatment of the near-wall
region.
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Item OpenFOAM discretization scheme Description Order of Accuracy

∇U cellMDLimited Gauss linear 0.5 limited central differencing II
∇ {p, k, ω} Gauss linear central differencing II
∇ · (φ, U) bounded Gauss linearUpwind Gauss linear bounded second order upwind II
∇ · (φ, k) bounded Gauss linearUpwind Gauss linear bounded second order upwind II
∇ · (φ, ω) bounded Gauss upwind bounded upwind I
∇ · ν(∇U)T Gauss linear unbounded central differencing II
∇2 Gauss linear limited corrected 0.5 limited central differencing II

Table 2.7: Discretization schemes wall-resolving simulation ReL = 1.2 × 106

Item OpenFOAM discretization scheme Description Order of Accuracy

∇U cellLimited Gauss linear 0.5 limited central differencing II
∇ {p, k, ω} Gauss linear central differencing II
∇ · (φ, U) bounded Gauss linearUpwind cellLimited Gauss linear 0.5 bounded second order upwind II
∇ · (φ, k) bounded Gauss linearUpwind cellLimited Gauss linear 0.5 bounded second order upwind II
∇ · (φ, ε) bounded Gauss upwind bounded upwind I
∇ · ν(∇U)T Gauss linear unbounded central differencing II
∇2 Gauss linear limited corrected 0.5 limited central differencing II

Table 2.8: Discretization schemes wall-modeled simulation ReL = 1.2 × 106

Initial conditions were assigned as follow:

� U = −3 m
s

, mean velocity field

� p=0 m2

s2 , mean kinematic pressure

� k = 3
2(I uref )2 = 0.00135 m2

s2 , turbulent kinetic energy (with I the turbulence
intensity)

� ω = k
ν

(
νt

ν

)−1
≈ 150 s−1, specific dissipation rate (with ν the fluid viscosity and

νt the eddy-viscosity)

� ε = Cµ
k2

ν

(
νt

ν

)−1
≈ 0.015 m2

s3 , rate of dissipation of turbulent kinetic energy

The boundary conditions are listed in the following table 2.9, grouped by patches.
With sub-walls we intend the solid boundaries of the submarine: hull, sail, sail
plane, rudders.
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Inlet Outlet Sub-walls WR Sub-walls WF

U
[

m
s

]
-3 zero gradient noSlip noSlip

p
[

m2

s2

]
zero gradient 0 zero gradient zero gradient

k
[

m2

s2

]
0.00135 zero gradient 0 kqRWallFunction

ω [s−1] 150 zero gradient omegaWallFunction -

ε
[

m2

s3

]
0.15 zero gradient - epsilonWallFunction

νt

[
m2

s

]
calculated calculated 0 nutUSpaldingWallFunction

Table 2.9: Boundary conditions RANS simulations ReL = 1.2 × 106

Item Wall-resolved Wall-modeled ∆%

−X ′
p × 103 0.208 0.226 8.65

−X ′
f × 103 0.894 0.987 10.40

−X ′ × 103 1.102 1.213 10.07
Z ′ × 103 0.054 0.048 10.04

−M ′ × 104 0.420 0.416 -0.80

Table 2.10: Forces and moments for the RANS simulations at ReL = 1.2 × 106

2.3.2 Residuals, forces and moments
The following analysis, which has analogous structure of the other already presented
in the previous section 2.2, starts with the plot of the residuals history during the
computation.

Figures 2.20 (a) and (b) show the residuals for simulations WR and WM. The
behavior is similar. Pressure residuals drop about three orders of magnitude (while
at Reynolds 9.57 × 106 the pressure drops by four orders, see section 2.2.2 for com-
parison). The residuals of the three momentum equations and of the two turbulence
model equations dropped by more than five orders of magnitude.

Table 2.10 shows dimensionless forces and moments calculated in the two cases.
The difference in the streamwise and vertical force calculated between the WR and
the WM approaches is about 10 %. In the next sections the results obtained using
different grids will be analyzed and compared to.
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(a) Wall-resolved approach (b) Wall-modeled approach

Figure 2.20: Linear solver residuals: p ( ), Ux ( ), Uy ( ), Uz ( ), k
( ), ω-(a) and ε-(b) ( )

2.3.3 Hull
The analysis of the contour plots of y+ over the submarine surfaces indicates that
the grid is well designed for our purposes: in the case of wall-resolving simulation,
y+ is below unity, while when using the continuous Spalding’s wall function, y+ is
about 50 and uniform over the hull. y+ gives also information about the wall-shear
stress: in figure 2.21 (b), placed between the bow and the sail, y+ locally decreases.
The wall-adjacent cells of the grid have all uniform height, and so, as we will see
in more details soon, this drop is caused by a local underestimation of the modeled
wall-shear stress.
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(a) Wall-resolved approach (b) Wall-modeled approach

Figure 2.21: y+ contours on submarine’s hull

Contours of pressure coefficient over the submarine surface show a qualitatively
good agreement between the two approaches (figure 2.22). This agreement for pres-
sure was found for all the meshes used and holds for the values of Reynolds number
herein considered.
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(a) Wall-resolved approach (b) Wall-modeled approach

Figure 2.22: Pressure coefficient Cp contours on submarine’s hull

Differently from the pressure coefficient, the modeled dimensionless wall-shear
stress magnitude is strongly affected by the Reynolds number of the flow. At ReL =
9.57 × 106 the agreement between the wall-resolved results and the wall-modeled
was rather satisfactory. For the author’s understanding this can be a result of the
different physic to be reproduced (Cf depends on Reynolds) and, might be even
more important, by the statistical arguments on which rely the hypothesis behind
turbulence modeling and wall-layer models. We also noticed that at high-Re number
the results are not sensitive to the numerical schemes selected for the simulation.
Figure 2.23 shows that, in this particular case, the wall-layer model is not able to
capture τ accurately. As already mentioned when describing figure 2.21, between
the bow and the sail, in the case ”wall-modeled”, τ locally decreases. This behavior
is not in compliance with that we calculated when solving the boundary layer, and
which we consider to be more accurate. At the sail, the maximum wall-shear stress
is as lower as about 50% that calculated without wall-layer model.
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(a) Wall-resolved approach (b) Wall-modeled approach

Figure 2.23: Contours of non-dimensional wall-shear stress on the submarine’s hull

2.3.4 Behind sail plane
Figure 2.24 shows the contours of the non-dimensional axial velocity u for the WR
and WM results. As it can be observed, the wall treatment affects the development
of the wake. In figure 2.24(b) for y/L=0 and 0.1 ≤ z/L ≤ 0.13, the wake estimated
with the WM approach is wider that that obtained with WR.

Figures 2.25 and 2.26 show contours of the turbulent kinetic energy (TKE) k
and x-vorticity ωx at plane W. TKE levels in the turbulent boundary layer are in
good agreement between WR and WM approaches. The flow behind the sail is
affected by the wall-approach chosen. In particular, the sail wake in figure 2.25(b)
is characterized by slight higher values of turbulent kinetic energy compared to the
wall-resolved, at Y/L ≈ 0.

Figure 2.26 shows contours of ωx. The number of vortical structures predicted
by the two models are different. In the case of wall-resolved simulation 3 couples
of vortices are generated by the sail whereas, when using wall-functions, the model
predicts 4 couples of vortices. Vortices number 1, 2 and 3 of figure (a) and figure
(b) match in position. Considering the case WR, vortices 2 and 3 are characterized
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(a) Wall-resolved approach (b) Wall-modeled approach

Figure 2.24: Contours of streamwise velocity u at plane W

by an ωx with negative and positive sign, respectively. The simulation with wall-
functions, instead, predicts ωx of vortex number 2 to be positive, whereas the vortex
number 3 has negative sign.

2.3.5 Propeller plane
At behind sail plane W, we noticed few differences between the two approaches of
simulations. In the propeller plane P, these differences persist, especially for the sail
wake. Figure 2.29 shows the contours of velocity u. The traces of the ”X” rudders
and of the stern are superimposed to the trace of the sail. The vortical structures
generated behind the sail are dissipated within about 0.3L (see also figures 2.30 (e)
and (f)).

2.3.6 Transverse plane
Looking at the transverse plane helps to summarize what we stated during the
analysis of the other two planes W and P. Qualitatively the sail wakes predicted by
the two methodologies appear to be not very similar to each other. In the ”wall-
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(a) Wall-resolved approach (b) Wall-modeled approach

Figure 2.25: Contours of turbulent kinetic energy k at plane W

(a) Wall-resolved approach (b) Wall-modeled approach

Figure 2.26: Contours of x-vorticity ωx at plane W
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(a) Wall-resolved approach (b) Wall-modeled approach

Figure 2.27: Contours of streamwise velocity u at plane P

(a) Wall-resolved approach (b) Wall-modeled approach

Figure 2.28: Contours of turbulent kinetic energy k at plane P
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(a) Wall-resolved approach (b) Wall-modeled approach

Figure 2.29: Contours of x-vorticity ωx at plane P

resolved” case the sail wake is characterized by an homogeneous zone x/L ≤ 0.57,
figure 2.30 (a), which propagates downstream. On the other hand, using wall-layer
models we observe that the wake is constituted by two main structures: the first,
more intense, close to the hull, and the second at the sail tip. They propagates
downstream separately.

The turbulence kinetic energy in the wake is higher if calculated using wall models
especially behind the sail. Numerical diffusivity on the solution with wall-function
is probably due to limiters on gradients in the solutions of the convective term of
the model equation of the turbulent kinetic energy.
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Figure 2.30: Contours of u, k and ωy at plane Y. Figures a, c and e: wall-resolving
simulation. Figures b, d and f: wall-modeled simulation.
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(a) cp along top side, z >0 (b) cp along bottom side z <0

Figure 2.31: Pressure coefficient along the y=0 curve: WR-RANS ( );
WM-RANS ( )

2.3.7 Slices
Figure 2.31 shows the analysis of the pressure coefficient plot on the line intersection
between the submarine surface and the transverse plane. The agreement is excellent.
In figure 2.31 (a), starting from the bow at x/L=1 the solution using wall-layer model
follows very well the solution obtained solving the viscous sublayer up to the wall,
until x/L=0.8. For x/L=0.77, the blue curve predicts a drop of the order of 10−2,
then it starts to increase again with higher slope compared to the WR simulation.
On the intersection line between the plane y=0 and the submarine surface, for
negative values of z, the two solutions are very close to each other with exception
for a small pressure drop predicted using wall-layer model, again at x/L ≈0.8, where
the pressure gradient turns adverse. The analysis of Cf at ReL = 1.2 × 106 reveals
that the solution obtained with wall-layer model moves away from the one WR. In
figures 2.32 we observe that in presence of the junctions and sharp shapes, there is an
important mismatch between the two solutions. At this value of Reynolds number re-
laminarization of the flow might occur making the use of wall-layer model ineffective.
This is shown in figure 2.33, for 0.8 < x/L < 1. In the range 0.3 < x/L < 0.8 there
is an unexpected mismatch between the Cf predicted by the two simulations in the
cylindrical region of the hull, where the log-law is supposed to work well. The reason
of this behavior is that the wall-functions are tough for “very-high” Reynolds number
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Figure 2.32: Skin-friction Cf coefficient along the y = 0 curve, top side of the hull:
WR-RANS ( ); WM-RANS ( )

flows (in fact at ReL = 9.57×106 we did not faced such problems). Figure 2.34 shows
the eddy-viscosity νt against the wall distance in wall units y+, for the simulations
at ReL = 9.57 × 106 and ReL = 1.2 × 106, and for WR and WM approaches; νt data
are extracted from a line at x/L = 0.5, z < 0 and lying on the symmetry plane.
Figure 2.34 (b) shows that, at ReL = 1.2×106, the wall model predicts too high eddy-
viscosity and this lead to overestimate Cf , because u2

τ = (ν + νt) (dU/dy) (dU/dy
indicates the velocity gradient in wall-normal direction). At ReL = 9.57 × 106 the
eddy-viscosity predicted by the wall model is in good agreement with that predicted
with a WR computation, as shown in Figure 2.34 (a).
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Figure 2.33: Skin-friction Cf coefficient along the y = 0, z ≤ 0 curve:
WR-RANS ( ); WM-RANS ( )

(a) (b)

Figure 2.34: νt vs y+ at (a) ReL = 9.57 × 106 and (b) ReL = 1.2 × 106.
WR-RANS ( ); WM-RANS ( )
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Figure 2.35: The law of the wall, bottom side of the hull: WR-RANS ( ),
WM-RANS ( ), u+ = y+ ( ), the log-law u+ = 2.44 log(y+) + 5.2 ( )

2.3.8 The law of the wall
Following the discussion of in subsection 2.2.9, the bottom side of the hull is char-
acterized by a zero gradient pressure coefficient for a long extension and the hull
is cylindrical. Differently from the other case, the Reynolds number in this case
is lower (at Reynolds number 9.57× 106) making questionable the validity of the
wall-layer model based on the log-law velocity profile. As we said, the logarithmic
behavior extends from a minimum value of y+=30-50, to a maximum of 0.2δ. The
boundary-layer thickness for a zero-pressure gradient turbulent flat plate flow can
be approximated as

δ ≈ 0.37 x

Rex
1/5 (2.2)

with x the distance downstream from the start of the boundary layer. In this case
the log-law can be considered valid just until y+=80. This is shown in figure 2.35.
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3.1 Overview
In this chapter we show and discuss results of Large-Eddy Simulations (LES) of the
fully appended BB2 submarine at Reynolds number of 1.2×106. The computational
grid has a topology similar to those used in RANS (see chapter 2), although mod-
ifications have been done in order to make the grid suitable for LES. In particular,
the resolution has been increased in the wake and the mesh around the submarine
has been modified with the aim to reduce the aspect ratio of the cells on the hull
surface. This leads to an increase of the number of cells up to ≈ 40 millions.

We adopt the sub-filter scale model is the Wall-Adapting Local Eddy-viscosity
(WALE), Nicoud & Ducros (1999), already presented in subsection 1.4.9. This
model has been proved to be as accurate as the dynamic Lagrangian model, or the
dynamic Smagorinsky model, at a lower computational cost. In the recent works of
Posa & Balaras (2016, 2020), the WALE model has also been applied with success
to hydrodynamic applications.

To reduce the required computational efforts, wall-functions are used to model
the near-wall behavior. The first cell’s height should be set to give a y+ value of
30 ≤ y+ ≤ 60 (with y+ we intend the wall-normal coordinate using inner scaling). In
LES, the discretization along the tangential directions on the surface should assume
values of the order of hundreds wall units. In this particular case, the resolution
in streamwise direction on the cylindrical part of the hull (0.25 ≤ x/L ≤ 0.75) is
∆x+=100, while in circumferential direction it is ∆θ+=100. These values are the
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result of a compromise between the need of near-wall cells as big as possible with
respect to the statistical assumption of the log-law, and the need of cells small enough
to furnish a detailed description of the submarine geometry. Using unstructured
grids one could avoid this kind of trade off, at the price of working with a grid of
inferior quality. It is important to highlight that OpenFOAM treats all grids as
unstructured, no matter the way they were built up. The Spalding’s wall-function
is employed for wall-layer modeling. This formulation is particularly useful when
dealing with complex geometries, where it is not possible to guarantee y+ > 50
everywhere at solid boundaries.

y+ = u+ + e−Bκ

[
eκ u+ − 1 − κu+ − (κ u+)2

2! − (κ u+)3

3! − (κ u+)4

4!

]
(3.1)

3.2 LES grid
As already anticipated in section 3.1, the LES grid used is similar in topology to
the one used for the RANS simulations. The wake blocks has been changed in order
to increase the resolution and to use a grid as much uniform as possible. This is
shown in figure 3.1(a) where the wake blocks connectors are colored in red. Also,
the distribution of the cells on the submarine surface has been modified to reduce
the elongation in streamwise direction, that is typical of RANS-grids. As it can be
seen, the cells on the surface assume a quadratic shape (cubical considering also the
wall normal direction), typical of a WM-LES computation. A detail of the surface
mesh on the hull and the boundary layer block is shown in figure 3.1(b).

The overall grid quality is excellent. Table 3.1 reports the grid quality measured
with different criteria.

3.3 Solver and numerical schemes
The solution algorithm for pressure-velocity coupling is a customized Pressure-
Implicit with Splitting of Operators (PISO) scheme (Issa et al., 1986), with 2 correc-
tions loop and one extra loop for non-orthogonality. The solver used for the pressure
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(a) Grid topology in the wake (b) Zoom-in of surface mesh on the hull
and the boundary layer blocks

Figure 3.1: LES grid details

is the standard OpenFOAM iterative PCG together with FDIC preconditioner. The
solver used for the velocity is the PBiCG, with DILU preconditioner.

Table 3.2 collects the relevant information about spatial discretization schemes
used in LES. In order to improve the stability, especially at the interface between
tetrahedral and hexahedral grid elements, the LUST scheme has been adopted. It
is a blend between linear (75 %) and second order upwind (25 %).

Item Discretization Type Accuracy Order

∇Ū Gauss cellMDLimited Gauss Linear 1 limited central differencing II
∇p̄ Gauss linear central differencing II
∇ · (φ, Ū) Gauss LUST blend 75% linear and 25% 2nd order upwind II
∇ · • Gauss linear central differencing II
∇ · ν(∇Ū)T Gauss linear unbounded central differencing II
∇2 Gauss linear corrected unbounded central differencing II

Table 3.2: LES discretization schemes
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Quality criteria Value

Max cell-openess 10−15

Max aspect-ratio 52
Min volume 10−12

Max non-orthogonality 74.57
Average non-orthogonality 15
Max-skewness 2.22

Table 3.1: LES grid quality check

3.4 Initial and boundary conditions
As initial condition we use the steady-state RANS solution at ReL = 1.2 × 106

(discussed in section 2.3). The enforced boundary conditions on physical and com-
putational boundaries are listed in table 3.3, grouped in patches. With sub-walls
we intend all the solid boundaries of the submarine, i.e. hull, sail, sail plane, rudders.
A zero-gradient condition was applied to the physic variables at top, bottom, and
the two lateral patches of the computational domain.

Inlet Outlet Sub-walls

Ū
[

m
s

]
-3 zero-gradient noSlip

p̄
[

m2

s2

]
zero-gradient 0 zero gradient

νt

[
m2

s

]
calculated calculated nutUSpaldingWallFunction

Table 3.3: LES boundary conditions

The time step is 1.57 × 10−4 tc (with tc = t U∞
L

) and guarantees CFL number
always below 0.5. Figure 3.2 (a) shows the statistically stationary velocity signal
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sampled for 3tc. The velocity signal is sampled close to the bottom side of the hull,
along the negative z-direction, for x/L=0.5 and wall-normal distance from the hull
equal to 70 wall-units. Figure 3.2 (b) shows the energy spectrum Euu, calculated
from the product of the streamwise velocity fluctuations. The spectrum presents the
-5/3 Kolmogorov’s slope in the inertial subrange and does not show energy pile-up
neither cuts at the high-frequencies.

(a) (b)

Figure 3.2: (a) Time-signal of the resolved streamwise velocity at x/L=0.5, y/L=0
and distance from the bottom side of the hull in negative z-direction of 70 wall-units.
(b) Uni-dimensional velocity spectrum

3.4.1 Numerical tripping
The velocity at the inlet patch is uniform and equal to U∞ (see table 3.3). This
uniform velocity field reaches the bow of the submarine, determining a stagnation
point. Moving downward, the flow tends to remain laminar. To stimulate the transi-
tion to turbulence, it is necessary to force the flow with some fictitious disturbances.
This is analogous to the methodology employed in laboratory experiments, where
transition is forced by placing pins on the hull of the ship model, at the position
where it is expected to occur. In our study the pins are replaced by a random vol-
ume forces, with zero mean value, applied over a small portion of the computational
domain. Figure 3.3 shows the trace of the tripping loads on the submarine’s surface
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(0.9 ≤ x/L ≤ 0.925). In this case the transition switches on at x/L≈0.84. The
body forces are generated at every step of the PISO loop, based on the resolved LES
velocity, on the mean RANS velocity and on the amount of turbulent kinetic energy
(both computed in the precursor RANS, which becomes part of the model). This
”tripping” procedure has been developed some years ago at university of Trieste, in
collaboration with the university’s spin-off IE-Fluids, in order to prescribe a turbu-
lent inlet boundary condition. For the present application few modifications to the
original version have been done, to change its nature from synthetic turbulence at
inflow to a localized tripping.

In OpenFOAM it is possible to mark a set of cells, obeying a certain mathematical
condition, using the native function ”funkySetFields”. Doing that, it is possible
to select the portion (volumetric) of the computational domain interested by the
tripping.

Looking at the LES equation 3.2, we add a body force term in the momentum
equation, restricted to Ω1 ⊂ Ω, where Ω represents the entire domain. It means that
if x ∈ Ω1, the momentum equation to be solved is:

∂Ūi

∂t
+ ∂

∂xj

(ŪiŪj) = −1
ρ

∂p̄

∂xi

+ 1
ρ

∂τR
ij

∂xi

+ ν∇2Ūi + fi (3.2)

Otherwise, when x ∈ Ω \ Ω1, the momentum equation to solve is the equa-
tion 1.23. Subdomain Ω1 has cylindrical shape with radius 2D and height equal to
0.025L. Its symmetry axis is co-axial with that of the submarine.

Figure 3.3: Body forces of the numerical tripping acting on the submarine surface
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3.5 Pressure and skin-friction coefficients
Figure 3.4 shows the mean pressure coefficient over the submarine’s surface. Statis-
tics have been computed with data sampled oveer the solid surfaces over 9 tc. The
pressure coefficient of figure 3.4 (a) is in qualitatively good agreement with the so-
lution obtained using RANS (see figures 2.22 (a) and (b)).

Figure 3.5 (a) shows the time-averaged pressure coefficient over the intersection
curve between the submarine and the semi-plane z ≤ 0, with normal vector oriented
as y-axes direction and passing through the origin of the coordinate system. Compar-
ison is carried out with RANS results, both in wall-resolved case and wall-modeled
one, and with experimental data by Huang et al. (1992) for DARPA submarine. Ex-
periments were conducted at Re=12 × 106 and here rescaled, based on the Reynolds
numbers ratio (Posa & Balaras, 2016). On the central region, 0.3 < x/L < 0.7, all
the numerical and experimental data are in a rather good agreement. DARPA’s data
move away at the bow and at the stern, probably due to the geometry differences
between DARPA and the BB2.

Figure 3.5 (b) shows the skin-friction coefficient Cf on the same location of the
Cp. The comparison is made again between WM-LES, the scaled experimental data
by Huang et al. (1992) and Anderson et al. (2012) and the two RANS (WR and
WM). WM-LES dramatically underestimates Cf . The WR-RANS shows rather good
agreement with experiments. RANS with wall-model overestimates Cf in the central
region of the hull (as we already discussed in chapter 2). It has to be highlighted
that, since we are focused on the hydroacoustics of the submarine, our interest is
not on the flow field close to the wall, rather on the flow field outside the boundary
layer and in the wake. With this focus, WM-LES simulations are one of the most
suitable approaches; to be noted that Ianniello et al. (2013) discusses the inadequacy
of unsteady RANS methodology to characterize the hydro-acoustic signature of a
body. Indeed, as it will be shown later (section 3.7), the WM-LES estimation of
the flow field in the wake it is in rather good agreement with available experimental
data, theory and WR-LES predictions by other authors.
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Figure 3.4: Time-averaged pressure coefficient over the BB2 submarine

3.6 The hull turbulent boundary layer (TBL)
Transition to turbulent switches on approximately at x/L ≈ 0.84. At x/L ≈ 0.7 the
transition is complete and the boundary layer is fully developed. Figures 3.6 (a) and
(b) show a cross-sectional picture of instantaneous velocity and vorticity contours,
on the W-plane. Figures 3.6 (c) and (d) show the mean resolved axial velocity u and
the mean resolved turbulent kinetic energy k. The W-plane is located just behind
the sail, at 50% of the submarine length (see figure 2.2). Comparing the mean fields
from WM-LES with those from WM-RANS (figures 2.24 and 2.25), we observe that
LES estimates a higher velocity deficit. Moreover, the level of the mean turbulent
kinetic energy calculated with resolved LES velocity fluctuating field is not as intense
as that obtained with RANS k − ε simulation.

Looking at the instantaneous velocity and vorticity contours we observe the trace
of the sail and sailplane wake. The turbulent boundary surrounds the hull, depicting
the characteristic eddies.

It is well know that the turbulent boundary layer is characterized by a complex
dynamic (Robinson, 1991; Pope, 2000), such as:

1. Low-speed streaks in the viscous sub-layer
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(a)

(b)

Figure 3.5: Time-averaged pressure and skin friction coefficients over the bottom side
of the hull. Present LES computation ( ); Experimental data over DARPA-
SUBOFF at ReL = 12 × 106 ( ) (Huang et al., 1992); Experimental data over
DSTO generic submarine (BB1) at ReL = 5.4 × 106 ( ) (Anderson et al., 2012);
Wall-resolved RANS k − ω SST ( ) at ReL = 1.2 × 106; Wall-modeled RANS
k − ε ( ) at ReL = 1.2 × 106; Experimental data were rescaled, based on the
Reynolds numbers ratio (Posa & Balaras, 2016).
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2. Ejection of low-speed fluid from the wall

3. Sweeps of high-speed fluid toward the wall

4. Vortical structures of various forms, such as horseshoes and hairpins

5. Large (δ scale) motions capped by three-dimensional bulges in the outer tur-
bulent/potential interface

6. Shear-layer ”backs” of large-scale outer-region motions, consisting of sloping
(δ scale) discontinuities in the streamwise velocity

In the present case, we are modeling a part of the boundary layer, up to y+ ≈ 50.
This means that we can not see structures within the viscous sublayer, because the
grid does not resolve them (Piomelli & Balaras, 2002). The wall-model is able to
model the effect of these structures in a statistical sense; indeed, with reference to
figure 3.7 (a), where the outermost part of the boundary layer is depicted, we can
clearly see ejections of low-speed fluid from the wall (indicated with a blue arrow
pointing upward) and sweeps of high-speed fluid toward the wall (indicated with a
black arrow pointing downward; i.e. items 2 and 3 of the previous list).

In figure 3.7 (b) streamwise vorticity contours suggest the presence of large eddies
or bulges. Considering that we have transition at about 0.2L from the bow (see
figure 3.3), at x/L = 0.4 an estimation of the non-dimensional boundary layer
thickness based on present LES simulation is δ/L=0.013 (non-dimensional boundary
layer thickness from theoretical power-law is δ/L=0.012). Vorticity is distributed
along areas inclined by about 20-25 degrees, in the direction of the free stream.
These areas are separated by valleys of non-turbulent flow. Looking for tiny white
areas in the picture, we can recognize valleys.

All these (apparently) chaotic eddies give rise to a behavior which can represented
following statistic laws. In this central zone of the hull, the boundary layer can
be considered similar to that developing over a zero-pressure-gradient flat plate,
so that it is possible to make comparison with well-established theoretical results.
Figure 3.8 (a) shows the mean axial velocity profile, made dimensionless using the
friction velocity uτ , as a function of the nondimensional distance from the wall
(expressed in wall units). The data are sampled along a line at (x/L=0.5, 0, z<0).
The sampling frequency is 100 Hz and the sampling period is equal to 9 tc. The
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velocity is plotted using different two different values of the friction velocity: in the
green dashed line it is scaled using the wall-shear stress coming from the present
simulation, while in the dash-dotted blue line, it is calculated using the nominal wall-
shear stress of the WR-RANS. In this way it is possible to give a measure of the
log-layer mismatch (Mukha, 2018; Mukha & Liefvendahl, 2015; Larsson et al., 2016;
Yang et al., 2017). Following the definition given by Yang et al. (2017), the log-layer
mismatch is a chronic problem affecting WM-LES, where the modeled wall-shear
stress deviates from the true one by approximately 15%. Even more evident (and
may be expected) is the mismatch for the second order statistics in comparison with
available data for a ZPGTBL estimated with WR-LES (Eitel-Amor et al., 2014), as
shown in figure 3.8 (b).
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(a) (b)

(c) (d)

Figure 3.6: Instantaneous and time-averaged flow quantities at the plane W: (a)
axial velocity field u = U/U∞; (b) Vorticity magnitude |ω| ∗ U∞/L; (c) Mean axial
velocity field u = 〈U〉/U∞; (d) turbulent kinetic energy k = u2+v2+w2

2
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(a)

(b)

Figure 3.7: Instantaneous physical quantities at the plane H: (a) axial velocity field
u = U/U∞; (b) non dimensional x-vorticity ωx ∗ U∞/L
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(a) (b)

Figure 3.8: (a) First order statistics. The law-of-the-wall ( ); Present com-
putation ( ); Present computation scaled using uτ from WR-RANS ( );
Wall-resolved LES data of turbulent flat plate at Reθ = 1410 from Eitel-Amor et al.
(2014) ( ) (b) Second order statistics. Present computation ( ) Wall-resolved
LES data of turbulent flat plate at Reθ = 1410 from Eitel-Amor et al. (2014) ( ) ;

3.7 The turbulent wake
In this section the study of turbulent wake will be addressed, making comparison
with theoretical results and experimental data. The physical model that better
describes the physics of the wake is the axisymmetric wake. In our case, because of
the submarine appendages and the shape of the hull itself, the wake is not perfectly
axisymmetric; however, limiting the analysis to the plane H (see figure 2.2), we are
still able to describe our wake using the axisymmetric wake theory (Johansson et al.,
2003).

Figure 3.9 shows the instantaneous turbulent wake in terms of non-dimensional
velocity contours over two planes: the horizontal plane H (figure (a)) and the trans-
verse plane Y (figure (b)). In figure 3.9 (a), the wake resembles the one generated by
a streamlined body, whereas, on plane Y (figure 3.9 (b)) the trace of the sail along
the entire wake is evident.
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Figure 3.9: The turbulent wake: contours of instantaneous axial velocity u = Ū/U∞.
(a) Horizontal plane H. (b) Transverse plane Y

To develop the analysis it is comfortable to use a frame of reference as shown
in figure 3.10. In this new frame of reference, streamwise direction is oriented as
positive x.

Figure 3.10: The turbulent wake: wake’s coordinate system and schematic

The origin of the frame of reference is located at the stern of the submarine.
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The study of the axisymmetric turbulent wake requires the definition of a set of new
variables (Tennekes & Lumley, 1972; Pope, 2000). The velocity along the symmetry
axis will be denoted with UCL. The difference between the free-stream velocity U∞
and UCL is the velocity deficit, U0. The radial distance from the center-line to the
radius where U0=0 is indicated by the Greek letter δ. The radial distance from the
center line where the velocity deficit is U0/2 is the half-wake width l0. Turbulent
axisymmetric wake can be characterized by the two scales U0 and l0. From a practical
perspective is more convenient to calculate δ∗ rather than l0. δ∗ is defined as:

δ∗
2 = lim

R→∞

1
U0

∫ R

0
(U∞ − U)rdr (3.3)

These two quantities are related as:

l0 =
√

2 ln 2δ∗ (3.4)
Moving downstream from the generator, the wake decays and spreads, the mean

velocity profiles changes, maintaining its own shape (self-similarity), as shown in
figure 3.11.

Figure 3.11: The turbulent wake: mean velocity profiles scales by far field velocity:
x/D = 3 ( ); x/D = 6 ( ); x/D = 9 ( ); x/D = 12 ( )

The region of the wake close to the body generator is called ”near wake” and it
is a non-equilibrium region. This means that the wake is evolving. After a state of
equilibrium has been reached (we will define ”equilibrium” in the next paragraph),
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the wake may achieve a state of self-similarity. Taking the mean axial momentum
equation and integrating its leading terms over a cross section (Tennekes & Lumley,
1972), yields:

U0 δ∗
2 = U∞ θ2 (3.5)

where θ is the momentum thickness, defined as:

θ2 = lim
R→∞

1
U∞

2

∫ R

0
U (U∞ − U)rdr (3.6)

At this stage, the average axial velocity profiles U(x, r) scaled by the velocity
deficit U0 and δ∗ collapse over a single curve, as shown in figures 3.12. To allow
an easier visualization of the data they have been plotted into two different figures:
figure 3.12 (a) shows the scaled mean axial velocity profiles for locations in the
region 10 < x/θ < 59; figure 3.12 (b) shows the results for 65 < x/θ < 107. All
these locations correspond to a distance 0.5 < x/D < 18.

(a) (b)

Figure 3.12: The turbulent wake: mean axial velocity against radial distance scaled
by velocity deficit and the wake’s width. Data are averaged between the semi-planes
at ϕ = 0 and ϕ = π.

George (1989) first argued that the classic similarity theory (for example as
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reported in Tennekes & Lumley (1972)) was based on not reliable assumptions. In
particular, as shown in Johansson et al. (2003) the following evidences were observed:

• The wake growth rate depends on the generator geometry and on Reθ

• The mean velocity profiles from all experiments collapse into a single curve
when scaled with centerline velocity deficit and δ∗

• The turbulence intensity profiles might collapse if sufficiently downstream from
the generator. In this case data available in literature are not completely in
agreement.

• Data points for the scales U0 and l0 (Johansson et al., 2003) might be fitted
equivalently well by a power law with exponent (1/3), as predicted by the
classic theory formulation (Pope, 2000; Tennekes & Lumley, 1972), or with
exponent (1/2).

George (1989) proposed a new theory called equilibrium similarity analysis. He
demonstrated that the mean velocity profiles from the different experiments collapse
when scaled by U0 and l0, even if the wakes grow at different rates (i.e. even if
the wakes were generated by different geometries). The differences caused by the
geometry of the generator can be appreciated only on the spreading rate and on
higher turbulence moments (Johansson et al., 2003).

Differently from the classical theory, in the equilibrium similarity one, the local
Reynolds number plays a fundamental role. Two different equilibrium similarity
solutions indeed exist, and they depend on the local Reynolds numbers. So it is
possible to make a distinction between ”high local Reynolds number” and ”low local
Reynolds number” solutions. The mathematics yielding these two formulations is
accurately formulated and developed in Johansson & George (2001); Johansson et al.
(2003); When reaching the state of equilibrium self-similarity, the wake continues to
evolve and decade, but the relative terms in the governing equations (momentum and
Reynolds stress components) maintain the same relative importance. During this
equilibrium decaying process the local Reynolds number monotonically decreases.
For high local Reynolds number, an infinite Reynolds solution does exist , where
viscosity is negligible compared to inertial effects. Momentum is conserved and the
ratio between the maximum (radial direction) of the mean axial velocity fluctuation
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over the mean velocity deficit max(u)/U0 is constant. Moreover, in this region the
velocity spectrum shows a developed inertial subrange region. In accordance with
this theory, when the local Reynolds number drops below a certain level, the wake
goes into unsteadiness, in the sense that the relative importance in the terms in
the flow equations changes, evolving into a new equilibrium state; In this zone,
max(u)/U0 assumes a constant value again, evidently different form the value in the
high-Re regime. This new equilibrium regime is called low-Reynolds. According to
theoretical arguments of Gourlay et al. (2001) (supported by DNS data analysis),
in this region δ∗ ∼ x1/2 and U0 ∼ x−1. Johansson et al. (2003) and Gourlay
et al. (2001), analyzed the wake generated by a disk and a sphere and found that
the transition from high-Re to a low-Re regime occurs at downstream distances of
x/θ ≈ 500-1000 (and Rel0 about 500).

Following Johansson et al. (2003), Kumar & Mahesh (2018) found that for a
streamlined generators, i.e. the axisymmetric not-appended DARPA submarine, the
transition from high-Re to low-Re solution occurs at x/D ≈ 2 and local Reynolds
number Rel0 ≈ 7000. The velocity spectra evolution did not show any change in the
inertial region, apparently contradicting the analysis of George (1989). On the other
hand, Posa & Balaras (2016) in the analysis of the same submarine with appendages,
did not observe the transition to low-Re solution (they studied the wake up to 12 D
from the stern).

Johansson et al. (2003) found that, for high Reynolds regime, similarity scales
U0 and l0 follow power-law relationships of the form

U0 =A

(
x + x0

D

)−2/3

(3.7)

l0 =B

(
x + x0

D

)1/3

(3.8)

This is clearly the same result as the physical law of classic theory (Townsend, 1956).
Applying the similarity scales of equation 3.8 to the present LES simulation of

the BB2 submarine, we can obtain the value of A, B and x0 using a non-linear curve
fits. In particular, the best fit is obtained by minimization of the squared residuals
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σ2 and keeping x0/D to be equal in the two relationships:

U0 =0.887
(

x/D + 2.827
)−2/3

(3.9)

l0 =0.129
(

x/D + 2.827
)1/3

(3.10)

For comparison purposes, table 3.4 lists the power laws proposed by Jiménez
et al. (2010b) (experimentally) and Posa & Balaras (2016) (numerically).

Item ReL A B x0/D

Present LES 1.2 × 106 0.89 0.13 2.83
Jiménez et al. (2010b) 1.1 × 106 1.18 0.113 2.08
Posa & Balaras (2016) 1.2 × 106 1.57 0.13 4.58

Table 3.4: The turbulent wake: power laws relationships coefficients for u0 and l0.

(a) (b)

Figure 3.13: The turbulent wake: data fitting for velocity and length scales. Present
LES ( ); Posa & Balaras (2016) (dashed line); Jiménez et al. (2010b) (dotted
line)
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Figure 3.13 shows the behavior of u0 = U0/U∞ and l0 during the wake evolution.
The correlations for the DARPA-SUBOFF proposed by numerical work of Posa &
Balaras (2016) (dashed lines) and experimental data from Jiménez et al. (2010b)
(dotted) are shown for comparison.

Figure 3.14 shows the local Reynolds number evolution. At 18 diameters down-
stream from the stern its value is still elevated. As shown in figure 3.15, the present
data solution are well fitted using a power of (1/3), and they are close to the high-Re
solution of Kumar & Mahesh (2018). Table 3.5 shows comparison between the curve
fit coefficients for δ∗/θ.

Item ReL A x0/D

Present LES 1.2 × 106 1.16 1.89
Kumar & Mahesh (2018) High-Re 1.1 × 106 1.17 2.08
Kumar & Mahesh (2018) Low-Re 1.1 × 106 0.78 2.08

Table 3.5: The turbulent wake: power laws relationships coefficients for δ∗/θ

In addition, looking at the velocity spectra of figure 3.16 we do not see changes
in the extension of the inertial subrange region, as Johansson et al. (2003) suggests
for predicting the wake passage to a low-Re regime. For all these reasons we may
argue that the present wake is still in a high-Re number solution state.
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Figure 3.14: The turbulent wake: the local Reynolds number Rel0 = U0 l0/ν and
Reδ∗ = U0 δ∗/ν
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Figure 3.15: The turbulent wake: evolution of the wake width scaled by mo-
mentum thickness. Present simulation (•). Power law for the present simula-
tion δ∗/θ = 1.16 (x/D + 1.89)1/3 ( ); High-Re solution δ∗/θ = 1.17 (x/D + 2.08)1/3

( ) (Kumar & Mahesh, 2018). Low-Re solution δ∗/θ = 0.78 (x/D + 2.08)1/2 ( )
(Kumar & Mahesh, 2018).
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Figure 3.16: The turbulent wake: evolution of streamwise velocity spectra. (Data
are moved upward as: at 3D Euu × 102, at 6D Euu × 103, at 9D Euu × 105

Further, looking at the ratio between turbulence velocity fluctuations and veloc-
ity deficit (figure 3.17) we can assert that turbulence governing laws are still evolving
to a state of equilibrium, as intended by George (1989). Figure 3.18 shows the tur-
bulent kinetic energy profiles at 3, 6, 9 and 12 diameters from the stern. Solution
at 9D is in rather good agreement with numerical data from Posa & Balaras (2016)
at the same distance from the stern. The two peaks characterizing TKE in H plane
derive from the turbulent boundary layer transported downstream (Posa & Balaras,
2016). Away from the stern the velocity deficit rapidly decreases, and turbulent
fluctuations maintain their intensity also in the far wake (Gourlay et al., 2001; Jo-
hansson et al., 2003). The two peaks of turbulent kinetic energy are also clearly
visible looking at the color plot of k/U2

∞ in the near-wake region (figure 3.19).
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Figure 3.17: The turbulent wake: evolution of maximum velocity fluctuations scaled
by the velocity deficit
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Figure 3.18: The turbulent wake: evolution of the non-dimensional turbulent kinetic
energy. 6D ( ); 9D ( ); 12D ( ); 15D ( ); numerical data from Posa
& Balaras (2016) 9D (×)

Figure 3.19: The turbulent wake: turbulent kinetic energy in the near-wake region
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4 Hydroacoustic analysis

In this chapter we discuss the computational hydroacoustic analysis of the BB2
submarine at ReL = 1.2 × 106.

4.1 CHA of the fully appended BB2 submarine
In this section, the results from the hydroacoustic analysis of the LES data of

chapter 3 will be presented. The BB2 submarine is at model scale. The RANS and
LES were conducted considering the submarine submerged in a moving medium.
Thus the formulation of the FW-H equation adopted here is the formulation 1D
(Cianferra et al., 2019a), for the wind tunnel problems (see equation 1.51 and equa-
tion 1.52). The hydroacoustic solver has been extensively validated in Cianferra
(2017); Cianferra et al. (2019a,b). The surface f coincides with the submarine body
and the volume integrals are calculated over the whole computational domain. Un-
der these conditions, the contribution to the noise derives from both the loading
and quadrupole terms. The thickness term is null everywhere, as explained in sec-
tion 1.5.6.

The computation is done under the common hypothesis that the contribution
of the viscous forces to noise is small compared the one coming from pressure and
turbulence. As a consequence, the compression tensor Pij = (p−p0)δij−σij, where σij

is the viscous stress tensor, can be approximated only with the first term on the RHS.
It has to be highlighted that, this approximation is well suitable with use the wall-
functions. Indeed, in chapter 3 we saw that using Spalding’s formulation for the law-
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Figure 4.1: Pressure signal and relative spectrum sampled at (0.5 L, 0, 0.12 L)

of-the-wall with the WALE sub-filter scale model, yields to underprediction of the
skin-friction factor. From fluid-dynamics point of view this is a drawback ,whereas
it can be considered a problem of minor importance from acoustics perspective.
Moreover, as shown in section 3.7) the wake develop in the high local Reynolds
number regime where viscosity effects are in general negligible.

Before starting the acoustic analysis using analogies, the LES pressure signal
has been sampled at specific locations near the submarine to determine which is
the maximum relevant frequency. For example, figure 4.1 shows the signal and the
relative spectrum sampled using a probe located in the plane behind the sail with
coordinates (0.5 L, 0, 0.12 L). The sampling time is about 1.5 tc. The maximum
relevant fluid-dynamic frequency it is equal to fmax = 100 Hz. The spectra of the
pressure signals sampled at the other characteristic positions, as for example close
to the hull, in the plane behind the sail or in the wake, decades even faster.

Thus, since fmax = 100Hz, positioning the hydrophones in the near field, the
calculation of time delays can be avoided, because MPF>1.
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Figure 4.2: Hydrophones’ locations

The positions of the hydrophones considered in the present analysis is shown
schematically in figure 4.2, while table 4.1 reports the coordinate of the locations.
These hydrophones are suitable for the characterization the hydroacoustic of the
turbulent wake.

Figures 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, show the sound pressure levels, in decibel,
against the frequency for each virtual hydrophone (hereinafter we will avoid to use
the adjective ”virtual” when referred to the hydrophones). The contribution of the
loading term are shown in figures (a). Turbulence is mainly present in the quadrupole
term which contributes mostly to the sound pressure level and, differently from the
aeroacoustic case, it is clear that it can not be neglected. Loading term contribution
is smaller than quadrupole one. This is probably due to the model dimensions and
the absence of a rotating propeller. Hydrophones in position D, E and F recorded
the highest level of noise and this probably means that the sail contribution to
the noise is significant. The maximum value is about 100dB at 1Hz, evidenced
by a characteristic peak. The same maximum SPL (without the peak) was found
sampling pressure during LES (figure 4.1). We associate this frequency to the noise
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Hydrophone ID x/D y/D z/D

A -5 -2 -2
B -10 -2 -2
C -18 -2 -2
D -5 2 2
E -10 2 2
F -18 2 2

Table 4.1: Hydrophones’ positions

produced by the sail wake flow. Figure 4.3 shows time-contours visualization of the
sail wake.

The loading term is negligible compared to the quadrupole and, in absence of
the propeller, it could be omitted in the estimation of the noise.

Figure 4.10 shows the comparisons of the spectra at different locations. In figure
(a) the spectra from hydrophones A, B and C are reported; Figure (b) shows the
spectra of the signal sampled at positions D, E and F. Figure (c) compares spectrum
B with spectrum E. As we can see, the noise associated to the high frequencies grows
farther from the submarine. A reason of this is that close to the submarine the
characteristic length of the largest turbulent structures can be taken of the same
order of magnitude of diameter of the main body. These vortices are characterized
by large characteristic times and so they have small characteristics frequencies. The
breaking up process of these vortices starts just downstream the propeller plane and,
as a consequence, the wealth of small structures increases downstream. Small eddies
have low characteristic time and, thus, large characteristic frequency.

Figure 4.11 shows the directivity pattern of the sound pressure. The data are
plotted in a cylindrical-coordinate frame of reference (ϑ, prms), where the radius
indicates the RMS pressure at the observer location. Hydrophones are distributed
over a circumference centered at (-10D, 0, 0), and radius of R=2D, on a plane
orthogonal to the submarine axis. The azimuthal distance between two consecutive
hydrophones is 15◦. From ϑ = 3

2π to ϑ = π, prms is approximately homogeneous in
ϑ direction. The effect of the junctions between the sail and the hull, the sailplane
and the sail, and - even more important - the effect of the whole wake (with the
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Figure 4.3: Time-contours plots of the sail wake

contribution from the TBL and sail wake), determines an increase of the sound level
in the second (and first) quadrant.
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(a) (b)

(c)

Figure 4.4: Sound pressure level sampled by hydrophones in position A. Linear Term
pL (a); Quadrupole term pQ (b); Contribution of all terms pL + pQ.
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(a) (b)

(c)

Figure 4.5: Sound pressure level sampled by hydrophones in position B. Linear Term
pL (a); Quadrupole term pQ (b); Contribution of all terms pL + pQ.

113



Hydroacoustic analysis

(a) (b)

(c)

Figure 4.6: Sound pressure level sampled by hydrophones in position C. Linear Term
pL (a); Quadrupole term pQ (b); Contribution of all terms pL + pQ.
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(a) (b)

(c)

Figure 4.7: Sound pressure level sampled by hydrophones in position D. Linear Term
pL (a); Quadrupole term pQ (b); Contribution of all terms pL + pQ.
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(a) (b)

(c)

Figure 4.8: Sound pressure level sampled by hydrophones in position E. Linear Term
pL (a); Quadrupole term pQ (b); Contribution of all terms pL + pQ.
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Hydroacoustic analysis

(a) (b)

(c)

Figure 4.9: Sound pressure level sampled by hydrophones in position F. Linear Term
pL (a); Quadrupole term pQ (b); Contribution of all terms pL + pQ.
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Hydroacoustic analysis

(a) (b)

(c)

Figure 4.10: (a) Sound pressure level from hydro-phones in position A ( ),
B ( ) and C ( ); (b) Sound pressure level from hydro-phones in position
D ( ), E ( ) and F ( ); (c) Sound pressure level from hydro-phones in
position B ( ) and E ( );
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Hydroacoustic analysis

Figure 4.11: Directivity pattern of the sound pressure calculated at 10D downstream
from the stern
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5 Conclusions

The present thesis focuses on the computational characterization of both hydrody-
namics and hydroacoustics of a notional submarine, namely the BB2.

Applying the advective form of the FW-H equation together with Wall-Modeled
LES to the BB2 submarine allowed to provide a complete characterization of the
computational hydrodynamics and hydroacoustics. The utilization of the advective
form of FW-H equation (here named formulation 1D) represents a novelty and
opens to detailed information about the turbulence generated sound of such complex
bodies.

WM-LES allows to obtain a significant reduction of computational resources
with a high-fidelity representation of the fluid-dynamic and turbulence features of
the wake.

The flow conditions are those of a typical ”wind-tunnel” problem, i.e. in straight
ahead advancement at zero-degree drift angle. Numerical simulations and radiated
noise estimations have been performed at model scale (scale factor λ = 0.054, ReL =
1.2 × 106, U∞ = 0.2613 m/s). To perform the numerical simulations we employed a
customized version of the open-source library OpenFOAM. Regarding the turbulence
model, CFD analysis was conducted using two approaches, respectively RANS and
WM-LES. In case of RANS simulations turbulence is completely modeled, while
in LES, after applying an implicit filter operation, only a relatively small part of
turbulence spectrum is modeled (the so-called sub-grid scales, i.e. the approach
directly resolves the larger energy-carrying scales and models the smaller energy
dissipating ones).
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The analysis of the RANS simulations was preparatory to the study performed by
means of LES approach, both to become familiar with OpenFOAM and prepare the
best computational mesh. RANS has been performed at two different advancement
speeds, U∞ = 3 m/s and U∞ = 0.38 m/s, i.e. at Reynolds numbers, ReL = 9.57×106

and ReL = 1.2 × 106, respectively.
At higher Reynolds number, k − ω SST model has been utilized for the simu-

lations. Both WR and WM approaches have been employed. At Reynolds number
1.2×106, k−ω SST model has been applied to the WR simulation, while k−ε model
to the RANS with wall-functions. The wall-function adopted for the WF simulations
at high- and low-Reynolds number, is the Spalding’s continuous formulation.

RANS solution has been utilized as initial condition in LES at ReL = 1.2 × 106.
In order to reduce the computational effort for the LES, the near-near wall behavior
was modeled (adopting again the Spalding’s continuous formulation of the law-of-
the-wall). The transition to turbulent of the boundary layer on the hull has been
triggered using a numerical tripping, which is constituted by a zero-mean spatial
distribution of random body forces. In the analysis of the LES solution, special
attention has been paid to the characterization of the turbulent wake because, in
absence of a propeller, it represents the major source of noise. To be noted that
the presence of propeller is not considered in the present study, since it is the first
literature study where the acoustic signature of the BB2 submarine is investigated.
For this reason, it is more convenient to focus on the main body in order to obtain
a full characterization. Otherwise, the interaction with the propeller may vary the
acoustic signature also in view of the characteristics of the propeller.

LES opens to the possibility of an accurate characterization of the acoustic signa-
ture of the submarine. In fact, as suggested in Ianniello (2016), fluid dynamic solu-
tions obtained using URANS are not adequate to conduct an accurate hydroacoustic
analysis. At this scope, Cianferra et al. (2019a) extended the work of Najafy-Yazdi
et al. (2010), allowing to add the quadrupole noise source term to the integral ad-
vective form of FW-H. The advective form of FW-H equation applies to wind-tunnel
problems and the quadrupole term it is of fundamental importance in hydroacoustic
problems (in the past it was often neglected because considered important only at
very high Mach number, as it happens in CAA). Thanks to these theoretical achieve-
ments, the CHA toolkit was implemented as a post-processing tool of OpenFOAM
and extensively validated in Cianferra et al. (2019a), Cianferra et al. (2019b).
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From RANS simulations we observed that at high-Re the numerical solutions
obtained using WR- and WM-RANS are in good agreement with reference liter-
ature data, in terms of both hydrodynamic loads and fluid dynamic fields. The
pressure distribution on the hull was accurately captured in both cases. The skin-
friction coefficients also showed a good agreement between the two approaches, with
exception of the zone in front of the sail (at the junction with the hull) where WM-
RANS failed in predicting the two vortices (it actually predicted a single vortex).
At Re=1.2 × 106, we noted that RANS with WM estimates higher wall-shear stress
over the hull then the WR counterpart. RANS with WM predicts higher streamwise
and vertical loads (of about 10%) then WR.

The utilization of LES together with wall-models was imposed by the availabil-
ity of computational resources and justified by the fact that, for the purpose of a
successive acoustic analysis, the wake is the most significant contribution to noise,
and the solution provided by a WMLES reveals to be suitable for our purposes. In
fact, we found a rather good agreement with numerical and experimental results
from of Posa & Balaras (2016) and Jiménez et al. (2010a,b), respectively, for what
concerns the characteristic length l0 and velocity u0 scales of the wake. A (1/3)
power-law well fits the evolution of the wake width, made non-dimensional by mo-
mentum thickness, i.e. δ?/θ. Moreover, following the equilibrium similarity theory
(George, 1989; Johansson & George, 2001; Johansson et al., 2003), we were able to
determine that, up to a distance of 18 D downstream, the wake is still in a state of
development towards a high-Re equilibrium similarity solution. Indeed, to attains
the state of equilibrium similarity, the ratio between the maximum fluctuations in
streamwise direction u and U0 should not vary in space (Johansson et al., 2003).
Differently from Kumar & Mahesh (2018), no transition from high- to low-Re so-
lution was observed. Indeed, the local Reynolds number at 18 D downstream was
still relatively high (Reδ? ≈ 3500). The mean velocity profiles collapsed into a single
curve when scaled with the centerline velocity deficit and the wake width, (Tennekes
& Lumley, 1972). In the wake the decay of turbulent kinetic energy is slower than
that of momentum deficit. In fact, the non-dimensional k profiles increases down-
stream and the dual peak is associated with turbulence coming from the boundary
layer over the stern, as in (Jiménez et al., 2010a; Posa & Balaras, 2016).

The utilization of wall-models in LES leads to underestimation of the wall-shear
stress over the hull (Larsson et al., 2016; Mukha & Liefvendahl, 2015) with respect
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to experiments and WR RANS results at the same value of Reynolds number. As
expected, also the non-dimensional Reynolds stress tensor component 〈uu〉/uτ was
underestimated with respect to ZPGTBL WRLES data of Eitel-Amor et al. (2014).

The acoustic solver was fed by numerical data gather during LES computation.
The novel formulation 1D (Cianferra et al., 2019a) of FW-H equation has been
employed. The advantage of formulation 1D is that it is written in advective form
(it is the formulation required to solve wind-tunnel problems) and, differently from
the previous formulation 1C (Najafy-Yazdi et al., 2010), accounts for the non-linear
quadrupole source term. In particular, the loading term has been integrated over
the submarine surface, while the quadrupole one has been integrated in the volume
region surrounding the underwater vessel (see equation 1.51 and equation 1.52).
LES data were stored with a frequency of 100 Hz (as suggested by the spectra of
the LES pressure signal sampled at significant locations) for about 9 tc (Ianniello,
2016; Ianniello et al., 2013; Ianniello, 2007). The acoustic noise was calculated at
specific locations by virtual hydrophones. The main contribution to the noise was
brought from the non-linear quadrupole term (turbulence and vorticity effects). For
the BB2 submarine at model scale, maximum noise has been estimated to be about
100 dB. The level of noise is already remarkable and dangerous for the traceability
of the submarine, since it is already well above the ocean background noise. The
spectra of the acoustic pressure, sampled from hydrophones located near the sail,
were characterized by a peak at 1Hz. This value was also confirmed by the analysis
in frequency of the fluid dynamic pressure and we believe it is related to the sail
wake displacement. The noise associated to high frequencies (from 10 to 80 Hz)
grows downstream as a consequence of the breaking up process of the eddies in the
wake.

The quadrupole term appears as the leading term in the calculation of hydroa-
coustic noise. For this reason in the close future we plan to address further in-
vestigations about BB2 submarine acoustic signature, taking into account also the
effect of the ocean stratification. In fact, it is well known (Pal et al., 2016; Jones &
Paterson, 2018; Armenio & Sarkar, 2002) that stratification strongly influences the
distributions of Reynolds stresses in the wake and, as a consequence of this, it could
affect the resulting noise. To make the model even more realistic, the marine pro-
peller should be then considered. As shown in Cianferra et al. (2019b), the propeller
creates a persistent turbulent wake with a well-defined shape that interacts with the
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wake of the submerged advancing body. Moreover, to perform simulations at (as
much as possible) higher Reynolds number will be of fundamental importance.

In the end, the combination of WM-LES and FW-H equation (formulation 1D)
reveals to be a powerful tool to perform accurate numerical investigation and de-
sign optimizations, at reasonable computation cost, for a wide range of engineering
problems.
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