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Abstract

The research carried out in particle accelerator facilities does not concern
only particle and condensed matter physics, although these are the main
topics covered in the field. Indeed, since a particle accelerator is composed
of many different sub-systems, its proper functioning depends both on each
of these parts and their interconnection. It follows that the study, implemen-
tation, and improvement of the various sub-systems are fundamental points
of investigation too. In particular, an interesting aspect for the automa-
tion engineering community is the control of such systems that usually are
complex, large, noise-affected, and non-linear.

The doctoral project fits into this scope, investigating the introduction
of new methods to automatically improve the performance of a specific type
of particle accelerators: seeded free-electron lasers. The optimization of
such systems is a challenging task, already faced in years by many different
approaches in order to find and attain an optimal working point, keeping
it optimally tuned despite drift or disturbances. Despite the good results
achieved, better ones are always sought for. For this reason, several methods
belonging to reinforcement learning, an area of machine learning that is
attracting more and more attention in the scientific field, have been applied
on FERMI, the free-electron laser facility at Elettra Sincrotrone Trieste.
The research activity has been carried out by applying both model-free and
model-based techniques belonging to reinforcement learning. Satisfactory
preliminary results have been obtained, that present the first step toward
a new fully automatic procedure for the alignment of the seed laser to the
electron beam.

In the meantime, at the Conseil Furopéen pour la Recherche Nucléaire,
CERN, a similar investigation was ongoing. In the last year of the doctoral
course, a collaboration to share the knowledge on the topic took place. Some
of the results collected on the largest particle physics laboratory in the world
are presented in the doctoral dissertation.
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Chapter 1

Introduction

Machine Learning (ML) is ubiquitous in science and technology nowadays. It
is a field of computer science as well as an application of Artificial Intelligence
(AI) able to outperform traditional computational methods in many areas.
In the last decades, this approach has been able to face and solve a great
variety of problems.

The first definition of machine learning belongs to Arthur L. Samuel in
1959 who defined it as a “field of study that gives computers the ability
without being explicitly programmed”. Nowadays, the most quoted defini-
tion is a more formal one. In 1997, Tom M. Mitchell defined that: “machine
learning is the study of computer algorithms that allow computer programs
to automatically improve through experience” [1|. In the same book, the
author defines also the algorithms studied in machine learning field: “a com-
puter program is said to learn from experience F with respect to some class
of tasks T" and performance measure P if its performance at tasks in T, as
measured by P, improves with experience E”.

Indeed, ML advantages concern e.g. the speeding up of tedious pro-
cedures by automatizing them, the capability to handle a huge amount of
data, and the wide applicability of such techniques. The main difference be-
tween traditional methods and machine learning is the conceptual approach
to problems. If a traditional algorithm takes some input and a code with
some logic to produce an output, a machine learning algorithm takes an in-
put and an output and returns some “logic” which can then be used to work
with new input to produce the corresponding output. The logic generated
is what makes it ML.

The machine learning field is usually divided into three main categories as
shown in Figure 1.1. These sub-fields are Supervised Learning, Unsupervised
Learning, and Reinforcement Learning. For each category, a brief overview
is now proposed.

e Supervised Learning: Class of systems and algorithms that deter-
mines a predictive model using data points with known outcomes. The

1



CHAPTER 1. INTRODUCTION

model is learned by training through an appropriate learning algorithm
(e.g., linear regression, random forests, or neural networks) that typ-
ically works through some optimization routine to minimize a loss or
error function.

e Unsupervised Learning: Class of systems and algorithms in which
the users do not need to supervise the model. Instead, it allows the
model to work on its own to discover regularity. It mainly deals with
the unlabelled data.

¢ Reinforcement Learning: Class of systems and algorithms that
learns by interacting with the environment. A reinforcement learn-
ing agent learns from the consequences of the actions it selects based
on its past experiences (exploitation) and also on new choices (explo-
ration), which is essentially trial and error learning. The signal that
the agent receives is a numerical reward, which depends from the ac-
tion, and the agent seeks to learn to select actions that maximize the
accumulated reward over time.

\ Machine Learning Algorithms ]
¥ ¥ 1

- 7 4 5 N\ Ve " ~
Supervised Unsupervised Reinforcement
Learning | | Learning | [ Learning

' ' !

Good for problems Good for problems Good for problems
where each input data where each data is not where future actions

point is labeled or labeled or does not are based on outcome
belongs to a category. belong to a category. of current response

and next actions are
required to be forecast.

Figure 1.1: Machine learning categories.

1.1 Machine Learning in Particle Accelerators

Nowadays, ML techniques are technologically mature and can be applied to
large and complex systems. This led many researchers involved in particle
physics to start widely using such methods. Furthermore, several research
centers supported the introduction of ML in particle accelerators through
specific workshops and schools. In 2018, the mini-workshop on Machine
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Learning Application for Particle Accelerators took place at Stanford Linear
Accelerator Center (SLAC), while the Workshop on Machine Learning for
Charged Particle Accelerators has been organized at Paul Scherrer Institut
(PSI) in 2019. Finally, the Helmholtz Zentrum Berlin (HZB) held the Ma-
chine Learning Summer School in 2020. Consequently, ML has become each
year a more valuable tool for particle accelerators. These research facili-
ties are extensively used for basic research in particle physics and condensed
matter physics. Particle accelerators systems are huge and complex; indeed,
they are usually characterized by a great number of variables, devices, and
uncertainties with the constant presence of noise. In recent years, machine
learning techniques have led to many improvements and successful imple-
mentations in the field of particle accelerators, from automated alignment of
various devices with beam to optimising different parameters in FELSs, see
for example [2-7].

One of the most important ML teams is at SLAC. Recently they provided
an overview of the opportunities provided by the application of machine
learning for particle physics [8].

1.1.1 Reinforcement Learning in Particle Accelerators

In the last years, the community of researchers involved in controlling and
optimizing particle accelerators has paid particular attention to Reinforce-
ment Learning (RL). The interest is in finding innovative and smart methods
to realize a fully autonomously operated accelerator. The investigation con-
cerns both the improvement of the performance and the simplification of
routine operations. Even though the cost of these methods should not be
underestimated (indeed they typically require a huge data set and long learn-
ing time), their capability to work on many parameters without the exact
knowledge of a model may be of great benefit. Indeed, RL involves measur-
ing state values and adjusting control variables to determine their influence
on each other, thus learning a control strategy that also takes into account
its effects in the future. In the long run, the hope is that it will be able to
completely replace manual intervention.

Several facilities around the world already started investigating such an
approach, the most important ones are SLAC, CERN, HZB, and Elettra
Sincrotrone Trieste while at Deutsches Elektronen-SYnchrotron (DESY) a
project on RL in collaboration with the Karlsruher Institut fiir Technolo-
gie (KIT) will start in late 2020. In particular, at SLAC the use of neural
networks is advocated for modeling and control of particle accelerators, in
a supervised fashion; moreover, some possible applications, in combination
with RL methods are mentioned [9]. Furthermore, in [10] the authors use
neural networks to define a policy and an FEL model, and then, enabling
the interaction between the policy and the learned model, back-propagate
the cost through the model network to the controller network; the whole



CHAPTER 1. INTRODUCTION

study is conducted only through simulations. Satisfactory results have been
collected also at CERN where some beam alignment problems have been
investigated. Several algorithms have been successfully applied to the var-
ious systems involved in the project [11,12]. At HZB, reinforcement learn-
ing has been introduced to face different optimization cases on the Berliner
ElektronenSpeicherring-gesellschaft fiir SYnchrotronstrahlung 11 (BESSY II)
light source by self-tuning the machine parameters [13]. A further investi-
gation in controlling particle accelerators has been carried out at Elettra
Sincrotrone Trieste, where various techniques have been applied to automat-
ically improve the performance of seeded free-electron lasers [14-16]. More-
over, several promising results have been obtained within the collaboration
with the University of Salzburg [17].

In the present document, a precise and complete presentation about the
implementation of model-free and model-based reinforcement learning tech-
niques on the Free Electron laser Radiation for Multidisciplinary Investiga-
tions (FERMI) facility is provided and the promising results acquired are
shown and discussed in the following. In addition, also some information
about the experiments carried out at the Conseil Européen pour la Recherche
Nucléaire (CERN) in the first part of 2020 are here provided as part of the
collaboration between the University of Trieste, Elettra Sincrotrone Trieste,
and CERN.

1.2 Elettra Sincrotrone Trieste

Elettra Sincrotrone Trieste is an international research center specialized in
generating high quality synchrotron and free-electron laser light applying it
in materials and life sciences. The main assets of the research centre are
two advanced light sources, the electron storage ring Elettra and the free-
electron laser FERMI. These facilities enable the international community of
researchers from academy and industry to characterize structure and function
of matter with sensitivity down to molecular and atomic levels, to pattern
and nanofabricate new structures and devices, and to develop new processes.
An aerial overview of the site is provided in Figure 1.2.

In particular, this thesis focuses on the preliminary studies required to
introduce reinforcement learning as a possible method to automatically im-
prove the performance of FERMI. An exhaustive description of the main
topic is therefore presented in the following section.

The entire project has been supported by Elettra Sincrotrone Trieste,
which provided the access to a real free-electron laser light source allowing
the direct interaction with it. In addition, the research center has contributed
also with its know-how and the supervision of the expert physicists involved
in the machine operations.
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ELETTRA

FERMI
Free-Electron Laser

Figure 1.2: Elettra Sincrotrone Trieste, an aerial overview.

1.2.1 FERMI Automatic Performance Optimization

FERMI is the acronym for Free Electron laser Radiation for Multidisciplinary
Investigations. Its lasing medium consists of very-high-speed electrons mov-
ing freely through a magnetic structure, hence the term free electron. The
free-electron laser is tunable and has the widest frequency range of any laser
type, currently ranging in wavelength from extreme ultraviolet to soft x-rays.

Nowadays one of the most challenging problems for the FEL facilities
is the automatic maximization of the performance. The difficulty is due to
the complexity and high sensitivity of the system. In fact, the factors that
contribute to the light generation through the free-electron laser process are
many and often depend on each other. Although several aspects have already
been addressed in the past years using more traditional approaches [18], the
introduction of learning methods would allow to face new and much more
complex tasks without a priori knowledge of the system.

The approach proposed by RL perfectly fits these requests. Precisely,
it concerns learning how to map states to actions in order to maximize a
numerical reward signal. The fundamental characteristics of this particular
learning category are the trial-and-error method and the delayed-reward.
The first defines how the actions are selected to discover which one yields
the most reward. The second concerns the effect of the selected action that
may affect not only the immediate but also all the subsequent reward.

Accordingly, the present doctoral thesis investigates the automatic op-
timization of a seeded free-electron laser, i.e. FERMI, through several re-
inforcement learning techniques. The algorithms and the promising results
recorded during experiments on the real machine are therefore shown in this
dissertation.
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1.3 Reinforcement Learning Experience at CERN

While the studies were ongoing at Elettra Sincrotrone Trieste, other research
centers involved in particle physics started their investigation on reinforce-
ment learning to automatically optimize several other particle accelerators.
Some promising results have been recorded through reinforcement learning
at the Conseil Européen pour la Recherche Nucléaire (CERN) which is a
European research organization that operates the largest particle physics
laboratory in the world. A schematic representation of the largest particle
physics laboratory in the world operated by CERN is shown in Figure 1.3.

The CERN accelerator complex
Complexe des accélérateurs du CERN

LHC

ALICE e North Area; LHCb

o
T/ AWAKE
Em

ISOLDE

i ﬁ REX/HIE
20012015

| East Area |
Ps o
55 G
{ _, 7 CaEAR
) _—
/ LEIR
/ ETHTT

» H™ (hydrogen anions) ) ions P RiBs (Radioactive lon Beams) » P (antiprotons)  } e (electrons)

LHC - Large Hadron Collider // SPS - Super Proton Synchrotron // PS - Proton Synchrotron // AD - Antiproton Decelerator // CLEAR - CERN Linear

Electron earch // AWAKE - Advanc iment // ISOLDE - I or OnlLine // REX/HIE - Radioactive
‘ EXperiment/High Intensity and Energy ISOLDE // LEIR - Lo LINAC - LINear ACcelerator // "

HiRad

Figure 1.3: CERN accelerator complex.

Improving the performance of particle accelerators is one of the main
problems also at CERN, with several groups investigating in different direc-
tions. In particular, the reinforcement learning approach has been investi-
gated by the BEam OPerations on Super Proton Synchrotron (BE-OP-SPS)
group. The researchers involved in this investigation presented their pre-
liminary results at the workshop on Machine Learning for Charged Particle
Accelerators held during the second International Committee for Future Ac-
celerators (ICFA) in 2019. Their presentation focused on the first steps
towards reinforcement learning for automatic performance optimization of
the Low Energy Ion Ring (LEIR) at CERN [11].

Given the common goals, a close collaboration between CERN, Elet-
tra Sincrotrone Trieste, and the University of Trieste started in late 2019
and it is still ongoing. Thanks to this partnership, also other systems have

6



CHAPTER 1. INTRODUCTION

been involved in the study. These are the Advanced WAKefield Experiment
(AWAKE) and the linear accelerator 4 (Linac 4). In both new systems, the
main goal is the finding of the optimal trajectory for the particle beams to
improve their final outcome.

The mutual exchange of knowledge provided several improvements to
reinforcement learning applications on particle accelerators. Indeed, some
methods developed for FERMI have been successfully tested at CERN and
vice-versa. A brief survey of the results obtained at CERN is provided in
Chapter 5.

1.4 Outline

After this short introduction to artificial intelligence in the field of parti-
cle accelerators, the rest of this thesis is organized as follows - Chapter 2
presents a general overview of free-electron lasers, focusing on the target
one, the FERMI FEL at Elettra Sincrotrone Trieste, where the study has
been carried out. In Chapter 3, the basic information on the reinforcement
learning approach and deployed algorithms are proposed. The experimental
configuration and the achieved results are described and discussed in Chap-
ter 4. A brief report about the collaboration with CERN is available in
Chapter 5 where some interesting results are shown and discussed. Finally,
conclusions are drawn in the last chapter.



Chapter 2

FERMI Introduction

A challenging and non-trivial problem concerns the optimization of the Free-
Electron Lasers (FELS) setpoint. It usually requires a good knowledge of the
system model and take quite a long time to achieve good results. In order
to overcome these limitations, automatic learning approaches could be very
proficient. It is from this idea that the research presented here originates.

In particular, the research consists of appraising the feasibility of different
reinforcement learning methods to automatically optimize the performance
of the FERMI free-electron laser at Elettra Sincrotrone Trieste. Even if the
study concerns a specific light source, the approaches here presented could
be easily adapted to other facilities and complex systems.

Before going deeply into reinforcement learning, a brief introduction of
the FEL is given in this chapter. Furthermore, a more detailed description
of FERMI light source is proposed, focusing on the relevant part of the FEL
process. Finally, some information about the FERMI control system and the
used software is reported.

2.1 Free-Electron Laser

A free-electron laser is a very flexible source of coherent radiation. It con-
sists of a beam of relativistic electrons moving in vacuum inside a magnetic
structure. The free-electron laser is tunable and has the widest frequency
range of all laser types, currently ranging from microwaves to X-rays. Such
light sources are used for cutting-edge research in material science, chemical
technology, biophysical science, medical applications, surface studies, and
solid-state physics.

In a FEL, an electron beam and a beam of electromagnetic waves collinearly
travel through a magnetic structure called undulator, interact with each
other, and generate amplified, coherent radiation. The interaction between
the two beams modulates in energy the electron bunches. The energy mod-
ulation then is converted into a charge density modulation that produces
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microbunching in the longitudinal direction according to the radiation wave-
length. Finally, the microbunched electron beam radiates in phase with
the electromagnetic waves amplifying the radiation until the saturation is
reached.

With a sufficiently high gain, the amplified radiation continues to in-
teract with the electron beam traveling together with the radiation. Thus
the system becomes a positive feedback system with exponential growth,
called high-gain FEL. This configuration is called Self-Amplified Sponta-
neous Emission (SASE) and produces partially coherent radiation starting
from an incoherent spontaneous emission. Even if at saturation the radiation
generated has a high peak power and a good transverse coherence, its longi-
tudinal coherence is affected by strong pulse-to-pulse spectral and temporal
fluctuations.

An alternative is provided by seeded free-electron lasers (see Section 2.1.1)
that inject an external optical laser together with the electron beam in the
undulator. The energy modulation is then based on the seed laser prop-
erties, in particular on its high degree of longitudinal coherence. Such an
improvement guarantees the generation of high-intensity radiation with both
transverse and longitudinal coherence. In addition, the better density mod-
ulation of the electron beam requires a shorter magnetic path to amplify the
output until the saturation.

The main elements involved in a free-electron laser are (Figure 2.1):

e Electron beam. It is a stream of bunched electrons emitted by a
single source, that move in the same direction and at the same speed.

e Linear accelerator (linac). It is a sequence of electromagnetic struc-
tures accelerating the electrons.

e Undulators. It consists of series of periodic structures of dipole per-
manent magnets (undulators) to modulate the electron beam and am-
plify the radiation intensity.

e~ beam —> UNDULATORS A

FEL pulse

Figure 2.1: Free-electron laser simplified scheme.

2.1.1 Seeded Free-Electron Laser

In order to generate coherent radiation, seeded free-clectron lasers [19-22]
require an external optical laser pulse. The interaction with the seed laser
modulates in energy the relativistic electron beam. The magnetic structure
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in which this process takes place is named modulator undulator. The en-
ergy modulation is then converted into a charge modulation by a dispersive
magnet that is a magnetic chicane where the electrons follow a path length
inversely proportional to their energy. The charge-modulated electron beam
then generates a high coherent radiation passing through other undulators
called radiators. A generic simplified scheme of a seeded free-electron laser
is shown in Figure 2.2.

UNDULATORS
e beam ~ ——| LINAC MODULATOR Dé%"CETP;%I;{E H RADIATORS A
FEL pulse

SL pulse SL pulse

Figure 2.2: Seeded free-electron laser simplified scheme.

One of the most challenging operations required to properly set up a
seeded FEL concerns the alignment of optical laser pulses and electron beams
in the modulator. Hence, the better is their superimposition the more co-
herent and intense is the produced radiation.

In the present doctoral project, the problem of the alignment optimiza-
tion has been faced using Reinforcement Learning algorithms. In order to
reduce the complexity of the problem and to ease the implementation of the
chosen RL methods, the overall problem has been simplified. In particular,
the path of the electrons is kept constant while the seed laser trajectory is
modified.

General information about the FERMI FEL is provided in Section 2.3.1
which describes the seed laser alignment procedure and presents the simpli-
fied scheme of the system.

2.2 FERMI Light Source

At Elettra two different particle accelerators are available for users to investi-
gate material science and physical bio-sciences. The first one is ELETTRA,
a 374 generation storage ring that has been in operation since October 1993,
while the other is the Free Electron laser Radiation for Multidisciplinary In-
vestigations, better known as FERMI. The FERMI FEL is an international
user facility for scientific investigation of ultra-fast and high resolution pro-
cesses with high brilliance photon pulses in the range from ultraviolet to soft
x-ray. The three main parts of the overall facility are the linear accelerator
(linac) where the electron beam previously extracted by the photo-injector is
time-compressed and accelerated up to ~1.5 GeV. Then the section deputed
to the FEL radiation generation, and finally the experimental area where

10
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the FEL output is used by the various beamlines. Figure 2.3 shows an aerial
overview of the Elettra site and the FERMI free-electron laser buildings.

=——

FERMI
Free-Electr as

Undulator Hall ~ 100 m

3

Experimental Hall ~ 50 m

Figure 2.3: The Elettra research center and the FERMI free-electron laser.

FERMI is a seeded free-electron laser with two FEL undulator lines, FEL-
1 and FEL-2, each covering a different spectral region in the wavelength range
from 100nm to 4nm. FERMI provides users with photon pulses having
unique characteristics such as high peak power, tunable wavelength, and
variable polarization. In the following, further information is provided on
the two FEL lines.

FEL-1. It is based on a single-stage high gain harmonic generation scheme
with an UV seed laser covering the spectral range from ~100nm down to
20nm. The electron beam is energy modulated in the modulator undulator
(MOD) by the seed laser, then the energy modulation is converted into a
charge density modulation by a dispersive magnet and finally one selected
resonant harmonic component is amplified in the radiators chain (RAD).
Figure 2.4 shows a schematic representation of FEL-1.

FEL pulse

MOD 20nm,
RAD
Seed pulse y \
260 nm
/__ﬂ
Electron bunch A
first dispersive to e-beam dump

section

Figure 2.4: Schematic layout of FEL-1 in the high-gain harmonic generation
configuration.

11
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FEL-2. It is the cutting-edge FEL line in FERMI. In order to be able
to reach the wavelength range from 20nm to ~4nm starting from a seed
laser in the UV, FEL-2 is based on a double cascade of high gain harmonic
generation. The nominal layout uses a magnetic electron delay line in order
to improve the FEL performance by using the fresh bunch technique. The
first stage is similar to the high-gain harmonic generation scheme shown in
Figure 2.4. The second stage is based on the same concept, but the seed is
the radiation produced in the first stage. The two stages are separated by
a delay line which lengthens the electron path with respect to the radiation
(straight) path allowing to seed a "fresh" portion of the electron beam. A
schematic representation of FEL-2 is proposed in Figure 2.5.

FEL pulse
FEL pulse 4.2nm

21 nm, MOD2

MOD1
1 RAD1 RAD2 |

Seed pulse
210 nm
—

Electron bunch

. : . . to e-beam dump
first dispersive delay line decond dispersive

section section

Figure 2.5: Schematic layout of FEL-2 in the fresh-bunch high-gain harmonic
generation configuration.

In the experimental hall the produced photon beams are forwarded to one
of the five experimental stations by the Photon Analysis Delivery and Reduc-
tion System (PADReS). This system is also in change of the characterization
of the photons using several diagnostics such as photon beam position moni-
tors, intensity monitors based on ionization gas cells, spectrometers, Yttrium
Aluminium Garnet (YAG) screens and photodiodes.

2.3 FERMI Seed Laser Alignment

In a seeded free-electron laser, the temporal and transverse overlap of the
electron and laser beams are the most critical parameters. While the tem-
poral alignment between the two beams is regulated by a single actuator (a
mechanical delay line), the transverse alignment depends on many parame-
ters. In fact, the overlap of the two beams depends on the transverse position
of each beam at the entrance and at the exit of the modulator undulator. In
order to ease the tuning of these parameters and, at the same time, guaran-
tee a steady FEL intensity, beam-based feedback systems [23| control, shot
to shot, the trajectories of electrons and seed laser. While the electron beam
trajectory is kept constant during the user operations, the position of the
seed laser has to be readjusted in correspondence of changes of wavelength,
which slightly modify the laser transverse profile, or due to small thermal
drifts that affect the optical transport of the seed laser.

12
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During standard operations, the horizontal and vertical transverse po-
sition and angle (pointing) of the laser beam inside the undulators is kept
optimal by an automatic process exploiting the correlation of the FEL inten-
sity with the natural noise of the trajectory [24]. Whenever the natural noise
is not sufficient to determine in which direction to move the pointing of the
laser, artificial noise can be injected. This method improves the convergence
of the optimization, but the injected noise can affect the quality of the FEL
radiation. This kind of model-free optimization techniques (ex. Gradient
Ascent and Extremum Seeking [18,25]) are widely used in FEL facilities,
but have some intrinsic disadvantages:

1. the need to evaluate the gradient of the objective function, which can
be difficult to estimate when the starting point is far from the optimum;

2. the difficulty to determine the hyper-parameters, whose appropriate
values depend on the environment and the noise of the system;

3. the lack of “memory” to exploit the past experience.

Modern algorithms such as RL, are able to automatically discover the hidden
relationship between input variables and objective function without human
supervision. Although they usually require large amounts of data sets and
long leaning time, they are becoming popular in the particle accelerator
community thanks to their capability to work with no knowledge of the
system.

In the next section, the seed laser alignment system at FERMI is pre-
sented. However, due to its intensive use, FERMI availability for testing
the algorithms is very limited. Therefore, some alternatives have been nec-
essary at least for testing and defining the preliminary values of the hyper-
parameters of the algorithms. Preliminary experiments have been conducted
on another optical system which is part of the Electro-Optical Sampling sta-
tion. Its description is provided in Section 2.3.2. In addition, part of the
algorithm testing has been carried out using a “toy problem” implemented by
a simulator, which allowed the debug and tune the code and the preliminary
verification of the performance of the different approaches in a more efficient
way and with no hardware implications.

2.3.1 FERMI Seed Laser Alignment System

In a seeded FEL, an initial seed signal, provided by a conventional high
peak power pulsed laser, is temporally synchronized to overlap the electron
bunches inside a first undulator section called modulator. In the transverse
alignment process two Yttrium Aluminium Garnet (YAG) screens equipped
with Charge-Coupled Devicess (CCDs) are properly inserted and extracted,
in order to measure the electron beam transverse position before and after
the modulator [26]. After the electron beam inhibition, using the same YAG

13
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screens, the seed laser position is measured and the correct positions of two
Tip-Tilt (TT) mirrors are manually found by moving the coarse-motors in or-
der to overlap the electron beam. The above destructive procedure (a screen
has to be inserted) is repeated several times and, at the end, the screens are
removed to switch on the FEL. A simplified scheme of the alignment set up
is shown in Figure 2.6. After the above described coarse tuning, a further
optimization is carried out by moving the tip-tilt mirrors to maximize the
FEL intensity measured by the Iy monitor. The working principle of this
diagnostics is the atomic photo-ionization of a rare gas. The FEL photon
beam, traveling through a chamber filled by a rare gas, generates ions and
electrons, which are extracted and collected separately. From the resulting
currents it is possible to derive the absolute number of photons per pulse,
shot by shot.

laser source TT1

TT2

E Screen/CCD1 Screen/CCD2 Iy monitor
: modulator ' generated
! ! photon beam
- —ce—_——- - - - — - - = — -
: e~ beam
'

Figure 2.6: Simple scheme of the FERMI FEL seed laser alignment set up.
TT1 and TT2 are the tip-tilt mirrors, Screen/CCD1 and Screen/CCD2 are
the two removable YAG screens with CCDs and Iy monitor is the employed
intensity sensor.

2.3.2 Electro-Optical Sampling Alignment System

This considered optical system is a portion of the Electro-Optical Sampling
(EOS) station, located upstream of the second line of the free-electron laser
(FEL-2). An EOS station is a non-destructive diagnostic system designed
to perform on-line single-shot longitudinal profile and arrival time measure-
ments of the electron bunches using an UV laser [27-29]. Since the aim of
this work is to control a part of the laser trajectory, the EOS process will
not be explained in details, but rather the parts of the device used for our
purposes will be introduced. The examined device, depicted in Figure 2.7,
is a standard optical alignment system composed of two planar tip-tilt mir-
rors [30], each of which is driven by two piezo-motors (horizontal and vertical
movements). The mirrors inclination determines a particular position of the

14
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laser spot on two CCDs. Each TT mirror performs fast rotations around the
two axis in order to correct the path of the laser beam. The CCDs are not
intercepting the laser beam thanks to the use of semi-reflecting mirrors.

laser source TT1
— ----

-t (CCD1 CCD2

TT§>\

Figure 2.7: Simplified scheme of the EOS laser alignment set up. TT1 and
TT2 are the tip-tilt mirrors while CCD1 and CCD2 are the CCDs.

The ultimate goal is to steer and keep the laser spot inside a pre-defined
Region Of Interest (ROI) of each CCD. To achieve this result, a proper
voltage has to be applied to each piezo-motor. The product of the two light
intensities detected by the CCDs in the ROIs can be used as an evaluation
criterion for the correct positioning of the laser beam. In particular, it can
be interpreted as an AND logic operator, that is “true” when the laser is
inside both of the ROIs.

2.4 Software Development Frameworks and Tools

This section briefly introduces the software used to control the FERMI facil-
ity and to implement the algorithms object of this work. In particular, the
FERMI control system and the programming environment used to develop
and deploy the RL algorithms are presented.

2.4.1 TANGO Control System

The FERMI control system is based on TANGO, an open source distributed
framework for controlling any kind of hardware or software. Its functions and
capabilities are similar to the ones of an industrial Supervisory Control And
Data Acquisition (SCADA) system [31]. Elettra is participating in an in-
ternational collaboration consortium with other European and International
institutes to develop and maintain TANGO.

A TANGO-device server is a software component that interfaces to a
physical or non-physical device implementing properties and methods in a
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unified environment. The system is organized hierarchically in order to in-
terconnect complex systems. Any device is identified by a name with three
fields in the format “domain/family /member". By remotely accessing the
various devices, it is possible to read and possibly modify device attributes
and execute commands.

Usually, the TANGO device server are programmed in the C/C++ pro-
gramming language. However, to easily develop and implement algorithms
for machine physics tests on FERMI, two interpreted programming languages
are also used at client level: MATLAB and Python. Both are able to connect
to the various devices in TANGO through the Matlab-binding [32] and the
PyTango (33| libraries respectively.

2.4.2 Programming Languages and Software Tools

During this doctorate, both Matlab and Python have been used. Initially,
the code has been developed in Matlab, better known from previous studies
and experience such as the definition of a new FEL quality index [18].

Despite the existence of a Reinforcement Learning Matlab Toolbox, all
the initial steps have been done writing the algorithms from scratch to bet-
ter understand the Reinforcement Learning principle. The first published
results [14] have been achieved with a custom implementation of the RL
algorithm in Matlab, while in the extended version of that paper [15], the
additional results presented have been obtained using Python.

The advantage of using Python is mainly due to the availability of tools:
OpenAl Gym [34], and TensorFlow [35]. The former is a toolkit for de-
veloping and comparing reinforcement learning algorithms which have been
used to create a simple simulator for testing the algorithm and defining the
hyper-parameters. The latter is an end-to-end open-source machine learning
platform. Both tools require Python and many tutorials, as well as examples,
are available online.
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Optimization Methods

In the previous chapter, one of the most challenging problems in seeded free-
electron lasers has been chosen to be solved through automatic methods.
Precisely, it regards the maximization of the radiation intensity by setting
the overlapping between the electron beam and the laser pulse.

This chapter consists of three main parts. Section 3.1 introduces rein-
forcement learning providing the basic tools to approach RL, while the fol-
lowing parts present specific categories of the RL methods. The model-free
and model-based approaches are described in Section 3.2 and 3.3 respectively.

3.1 Reinforcement Learning

In RL, basically, data collected through experience are employed to select
future inputs of a dynamical system [36,37]. An environment is a discrete
dynamical system whose model can be defined by:

Tp1 = [(or, up)

in which x € X and u; € U respectively are the environment state and the
external control input (the action) at the k-th instant; while f is the state-
transition function. A controller, or agent, learns a suitable state-action map,
also known as policy (m(ug|zk)), by interacting with the environment through
a trial and error process. For each chosen action ug € U, in state zp € X,
the environment provides a reward r(xy, ug). This interaction between agent
and environment is shown in Figure 3.1.
The aim of the learning process is to find an optimal policy 7* with respect
to the maximization of an objective function J, which is a design choice.

It could be useful for readers to provide a short commented list of the
fundamental and basics concepts of reinforcement learning.

e Agent: It is a controller that learns a policy by interacting with the
environment.

17
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( )
Agent
L J )
State Reward Action

T Tk Uk
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Environment <
LTe+1 )

Figure 3.1: Block scheme of agent-environment interaction.

e Environment: It is the discrete dynamical system to control.
e State: It describes the environment at a certain time.

e Action: The agent interacts with the environment by performing an
action and moves from one state to another.

e Reward: It is a numerical value that the agent receives based on its
action.

e Policy: The agent makes a decision based on the policy. A policy tells
the agent what action to perform in each state.

3.1.1 Sample-efficiency

Generally, a crucial point in applying RL on real systems is sample-efficiency.
This because machine time is usually expensive and the reduction of the
number of interactions required by the algorithm is a pro to speed up the
optimization. Reinforcement learning approaches are usually divided into
two main classes: model-free and model-based. Model-Free Reinforcement
Learning (MFRL) includes the algorithms that do not require a model of the
system to optimize. On contrary, if a model is required, the technique be-
longs to Model-Based Reinforcement Learning (MBRL). As presented in [38],
Figure 3.2 shows that the presence of a model improves the sample efficiency.
Furthermore, the way in which the policy is evaluated or improved, affects
efficiency. Indeed, on-policy methods attempting to evaluate or improve the
policy that is used to make decisions are less efficient than off-policy methods
that evaluate or improve a policy different from that used to generate the
data.

3.1.2 Investigated Algorithms

The tree diagram depicted in Figure 3.3 shows the algorithms of RL involved
in the study carried out during the doctoral course. Later in this chapter,
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off-policy < 0n-policy

More efficient Less efficient
(fewer samples) (more samples)
P o
< >
model-based  model-based off-policy actor-critic  on-policy policy  evolutionary or
shallow RL deep RL Q-function style gradient gradient-free
learning methods algorithms algorithms

Figure 3.2: Sample efficiency in reinforcement learning.

each element of the tree will be discussed following the branches from top to
bottom and from left to right.

REINFORCEMENT LEARNING

Algorithms
‘ Model-Free RL } < > } Model-Based RL ‘
¥
{ Value Based 4— { Policy Gradient J { Dyna-Style J

Lm L HEINFORCE L

Figure 3.3: Taxonomy of RL algorithms employed.

In addition, two more methods have been investigated within the family
of model-based optimization algorithms. They are the Gradient Method
and the Iterative Linear Quadratic Regulator, which are applied to a model
provided by a single neural network properly trained over real-data.
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3.2 Model-Free Reinforcement Learning

Since model-free methods do not have any knowledge of the environment,
they just try actions and observe the results, following a trial-and-error ap-
proach to reach the optimal policy. This means that the agent learns through
direct interaction with the environment using the state/action values or the
policy. These simple quantities can achieve the same optimal behavior with-
out considering a model. Indeed, given a policy, a state has a value defined
in terms of future utility that is expected to accrue starting from that state.
The efficiency of such methods is in general worse than in model-based tech-
niques. This is due to the combination of the new information recorded
from the environment with the previous estimates that could be wrong or
non sufficiently accurate.

The two main approaches to represent and train the agent with MFRL
are given by Value Based and Policy Gradient methods.

3.2.1 Value Based Methods

The algorithms belonging to this category rely on finding the optimal policy
by maximizing a value or action-value function. The best-known algorithm
of this family is Q-learning [39], which is introduced in the next section in
its flavour with linear function approximation. An extension of this method
is then provided by the Normalized Advantage Function (NAF) technique
presented in section 3.2.1.2.

3.2.1.1 Q-learning

Among the different approaches to the RL problem, the approzimate dynamic
programming aims at solving the problem

N
maximize J = J\;gnooE Lzofy r(a:k,uk)] ,
in which v € [0, 1] is the discount factor, by iteratively estimating an action-
value function (or Q-function) from data. Here, J takes the form of an
expected discounted cumulative reward. Assuming that there exists a sta-
tionary! optimal policy, the Q-function is defined as the optimum value of
the expected discounted reward when action w is selected being in state x.
Therefore, given the action-value function Q(z,u), the optimal policy is

7 (u]z) = arg max Q(x, u). (3.2.1)

!stationarity is the consequence of the infinite time horizon (N — co) and implies that
the optimal action for a given state x at time k depends only on = and not on k.
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In other words, estimating the Q-function amounts to solving the learn-
ing problem. An attractive and well-known method for estimating the Q-
function is the Q-learning algorithm [39].

In the present work, the Q-learning has been employed in an episodic
framework (meaning that the learning is split into episodes that end when
some terminal conditions are met). The choice of the Q-learning among other
RL approaches is due to its simplicity and the fact that the problem admits
a non-sparse reward which is beneficial for speeding up the learning [40].
During learning, the exploration of the state-action space can be achieved
by employing a so-called e-greedy policy:

argmax @Q(z,u), with probability 1 — e
u=g uweu : (3.2.2)
random u € U, with probability e

in which e defines the probability of a random choice (exploration) while
U={u®,. . . uN} The Qlearning update rule is:

Q(x,u) < Q(z,u) + ad, (3.2.3)

where « is the learning rate and ¢ is the temporal difference error, the differ-
ence between the discounted optimal @ in the state xpy1; and the value
Q(xg,ug) (see Algorithm 1 for more details). Defining the state set as
X C R™ (where n is the dimension of the state vector), since there are
N possible actions, the action-value function can be represented as a collec-
tion of maps Q(z,u™M), ..., Q(z,u™) from X x U to R. In order to work
with a continuous state space, a linear function approximation version of
the Q-learning algorithm has been employed. More precisely, each Q(x, u(j))
has been parametrized as Q(x,ul)) = GJTgo(x), where (z) is a vector of

features and 6; a weight vector associated to the j-th input w9, Thus, the
whole Q(z,u) is specified by the vector of parameters § = [07,...,0%]T, and
the corresponding policy will be identified by my. In particular, Gaussian
Radial Basis Functions (RBFs) have been employed as features; given a set
of centers {¢; € X, i =1....d}, p(x) = [p1(z),...,pq(x)]" are defined.
vi(z) : R" - R is: ,

wi(r) = exp (—M> , (3.2.4)

2
207

where o; determines the decay rate of RBF. The pseudo-code of the Q-
learning with linear function approximation proposed in [41] is reported in
Algorithm 1.

21



CHAPTER 3. OPTIMIZATION METHODS

Algorithm 1 Q-learning algorithm with linear function approximation
Initialize 6 and set «, v
For each episode:

Set k = 0, initialize xq

Until z;,; is terminal:
Choose u9) € U using 7y
Perform uy, = u?)
Observe xp+1 and r(xg, uk)

i < argmax 6] o(Tgi1)
l
& = r(wp, u) + 0 p(xp41) — 0] ()

0+ 0+ adp(xy)
Tp < T4
k+—k+1

3.2.1.2 Normalized Advantage Function

A serious limitation for Q-learning consists in the non-trivial maximization
of a Q-function with respect to continuous actions. Indeed, applications
often require a continuous action space, as in particle accelerators. To over-
come this limitation a Q-learning algorithms for continuous domains, named
Normalized Advantage Function (NAF), is provided in [42]. It consists in a
continuous variant of Q-learning algorithm combined with leaned models to
accelerate the learning by preserving the benefits of model-free RL.

The discrete action space of Q-learning is overcame by assuming a specific
algebraic form of the Q-function, such that Q(z,u) is straightforward to
optimize with respect to the action. The Normalized Advantage Function
algorithm assumes a quadratic dependence of Q on the action u (6 are the
networks parameters to be fitted):

Q (a;,u\GQ) = —% (u— p (z|0")" P (2,07 (u— p(2]0")) + V (2,ul0"),

where V (1:, u|9v) is the value function, i.e. the expected return when start-
ing in state x and following policy m, while P (m, 6r ) is a state-dependent,
positive definite square matrix; u* = p (z]0") corresponds to the action that
maximizes the Q function.

Assuming this specific representation of the action-value function Q(x, u)
of course limits the representational power of the algorithm, but optimization
problems are often convex and thus a quadratic action-value function can be
a reasonable assumption.

The NAF agent is therefore a neural network with an input layer that receives
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the state , while the outputs are p (z,ul6"), P (z,u|6”), and V (2(6"). In
Algorithm 2, the pseudo-code of the NAF from [42] is provided .

Algorithm 2 Continuous Q-learning algorithm with NAF

Randomly initialize normalized @) network @) (x, u|0Q)
Initialize target network Q" with weight 69 + 69
Initialize replay buffer R + 0
For each episode:
Initialize a random process N for action exploration
Receive initial observation state x1 ~ p (z1)
For each time k:
Select action ug = p (zx|6*)
Execute uj and observe ry and x4
Store transition (xg, uk, 7k, Trp4+1) in R
for each iteration i:
Sample a random minibatch of m transitions from R
Set Yi =T + ’)/V/ ($i+1|0Ql)
Update #9 by minimizing the loss:
L=%Y, (yz -Q (xi,UiWQI))
Update the target network: 09 < 79 + (1 — 7)<

3.2.2 Policy Gradient Methods

Policy Gradient (PG) methods are an alternative to value-based methods.
The key concept behind PG is to define a parametrized policy mg(ug|zx), and
to produce the highest return directly optimizing policy parameters following
the policy gradient ascent. The approaches belonging to this category present
several advantages: (i) they guarantee the convergence to a global or local
(in the worst case) optimum; (ii) they are able to manage problems with a
continuous and high dimensional action space; and moreover (iii) they can
learn stochastic policies, i.e., policies able to output a probability distribution
over actions given a particular state of the environment. Such an approach
avoids relying on the computation of the value or action-value function for
solving the optimization process.

The method here investigated is the Natural Policy Gradient (NPG)
version of the REINFORCE algorithm, introduced in the following section.
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3.2.2.1 Natural Policy Gradient REINFORCE

Given a policy 7(u|z,6) parametrized by a vector 6, Policy Gradient (PG)
methods [37] aim at finding an optimal #* which ensures to

maximize E [R(§)], (3.2.5)

in which & = (x0,u0,21,u1,...,27-1,ur—1,27) IS a state-input trajectory
T-1
obtained by following a particular 7, and R(§) = > r(zk, uk); (vg,ux) € €

is the corresponding cumulative reward. The trajectory £ can be thought of
as a random variable having a probability distribution P(£|0). REINFORCE
algorithm [43]| has been employed since it aims at finding the optimal 6* for
P(&]0), solution of the optimization problem (3.2.5), by updating 6 along
gradient of the objective function. More precisely, a stochastic gradient
ascent is performed:

0« 0+ aR(&)Vylog P(£|6), (3.2.6)

where a € [0, 1] is the learning rate.

Since P(£|0) = p(xo) [] m(ug|zr, O)p(wpi1]|zr, ug), where p(Try1|zr, ug) is
k=0

the transition probabilit_y from xj, to 41 when the action wy is applied, the
update rule (3.2.6) becomes:

T-1
0+ 0+O{ZT($Z',UZ')V9 log 7(ui|z;, 0). (3.2.7)
=0

Such an update is performed every time a path £ is collected. In order to
reduce the variance of the gradient estimates, typical of the PG approaches
[44], a NPG version [45] of the REINFORCE algorithm has been employed, in
which a linear transformation of the gradient is adopted by using the inverse
Fisher information matrix F~1(6). The pseudo code of the REINFORCE is
reported in Algorithm 3.

Algorithm 3 Natural Policy Gradient REINFORCE

Set 8 = 0 and set «

While True:
Obtain & = (xg, ug, X1, U1, ..., Tp—1,ur—1, 1) applying m(u|z, )
Observe r(xy, uy) for each (zg,uy) € £

T—1
0« 0+ aFil(H) Z T'(.’L'k, uk‘)ve 10g7—r(”k|xk7 9)
k=0
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3.3 Model-Based Reinforcement Learning

In contrast with model-free reinforcement learning, which aims to maximize
the cumulative reward by defining the optimal policy, model-based reinforce-
ment learning methods rely on planning the control through the dynamics
model. A nice overview of this category is provided in [46]. Although model-
based approaches are more sample-efficient than model-free, their effective-
ness is usually reduced by model-bias. Since the MBRL algorithm builds
an artificial model of the system and uses it to optimize policy, if the model
does not fit the real environment (model-bias) then the policy fails in the real
application. However, this problem has been recently mitigated by charac-
terizing the uncertainty of the learned models through probabilistic models,
and ways to compute the epistemic uncertainty such as variational inference,
Markov Chain Monte Carlo [47], Drop out [48], and ensemble techniques [49].
Choosing for example a model-ensemble, model-free algorithms can be used
within model-based approaches improving the sample-efficiency [50]. The
present study will focus on a particular algorithm that belongs to the Dyna-
style family which is introduced in the next section.

3.3.1 Dyna-Style Methods

The idea behind Dyna-style planning [51-53| is to perform model-free re-
inforcement learning algorithms without needing to interact with the real
world. Such methods use the experience of the real system to build a model
on which the policy is improved. Model and policy are the key points of this
approach, which schematic representation proposed by [17,54] is shown in
Figure 3.4 where the left part (red) presents a generic Dyna-Style approach
while the right part (green) is a solution to avoid model bias using a model-
ensemble. Following the current policy, data are collected and used to update
the model of the system dynamics on which then the agent optimizes the
policy. The training iterates between (i) improving the model, (ii) collecting
more data, and (iii) optimizing the policy by interacting with the updated
model. Once the convergence is reached, the optimal policy should be able
to solve the real problem. Reducing the number of iterations with the tar-
get system, this simple procedure provides a sample efficient approach. The
Dyna-style algorithm is introduced in the next section.

3.3.1.1 Anchored Ensemble Dyna

The Anchored Ensemble Dyna (AE-Dyna) is a novel custom way to imple-
ment the Dyna-style approach developed at the University of Salzburg [17,
54]. It focuses on capturing the uncertainties of both the model and the
data [55]. The former, epistemic, is answered by Bayesian statistics while
the latter, aleatoric, by probabilistic models. Two are the main characters
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Figure 3.4: Dyna-style schematic approach.

of this approach: an ensemble of models whose purpose is to model the sys-
tem dynamics combating at the same time the model-bias, and the policy
optimizer, i.e. a model-free reinforcement learning algorithm to apply on the
model as schematized in Figure 3.4.

By focusing on the model ensemble, it indicates a set of M dynamics
models fl, .., far that have been trained with the same data from the target
environment. All of them are trained through the application of standard
supervised learning, and the only differences between the models are due to
the prior (defined by initial weights), and the batches order. More details
can be found in [17,54]. Once the models have been set up, a MFRL algo-
rithm, such as Trust-Region Policy Optimizer (TRPO) [56], Proximal Policy
Optimization (PPO) [57], and Soft Actor Critic (SAC) [58], can be easily
used to interact with the models in order to improve the policy as much
as possible. When it no longer improves, new data are collected from the
target system to refine the models. In conclusion, the fundamental concepts
of AE-Dyna are Policy Optimization and Policy Validation.

Policy Optimization The models define the trajectories used by the
MFRL algorithm to estimate the gradient required for the optimization of
the policy. To avoid overfitting on a wrong model, at each episode a model
is randomly selected out of the ensemble to predict the following state from
the current state and action. Following this procedure, more stable learning
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is achieved.

Policy Validation After a fixed number of training steps, the policy is
tested on each model individually for a certain number of episodes. If there
is no improvement, on at least 70% of the models, more data is collected to
improve the model using the latest policy.

Algorithm 4 Anchored Ensemble Dyna

Select the MFRL agent

Initialize a policy mg and all models fl, fg, - fM.
Initialize an empty dataset D.

repeat

Collect samples from the real system f using my and add them to D.

Train all models using D.

repeat > Optimize 7wy using all models.
Collect fictitious samples from { fl}f\i | using mg.
Update the policy using the MFRL agent on the fictitious samples.
Estimate the performances 7(0;4) for i = 1,..., M.

until the performances stop improving.

until the policy performs well in real environment f.

3.4 Standard Methods for Model-Based Optimiza-
tion

Commonly, if the analytical model is available, standard techniques are pre-
ferred for their efficiency and easy adjustment. However, it is not always
possible to have such a model of the system, especially if they are complex
and affected by noise. The identification of these systems could be easily
done using a proper neural network trained on real data. This procedure
provides a virtual model on which the algorithms can make their calculation
and find the best control action to apply to the real system.

The biggest limitation of this approach is that the identified system is
static and it is not able to follow any evolution of the system that occurred
after the data collection. Nevertheless, if the dynamical system to optimize
can be supposed constant for a certain amount of time, in that range the
optimization based on the identified model can produce good results.

The methods applied to the identified model, i.e. Gradient Ascent and
Iterative Linear Quadratic Regulator, are introduced in the following.
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3.4.1 Gradient Ascent

Gradient methods are well-known optimization techniques. They consist of
first-order iterative algorithms whose main target is to find a local minimum
or maximum. The main elements required by these techniques are a start-
ing state x € R", a function to optimize F(z), and a step size ( € RT.
The desired extremal point is achieved thanks to the direction provided by
the gradient of the function to optimize VF(z). If the extremal point is
researched by following the direction provided by the gradient, ¢ - VF(x),
a local maximum will be reached while moving in the opposite direction,
—( - VF(z), a local minimum will be found. In the first case, the method is
called Gradient Ascent (GA), in the second Gradient Descent (GD).

In order to get a model on which apply the gradient ascent algorithm,
the function which returns the performance y of the system

y = F(x)

is modelized by a neural network a () that returns a prediction of the per-
formance . In such a way, the gradient can be calculated on the virtual
model and the control action applied to the target system as proposed in
Algorithm 5.

Algorithm 5 Gradient Ascent on Neural Network

~

Initialize model F(x)
Set (, initialize z¢ and get yo = F'(z9) Set k =0
Until y is terminal:

. _VE(zy)
IVF(z)ll2
Set uy, to the real system

Get new state zj41 and new intensity y = F'(zk41) from the real system

Calculate up = ¢

3.4.2 TIterative Linear Quadratic Regulator

Outside the RL family, the last method investigated is the Iterative Lin-
ear Quadratic Regulator (iLQR) [59] which calculates an optimal trajectory
from the initial to the target state by optimizing a cost function. In par-
ticular, iLQR uses an iterative linearization of the non-linear system around
a nominal trajectory and computes a locally optimal feedback control law
via a modified Linear Quadratic Regulator (LQR) technique. Furthermore,
by refining iteratively the trajectory, iLQR will eventually converge to the
optimal solution.

Discrete-time finite-horizon iLQR optimizes an objective function Jy with
respect to affine state-transition dynamics from an initial state xg. Defining
the state variable z; € R™, and the control u; € R™, the dynamical system
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1S
Trg1 = f(or, ur)

while the cost function in the quadratic form is

N-1
1 N N 1
Jo = 3 (xny —x )TQf (xy —2") + 3 kzo (w{@xk+u£Ruk)

where xy describes the final state, and x* is the given target. Matrices @
and @) are the state cost-weighting matrices positive semi-definite while the
control matrix R is positive definite.

Once defined the temporal horizon, N, the algorithm requires two sequences:
a nominal control sequence ug that is a set of N control actions wug, and a
nominal trajectory xs which is obtained by applying the actions up € us
to the dynamical system initialized at xy. At each iteration, the non-linear
system is linearized around zp, up, and the modified LQR problem solved.
The final result of the iteration is an improved control sequence. A more
accurate description of the iLQR is provided in [59].

If the system dynamics is unknown, it could be identified by sampling
the system to train a neural network. This procedure creates a virtual model
f(xk,uk), able to overcome the absence of an analytical model f (x,uy).
The system dynamics is modeled as

A~

Tp1 = f (2, up)

where 1 is the next state predicted by the neural network.

At iteration ending, the prediction of the control sequence 4, is returned
and the first action 4y = s [0] applied to the real environment. Therefore,
iLQR can optimize real systems without knowing their analytical model but
just considering a virtual model to define the control actions to apply. The
pseudo-code of this approach is presented in Algorithm 6.

Algorithm 6 Iterative Linear Quadratic Regulator on Neural Network

Initialize model f (zy, uy)
Set @, Qf, R and Jy
Initialize g and ug
Set k=0
Until xp; is terminal:
iy < modified LQR on f(:ck,uk) and Jy
Select Uy, = 5[0
Apply 4y to real system
Get new state zx11
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Chapter 4

Implementation, Results and
Discussion

The optimization methods described in the previous chapters have been im-
plemented and applied on FERMI to control the trajectory of the external
optical source, i.e. the seed laser, in the modulator. In particular, two
different problems have been addressed:

e The attainment of an optimal working point, starting from random
initial conditions.

e The recovery of the optimal working point when some drifts, or working
conditions changes, occur.

The former has been faced by all the algorithms previously introduced except
the REINFORCE method that has been applied on the latter. In the present
chapter, the experimental protocols are described and the results reported
are discussed.

In the optical systems considered, the state x is a 4-dimensional vector
that provides the current-voltage values applied to each piezo-motor! (two
values for the first mirror and two values for the second mirror). The input u
is also a 4 dimensional vector; denoting the component index as a superscript,
the update rule is:

x,@_l = x,(f) +u§f), 1=1,...,4,

i.e., the input is the incremental variation of the state itself.
Moreover, the state z can only assume values that satisfy the physical con-
straints of the piezo-motors [30]:

rmiN < ¢ < ZMAX, (4.0.1)

'the dynamics of the piezo-motors has been neglected, being their transients much
shorter than the time between shots.
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hence, for each state x of both systems, only those inputs u for which the
component-wise inequality (4.0.1) is not violated are allowed.

It must be noticed that in the iLQR algorithm the state has been differ-
ently defined, while the control action form has remained the same. Further
information is provided in Section 4.1.5 where its implementation and results
are presented.

In the following, when referring to the intensity of the EOS, the product
of the two intensities detected in the ROIs when the laser hits both ROIs
is intended; by FEL intensity, the intensity measured by the Iy monitor is
meant. Finally, for both systems, the target intensity (computed as explained
below) is denoted by Ir.

4.1 Optimal Working Point Attainment Problem

The problem of defining a policy, able to lead the plant to an optimal working
point starting from random initial conditions, requires to split the experi-
ments in two phases: (i) a training, which allows the controller to learn a
proper policy, and (ii) a test (in the following also called verification), to
validate the ability of the learned policy to properly behave, possibly in
conditions not experienced during training.

At the beginning of the training, the target value It is selected. It
remains the same for all the training episodes. At each time-step k, the
input provided by the agent is applied, and the new intensity Ip(zky1) is
compared with the target (I7). The episode ends in two cases:

e when the detected intensity in the new state Ip(zgy1) is greater than
or equal to a certain percentage pr of the target (1(1)—0 -prlr);

e when the maximum number of allowed time-steps is reached.

When the first statement occurs, the goal is achieved.

At the end of each episode, a new one begins from a new initial state, ran-
domly selected, until the maximum number of episodes is reached. Then, a
test (with random initial states) is carried out for the same target conditions
of the training.

The same procedure is followed for the EOS system, with the only dif-
ference that at the beginning of the training the ROIs are selected, and
therefore the target value Ip. Both values will be kept constant for all the
episodes.

4.1.1 Q-Learning

The Q-learning with linear function approximation approach has been em-
ployed for both physical systems, precisely the EOS, and FERMI. The Q-
learning with linear function approximation is a well-known and rather sim-
ple RL technique, and for that reason has been chosen for the first attempt
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to apply RL to the considered problem. In particular, the implementation of
the algorithm foresees a discrete action space, thus the module of each i-th
component of u is set equal to a fixed value.

The study concerning this algorithm and the results obtained has been
already presented in [14,15].

Q-learning on EOS

The training of the EOS alignment system consists of 300 episodes. The
number of episodes has been chosen after preliminary experiments on a EOS
device simulator. However, based on the results obtained on the real device,
the number of episodes can be actually reduced (see Fig. 4.1).

During the training procedure the values of € (exploration) of (3.2.2) and «
(learning rate) of (3.2.3), decay according to the following rules [60,61]:

No+1 1

—a e e ————;
aTa Ny + #episode’ ‘ #episode’

(4.1.1)

where the Ny value is set empirically. In addition, the reward is shaped
according to [40]:

Ip(wpq1) — Ip(wp)
Ir ’

r(zk,ug) =7+ k- Trs (4.1.2)
where 7 is taken equal to 1 if the target is reached, 0 otherwise; the values of
vrs > 0 and k > 0 are set empirically. The specific design of (4.1.2) allows
to reward the agent in correspondence of state-action pairs that lead to a
sufficiently increased detected intensity ~,sIp(zk+1) > Ip(xk) (r(xg, ug) >
0) and to penalize it otherwise (r(xg,ur) < 0). After the training, the test
phase starts with a fixed € = 0.05 - to minimize the possibility of overfitting
during evaluation as in [62] - and o = 0. Training and test have been repeated
10 times (i.e. 10 different runs have been performed) and the collected results
are reported in terms of the average duration of each episode. The parameter
values employed during experiments are reported in Table 4.1; they result
from offline experiments on a simulator of the EOS system.
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Table 4.1: Parameters used in EOS Q-learning.

Parameter Training Test
number of episodes 300 100
max number of steps 10000 10000

pr 95% 92.5%

ORpp 0.0075 0.0075

initial € 1 0.05

initial learning rate « 0.1 -
Ny in learning rate decay 20 -
discount factor 0.99 -
Vs 0.99 -
k factor 1 -

2,000 T T T T T T
P —— avg number of time-steps
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1,500 | |
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avg # time-steps
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# episode

Figure 4.1: Average number of time-steps for each episode during the 10 runs
in training performed on the EOS system. The average number of time-steps
required in the first 10 episodes is highlighted in the enlarged portion.
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Figure 4.2: Average number of time-steps for each episode during the 10 runs
in test performed on the EOS system.

The average number of time-steps per episode for the whole training
phase is reported in Figure 4.1. The steep decrease of the average number
of time-steps shows that a few episodes are sufficient to get a performance
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close to the one obtained after a whole training phase. Indeed, thanks to
the reward shaping (4.1.2), the Q-function is updated at each step of each
episode instead of just at the end of the episode (see Section 4.3 for further
details). The average number of time-steps per episode during the test phase
is visible in Figure 4.2 and is consistent with the training results.

Q-Learning on FEL

The experiment carried out on the FEL system consists of a training of
300 episodes and a test of 50 episodes. The chosen target value Ip is kept
constant throughout the whole training and test. At the beginning of each
episode, a random initialization is applied. Each episode ends when the
same conditions defined in Section 4.1.1 occur. The € and the a values decay
according to (4.1.1), and the reward is shaped in the same way of the EOS
case. The parameter values are reported in Table 4.2.

Table 4.2: Parameters used in FERMI FEL Q-learning.

Parameter Training Test
number of episodes 300 50
max number of steps 10000 10000

pr 90.0% 90.0%

ORpp 0.0075 0.0075

initial € 1 0.05

initial learning rate « 0.1 -
Ny in learning rate decay 20 -
discount factor -y 0.99 -
Yrs 0.99 -
k factor 1 -

The results are reported in Figure 4.3 and Figure 4.4, for training and
test respectively. It can be observed that the overall behaviors, in training
and test, resemble those in Figure 4.1 and Figure 4.2.
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Figure 4.3: Number of time-steps for each episode during a single run of
training performed on the FERMI FEL system. The number of time-steps
required in the first 10 episodes is highlighted in the enlarged portion.
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Figure 4.4: Number of time-steps for each episode during a single run of test
performed on the FERMI FEL system.

4.1.2 NAF

At CERN the NAF algorithm has been empowered by the Prioritized Expe-
rience Replay (PER) technique for prioritizing the selection probability on
data revealing a larger temporal difference error [63]. It leads to a better
sample efficiency and has been successfully investigated (additional details
available in section 5.2). In particular, the PER-NAF implementation is
available in [64]. Following the good results presented in [12], the NAF algo-
rithm has been applied also on FERMI FEL at Elettra Sincrotrone Trieste.
In the collaboration with the University of Salzburg, a novel NAF imple-
mentation, namely NAF2 [17,65], has been applied to FERMI. Specifically,
NAF?2 uses the double estimator method to overcome the overestimations of
action values. A comparison between the results collected using both NAF
and NAF2 methods to control the seed laser alignment at FERMI is now
provided.

Maintaining the definition of state and action previously provided, the
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reward signal has been defined as

_IT—ID (ZL‘k+1)
It

r(zg, uk) = (4.1.3)
in order to have a negative reward the more the performance is far from
its target. Anyhow, positive values can be achieved near the target; this is
due to the inherent noise of the system. Furthermore, system performance
is defined by normalizing the detected intensity with respect to the target
intensity; this means that It = 1 always. Ip is kept constant for both
training and test phases.

Similarly to Q-learning, both implementations consist of a training phase
of 100 episodes and 50 episodes of verification. As for the parameters listed
in Table 4.3, also the length of these two phases has been defined out of
tests. The algorithm as used on FERMI can be found in [65].

Table 4.3: NAF and NAF2 parameters used on FERMI.

Parameter Training Test

pT 95% 0.95%
number of episodes 150 50
max number of steps 10 10
model hidden layers 2 2

learning rate 0.001 0.001

Averaging the results collected in the two runs for each implementation,
the following figures have been obtained. The average number of steps per
episode is shown in Figure 4.5, whose paths are quite similar showing a steep
decrease in the first 20 episodes, while in the following ones they are quite
overlapped. In terms of sample efficiency, the NAF2 (solid lines) overcomes
the NAF (dashed lines) as presented in the enlargement of the figure. The
same information is highlighted in Figure 4.6 where the cumulative number
of steps averaged on both runs for each technique is reported.

In verification the trends are very similar, requiring a comparable amount
of time-steps to reach the goal. For both implementations, the average num-
ber of time-steps per verification is depicted in Figure 4.7, while the initial
(blue) and final (green) intensities are presented in Figure 4.8 for NAF and
Figure 4.9 for NAF2. In these two last figures, the intensities are compared
to the dashed red line that represents the target intensity.

36



CHAPTER 4. IMPLEMENTATION, RESULTS AND DISCUSSION

200 T T T T

T
=== naf - avg number of time-steps
—— naf2 - avg number of time-steps

,_

@

S
T T
S

I

%
& )
5 4 %
7 ¢
g i E
E i 1 = 10 1
'S A °c
@ 50 iy I “ 4k
5 W\ ¢ =0
< 5 0 “ i Z 50 i
0 L - .
5 10 15 20~
# episode AAVAY A 2 P o,
30 40 50 60 70 80 90 100
# episode

Figure 4.5: Average number of time-steps for each episode during the 2 runs
of training performed on the FERMI FEL system. The number of time-steps
required in the first 20 episodes is highlighted in the enlarged portion.
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Figure 4.6: Cumulative number of time-steps averaged on both the 2 runs
of training performed on FERMI FEL system. In terms of sample efficiency
NAF2 overcomes NAF requiring less interactions with the real system.
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Figure 4.7: Average number of time-steps for each episode during the 2 runs
in test performed on the FERMI FEL system.
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Figure 4.8: Average intensity during 50 episodes during 2 runs of NAF on

FERMI FEL. For each episode, the blue line represents the initial intensity,

while the green line represents the final intensity. The target intensity is the
constant dashed red line.
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Figure 4.9: Average intensity during 50 episodes during 2 runs of NAF2 on
FERMI FEL. For each episode, the blue line represents the initial intensity,

while the green line represents the final intensity. The target intensity is the
constant dashed red line.
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4.1.3 AE-Dyna

Moving to model-based reinforcement learning techniques, the Dyna-style
category has been investigated introducing a novel AE-Dyna approach, two
variants of which have been implemented and deployed on FERMI in the col-
laboration with the University of Salzburg. The approach takes its origins
from the Model-Ensemble Trust-Region Policy Optimizer (ME-TRPO) algo-
rithm presented in [50] as a method belonging to Dyna-style category. Since
the ME-TRPO is reported to be sensitive to aleatoric uncertainties [46], the
proposed AE-Dyna improves it considering both epistemic and aleatoric un-
certainties. In particular, two variants of this approach have been studied,
implemented, and finally tested on FERMI. The two methods mainly differ
for the model-free reinforcement learning algorithm used to optimize the pol-
icy interacting off-line with the model ensemble; indeed, the first technique
searches the optimal policy applying the TRPO while the second one, the
SAC. Since the general description of AE-Dyna has been previously provided
in section 3.3.1, the following descriptions focus on the main aspects of the
implementation as well as an overview of the results collected on FERMI.

4.1.3.1 AE-Dyna with TRPO

The AE-Dyna approach based on TRPO algorithm has been the first MBRL
method to be applied to maximize FERMI performance. The TRPO is a
model-free on-policy technique not suitable for solving online the proposed
problem since it requires a long time and many interactions with the real
system to find the optimal policy. Anyhow, its integration in the AE-Dyna
structure creates a sample-efficient model-based method able to solve com-
plex problems in just a few interactions with the real environment. In search-
ing for the optimal policy the agent is refined every time new data are col-
lected. The crucial settings of this approach are listed in Table 4.4. The
code as used on FERMI tests can be found in [65].

Table 4.4: AE-Dyna with TRPO parameters used on FERMI.

Parameter Training Test

pT 95% 0.95%
max number of steps 10 10
initial random steps 50 -
data-collection steps 25 -
total steps 450 -
number of models 3 3
model hidden layers 2 2

learning rate 0.001 0.001
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The main data from training are depicted in Figure 4.10 with respect to
the simulated epochs that are reported on the x-axis. The solid blue line
presents the mean reward obtained by testing the agent on the individual
models, while its standard deviation is defined by the light blue area. The
number of data collected from the real environment, i.e. the green line, is
shown in the same plot. It starts from the random initial collection of 50
samples and increases by 25 samples each time the Dyna approach needs to
refine the models. The total number of data required in the training is 450.

The policy calculated during the training has been then applied for
50 episodes of verification in which the desired intensity has been always
reached. The number of steps per episode required during the test phase
is shown in Figure 4.11. Furthermore, the initial (blue) and final (green)
intensities for each verification episode are presented in Figure 4.12. This
plot highlights how starting also from low intensity the final performance
overcomes the target intensity (dashed red).
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Figure 4.10: Number of data-points (green) and performance (blue) of the
controller on the models which is used as a criteria to decide if more data
are required to improve the models.
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Figure 4.11: Number of time-steps for each episode during the verification
performed on the FERMI system using AE-Dyna with TRPO.
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Figure 4.12: Intensity during 50 episodes of AE-Dyna with TRPO on FERMI
FEL. For each episode, the blue line represents the initial intensity, while the
green line represents the final intensity. The target intensity is the constant
dashed red line.

4.1.3.2 AE-Dyna with SAC

The second variant of the AE-Dyna approach uses the SAC to find the
optimal policy. The SAC is a model-free actor-critic method that improves
the exploration managing a term associated to the entropy of the taken
actions [58]. Differently from previous techniques, in this implementation the
agent is re-trained from scratch every time new data are collected. During the
experiments carried out on FERMI, the main parameters of the algorithm
have been set as reported in Table 4.4. The code used on the FERMI tests
is available in [65].

Table 4.5: AE-Dyna with SAC parameters used on FERMI.

Parameter Training Test

pr 0.95% 0.95%
max number of steps 25 10
initial random steps 200 -
total steps 500 -
number of models 3 3
model hidden layers 2 2

learning rate 0.001 0.001

The training information is collected in Figure 4.13. The light blue band
shows the standard deviation of the reward provided by the model-ensemble
while the blue line presents its mean value collected by testing offline the
policy. Moreover, it drops down when new data are acquired. The data
points collected during training are shown by the green line that starting
from 200 initial samples ends at 500 samples.

The time-steps required in the 50 episodes of verification are presented in
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Figure 4.14. While the initial (blue), final (green), and target (dashed red)
intensities are depicted in Figure 4.15. The AE-Dyna has been always able
to reach a better performance than the desired intensity in about 5 steps.
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Figure 4.13: Number of data-points (green) and performance (blue) of the
controller on the models which is used as a criteria to decide if more data
are required to improve the models.
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Figure 4.14: Number of time-steps for each episode during the verification
performed on the FERMI system using AE-Dyna with SAC.
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Figure 4.15: Intensity during 50 episodes of AE-Dyna with SAC on FERMI
FEL. For each episode, the blue line represents the initial intensity, while the

green line represents the final intensity. The target intensity is the constant
dashed red line.

4.1.4 Gradient Ascent

Outside reinforcement learning, classical optimization is commonly based
on gradient calculation. Indeed, the most well-known approach to finding
the local minimum or maximum of a function is the gradient method. In
particular, maximization is carried out by Gradient Ascent, the algorithm
described in Section 3.4.1. Indeed, it searches the extremal point moving
along (VF (x) where F (x) is the function to optimize. In the proposed
problem, the objective function returns Ip, the intensity corresponding to
a certain state x, but it is not analytically known. To overcome this in-
convenience, the analytical form of F'(z) has been replaced with a neural
network. This is a simple way to generate a model on which to apply the
Gradient Ascent method reducing the number of interactions with the real
system. Indeed, using for training M data-points collected directly from the
real system, the model returns the predicted intensity Ip given the state x:

p=F(x)~F(z)=1Ip.

In the application here proposed, a dataset D of M = 1024 samples has
been collected from FERMI through several episodes following a random
policy to select the actions. A dense (fully-connected) neural network of 3
hidden layers of 10, 16, and 10 neurons each has been used to identify the
relation between intensity and state. Once its training is ended by early
stopping to avoid overfitting, the real system is randomly initialized to state
xo. Calculating the gradient of the model, a control action is returned and
applied to correct the laser trajectory. Such control action is defined by

VF(zr)

= Y R )
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where the step-size ( is 0.1.
The entire procedure is repeated for 50 episodes which end when the maxi-
mum number of steps, 20, or an Ip > 0.95 - I is reached.

Figure 4.16 reports the initial and final intensities, together with the
target, during the execution of the Gradient Ascent algorithm on FERMI.
During the verification, 49 episodes out of 50 end by reaching the desired
intensity. In Figure 4.17 the number of time-steps per episode for the whole
run is reported.
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Figure 4.16: Intensity during 50 episodes of Gradient Ascent on FERMI FEL.
For each episode, the blue line represents the initial intensity, while the green
line represents the final intensity. The target intensity is the constant dashed
red line.
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Figure 4.17: Number of time-steps for each episode during a single run of
test performed on the FERMI FEL system.

4.1.5 iLQR

The second model-based method outside the RL family proposed in this
study is the iterative linear quadratic regulator, or iLQR. As described in Sec-
tion 3.4.2, the absence of an analytical model of the system has been solved
by identifying its dynamics through a neural network. This neural network
should predict the next state given the current state and action. However,

44



CHAPTER 4. IMPLEMENTATION, RESULTS AND DISCUSSION

an extended state has been considered for iLQR, indeed, the state x and its
corresponding intensity Ip are appended into the new state & = [z, Ip]. By
adding Ip in the state, the LQR cost function receives performance infor-
mation of the system. In order to lead the FEL intensity as close as possible
to the desired one, a control law is therefore developed. Accordingly to this
modification, the system dynamics considered is given by

A~

Tpg1 = f(Tp, up).

The model inputs are current state Zj; and action uy, while the output is the
new state Iy = |:.’1:k+1,ﬁ1 (xk+1)] where x,11 = z + ug, and F (g, ug) is
the same network of Gradient Ascent. To train it, a dataset D of M = 1024
data-points has been recorded from the real environment.

Focussing on the parameters of the algorithm, the most important ones
are the matrices of the quadratic cost function. Their values empirically
defined are Q = Q5 = diag([1,1,1,1,1000]) and R = diag([1,1,1,1]) respec-
tively. Another important element in the cost function is the target state x*,
a role that has been played initially by the state Z; with higher Ip in dataset
D. During operation, * has been updated if during the episode a state with
a better Ip has been encountered. In this application, the prediction time
has been set equal to 3.

The initial and final intensities of each episode are shown in Figure 4.18,
respectively in solid blue and green. The target value (pr = 95%) is de-
picted by the dashed red line. In all 50 episodes, the algorithm increased the
intensity above the target. The number of steps required to reach the goal
is provided in Figure 4.19.
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Figure 4.18: Intensity during 50 episodes of iLQR on FERMI FEL. For each
episode, the blue line represents the initial intensity, while the green line
represents the final intensity. The target intensity is the constant dashed red
line.
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Figure 4.19: Number of time-steps for each episode during a single run of
test performed on the FERMI FEL system.

4.2 Recovery of Optimal Working Point

In particle accelerators facilities, the working conditions are constantly sub-
ject to fluctuations. Indeed, thermal drifts or wavelength variations re-
quested by users are common and result in a displacement of the optimal
working point. Therefore, a controller must be able to quickly and properly
adapt its policy to such drifts. For the purpose, the NPG REINFORCE
algorithm (Section 3.2.2.1) has been adopted for its ability to work with a
continuous action space and, thus, to allow for precise fine tuning. Here,
the learning is applied as an adaptive mechanism, to face the machine drifts.
Thus, in this case, a test phase would be meaningless, since adaptation occurs
during learning only.

Similarly to Section 4.1, the state is a four-dimensional vector of the
voltage values applied to each piezo-motor (two values for the first mirror
and two values for the second mirror), and the action is composed of four
references, one for each piezo-motor actuators, from which the new state
depends.

4.2.1 NPG REINFORCE

The agent consists of four independent parametrized policies, one for each
element of the action vector (u,(;), i € {1,2,3,4}). In particular, assuming

that the action choice u; is uncorrelated with the current state xy:
(uk|zy; 0) = mi(ugl6).
Given the bounded nature of the state and action spaces, each policy has
been shaped according to the Von Mises distribution:
Wicos(uf) —pu;)
e K2 k 1

mi(u)|6;) = C2nTo(vy)

s.t., i € {1,2,3,4},

46



CHAPTER 4. IMPLEMENTATION, RESULTS AND DISCUSSION

where ¢; = e? is a concentration measure, wi is the mean, Zy(1);) is the
modified Bessel function of the first kind [66] and 6; = [u;, ¢;] is the i-th
policy parameter vector, updated at each step of the procedure.

At each training step k, when the system is in state xj, the agent performs
an action uyg, according to the current policy, thus leading the system in a
new state xxy1. Then, the intensity Ip (xp41) is detected and the reward is
computed according to:

Ip(xp41)

-1 4.2.1
e, (4.2.1)

T(xk’v Uk) =
where I is the target intensity. In the EOS system, in order to emulate
drifts of the target condition, I is initialized by averaging values collected
at the beginning of the training procedure and then updated, each time that
Ip (zg41) results greater than Iy, according to:

Ip + It + 0-1(ID($k+1) — IT) (422)

In the FEL, however, the system has been initialized in a manually found
optimal setting (including both the state and the I7), and some disturbances
have been manually imposed. The possibility to update the target intensity
is still enabled though.

NPG Reinforce on EOS

The NPG REINFORCE experiment performed on the EOS system consists
of a single training phase, at the beginning of which the EOS system is ran-
domly initialized, as well as the Ip. The learning rate « (3.2.7) is kept con-
stant and equal to 0.1 (empirical setting). Only when the detected intensity
Ip(xpy1) assumes a value greater than Iy, the latter is updated according to
(4.2.2), and the algorithm continues with the new target to be reached. The
procedure is stopped when 6 vectors lead each Von Mises distributions close
enough to Dirac delta functions, after no target update has been performed
for a predefined time. Figure 4.20 shows the detected intensity Ip(zj1)
(blue line), its moving average (green line) and the target intensity I (red
dashed line) during the experiment. In Figure 4.21, the reward (blue line) is
reported along with its moving average (green line) and the target I (red
dashed line). By comparing the two figures, it can be seen that once the tar-
get does not change, the reward approaches zero and the detected intensity
variance shrinks, evidence that the optimal working point is close.
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Figure 4.20: Intensity during a single run of NPG REINFORCE on EOS. The
blue line represents the detected intensity, while the green line is its moving
average obtained with a fixed window size of 50 samples. The dashed red
line represents the target intensity. Until time-step 200 the improvement of
the intensity is appreciable; a further evidence is the update of the target
intensity. In the remaining time-steps, the target intensity exhibits only
small updates.
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Figure 4.21: Reward (blue), moving average of reward (green) with a fixed

window size of 50 samples and target intensity (red, dashed) during a single

run of NPG REINFORCE on EOS. The target intensity increases each time

a reward greater than zero is observed.

NPG Reinforce on FEL

Even in this case the experiment consists of a single training phase, at the
beginning of which, however, the system is set on an optimal working point,
manually found by experts. During the experiment, some misalignment are
forced by manually changing the coarse motors position. The learning rate
of (3.2.7) is kept constant and equal to an empirically set value (a = 0.5).
Figures 4.22 and 4.23 report the detected intensity and the reward, to-
gether with the target, during the execution of the NPG REINFORCE al-
gorithm on the FEL. It can be seen that, contrary to the EOS experiment,
the target intensity is not significantly updated. Indeed, in this case the sys-
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tem is initialized on an optimal working point. Two drift events took place,
the first around time-step 120, and the second around time-step 210. Both
plots, (detected intensity and reward), clearly show the capability to recover
an optimal working point.

intensity [a.u.]

intensity [a.u.]

N n = TTee-oll I I I I
— Intensity 120 140 160 180 200
# time-step

=== target intensity

2‘0 4b 6‘0 8‘0 160 ]‘20 14‘0 1(‘50 1é0 260 2‘20 24‘0 2&0 QéO 360 3‘20 34‘0

# time-step
Figure 4.22: Intensity during a single run of NPG REINFORCE on FEL.
The blue line represents the detected intensity while the dashed red line the
target intensity. The target intensity is almost constant during the whole
run. Two perturbations have been manually introduced by moving the coarse
motors. It is possible to appreciate the capability to recover FEL intensity in
both events. The first perturbation and subsequent recovery are highlighted
in the enlarged portion.
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Figure 4.23: Reward (blue) and target intensity (red, dashed) during a single
run of NPG REINFORCE on FEL. The slight increases of target intensity
correspond to positive rewards.
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4.3 Discussion

The results obtained during experiments by applying the proposed algo-
rithms to control the trajectory of a laser beam have been reported. Indeed,
both the problems presented in this chapter have been successfully solved.

The optimal working point attainment problem (section 4.1) has been
addressed initially by Q-learning (3.2.1.1), which has been selected since
it is a well known and rather simple RL technique, the promising results
collected motivated the application of NAF (3.2.1.2) that is the extension
to continuous action space of Q-learning. Moreover, to improve the sample-
efficiency the investigation involved also two MBRL methods, both of which
belong to the AE-Dyna category (3.3.1.1), one based on TRPO the other on
SAC. Finally, two optimization algorithms based on the identification of the
system through a neural network have been deployed, the gradient ascent
and the iLQR (3.4.2).

As for the recovery of the optimal working point (section 4.2) problem, it has
been addressed by just the REINFORCE (3.2.2.1), a policy gradient method
from RL.

Despite the differences between the various algorithms, the same proce-
dure has been followed to deploy and debug them before being applied on
the FERMI FEL. The outcome of these preliminary operations is a runnable
algorithm whose main parameters have been already grossly tuned. To cor-
rectly run the algorithm on the real system, several shifts to optimally tune
the parameters have been always necessary. Furthermore, most of the al-
gorithms here proposed have been investigated, developed, implemented,
tested on a custom simulator, and applied on the FERMI FEL by the au-
thor. However, NAF and AE-Dyna techniques have been developed at the
University of Salzburg, and thanks to the collaboration with this institute it
was possible to successfully test them on the studied system.

All the satisfactory outcomes deserve some further comments that are
here provided.

4.3.1 Outcomes of the Attainment Problem

All the experiments yielded satisfactory results showing that a non-linear
and noisy problem could be solved in a feasible number of time-steps. A
summary of the data points collected to train the RL agent or to identify
the system is reported in table 4.6. The amount of data required by the
RL methods agrees with the considerations introduced in section 3.1.1. In
MFRL, the number of data decreases from about 3100 to 800, while the
MBRL techniques require only about 450-500 samples. In the system iden-
tification required to run gradient ascent and iLQR a fixed number of data
has been used, it is 1024 and further investigations will be carried out to
improve the sample efficiency of these methods. Except for one test episode
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of gradient ascent, all the test episodes have been successful. In terms of
episode length, NAF, NAF2, and iLQR perform similarly, and better than
the others. This information, as well as the intensity reached, is provided in
Table 4.7. However, the experiments have been conducted on different days
and under slightly different conditions.

Usage of the proposed methods in an operational way is attractive and could
replace in the future the current optimization method, which needs the de-
structive screen measurement. Hence online retraining could be done and
valuable time could be saved. Furthermore, additional studies regarding a
long-time performance would be interesting.

Table 4.6: Summary of the number of interactions with the FERMI FEL for
the training/identification phase.

Algorithm Data points
Q-learning 3128
NAF 1074
NAF2 824
AE-Dyna with TRPO 450
AE-Dyna with SAC 500
Gradient Ascent 1024
iLQR 1024

Table 4.7: Performance of the different algorithms in the test phase. At
the time this thesis was written, no data about Q-learning intensity was
available.

Algorithm Episode length Final intensity

(mean) (mean)
Q-learning 11.28 -

NAF 2.56 1.0019
NAF2 2.64 0.9995
AE-Dyna with TRPO 4.46 1.0150
AE-Dyna with SAC 3.28 1.0427
Gradient Ascent 3.82 0.9911
iLQR 2.54 1.0019

Q-Leaning has been applied to face the problem of finding an optimal
working point, starting from a random initialization. The results are re-
ported in Subsection 4.1.1. The enlarged portions reported in Figure 4.1
and Figure 4.3 show that a few episodes are sufficient to drastically reduce
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the number of steps required to reach the goal. In other words, the explo-
ration carried out during the first episodes provides a valuable information
for the estimation of the Q-function and, as a consequence, of an appropriate
policy. Probably the main reason is the effectiveness of the reward shaping
(4.1.2), that allows for obtaining a reward at each time-step, as opposite of
a sparse reward occurring only at the end of the episodes. Such a shaping
seems reasonable for the problem at hand, and is based on the assumption
that the observed intensity change of two subsequent steps is significant for
guiding the learning. On the other hand, during the test phase, some un-
successful trials occurred. Although some further investigation is needed, it
might be due to either (i) the occurrence of unexpected drifts of the tar-
get during the test or (ii) the discrete set of actions employed, consisting of
fixed steps that can prevent reaching the goal, starting from random initial
conditions.

NAF algorithm allowed continuous actions to search more accurately the
optimal setup for the system. Two different implementations, NAF and
NAF2, have been proposed and compared. Both in training and verification,
the number of steps required per episode are quite similar, see Figure 4.5
and 4.7. However, the algorithm with a double network (solid lines) requires
a fewer number of total steps with respect to the usage of a single network
(dashed lines). Similarly to Q-learning, few episodes are required to drasti-
cally reduce the number of steps necessary to reach the goal. In addition,
the graphics depicted in Figure 4.8 and 4.9 confirm the effectiveness of the
method in reaching the desired target.

AE-Dyna approach has been introduced to improve FERMI performance
introducing two variants that produced successful results. Both of them
required a reasonable amount of data in the training phase reducing to 450 for
the TRPO variant, and 500 for the SAC one, the number of interactions with
the real system, and proving that AE-Dyna is a sample-efficient approach,
see Figure 4.10 and 4.13. Furthermore, the reaching of the target intensity
at each verification episode, as shown in Figure 4.12 and 4.15, confirms its
applicability in automatically controlling complex systems with unknown
dynamics slightly better than the NAF.

Gradient Ascent has been able to collect good results despite its simplic-
ity and the absence of an analytical model. Indeed, identifying the system
dynamics through a neural network trained on 1024 data-points it has been
able to reach the target in 49 out of 50 episodes as depicted in Figure 4.16.

iLQR boosted Gradient Ascent. Indeed, with this technique the target has
been always reached as presented in Figure 4.18. Furthermore, the recursive
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calculation of the next action improved its efficiency by reducing the number
of steps per episode necessary to improve FERMI performance. The number
of steps per episode in the test phase is shown in Figure 4.19.

4.3.2 Outcomes of the Recovery Problem

Unlike the previous section, the recovery of the optimal working point prob-
lem has been addressed by only one method. Therefore, it does not allow
any significant comparison.

NPG REINFORCE algorithm has been applied for restoring the opti-
mal working point in case of drifts. The results are reported in Subsection
3.2.2.1. In particular, Figures 4.22 and 4.23 show the response to manual
perturbations of the FEL operating conditions, set initially in an optimal
working point. It is possible to observe how the algorithm quickly replies to
disturbances of environment settings (marked by negative reward spikes), by
learning a policy able to recover the optimal pointing of the laser.
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Chapter 5

Reinforcement Learning at

CERN

Preliminary studies on RL have been carried out at CERN to increase and
stabilize the performance of particle accelerators. Numerical optimization
algorithms are approaches commonly used to reach similar targets. These
algorithms in fact have many advantages such as their availability out of
the box and their adaptability to a wide range of problems in accelerator
operation. However, not all problems in accelerators can be addressed with
similar approaches. In many cases, it is not possible to model the physics as
e.g. the beam dynamics in the low energy regime for the electrons cooling
in Low Energy Ion Ring (LEIR) [67].

Automated and sample-efficient controlling is an elegant solution to opti-
mize complex systems in particle accelerators. The trial-and-error approach
followed by reinforcement learning reduces the steps to a minimum value -
one step in the best case - once the training is done. The sample efficiency of
RL algorithms is described section 3.1.1. Conversely, numerical optimization
needs an exploration phase at each deployment. An additional advantage of
RL is given by learning the underlying dynamics of the problems requiring
just an additional input: state information. Indeed, given a state, the RL
agent applies the action to achieve the maximum reward.

A first preliminary investigation [11] has been carried out on the LEIR
using the Deep Q-Learning (DQN), a reinforcement learning algorithm that
combines Q-Learning with deep neural networks to let RL work for complex,
high-dimensional environments. During the collaboration here described a
model-free RL approach, the NAF, has been applied on AWAKE and Linac4,
now discussed in section 5.2. While subsequent studies concerned a model-
based technique, the TD3 in MBRL-Dyna mode.

Furthermore, outside RL family the iLQR algorithm has been imple-
mented and applied on AWAKE. A summary of the application is provided
in section 5.3.
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5.1 CERN Accelerators Involved in RL Studies

In 2019, as well as for most of 2020, CERN accelerators have been in shut-
down, except AWAKE and Linac 4. Therefore, the RL investigation has
been carried out on these two systems to control the beam trajectory. Both
of them are ideal test cases having a well-defined state x, high dimensional
action/state spaces, and results can be compared with existing algorithms.
The project goal is to correct the trajectory as well as existing methods,
achieving a similar RMS in the fewest interactions with the system, ideally
within one step.

To interact with such systems appropriate OpenAl Gym environments
have been created. In addition, since AWAKE transfer line is modeled in
MAD-X, the response matrix between beam position monitors and correctors
has been used to create a simulated OpenAl Gym environment. The main
purpose of this simulator is to test RL algorithms off-line and define the
hyper-parameters for optimum sample efficiency.

AWAKE is a proton-driven plasma wakefield test facility which trajectory
is controlled with 10 horizontal and 10 vertical steering dipoles according to
the measurements of 10 beam position monitors (BPMs). During the test,
only the horizontal plane has been considered reducing the system to 10
degrees of freedom. Since the state is defined by BPMs and the action
by correctors the action and state spaces have the same dimension. Applied
actions are limited by a maz action value equal to 300 prad, while the reward
signal is calculated as the negative RMS value of the difference trajectory
between measured and reference one. A certain value of the reward is fixed
as the goal of the optimization, this value is —0.2 cm, while the minimum
allowed reward is —1.2 cm. Finally, the maximum episode length is 50 steps.

Linac 4 1is a H~ linear accelerator which trajectory is controlled similarly
to AWAKE. The number of correctors per plane is 16 such as the overall
number of BPMs. Also on this system, only the horizontal plane has been
considered defining state and action spaces to dimension 16, while the cor-
rections, i.e. actions, are limited to 0.5 A. The reward signal is defined as on
AWAKE but the minimum allowed reward is —3 mm and the reward value
to achieve the goal is —1 mm. The maximum number of steps per episode is
15.
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5.2 NAF on AWAKE and Linac 4

The PER-NAF [64], a custom variant of NAF algorithm implemented at
CERN, has been applied on the two systems just described, AWAKE and
Linac 4, to optimize the beam trajectory [12]. In both applications, the agent
starting from scratch learns the system dynamics and using this knowledge it
manages the correctors to optimize the beam trajectory. The algorithm con-
sists of a single neural network with two fully-connected dense hidden layers.
In the following figures, the results collected on both particle accelerators
are shown.

On AWAKE the PER-NAF has been able to understand the system in
few episodes, indeed, Figure 5.1 depicts the number of steps per episode and
it is possible to notice how the algorithm converges after about 25 episodes.
Furthermore, the initial, final, and target RMS are shown in Figure 5.2.
After the first 25 episodes, the target RMS is always reached.

Similar satisfactory results have been collected also on Linac 4. They are
here presented in Figure 5.3 and 5.4. In the former, the time-steps recorded
during the experiments are reported, while the latter proposes the initial,
final, and target RMS that have similar behaviour to the ones recorded on
AWAKE. Also in this system, the convergence is reached in about 25 steps.

After some training the agent corrects any initial steering to below the
target RMS within few steps in both applications. The implementations
used on the AWAKE and Linca 4 tests are available in [64].
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Figure 5.1: Number of time-steps for each episode during a single run of test
performed on AWAKE.
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Figure 5.2: Intensity during 200 episodes of NAF on AWAKE. For each
episode, the blue line represents the initial intensity, while the green line
represents the final intensity. The target intensity is the constant dashed red

line.
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Figure 5.3: Number of time-steps for each episode during a single run of test
performed on Linac 4.
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Figure 5.4: Intensity during 85 episodes of NAF on Linac 4. For each episode,
the blue line represents the initial intensity, while the green line represents
the final intensity. The target intensity is the constant dashed red line.
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5.3 iLQR on AWAKE

During the collaboration with CERN also the iLQR algorithm has been
tested on AWAKE. Similarly to experiments on FERMI, the system dynam-
ics of AWAKE has been modelized with a neural network using real data.
The initial dataset D consisted of 1000 data-points collected by applying
randomly selected actions wug to update the state from zj to xgy1. During
verification, the dataset has been successfully reduced to 200 samples in order
to improve the sample-efficiency of the approach. With this small amount
of data the model f (g, ux) has been trained and the algorithm applied.

To apply iLQR on the AWAKE problem, the matrices of the cost function
have been defined as positive and diagonal. In particular, the non-zero values
of @ and @y have been put to 1000, while the diagonal values of R have been
all set to 1. The prediction time has been imposed on 3.

After the identification of the system, a test of 50 episodes has been
done. In all episodes, the target has been reached in a few steps as shown in
Figure 5.5. Initial (blue) and final (green) RMS are reported in Figure 5.6
where the dashed red line indicates the target RMS of —0.2 mm.
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Figure 5.5: Number of time-steps for each episode during a single run of test
performed on AWAKE.
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Figure 5.6: Intensity during 50 episodes of iLQR on AWAKE. Initial, final,
and target intensity in blue, green, and dashed red respectively.
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5.4 Discussion

Both of the presented experiments are part of a program which aims to in-
troduce advanced control algorithms able to increase the stability and repro-
ducibility of the accelerator operation at the CERN complex. The collected
results prove the effectiveness and sample-efficiency of the two methods. In-
deed, the NAF has been able to successfully face the trajectory steering on
AWAKE as well as on Linac 4. After reaching the convergence it improved
the RMS of both systems above the desired value in about 2 steps. Similar
results have been obtained on AWAKE by the iLQR that identifying the sys-
tem dynamics using 200 data-points reached the target at each verification
episode in a few steps.
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Conclusions

Several approaches to automatically control and improve performance in par-
ticle accelerators have been introduced. In particular, the study focused on
maximizing the outcome of FERMI the seeded free-electron laser at Elet-
tra Sincrotrone Trieste by dealing with the transverse overlap between the
external optical source, i.e. the seed laser, and the electron beam in the
modulator undulator. In this context, two different tasks have been faced,
namely (i) the attainment of the optimal working point and (ii) its recovery
after machine drifts.

The algorithms deployed to face these tasks have been introduced in
Chapter 3 and they mainly belong to the reinforcement learning field. From
the MFRL class, the Q-Learning and its extension to continuous action
space given by Normalized Advantage Function have been successfully ad-
dressed to reach the optimal working point starting from random initializa-
tions. To solve the same problem also an MBRL approach, the Anchored-
Ensemble Dyna, has been proposed. Its results proved the goodness in deal-
ing with problems in the accelerator optimization, capturing the epistemic
and aleatoric uncertainty of model and data. The proposed variants, based
on TRPO and SAC algorithms, build an ensemble of models and use it to
find the optimal policy. To conclude with task (i), two additional tech-
niques outside RL have been applied to FERMI. These are Gradient Ascent
and Iterative Linear Quadratic Regulator, that manage the trajectory align-
ment by identifying the system with a neural network trained on collected
data. Concerning the recovery of performance after machine drift (ii), it
has been addressed by another reinforcement learning algorithm, the non-
episodic NPG REINFORCE. This approach has been successfully applied
to FERMI restoring the radiation intensity after the introduction of some
system perturbations.

In addition, the collaboration with CERN helped to achieve promising
results in the application of RL on the challenging problems in the particle
accelerators field. The teamwork in improving the performance of AWAKE
and Linac 4 allowed the sharing of knowledge and experience on accelerator
controls that led to the successful results presented in Chapter 5.

In conclusion, the work introduced an innovative approach to automat-
ically improve the performance of particle accelerators. The main results
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obtained on FERMI at Elettra Sincrotrone Trieste by applying several RL
algorithms, were shown in this thesis to be able to solve the control problem
in a feasible operational setup. Some important improvements have been
obtained, especially in terms of sample-efficiency reducing the number of in-
teractions required. The most interesting and promising approach is given
by the AE-Dyna that is the first uncertainty aware MBRL algorithm to be
applied in improving particle accelerators performance.

The study here proposed provides a solid starting point from which con-
tinuing the investigation on RL techniques to introduce even more smart
and intelligent approaches in controlling particle accelerators. Extending
the field of application of the proposed methods to different systems and
problems, indeed, is the necessary step to increase the presence of artificial
intelligence in the control rooms of the various facilities involved in particle
physics.
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