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Abstract

The focus of my research activity has been on the processing of cardiovascular
signals in order to be able to use them as a support tool for doctors in their clin-
ical decision making. Although the analysis of these cardiovascular signals has
mainly been based on conventional techniques, involving the punctual estima-
tion of blood pressure and heart rate parameters (such as office measurement or
the single average over 24hrs), it is already well known that the outpatient in-
formation, obtained from the 24hrs ambulatory monitoring, can provide useful
prognostic support. Therefore, in my research activity, I have tried to examine
in detail how the values of the parameters related to blood pressure and heart
rate over 24hrs change and how the relationship between them varies. Fur-
thermore, as it is known that there are numerous cardiovascular risk factors
that can alter the trend of these biological signals, I have performed a detailed
analysis of the effects of each single risk factors on the circadian trend of the
two signals and their relationship. Since, in recent years, new mathematical
approaches have been developed for the construction of clinical decision sup-
port systems applied, in the cardiovascular field, only to the classification of
single heart beats of subjects suffering from different pathologies; I have, in
my research activity, developed decision support systems to identify subjects
with or without cardiovascular diseases. Specifically, the pathologies examined
were ischemic heart (IHD) and dilated cardiomyopathy (DCM).

The previous described problems have been addressed using linear and non-
linear methods of signal processing and applying artificial intelligence algo-
rithms. In particular, the average circadian trends of pressure and heart rate
on different categories of subjects and the relationship between the two car-
diovascular signals over 24hrs were obtained. In addition, the main linear and
non-linear parameters were calculated from the heart rate variability signal
and, finally, two machine learning techniques were developed, Artificial Neural
Network (ANN) and Classification and Regression Tree (CART), applied to
the previous parameters in addition to age, gender and to a specific clinical pa-
rameter obtained in a non-invasive way through echocardiography, in order to
identify different pathologies. The research activity was conducted in collabo-
ration with the Department of Geriatrics and the Department of Cardiology,
Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), Trieste.
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The results showed that the cardiovascular signals over 24hrs show a charac-
teristic linear circadian rhythm divisible into four precise time intervals for the
pressure signal (three intervals for the heart rate) in both normotensive and
hypertensive subjects highlighting the importance of taking into account the
time of day in which the signal is measured. Furthermore, the relationship be-
tween these two signals evaluated over 24hrs could be useful for understanding
the control mechanism of the autonomic nervous system. The examination of
the effects of risk factors on cardiovascular signals (such as smoking, obesity
and dyslipidemia) has shown that each single factor modifies the physiological
signals. The investigation of the influence of age and gender on cardiovascular
signals also highlighted a particular circadian trend, with inversion of the trend
in linear and non-linear parameters of heart rate variability in subjects over
60 years of age and a gender differentiation only during the night. Finally,
the results obtained by developing decision support systems based on machine
learning techniques applied to various combinations of parameters, selected
through principal component analysis, stepwise regression or correlated for
less than 90%, showed that the ANN technique was able to identify normal
subjects and IHD patients with an accuracy of 80% and that the CART algo-
rithm was able to classify DCM patients with an accuracy of 97%. The latter
technique was also able to distinguish these two pathologies from each other
and from normal subjects with an accuracy of 81%.

The results of my PhD activity highlight the importance of circadian analysis
of cardiovascular signals, suggesting that particular attention should be paid
to the time in which the measurements are performed providing useful infor-
mation for the evaluation of the mechanisms that regulate the physiological
control of the two examined signals. Furthermore, the results underline how
the use of decision support systems based on machine learning techniques ap-
plied to parameters obtained in a non-invasive way from the processing of the
heart rate variability is useful for diagnosing various cardiovascular diseases.



Sommario

La mia attività di ricerca si è concentrata sull’elaborazione dei segnali car-
diovascolari, come strumento in grado di supportare i medici nelle decisioni
cliniche. Anche se l’analisi dei segnali cardiovascolari è principalmente basata
su tecniche convenzionali di stima puntuale dei parametri pressori e di fre-
quenza cardiaca (come la misura in office o la singola media sulle 24 ore),
è noto che, le informazioni ricavabili da misure ambulatoriali durante le 24
ore possono fornire un utile supporto prognostico. Pertanto, nella mia attiv-
ità ho cercato di esaminare nel dettaglio, come i valori dei parametri legati
al sistema pressorio e cardiaco cambiano durante le 24 ore e come si modi-
fica la loro relazione. Inoltre essendo noto che, esistono numerosi fattori di
rischio cardiovascolare che possono alterare l’andamento di questi segnali bio-
logici, ho eseguito un’analisi dettagliata degli effetti dei singoli fattori di rischio
sull’andamento circadiano dei due segnali e sulla loro relazione. Poiché negli
ultimi anni sono stati sviluppati nuovi approcci matematici per la costruzione
di sistemi di supporto alle decisioni cliniche applicati in campo cardiovascolare,
solo alla classificazione di singoli battiti cardiaci di soggetti affetti da diverse
eziologie, nella mia attività di ricerca ho sviluppato sistemi di supporto per
identificare i singoli soggetti affetti o meno da patologie cardiovascolari. In
particolare le patologie esaminate sono state l’ischemia cardiaca (IHD) e la
cardiomiopatia dilatativa (DCM).

Le problematiche precedentemente descritte sono state affrontate utilizzando
metodi lineari e non lineari di elaborazione dei segnali e applicando algoritmi
di intelligenza artificiale. In particolare sono stati ricavati gli andamenti circa-
diani medi di pressione e di frequenza cardiaca su diverse categorie di soggetti
e la relazione tra i due segnali cardiovascolari nelle 24 ore. Inoltre sono stati
calcolati i principali parametri lineari e non lineari dal segnale di variabilità
cardiaca ed, infine, sono state sviluppate due tecniche di machine learning, Ar-
tificial Neural Network (ANN) e Classification and Regression Tree (CART)
applicate ai precedenti parametri oltre che all’età, al genere e ad uno specifico
parametro clinico ricavato in modo non invasivo tramite ecocardiografia, al fine
di identificare diverse eziologie. L’attività di ricerca è stata condotta in col-
laborazione con il Dipartimento di Geriatria e il Dipartimento di Cardiologia,
Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), Trieste.

xiii



I risultati hanno evidenziato che i segnali cardiovascolari lungo le 24 ore mostrano
un caratteristico ritmo circadiano lineare divisibile in quattro precisi inter-
valli di tempo per il segnale pressorio (tre intervalli per quello cardiaco) sia in
soggetti normotesi che ipertesi evidenziando l’importanza di tenere in consider-
azione l’ora del giorno nella quale viene misurato il segnale. Inoltre, la relazione
tra questi due segnali valutata lungo le 24 ore potrebbe essere utile per com-
prendere il meccanismo di controllo del sistema nervoso autonomo. L’esame
degli effetti dei fattori di rischio come il fumo, l’obesità e la dislipidemia sui
segnali cardiovascolari ha evidenziato che ogni singolo fattore modifica i seg-
nali fisiologici. Anche l’indagine dell’influenza dell’età e del genere sui segnali
cardiovascolari, ha evidenziato un particolare andamento circadiano con in-
versione del trend nei parametri lineari e non lineari della variabilità cardiaca
nei soggetti di età superiore ai 60 anni e una differenza legata al genere solo
durante la notte. Infine i risultati ottenuti sviluppando sistemi di supporto alle
decisioni basati su tecniche di machine learning applicate a varie combinazioni
di parametri, selezionati mediante analisi delle componenti principali, stepwise
regression o correlati per meno del 90%, hanno evidenziato che la tecnica ANN
è stata in grado di identificare soggetti normali e IHD con una precisione del
80% e che l’algoritmo CART è stato in grado di classificare i pazienti DCM con
una precisione del 97%. Quest’ultima tecnica è stata inoltre in grado di dis-
tinguere queste due eziologie tra loro e da soggetti normali con una precisione
dell’81%.

I risultati della mia attività di dottorato evidenziano l’importanza dell’analisi
circadiana dei segnali cardiovascolari suggerendo di porre particolare atten-
zione all’ora nella quale eseguire le misure fornendo utili informazioni per la
valutazione dei meccanismi che regolano il controllo fisiologico dei due segnali
esaminati. Inoltre i risultati sottolineano come l’uso di sistemi di supporto alle
decisioni basati su tecniche di machine learning applicate a parametri ricavati
in modo non invasivo dall’elaborazione del segnale di variabilità cardiaca è
utile per diagnosticare diverse malattie cardiovascolari.



Introduction

Our bodies are constantly communicating information about our health. This
information can be captured through instruments that measure physiologi-
cal parameters. In particular, in the cardiovascular system the Heart Rate
(HR) and Blood Pressure (BP) have pivotal roles in both health and disease.
Biomedical signal processing involves the analysis of these measurements to
provide useful information upon which clinicians can make informed decisions.

Most of these biological processes occur in an appropriate temporal sequence
following natural rhythms, called ‘circadian rhythms’, ensuring that human
physiology is organized around the daily cycle of activity and sleep. The 24hrs
rhythm not only dictates the endogenous sleep/wake cycle, but also influences
behavior and nearly every physiological function.

Until now, from a clinical prospective, understanding the interconnections of
the cardiac autonomic nerves and central commands on the cardiovascular
system has been widely debated. In order to evaluate the mechanisms that
regulate the circadian behavior and to accurately describe the relation be-
tween circadian rhythm of BP and HR, the quantitative description of this
relationship is reported as one of the main topics of this thesis.

Moreover, to explore how the time of day influences possible changes in the
relationship between BP and HR, in this thesis the hour-to-hour relationship is
examined comparing the results with those obtained considering only a single
measurement or the 24hrs averaged values.

Finally, from the literature, it is known that some risk factors could modify
the mean values of cardiovascular signals during the day time, the night time
or during 24hrs, but the effects along the 24hrs are not still accurately de-
scribed. In particular, the study of the rhythm, hour-to-hour, could help to
understand if the two system controlling cardiac and pressure variability could
work independently and what is the influence on such rhythm of several car-
diovascular risks. With this in mind, this thesis will examine how the rhythms
change during 24hrs due to the presence of specific risk factors such as smok-
ing, obesity and dyslipidemia . In addition to this, how age and gender alter
the cardiovascular signals has also been described too.

Beside the analysis of cardiovascular signals, different mathematical approaches
for Decision Support System (DSS) have been proposed as a useful research
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Introduction 2

diagnostic tool for physicians with the aim of early disease identification that
reduces the effects of pathology and mortality rate. Different clinical DSS
based on new ways to process signals, such as machine learning techniques,
have been recently introduced. However in the cardiovascular field, the DSS
has been developed only for classifying single heart beats or RR segments,
taken from public databases, and not for identifying subjects affected or not
by cardiovascular disease. In this thesis, I developed some decision support
systems able to predict different cardiovascular pathologies, analyzing features
extracted from a large dataset of subjects. In particular, two cardiovascular
pathologies were considered: Ischemic Heart Disease (IHD) and Dilated Car-
diomyopathy Disease (DCM). The DSS were applied on non-invasive features
such as several parameters extracted from the time variability of the inter-
val between heartbeats (Heart Rate Variability (HRV)) and only one clinical
parameter (Left ventricular ejection fraction (LVEF)), taken from echocardio-
graphy.

In the first chapter, the state of art about BP and HR cardiovascular signals
using conventional measurements such as office and the mean over 24hrs has
been reported, highlighting that the knowledge about their relationship over
24hrs has never been completely studied. In addition, the literature concerning
the influence of time of the day on this relationship has been reported. Since
several risk factors affect the cardiovascular rhythms, the literature about the
changes due to the presence of smoking, dyslipidaemia, age and gender on
each signal and on their relationship has been reported. Finally, the litera-
ture about the identification of some cardiovascular pathologies, in particular
IHD and DCM, based on particular machine learning techniques, has been
presented. In the second chapter, methods concerning BP and HR signal pro-
cessing and artificial intelligence algorithms used for pathologies identification
have been described. In the third chapter, the results of my research activ-
ity, performed during the three years of my PhD program, were reported. The
studies were carried out in collaboration with the Geriatric and Cardiovascular
Departments, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI).



Chapter 1

State of art

In the first chapter, the cardinal vital signals, BP and HR, and their variations
over a 24hrs period have been introduced. Successively, the literature concern-
ing the relationship between these two cardiovascular circadian rhythms in a
specific pathological condition, such as hypertension, has been reported. To
better analyze and quantify this relationship, the effect of some cardiovas-
cular risk factors such as age, gender, smoking, obesity and dyslipidemia on
each signal behavior and on their relationships have been studied. Finally, the
literature concerning the artificial intelligence techniques used to identify car-
diovascular disease have been mentioned, with particular attention on decision
support system for classifying Ischemic Heart and Dilated Cardiomyopathy
diseases.

1.1 Cardiovascular signals

Variability signals related to the cardiovascular system contain relevant infor-
mation about the behavior of the autonomic nervous system that acts as a
controller of many physiological parameters such as heart rate and blood pres-
sure [1, 2, 3, 4]. In particular, HR measurements provide significant prognostic
information about cardiovascular risks [5] and BP measurements represent a
powerful prognostic marker of target organ damage [6].

1.1.1 Blood Pressure
BP measurement is used to monitor cardiovascular health. It estimates the
force applied to the blood vessels during blood circulating, it decreases as it
moves away from the heart through arteries and capillaries and toward the
heart through veins. The highest pressure occurs when blood is traveling
through the arterial circulation by the contraction of the heart which is known
as the Systolic Blood Pressure (SBP), while Diastolic Blood Pressure (DBP)
measurement is taken when the heart relaxes between beats and the pressure
in the arterial circulation falls to its lowest level.

3



State of art 4

Blood Pressure monitoring

There are several methods to measure BP, such as "office", "out of office",
"home" and "ambulatory monitoring" as reported in [7]. The office mea-
surements have been considered as the standard measurement techniques for
diagnosis. The office blood pressure is most commonly measured via a sphyg-
momanometer which consists of a combination of cuff, inflating bulb (with
a release valve) and a manometer. Instead, the Ambulatory Blood Pressure
Measurement (ABPM) is a non-invasive, fully automated technique in which
BP is recorded over an extended period of time, typically 24hrs, to have an
accurate estimation. The device is typically programmed to record BP at 15
- 30 min intervals and average BP values are usually provided for day time,
night time and 24hrs. The instrument used is a portable blood pressure ma-
chine worn as a belt, with the cuff being attached around the upper arm. This
measurement is able to reduce the white coat hypertension effect in which a
patient’s blood pressure is elevated during the examination process due to ner-
vousness and anxiety caused by being in a clinical setting. ABPM can also
detect the reverse condition, masked hypertension, where the patient has nor-
mal blood pressure during the examination but uncontrolled BP at home. The
other two techniques, out of office and home, were not considered because they
do not provide useful information during the night and because they provide
approximate prognostic evidence.

1.1.2 Heart Rate and Hear Rate Variability
Heart rate is the measure of the number of times per minute that the heart
contracts. The speed of the heartbeat varies as a result of physical activity,
threats to safety, and emotional responses. The measure of the variation in
time between heart beats is called Heart Rate Variability (HRV) and it is
used to quantitatively assess the cardiac autonomic activity as a result of the
interaction between sympathetic and parasympathetic activity. Nowadays, an
increased interest in understanding the HRV mechanism and its clinical utility
in diseases has been developed. Changes in HRV patterns seem to be a sensitive
indicator of health impairments, providing valuable insight into pathological
conditions and enhancing risk stratification.

Heart Rate and Hear Rate Variability measurement

The office heart rate is taken in the physician’s office and it refers to the HR
when a person is relaxed. It provides the number of times the heart beats in
the space of a minute by manually evaluating the pulses of the radial artery.
The HRV signal is usually extracted from an Electrocardiogram (ECG) signal
obtained from a 24hrs Holter monitoring device. Each QRS complex is de-
tected from a continuous ECG recording in order to quantify the fluctuations
in the intervals between heart beats known as RR intervals [8]. This ambu-
latory electrocardiograms is a battery-operated portable device. It is the size
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of a small camera and it has wires with silver/silver chloride, dollar-sized elec-
trodes that attach to the skin. To obtain indexes able to characterize HRV,
the RR time series should undergo a proper mathematical processing in order
to avoid incorrect conclusions and unfunded extrapolation.

1.2 Circadian rhythms

The circadian rhythms are physical, mental and behavioral changes that follow
a 24hrs cycle. These natural processes are due primarily to light and dark. One
example of the light-related circadian rhythm is sleeping at night and being
awake during the day. Almost all the cardiovascular signals presented a circa-
dian rhythm characterized by oscillation over 24hrs period, including BP and
HR. Although, conventional office BP and HR measurements have long been
used to evaluate physiological states [9, 10], they did not provide additional
prognostic information about short- and long-term fluctuations during the day
[11, 12, 13, 14] as estimated by using ABPM. During my PhD, I have ana-
lyzed this topic focusing on the relation between the circadian rhythm of these
two biomedical signals in a specific pathological condition such as hypertensive
and normotensive subjects. Successively, the knowledge about influence of the
time on this relationship, as an important element on clinical outputs, has
been presented. Moreover, the literature about the influence of several car-
diovascular risk factors on each circadian signal and on their relationship has
been reported. Finally, since ageing influences the BP increase, the influence
of several cardiovascular risk factors on this relationship was examined.

1.2.1 Relation between Blood Pressure and Heart Rate
circadian rhythms and their differences among hy-
pertensive and normal blood pressure subjects

Although considerable knowledge has been gained about the connection be-
tween BP and HR, the relationship over 24hrs has never been completely
described, although it is known that both signals have a circadian rhythm and
they can be measured with non-invasive techniques [15]. Several authors high-
lighted that the HR during sleep presents lower values than during day time
[16, 17, 18] and the BP shows a higher level during the day time than during
the night [19, 20]. Moreover, the day–night difference in the HR was positively
associated with the day–night differences in office SBP and DBP. Hence, the
diurnal variations of HR tended to parallel the diurnal variations in BP and to
decrease with reducing BP [21]. Koroboki et al. [20], using ABPM measure-
ments, studied the circadian variation of HR and BPs in 1676 Greek subjects
showing that patients with masked hypertension and white coat hypertension
presented the same mean pattern as normotensive and hypertensive subjects.
The circadian rhythms presented peak values between 10:00 and 14:00, an
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afternoon decrease with a second peak at about 20:00 and a progressive de-
crease till 2:00–4:00. Moreover, analyzing only SBP in normotensive adults
over 24hrs, Madden et al. [22] approximated, by means of piecewise linear
splines, the steepest rise and fall occurred just after waking and immediately
after falling asleep. In order to fill in the lack of research about the relation-
ship between BP and HR over 24hrs in my research activity [1SG] [2SG], the
differences in circadian changes among hypertensive subjects and normoten-
sive (normal/high and optimal blood pressure) subjects was examined and
quantified.

1.2.2 Influence of the time of day on the relationship
between Heart Rate and Blood Pressure

The time taken to achieve BP and HR and to evaluate their relationship is
an important determinant of clinical outcomes and it is still being debated.
Most studies utilized conventional BP monitoring performed in the doctor’s
office that is the common way used to evaluate the subjects pressure health
state [23, 24]. However, from a pathophysiological point of view, the correlation
between the value of the BP and the target organ damage or cardiovascular risk
has greater prognostic significance when the BP values are obtained by ABPM
than when they are taken in office [25]. Thus, Goldenberg and al. [26] proposed
to use ABPMmeasures evaluating the relationship between the average of both
BP and HR over 24hrs in normal, isolated systolic hypertension and essential
hypertension. They showed that, in isolated systolic hypertension, there was
a negative relationship between SBP and HR while in the other two groups no
correlation was found. On the other hand, they found a positive relationship
between DBP and HR in all the groups. Furthermore, it is well known that
the circadian rhythms of HR and BP signals change over 24hrs [27]. These
variations could affect HR and BP signals differently and, therefore, their
relationship during each hour of the day. On the other hand, the hour-to-hour
study would allow a more accurate analysis of this relationship compared to
a punctual one, like that used untill now; either in the office or as a simple
average over 24hrs. This analysis would also allow the examination of how
the inputs from cardiac autonomic nerves in response to receptors and from
central autonomic commands could alter cardiovascular control system over
24hrs. In order to explore how the time of day influences possible changes in
the relationship between BP and HR, in my research activity this hour-to-hour
relationship was examined and compared with the results from those obtained
considering office or 24hrs averaged BP values [3SG].
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1.2.3 Influence of smoking on Heart Rate and Blood
Pressure circadian rhythm in hypertensive and
non hypertensive subjects

Hypertension and smoking are considered as independent risk factors for car-
diovascular and neuroendocrine function [28, 29]. In normal subjects, Cryer
et al. [30] observed an acute rise in BP and HR in smokers immediately after
the beginning of smoking, persisting over 15 min after smoking one cigarette.
The rise of these clinical parameters is caused by the reduction of the cardiac
baroreflex sensitivity due to nicotine [31]. Al-Safi, using office measurements,
investigated the correlation of smoking with BP and HR, highlighting that
smokers had significantly higher BP than non-smokers while HR values were
significantly higher only in male smokers [32]. Bolinder et al. [33], studying
135 normal people, found that office HR and SBP values in smokers were sig-
nificantly lower than the mean values over 24hrs obtained using ABPM. In
addition, they found that the mean value of HR during day time was signifi-
cantly greater in smokers than in non-smokers. On the other hand, in hyper-
tensive patients, Toumilehto et al. [34] showed that cardiovascular mortality
was three to four times higher in smokers than in non-smokers even if smok-
ers displayed similar BP and HR office values than non-smokers. Moreover,
Bang et al. [35] showed that hypertensive smokers had significantly higher
BP and HR than non-smokers only during day time and that hypertensive
smokers presented slightly (not significant) higher office BP values than non-
smokers. In addition, Verdecchia et al. [36] found that the office BP and HR
in hypertensive smokers and non-smokers was nearly identical; on the con-
trary, the mean on 24hrs BP was significantly higher in hypertensive smokers.
Furthermore, Soresen et al. [37] evaluated the impact of smoking on office
and ambulatory BP and HR values on treated and non-treated hypertensive
subjects, underlining in both groups significantly greater day time ABPM and
HR values in smokers than in non-smokers. The HR values were significantly
higher in smokers also during night time and in office conditions. However,
the use of a single value (office as well as mean on day time, on night time
or on 24hrs) only approximatively describes the changes due to the circadian
rhythm of BP and HR occurring during 24hrs. A better temporal definition
of the changes occurring in BP and HR during 24hrs can also be useful to
identify, with greater accuracy, not only possible pressure peaks but also how
quickly the changes occur in BP an HR . Therefore, in my research activity
during the PhD program, it was evaluated whether and how the circadian HR
rhythm is modified in hypertensive and non hypertensive smoker compared
to non smokers [4SG]. Successively, how the BP changes over 24hrs in nor-
motensive and hypertensive smokers compared to non-smokers was observed
[5SG]. Moreover, to reduce the effects of other cardiovascular risk factors such
as obesity, dyslipidemia and diabetic mellitus, which generally are positively
associated with BP increasing its value, the hypertensive and normotensive
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subjects, which did not present these risk factors, were considered.

1.2.4 Effects of other risk factors (obesity and dyslipi-
demia) on the cardiovascular circadian rhythm

There are many risk factors associated with alterations of cardiovascular sig-
nals. Some risk factors, such as age and gender, cannot be modified, while
other risk factors, like obesity, dyslipidemia and smoking can be modified with
treatment. However, to do that, it is important to understand the period of
time over 24hrs in which the signal’s alteration is manifested.

The presence of cardiovascular risk factors such as smoking, obesity and dys-
lipidemia affects the sympathetic activity of both normotensive and hyperten-
sive subjects, modifying the HR circadian rhythm [32, 33, 34, 35, 36, 37, 38, 39].
In particular, obesity is considered a potential predictor for cardiovascular dis-
ease due to the impairment in the autonomic nervous system controlling HR.
In normotensive subjects, Lee et al. [38] found higher values of HR in obese
than in non-obese subjects in a cohort of 33 subjects highlighting that office
HR was 14 beats greater in non-obese group (54 beats/min vs 40 beats/min).
This punctual result was confirmed by Rossi et al. [40] that extended the find-
ing also to the mean HR over 24h in a population of 92 individuals, underling
higher mean HR values in obese subjects. This could be due to the fact that, in
obese subjects, the elevated sympathetic activity affected the peripheral vessel
and this alteration may be related to autonomic abnormalities [38, 40]. Grassi
et al. [41] found that in 10 young obese subjects and 8 age matched eutrophic
subjects there were no differences in HR between the two groups. Addition-
ally, Junior et al. [42] in 180 obese children between 7-16 years has shown that
being overweight and obesity are accompanied by higher HR values bringing
to an alteration in autonomic mechanism. In addition, in a survey studying
[39] of 3464 adults with hypertension, the authors underlined that obesity was
associated with increased HR (75±11 beats/min vs 73±10 beats/min), which
may at least in part reflect increased arterial stiffness and increased sympa-
thetic tone. Considering both day and night time, Kotsi et al. [43] found a
significant correlation between obesity and mean HR values in 3216 hyperten-
sive subjects, with higher values during day time. In regards to dyslipidemia,
Sun et al. [44], in a study of 9415 normotensive subjects aged >40 years
old, underlined that the cardiovascular risk due to dyslipidemia is related to
higher values of office HR due to an activation of the sympathetic discharge.
In addition, Lee et al. [45], in a normotensive population of American Indians,
underlined that high values of dyslipidemia presented higher values of office
HR. In hypertensive subjects, Perlini et al. [39] found an increased office HR
associated with dyslipidemia. Moreover, Palatini et al. [46], in elderly hyper-
tensive subjects, found that HR mean values, evaluated over 24hrs, showed
significant correlations with dyslipidemia. In order to separately evaluate the
influence of specific risk factors (such as: obesity, dyslipidemia and smoking)
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on the HR circadian rhythm, in my research activity, how the rhythm during
24hrs changes in normotensive and hypertensive subjects presenting only one
risk factor at a time [6SG] was carefully examined.

On the other hand, ageing is considered as one of the natural causes affecting
the increase in BP. An epidemiological study on normal subjects estimated
that SBP increases with an average of 140 mmHg by the seventh decade,
and that the DBP tends to increase with age but the average value tends to
remain flat or to decline after the fifth decade [47]. Franklin et al. [48], in The
Framingham Heart Study, characterized the age related changes in BP in a
sample of 20136 normotensive and untreated hypertensive subjects (50 to 79
years old) highlighting that DBP falls after 60 years old while SBP continually
rises. Moreover, the differences between office and ambulatory BP increase
progressively both with age and office BP values; office measurements were
also higher than ABPM values both in normotensive and hypertensive subjects
[48, 49, 50]. On the contrary, in young normal subjects, aged 4-18 years old,
ABPM values were most often higher than office BP values and this difference
was reduced with ageing [51]. In a meta-analysis on 13 normal population
base cohorts, Ishikawa et al. [52] found that BP office increased with age more
steeply than ABPM only after 50 years old for SBP and after 45 years old
for DBP, but office BP was lower than ABPM in the youngest. Furthermore,
Conen et al. [53] compared individual differences between ABPM and office
BP according to 10-year age categories in subjects not taking antihypertensive
treatment, finding that office SBP increase from 117 to 149 mmHg and DBP
from 64 to 82 mmHg from the youngest to oldest age. Additionally, they
highlighted that the relationship between age categories and diastolic ABPM
increased until 50 years old and then it decreased. They also observed that
among subjects younger than 50 years old, ABPM were higher than office; for
ages between 50 to 60 years the ABPM and office were similar, and, when
older than 60 years, this relationship was inversed. Moreover, it is known
that BP is correlated with some risk factors of cardiovascular disease such as
smoking, obesity, dyslipidemia and diabetic mellitus that generally increase
its value [47, 54, 55, 56, 57]. Although BP values increase due to both ageing
and some risk factors, until now the studies have examined the relationship
between BP and age without quantifying the influence of risk factors on this
relation [47, 48, 49, 51, 52, 53]. Since, from a clinical point of view, it can be
useful to understand how the relationship between BP and age is affected by
risk factors in people with and without hypertension, during my PhD program
it was accurately examined how the relation between age and BP changes
in subjects presenting at least one risk factor. The considered factors were
smoking, obesity, dyslipidemia and diabetic mellitus, in subjects whose BP
were evaluated in both office and ABPM ways [7SG].
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1.2.5 Influence of age and gender on cardiovascular be-
haviors over 24hrs in normotensive subjects

It is known that the world population is progressively ageing and to increase
the health span alongside the lifespan [58], it is necessary to focus attention on
specific cardiovascular predictors in the elderly. Although several reports de-
scribed the analysis of HRV as a promising clinical tool in different conditions
[59], to date HRV measurements are still far away from mainstream clinical
practice. On the other hand, HRV shows a regular circadian rhythm controlled
by the vagal system during day and night [60] but its rhythm is altered in some
pathologies like acute myocardial infarction and idiopathic dilated cardiomy-
opathy [61, 62]. Moreover, in normal people, ageing modifies the amplitude of
this rhythm with a reduction in the elderly [63]. Since a focused and compre-
hensive HRV analysis in a wide population of elderly subjects over 75 years
old and a direct comparison with younger counterparts was still missing, in
this thesis the influence of age on HRV was evaluated over 24hrs in normal
subjects, from 15 to 90 years old, using both linear and non-linear parameters
to identify a possible model of this relation [8SG].

As mentioned, the increases and reductions along a 24hrs period of cardiovas-
cular signals are the result of stimulation and deactivation due to the sym-
pathetic/parasympathetic systems. Furthermore, it is known that a gender-
related difference in the baroreceptor reflex control of both BP and HR ex-
isted and that the females have a significantly smaller baroreflex sensitivity
than males [64]. The lower baroreflex responsiveness makes females less able
to compensate for a cardiovascular event and put them at increased risk of
death [65]. Some authors [23, 66, 67], measuring BP and HR variables in office
condition, highlighted that females had significantly higher values of HR and
lower values of BP than males. In particular, Morcet et al. [23] in a large
population showed that the punctual measurement of BP is higher in females
than in males. Moreover, Zhang and Kesteloot [24], in a study of 5027 males
and 4150 females, showed a significant positive association between HR and
BP, with SBP more strongly correlated with HR than DBP, in both genders.
On the other hand, using ABPM measure, Khoury et al. [67] pointed out
that both SBP and DBP were higher in males than in females, in a cohort of
69 males and 62 females. Also Thayer et al. [68], in a sample of 33 young
subjects (19 males and 14 females), confirmed higher values of mean BP in
males than in females. On the contrary, Hermida et al. [69], showed higher
values in females than males, underlining statistically significant differences
between males and females mostly in SBP and in HR (not in DBP). Addi-
tionally, Jaquet et al. [70], found that SBP and DBP had a significant gender
difference only in young groups and that elderly females had higher BPs than
males; both elderly and young groups displayed gender differences for HR val-
ues higher in females than in males. Since the relationship between BP and
HR, depending on gender, could be related to heart disease [6, 9] in this thesis,
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how gender affects the 24hrs BP/HR relation using ambulatory measurements
in normotensive subjects was examined and quantified [9SG].

1.3 Artificial intelligence for cardiovascular dis-
eases

Impaired regulation of the cardiac autonomic nervous system is one of the
most important pathophysiologic changes in patients with heart failure and
HRV can provide important prognostic information [71]. On the other hand,
the diagnostic role of HRV analysis in patients with either ischemic or non-
ischemic heart disease is still debated [71, 72, 73] and the use of this tool in the
early differentiation between ischemic heart (IHD) and dilated cardiomyopathy
(DCM) diseases is largely unexplored.

Ischemic heart disease is a pathological condition characterized by an imbal-
ance between myocardial oxygen supply and demand, mainly due to coronary
artery atherosclerosis [74]. Although the narrowing can be caused by a blood
clot or by constriction of the blood vessel, most often it is caused by buildup of
plaque. Typically, this disease is silent, showing no symptoms, but can become
unstable due to plaque rupture or erosion causing angina, myocardial infarction
or sudden cardiac death [75]. Several clinical diagnostic techniques to confirm
the disease, such as those based on single photon emission computed tomogra-
phy, radionuclide myocardial perfusion imaging, positron emission tomography,
cardiac magnetic resonance imaging and multi-slice computed tomography are
suggested by current clinical guidelines to identify this pathology. All these
techniques present invasiveness and at least one limitation, such as low sensi-
tivity, specificity, high cost and/or long examination time [76]. On the other
hand, the basic testing, in patients with suspected IHD, includes laboratory
biochemical test, ambulatory electrocardiogram (ECG) monitoring, stress test
ECG, resting ECG and resting echocardiography. Ambulatory electrocardio-
gram is a tool that records the electrical activity of the heart over the time and
it may detect silent myocardial ischemia by examining deviations in the ST
segment or/and changes in T waves that are due to the disease. These ECG
abnormalities could occur during normal daily activities as well as during the
night. However, the ECG alone could not be sufficient for the diagnosis in case
of a slight alteration of the repolarization, due to IHD.

On the other hand, dilated cardiomyopathy is a progressive disease of the heart
muscle defined by the chamber enlargement and contractile dysfunction of the
left ventricle in the absence of chronic pressure and or/volume overload; this
disease is the third most common cause of heart failure [77]. If no cause is dis-
covered the cardiomyopathy may be referred as idiopathic, characterized by an
advanced stage of left ventricular dilatation and dysfunction. The DCM could
be diagnosed in asymptomatic individuals during routine medical screening in
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which the electrocardiogram presented abnormalities ranging from isolated T
wave changes to septal Q waves. In this patient population, increased QT vari-
ability has been independently associated with occurrence of major arrhythmic
events, including sudden cardiac death [78]. In literature, some studies used
HRV measurement, extracted by ECG [79], as an instrument to provide ad-
ditional valuable insight into physiological and pathological conditions, both
to enhance risk stratification and to be a predictor of the risk of mortality
[80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90]. Finally, from literature [72, 75],
it has been highlighted that the left ventricular ejection fraction (LVEF) pa-
rameter, taken from the echocardiography, has been accepted as a prognostic
indicator of patients with cardiovascular diseases. In particular, it was a basic
non-invasive clinical tool to support the diagnosis of IHD and DCM.

In that clinical field, machine learning algorithms have been developed us-
ing different mathematical methods and clinical parameters. In this section,
a literature review has been reported to understand the evaluation of these
algorithms in classifying IHD and DCM patients.

1.3.1 ANN for Ischemic Heart Disease
Some authors [72, 73, 91] have underlined that the time variation of the in-
terval between consecutive normal heartbeats (HRV) due to the interaction
between sympathetic and parasympathetic activities in autonomic functioning
[92], presented significant differences between IHD and normal subjects. In
particular, using linear and non-linear features, they highlighted in IHD pa-
tients a decrease of the HRV parameters values in the time domain [72, 91]
as well as of the normalized low frequency power, of the ratio between low
and high frequency powers [91]. Moreover, Voss et al. [73] suggested that
the SD1 parameter, extracted from the Poincaré plot, is a prognostic index
to differentiate IHD from normal subjects. Nowadays, different mathematical
approaches for DSS, based on HRV [93, 94, 95, 96] as well as on some clini-
cal features [97, 98], have been developed to identify beats and arrhythmias
and to classify cardiovascular diseases like atrial fibrillation, left bundle branch
block, cardiomyopathy and ventricular fibrillation. These DSS are based on
widely applied linear programming classification methods like the Kth nearest-
neighbours (KNN) [93], clustering [94], Linear Discrimination Analysis (LDA)
[95, 99], fuzzy analysis [100, 101, 102], Classification and Regression Tree
(CART) [103, 104], Support Vector Machine (SVM) [105, 106] and Artificial
Neural Network (ANN) [107, 108, 96, 97]. Some of these algorithms have also
been used to classify subjects suffering from IHD. In particular, Kannathal et
al. [102] used an adaptive neuro-fuzzy network applied to three non-linear pa-
rameters extracted from HRV (Largest Lyapunov Exponent, Spectral Entropy,
Poincaré plot) obtaining an accuracy of 96%. However, the data were taken
from half-hour segments of the 47 subjects belonging to MIT-BIH arrhythmia
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database1 of which only a few subjects presented ischemic/dilated cardiomy-
opathy. Acharya et al. [108], using the same database1 and the same non-linear
HRV parameters, developed a cardiac abnormalities classification system by
using an ANN, obtaining an accuracy of 83.3% for identification of patients
with ischemic/dilated cardiomyopathy from normal subjects. Finally, Dua et
al. [96] extracted non-linear features from HRV (by using recurrence plots,
Poincaré plot, detrended fluctuation analysis, Shannon’s entropy, approxima-
tion entropy and sample entropy) and, after the application of main component
analysis, used the first six most significant principal components and different
classification techniques to classify 143 samples recorded on 10 IHD and 10 nor-
mal subjects. Using ANN with 4 hidden layers, they obtained a classification
accuracy of 89.5% on this small sample of subjects. Conversely, some authors
applied machine learning techniques to identify IHD patients without consid-
ering HRV parameters among their inputs. In particular, Rajeswari et al. [97],
using an ANN, selected 12 clinical features able to identify 712 IHD patients.
They selected age, gender, menopause, body mass index, waist circumference,
systolic and diastolic blood pressure, diabetes, cholesterol, hereditary, personal
habits and stress features from 17 initial parameters, obtaining an accuracy of
82.2%. In addition, Kukar et al. [98], by using some machine learning tech-
niques such as the Bayesian classifier, artificial neural network, decision tree
and k-nearest neighbor method, evaluated the performance of some diagnos-
tic methods like clinical examinations, exercise ECG testing and myocardial
scintigraphy for IHD identification in order to reduce the number of subjects
to be submitted to coronary angiography. They used a dataset of 327 IHD pa-
tients, obtaining with a multilayer feedforward neural network, an accuracy of
92%, reducing the number of subjects unnecessarily submitted to much more
invasive and dangerous examination by 12.2%. Although several linear and
non-linear HRV parameters and non-invasive techniques individually proved
to achieve a good performance in classifying IHD beats or tracts, until now
the studies using ANN or other machine learning methods have been carried
out only on a very limited number of IHD patients and separately using either
linear or non-linear HRV parameters. On the other hand, although the cor-
rect procedure to examine HRV signal involves a pre-processing of the ECG
by detecting the ectopic beats, providing a clean normal-to-normal inter-beat
series containing information about the control systems that govern sinus node
stimulation, the identification of ectopic beats represents a difficult task since
these beats can have a waveform similar to the normal ones. Moreover, since
in the IHD patients the ectopic beats occur more frequently than in the normal
heart probably providing independent information on ischemia, in this thesis
the heart rate total variability was evaluated, considering RR segments con-
taining both normal and ectopic beats. However, it is worth considering that
the HRV signal contains two main components of different origins, leading to
opposite information about the ischemic/normal heart. The first component is

1www.physionet.org
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generated by the control of the Autonomic Nervous System (ANS) on the sinus
node and generally decreases in conditions of ischemic heart disease compared
to normal subjects. The second component is due to ectopic beats that mostly
affects the ischemic heart and increases in the case of ischemic heart disease
compared to normal. Therefore, it is not easy to link an increase of one of
these variability indexes to a normal or ischemic heart. However, these two
components are of different types and affect HRV parameters differently. In
fact, typically ectopic beats lead to a substantial increase in Root Mean Square
of RR intervals Successive Differences (RMSSD), but a generic flat increase in
spectral power density. Instead, a deep respiratory sinus arrhythmia (charac-
teristic of a healthy ANS and heart, producing series of RR intervals with quite
large beat-to-beat interval variations) leads to a generic increase in RMSSD
but to a specific increase of the high frequency power. Therefore, it may be
interested to evaluate whether an ANN using, as input, a set of parameters
extracted directly from the RR series, without pre-processing for the exclusion
of ectopic beats, is able to identify patients with IHD. Thus, in my PhD re-
search the accuracy of several multi-layer feed forward neural networks based
on linear or/and non-linear parameters extracted from HRV together with age
and gender was assessed. In order to evaluate which combination of them pro-
duces the best performance for the identification of IHD patients, the results
were validated on a large sample of subjects. In addition, the left ventricular
ejection fraction, a non-invasive clinical parameter, was added and examined
if it could improve the classification performance [10SG] [11SG] [12SG].

1.3.2 CART for Dilated Cardiomyopathy
Linear (time and spectral) and non-linear features of HRV have been evalu-
ated for detection of cardiovascular disease like heart failure. In particular,
depressed HRV parameters indicated an impairment of the ANS that was ob-
served for DCM [82, 83, 84, 85, 86, 87, 88, 89, 90]. The time and frequency HRV
parameters had higher values in normal than in DCM [83, 84, 85, 86], except for
High Frequency normalized (HFn), that showed higher values in DCM patients
[84]. However, due to the non-linear nature of heart signals, the features over
time and spectral domain analysis do not characterize enough subjects suffer-
ing from cardiovascular disease. Moreover, as the noise in signal increases, the
effectiveness of spectral domain analysis will decrease, so some authors intro-
duced non-linear features extracted from HRV signal like sample entropy and
Poincarè parameters that presented lower values in DCM [87]. Nowadays, to
support decision-making, many machine learning-based methods are widely ap-
plied in the field of medicine to solve clinical problems as well as to reduce time
of pre-screening process and some of these algorithms have been used to classify
cardiomyopathy [87, 93, 94, 95, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108].
In particular, Adetiba et al. [87] developed an automated heart detection
model using 400 ECG data segments recorded in 40 athletes and ANNs in
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order to differentiate normal and cardiomyopathy heart conditions. Some sta-
tistical parameters (mean, median, mode, variance and standard deviation)
calculated on each data segment were used as inputs of the ANNs with 10
hidden layers neurons, achieving an accuracy of 98%. Megat Ali et al. [88]
presented a cardiomyopathy detection approach using a multilayer perceptron
network based on the width of P-wave, QRS-complex and T-wave characteris-
tics of 600 beats, from PTB Diagnostic ECG Database1, achieving an accuracy
of 98.9%. Ghosh et al. [89] developed support vector machine (SVM) to clas-
sify normal and cardiomyopathy segments using ECG signal, recorded for few
minutes on 5 normal subjects and 5 patients taken from PTB Diagnostic ECG
Database1. The SVM was used to classify the features extracted through a
continuous wavelet transform of the ECG signals, obtaining an accuracy of
92%. Shukuri et al. [90] proposed the use of recurrent neural network for de-
tecting cardiomyopathy in ECG beat samples, 200 waveforms from 52 normal
and 200 waveforms from 18 cardiomyopathy subjects, taken from PTB Diag-
nostic ECG Database1, too. They used five hidden neurons and four different
learning algorithms, obtaining an accuracy of 90%. As these studies focused
their attention on the characteristics of single beats that could be strongly af-
fected by noise or artifacts and since cardiomyopathy also produces changes in
the variation over time of the interval between consecutive heartbeats, other
authors [109, 110] turned their attention toward parameters extracted from
HRV signals. In particular, Thirugnaman et al. [109] studied 25 linear and
non-linear HRV parameters calculated on ECG samples, 16 from DCM and
6 from normal subjects, taken from Physionet database1 . They developed
a stacked-ensemble classifier using SVM, KNN and decision tree to identify
cardiomyopathy, achieving a sample detection accuracy of 99.9%. Moreover,
Mahesh et al. [110] used a combination of tree structure and logistic regression
on 15 linear and non-linear HRV parameters to identify 13 cardiomyopathy and
410 normal segments extracted from Physionet database1. Considering sepa-
rately different groups of parameters, they achieved a maximum accuracy of
95.61%. Although these studies reached interesting results, none of them pro-
duced a system capable of classifying subjects as rather single heart beats or
segments belonging to some normal subject or with DCM. Furthermore, data
coming from a very limited number of DCM subjects were examined and a
combination of several mathematical models were developed. In order to focus
mainly on the identification of subjects with cardiac disease rather than on
single beats, in my PhD research, it was verified if HRV derived parameters
applied to a simple CART [111, 112] could be able to distinguish DCM patients
from normal subjects in large cohort of cases. With the aim to evaluate which
features, applied to CART, could discriminate DCM patients with high accu-
racy, some combinations of linear and non-linear parameters extracted from
HRV together with age and gender were examined. To reduce the number of
features preserving the variance, principal component analysis and stepwise
regression were used too. Additionally, adding LVEF, which is a prognostic
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indicator in DCM patients [77, 78], was examined to improve the classification
performance [13SG]. Finally, in my research activity, it was verified if HRV
parameters, age, gender and LVEF applied to a CART would be able to dis-
tinguish from IHD and DCM patients from normal subjects and between them,
in a large cohort of cases [14SG].



Chapter 2

Material and Methods

2.1 Subjects classification

To evaluate the circadian rhythm of physiological variables the subjects were
enrolled at the Department of Medical, Surgical and Health Care, CS of Geri-
atrics, University of Trieste and ASUGI Hospital between October 2017 and
July 2018. The subjects with no clinical or laboratory evidence of secondary
arterial hypertension, absence of clinical evidence of hypertension-related com-
plications, no cardiac disease, no patients with type 1 diabetes were considered.

Based on office BP readings, subjects were classified as Hypertensive (H) (SBP
> =140mmHg and/or DBP > =90mmHg) or Normotensive (NH) (SBP <
=140mmHg and DBP < =90mmHg), according to current Guidelines [7]. Suc-
cessively, NH subjects were further sub-classified as having Normal/High Nor-
mal Blood Pressure (NHn) (SBP 120–139mmHg and DBP 80–89mmHg) or
Optimal Blood Pressure (NHob) (SBP < 120mmHg and DBP < 80mmHg).

On the other hand, ischemic (IHD) and non-ischemic (DCM) heart disease
patients as well as Normal subjects afferent at the Cardiovascular Depart-
ment, University of Trieste and ASUGI Hospital between September 2019 and
December 2019 were enrolled. The patients were identified following the guide-
lines [74, 75, 77, 78]. In particular, to identify IHD patients, typical symptoms
such as angina, laboratory test (increase of Troponin I), ECG repolarization
abnormalities (T-wave and ST), wall motion abnormalities (hypokinesia or
akinesia), detected with echocardiography or positive stress testing, were ex-
amined. Finally, the diagnosis was confirmed by coronary angiography result
[76]. Following protocol, a stress test ECG was performed only in patients with
intermediate CAD risk. The IHD patients with chronic coronary syndromes
were considered excluding patients with the left ventricular ejection fraction
lower than 50%, in such way the patients did not present systolic heart fail-
ure. The DCM disease is characterized by left ventricular dilatation and left
ventricular systolic dysfunction with normal wall thickness in the absence of
abnormal loading conditions [77]. This cardiovascular disease is defined by

17
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echocardiography as the presence of an ejection fraction below 45% and/or
a fractional shortening less than 25% and a left ventricular end-diastolic di-
mension greater than 112% of the predicted value corrected for age and body
surface area. Finally, normal subjects did not present neither peripheral artery
disease, thyroid disorders, history of myocardial revascularization, hyperten-
sive heart disease, pulmonary hypertension or severe valvulopathy.

For each study, the description of the subject groups are reported in Table 2.1.

Section Article Total subjects Groups of subjects

Relationship between BP and HR circadian rhythms
and their differences among hypertensive and

normal blood pressure subjects

1SG 629 subjects
423 Normotensive,
205 Hypertensive

2SG
385 subjects,

matching by age

215 Hypertensive
112 Normal/high normal blood pressure

58 Optimal Blood pressure
Influence of the time of day on the relationship

between heart rate and blood pressure
3SG 388 subjects

216 Hyperthensive
172 Non Hyperthensive

Influence of smoking on HR and BP circadian
rhythm in hypertensive and non-hypertensive subjects

4SG 614 subjects

58 Hypertensive Smoker
351 Hypertensive Non Smoker
39 Non Hypertensive Smokers

166 Non Hypertensive Non Smokers

5SG
248 subjects without risk factors

(obesity, dyslipidemia, diabetic mellitus)

32 Hypertensive Subjects
113 Hypertensive Non Smokers
20 Non Hypertensive Smokers

83 Non Hypertensive Non Smokers

Influence of smoking and other cardiovascular risk
factors on Heart Rate circadian rhythm in normotensive

and hypertensive subjects
6SG 618 subjects

83 Normotensive without risk factors
20 Normotensive Smoker

44 Normotensive with Dyslipidemia
23 Normotensive Obese

169 Hypertensive without risk factors
32 Hypertensive Smoker

99 Hyperthensive with Dyslipidemia
53 Hyperthensive Obese

Influence of some cardiovascular risk factors on
the relationship between age and blood pressure

7SG 880 subjects

Considering the risk factors:
253 Hyperthensive evaluated in office
241 Hyperthensive in ambulatory

112 Normotensive evaluated in office
124 Normotensive in ABPM.

Without risk factors:
54 Hyperthensive evaluated in office
60 Hyperthensive in ambulatory

105 Normotensive in office
99 Normotensive in ABPM

Influence of ageing on circadian rhythm of HRV
in normal subjects

8SG 149 subjects
47 Young Group (15-39 years old)
47 Adult Group (40-64 years old)
46 Senior Group (65-90 years old)

Influence of the gender on the relationship between
heart rate and blood pressure

9SG 172 subjects
50 males,
122 female

ANN for Ischemic Heart Disease
10SG 243 subjects

156 Normal
87 Ischemic Heart Disease

11SG 965 subjects
681 Normal

284 Ischemic Heart Disease

12SG
496 subjects,

matched by gender and age
251 Normal

254 Ischemic Heart Disease

CART for Dilated Cardiomyopathy
13SG 972 subjects

773 Normal
199 Dilated Cardiomyopathy

14SG 1133 subjects
689 Normal

263 Ischemic Heart Disease
181 Dilated Cardiomyopathy

Table 2.1: Subject groups analyzed during the PhD program.
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2.2 Blood Pressure acquisition and analysis

The blood pressure was first measured in office condition, as the average of two
consecutive measurements [7]. Trained personnel, using a standard mercury
sphygmomanometer with a cuff of appropriate size, evaluated the BP values.
In all studies the BP was measured in office condition around at 9:00, as the
average of two consecutive readings and then in ambulatory way. The ABPM
was carried out by using a Holter Blood Pressure Monitor (Mobil-O-Graph®

NG, IEM gmbh Stolberg, Germany), based on oscillometric technique. The
portable monitor was programmed to obtain ambulatory blood pressure and
heart rate readings each 15-min interval throughout the day time (6:00 to
22:00) and each 30-min interval throughout the night time (22:00 to 6:00). The
BP and HR values of the different subjects were aligned using common start
time (10:00) since recordings could start at different times of the day (between
8:00 and 11:00). The acquisition rate was of 15 minutes throughout the day
and of 30 minutes throughout the night. The measurement procedures were
in accordance with the institutional guidelines and all the subjects gave their
informed consent. No patient received additional medication that might affect
the circadian blood pressure or heart rate rhythmicity. Data were analyzed by
using a proprietary software developed in Matlab® (MathWorks, USA).

The circadian trend of the mean values of SBP and DBP among the subjects
was separately examined for each subject group analyzing, in each period, the
mean and standard deviation and the difference between the maximum and the
minimum BP values. Since the subject groups were independent and showed
a non-Gaussian distribution, the significance of the differences between groups
was evaluated by the Wilcoxon rank sum test. A p-value of 0.05 was used as
the level of statistical significance. Since the BP profiles during 24hrs showed
to be bimodal with two minima and two maxima, the 24hrs were divided in
four intervals corresponding approximately to 10:00-14:30, 14:30-19:00, 19:00-
2:00 and 5:00-10:00. In each period the quite linear trend was fitted by a
regression line and the linear approximation reliability was measured by using
R-square statistic.

2.3 Heart Rate acquisition and analysis

ECG was acquired by using a 24hrs Holter monitor using a three channel
tracking recorder (Sorin Group, Italy) that sampled the signal at 200Hz. Seg-
ments of 300s each were examined, since recordings could start at different
times of the day (between 8:00 and 11:00), a common starting time, fixed
10:00, was selected for all the RR series. The segment time length has been
chosen equal to 300s to have reliable values for short duration intervals and
to ensure a frequency resolution of 0.01 Hz. The data were analysed by using
a proprietary Matlab® (MathWorks, USA) program. Since the estimation of
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the HRV indexes is affected by missing data, noise, arrhythmic events and ec-
topic beats, which all alter the signal and therefore compromise the reliability
of the obtained indexes and degrade the clinical utility of measurements, the
pre-processing of RR time series is needed in order to avoid it [3]. In par-
ticular, ectopic beats, defined as short RR followed by compensatory pause,
are considered physiological artifacts and processed as a source of error in the
HRV measures providing a clean normal-to-normal inert beat series. However,
since in the diseases analyzed the ectopic beats are characteristic elements of
the pathologies, which could have more powerful prognostic information than
the RR time series without premature beats, in my research activity the RR
time series including both normal and ectopic beats were considered analysing
the heart rate “total” variability. However, in the thesis, the term HRV has
been used also to indicate the “total” variability. Since RR series are formed by
intervals that occur at non equidistant sampling times, in the pre-processing
phase the time series should be resampled in order to perform analysis that re-
quire a time series having a constant sampling time. Thus, RR intervals were
interpolated by cubic spline, starting from those classified by SyneScope®

software as normal or ectopic, substituting beats classified as artifacts. In par-
ticular, methods based on spline interpolation are widely used because they
are simple to implement and because they present a reduced-low pass filtering
effect, which is nearly eliminated by increasing the order of the spline [113].
Even if complicated resampling schemes have been proposed [114], the error
this editing introduces in the evaluation of the Power Spectral Density (PSD)
has not been adequately documented [115, 116]. In my research, the interpo-
lated signal was resampled at a frequency of 2Hz [8]. Successively, segments of
300s along 24hrs were individually examined and then mediated considering at
least seven hours during day time and seven hours during night time to take
into account the influence of day-night alteration. To minimize the effects of
artefacts substitution, the RR segments were discarded if the total duration of
artefacts in each segment was more than 5% of the segment duration, or the
longest artefact tract was longer than 10s [117].

To characterize the circadian HR rhythm, since no large differences were found
in the trend between 10:00-14:30 and 14:30-19:00, the 24hrs were divided in
only three periods of time, from late morning to evening (10:00-20:00), from
evening to night (20:00-04:00) and from early morning to late morning (05:00-
10:00). The circadian trends of the mean value of HR among the subjects were
separately examined for each subject group analyzing, in each period, the mean
and standard deviation. Successively, assumed that the subject groups were
independent and showed a non-Gaussian distribution, the significance of the
differences between groups was evaluated by the Wilcoxon rank sum test. A
p-value of 0.05 was used as the level of statistical significance. Successively,
in each period the quite linear trend was fitted by a regression line and the
linear approximation reliability was measured by using R-square statistic. To
quantitatively describe HRV patterns, a large panel of HRV analysis methods
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have been proposed, derived from both classical linear theory and non-linear
dynamics [8].

Linear analysis

Linear methods can be divided into two main categories: time and frequency
domain methods.

Time domain analysis

The time domain analysis is the simplest method to perform because either
the heart rate at any point in time or the intervals between successive betas are
determined. In a continuous ECG record, each QRS complex is detected and
all intervals between adjacent QRS complexes, resulting from sinus node depo-
larization, are determined. In addition, more complex statistical time-domain
measurements can be calculated derived both from direct measurements of the
RR intervals or instantaneous heart rate, and from the differences between RR
intervals. The most common parameters were:

• Mean RR intervals (MeanRR);

• Standard Deviation of Normal to Normal RR intervals (SDNN);

• Root mean square of RR intervals successive differences (RMSSD);

• Number of pairs of successive NNs that differ by more than 50 ms
(NN50);

• Proportion of NN50 divided by total number of NNs (pNN50).

Frequency domain analysis

For the analysis of tachograms, various spectral methods have been applied
but only the PSD analysis provides the basic information of how power dis-
tributes as a function of frequency. In my research activity, the PSD of a
given time sequence was estimated by using the Welch’s method [118]. Given
x(1),x(2)...x(N) the original data sequence that should be divided into d =
1; 2;...;L intervals, each one originates a M-points sub-sequence xd(1),xd(2)...
xd(M). According to Welch, the PSD of each xd(n) sub-sequence is given by:

Pd(f) =
1

MU
|
M−1∑
n=0

(xd(n)w(n)exp(−jfn2π)|2 (2.1)

where U is the normalization factor for the power in the window function,
selected as:

U =
1

M

M−1∑
n=0

|w(n)|2 (2.2)
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The Welch’s PSD of the original sequence xd(n) is the average over these
modified periodograms that is:

PWelch(f) =
1

L

L−1∑
d=0

(Pd(f)) (2.3)

The variance of the estimated PSD is determined through to a single peri-
odogram estimation of the entire data record was decreased by the averaging
of windowed periodograms. Using the Welch method, the segments were not
overlapping and the variance of the averaged modified periodogram was in-
versely proportional to the number of segments used (L). The Hamming win-
dow was applied because it reduced the importance (weight) given to the outer
samples of the segments (the samples that overlap) and it decreased the redun-
dant information introduced by overlap between segments [119]. This spectral
analysis decomposes the HRV signal into the subsequent characteristic com-
ponents:

• High Frequency (HF) [ms2], ranging from 0.15Hz to 0.4Hz, it is consid-
ered an indicator of the activity of the vagus nerve on the heart;

• High Frequency normalized (HFn), it is used to minimize the effects of
changes due to the acquisition setup and the normalization is obtained
dividing the HF power by the total power spectrum;

• Low Frequency (LF) [ms2], ranging from 0.04Hz to 0.15Hz, which is due
to the joint action of the vagal and sympathetic components on the heart,
with a predominance of the sympathetic ones;

• Low Frequency normalized (LFn), the normalization is obtained dividing
the LF power by the total power spectrum;

• Very Low Frequency (VLF) [ms2], ranging from 0.0033Hz to 0.04Hz, its
physiological interpretation is not clear;

• Ratio between the LF and the HF (LF/HF), which reflected the abso-
lute and relative changes between the sympathetic and parasympathetic
components of the autonomous nervous system, by characterizing the
sympathetic-vagal balance [120].

Non-linear analysis

Non-linear phenomena are also involved in the genesis of HRV and are deter-
mined by complex interactions of hemodynamic, electrophysiological and hu-
moral variables, as well as by the autonomic and central nervous regulations.
These non-linear mechanisms estimated the quality, scaling, and correlation
properties of the signals. In other words, they are related to the complexity
of the signal. The parameters used to measure non-linear properties of HRV
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included Poincarè’s plot, Beta exponent and Fractal Dimension (FD). The
Poincarè plot was based on the theory of dynamical systems. The Beta expo-
nent and FD quantify the self affinity characteristics of the signal analyzed in
the frequency and in the time domain, respectively.

Poincarè plot

The Poincarè plot is a geometrical technique that describes the dynamics of
heart rate variability representing of the values of each RR intervals into a sim-
plified phase space that describes the system’s evolution [121]. The Poincare
plot is obtained by plotting each point of the time series, X(n), against the
next one, X(n+1). The plot provides summary information as well as detailed
beat-to-beat information on the behavior of the heart. It typically appears as
an elongated cloud of points oriented along the line of identity: the dispersion
of points perpendicular to the line of identity reflects the level of short-term
variability, while the dispersion of points along the line of identity is thought
to indicate the level of long-term variability [122]. To characterize the shape
of the plot, a mathematical method is to fit an ellipse to the shape of the
Poincarè plot [123, 124]. A set of axis oriented with the line of identity is then
defined [125]. The axis of the Poincarè plot are related to the new set of axis
by a rotation of θ = π/(4rad) that is:[

x1
x2

]
=

[
cosθ −sinθ
sinθ cosθ

] [
X(n)

X(n+ 1)

]
(2.4)

In the reference system of the new axes, the dispersion of the points around
the x1 axis is measured by the Standard Deviation of instantaneous short-term
RR interval variability (SD1), whereas the standard deviation around the x2
axis is measured by Standard Deviation of continuous long-term RR interval
variability (SD2) (Figure 2.1). Finally, SD1/SD2 represents the relationship
between these components, which is the ratio of short interval variation to long
interval variation [79].

Figure 2.1: Poincarè plot for normal subject (left panel),Poincarè plot for
IHD subject (right panel).
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Fractal geometry of HRV

The central concept of fractal geometry is of self-similarity. This characteristic
is also called scaling or scale-invariance and it describes objects that have
details at a certain scale that are similar. To better explain this concept,
Mandelbrot [126] introduced the term fractal. A fractal is a set of points that,
when looked at smaller scales, resembles the whole set and the self-similarity
is a characteristic of the fractal. This means that its details at a certain scale
are similar, but not necessarily identical, to those of the structure seen at
larger or smaller scales. Moreover, the notion of FD refers to a non integer
dimension that originates from fractal geometry, so that the FD provides a
measure of how much space an object occupies between Euclidean dimensions.
From a practical point of view, the higher the FD, the more irregular is the
signal. Although FD is generally meant in space, self-similar behavior can
be observed also in time. The propriety of fractal time series that requires
a scaling in the x and y axis, in order to appreciate their self similarity, is
known as self-affinity. In a random process, the correlation between successive
points is defined as the “color” of the noise, which is related to the slope of the
power spectral density. The most famous is white noise, characterized by flat
power spectral density. This means that, this noise is an uncorrelated process
produced by a random number generator. On the other hand, the brown noise
or Brownian motion, is characterized by a power density proportional to 1/f 2.
In the literature, the notion 1/f -noise is often used to refer to any process
characterized by a power spectral density proportional to 1/fβ (also called
1/f -like noise).

Fractal dimension

To estimate the FD directly in the time- domain, many methods have been
recommended and some comparison studies [127, 128, 129, 130] have demon-
strated that Higuchi’s algorithm [131] is the most accurate in estimating the
fractal dimension of waveforms. It is based on the measurement of the mean
length of the curve L(k) by using a segment of k samples as a unit of measure.
In this thesis, this method has been applied and the algorithm is reported
below. Let x(1),x(2),x(3). . .x(N) the original time series, the Higuchi’s algo-
rithm constructs k new time series:

xmk = {x(m), x(m+ k), x(m+ 2k), ..., x(m+ b(N −m
k

)ck)} (2.5)

where m is the initial time and k, ranging from 1 to kmax, is the discrete time
interval between points. The symbol bac denotes the integer part of a. Then,
for each sequence xmk , the length Lm(k) is calculated as:

Lm(k) =

[( bN −mk c∑
i=1

|x(m+ ik)− x(m+ (i− 1)k|
)

N − 1

kbN −m
k
c

]
1

k
(2.6)
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Where N is the total number of samples and (N−1)/(N−m)/k is a normaliza-
tion factor. The length of the curve L(k) for the time interval k is computed as
the average of the k lengths Lm(k) for m = 1,2,...,k. The procedure is repeated
for each k ranging from 1 to Lmax, in my research activity, it was considered
kmax=6 and N>125 (in this PhD thesis N=600) in order to gain the reliable
estimate of FD [127]. If L(k) is proportional to k−FD, the time series xmk is
fractal with dimension FD. Thus, if L(k) is plotted against 1/k on a double
logarithmic scale, the data should fall on a straight line with a slope equal
to –FD. The FD value is estimated by means of a least squares linear fitting
procedure applied to the series of pairs (L(k), k).

Power-law beta exponent

The major component of HRV occurs at frequencies below the low frequency
range (<0.04Hz). It is known that in the range 10−4-10−2 Hz, the power spec-
trum of HRV does not exhibit periodic components but a so called power law
behavior. The power exponent β is relating to the PSD and to the frequency
of HRV [132] as:

PSD ∝ 1

frequencyβ
(2.7)

The β can be graphically visualized in a double logarithmic plot of PSD(f)
versus f , in which the spectrum follows a line with a slope corresponding to
β. As just mentioned, the exponent β is related to the ‘color’ of the time
series, i.e. to the degree that the series is auto correlated. If β=0, there is
no autocorrelation and the PSD is flat (white noise). If β=2, then the series
is highly auto correlated (brown noise). If β=1, the series is moderately auto
correlated. Since, the power-law beta exponent of the 1/f power spectrum
and the fractal dimension measure the same feature, a certain relationship is
expected to exist between them, so it may also be possible to estimate one
index from the other [133]. To correctly characterize HRV by either FD or β
indices it is necessary to have a model that accurately describes the considered
process as [131]:

FD =
5− β

2
(2.8)

where β is included in the 1-3 interval and FD spans the range 1-2.

2.4 Machine learning algorithms

Machine Learning (ML) techniques are a branch of Artificial Intelligence able
to understand the structure of data and fit them into models. In traditional
computing, algorithms are sets of explicitly programmed instructions used by
computers to calculate or problem solve. Instead, machine learning algorithms
develop their own models to analyze data inputs and use statistical analysis
in order to output values that fall within a specific range. Because of this,
machine learning facilitates computers in building models from sample data



Material and Methods 26

in order to automate decision-making processes based on data inputs. In ML,
tasks are generally classified into categories that are based on how learning is
received or how feedback on the learning is given to the system developed. Two
of the most widely adopted machine learning methods are supervised learning,
which trains algorithms based on example input and output data that is labeled
by humans, and unsupervised learning which provides the algorithm with no
labeled data in order to allow it to find structure within its input data. In
supervised learning algorithms, the individual data points in the dataset have
a class or label assigned to them. This means that the machine learning
model can learn to distinguish which features are correlated with a given class.
Unsupervised learning involves creating a model that is able to extract patterns
from unlabeled data. In other words, the computer analyzes the input features
and determines what the most important features and patterns are. In my
research activity, the supervised learning techniques were developed writing
proprietary Matlab® (MathWorks, USA) code.

2.4.1 Artificial Neural Network
ANN is a machine learning technique designed to simulate the way the human
brain analyzes and processes information [134]. The human brain consists of a
large number of neural cells that work like a simple processor. A single neuron
consists of three main components: dendrites that channel input signals, cell
body which accumulates the weighted input signals and processes them, and
axon which transmits the output signal to other neurons that are connected
to it (Figure 2.2).

Figure 2.2: Neurons connected by synapses.

Like a biological neuron, the ANN consists of three main components: a set of
input connections brings in activation from other neurons, a processing unit
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sums the inputs and a non-linear activation function is applied, finally an
output line transmits the results to other neurons.

Figure 2.3: Neuron model.

The neuron is the fundamental processing element of a neural network and
its simple mathematical model was introduced by McCulloch and Pittis [135].
This model can be regarded as a non-linear function which transform a set of
input variables xi (i=1. . . d) into the output. The signal xi at input i is first
multiplied by a parameter wi known as weight. The weight is analogous to the
synaptic strength in a biological network and successively is added to all the
other weighted input signals to give a total input to the unit. If the weights
are positive indicate reinforcement otherwise represent inhibition.

a =
d∑
i=1

wixi + w0 (2.9)

where the offset parameter w0 is called bias and correspond to the firing thresh-
old in a biological neuron. The bias can be considered as a special case of a
weight from an extra input whose x0 = 0

a =
d∑
i=1

wixi (2.10)

Finally, the output z of the unit, which may loosely be regarded as analogous to
the average firing rate of a neuron, is then given by operating with a non-linear
activation function g() so that:
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z = g(a) (2.11)

The non-linearity means that the output of the function varies non-linearly
with the input. The activation function does the final mapping of the activa-
tion of the output neurons into the network outputs. There are three different
activation functions: threshold function, piecewise linear function and sig-
moidal function. In this thesis, the non-linear curved S–shape function known
as sigmoid function was studied. The sigmoidal function is reached by using
an exponential equation and it is applied to normalize the sum of data inputs
after being weighted.

ANN models

ANN consists of sets of input layer, hidden layer, output layer and each layer
presented number of neurons connected with neurons in the adjacent layers
through unidirectional connections. The information flow is only allowed in
one direction during the training process, from the input layer to the output
layer trough the hidden layer. The hidden layer has a synaptic weighting
matrix and the weights are associated with all the connections made from the
input layer to the hidden layer. There are two different arrangements of input
and output of neurons:

• Single Layer Perceptron (SLP): the arrangement of one input layer
of neurons is fed forward to one output of neurons. It comprises of
a single layer of weights and the inputs are directly connected to the
outputs via a series of weights. The synaptic links connect every input
to every output but only in a single way;

• Multilayer Perceptron (MLP): between the input and output layers
there are one or more intermediary layers called hidden layers. The
computational units of the hidden layer are known as hidden neurons.
The MLP can solve more complicated problems than SLP.
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Figure 2.4: a: An example of single layer perceptron, b: an example of
multilayer perceptron.

Backpropagation algorithm

Backpropagation algorithm [136] is the most popular of the MLP learning
algorithms. Get h the hidden node, x the input node, w the weight and y the
output node:

hi = f
∑

xiwij (2.12)

yi = f
∑

hiwij (2.13)

where i is the starting unit’s identifier and j is the outcome unit’s identifier.
The error is the difference of the expected value t and the actual value k, and
compute the error information term for both output and hidden nodes.

δyi = yi(1− yi)(t− yi) (2.14)

δhi = hi(1− hi)δyiwjk (2.15)
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δi the information error of the nodes. Finally, back propagate this error through
the network by adjusting all of the weights, starting from the weights to the
output layer and ending at the weights to the input layer.

∆wjk = ηδyihi (2.16)

∆wij = ηδhixi (2.17)

wnew = ∆w + wold (2.18)

Where η is the learning rate. Backpropagation adjusts the weights in an
amount proportional to the error for the given unit multiplied by the weight
and its input. The training process continues until some termination criterion,
such as a predefined mean square error or a maximum number of epochs.

Training algorithm for ANN

The training for ANN is not only based on memorizing the mapping relation-
ship between inputs and outputs among the learning samples, but on extract-
ing the internal rules about the environment which are hidden in the sample
by learning the finite sample data. In my research activity, the MLP model
which adopts the BP algorithm is developed. The forward-propagation input
information is transferred to the output layer from the input layer after being
processed in the hidden layer. The state of each layer neuron influences only
the state of neurons in the next layer. If it does not obtain the expected output
in the output layer, it shifts to back-propagation, and error signals are shown
along the original pathway of the neural connection, in return the connection
weight of each layer is modified one by one. Through successive iterations, the
error between the expected output signals of the network and practical output
signals of the system reaches an allowable range.

Advantages and disadvantages

The ANN has an excellent aptitude for learning the relationship between the
input/output mapping from a given dates without any prior information or
assumptions about the statistical distribution of data. This advantage makes
the ANNs suitable for classification and prediction tasks in clinical situations.
Moreover, the ANNs are inherently non-linear which makes them more useful
for an accurate model of complex data patterns. In addition, the ANN has
the ability to detect all the possible interactions between predictor variables.
On the other hand, a disadvantage is that ANN presents difficulty to analyz
systems which have many inputs due to a significant amount of time taken to
the system. Another disadvantage is that ANN is prone to overfitting. This
could be prevented limiting the number of hidden nodes, but it also reduces
the power of the network to model complex non-linear relationships [137].
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2.4.2 Classification and Regression Tree
Classification and Regression Tree Analysis (CART) [111] is a machine learn-
ing technique which is suited to the generation of clinical decision rules. It is a
binary recursive partitioning technique: the term binary implies that group of
elements, represented by a node, can only be split into two groups, the term
recursive refers to the fact that the binary partitioning process can be applied
over and over again and finally, the term partitioning refers to the fact that the
dataset is split into sections or partitioned. Moreover, this algorithm is inher-
ently non parametric that it means that no assumption is made regarding the
underlying distribution of values of the predictor variables. As a classification
problem, the CART consists of four main components. The first is the depen-
dent variable that the algorithm hopes to predict, the second component is
the predictors that are related to the outcomes variable of interest. The third
component is the training dataset that includes values for both the outcome
and predictor variables from whom the algorithm is able to predict outcomes.
The last component is the test dataset from whom the algorithm is able to
make accurate predictions.

Structure of CART algorithm

The CART algorithm consists of four steps:

• Tree building: it begins at the root node in which all data, of the learn-
ing dataset, are included. The algorithm finds the best possible variable
to split the node into two child nodes checking all possible splitting vari-
ables as well as all possible values of the variables to be used to split the
node. When the best splitter is chosen, the algorithm seeks to minimize
the average purity of the two child nodes choosing, as the measure of
purity, the splitting functions. The most common splitting function is
the Gini index criterion which is computed as:

Gini index(t) = 1− (
ni
n

)2 − (
nj
n

)2 (2.19)

where t is the considered node, i and j are the two class labels, ni and
nj are the number of subjects present at the node belonging either to
the class i or j, respectively, and n is the total number of subjects at
the node. The process of node splitting followed by the assignment of a
predicted class to each node is repeated for each node and it continued
recursively;

• The stop tree building: the process is stopped if there is only one
observation in each of the child nodes, or if all observations within each
child node have the identical distribution of predictive variables, making
the splitting impossible, or if an external limit on the number of levels
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in the maximal tree has been set by the users. The maximal tree which
is created is generally over fit;

• The tree pruning: during this step, a sequence of simpler and simpler
trees are generated, each of which is a candidate for the appropriately
final tree that it is obtained applying the method of ‘cost-complexity’. It
is based on assigning a complexity penalty to the growth of large trees.
Defining the cost complexity of tree Rα(T) as:

Rα(T ) = R(T ) + α|T |

Where α is a real-valued scalar, R(T ) is a linear combination of misclas-
sification probability and |T | is the number of node. This method relies
on a complexity parameter α which is gradually increased during the
pruning process. Beginning at the last level, the child nodes are pruned
away if the change in tree complexity is less than α times. So α is a
measure of how much additional accuracy a split must add to the entire
tree to warrant the additional complexity. As α is increased, more and
more nodes are pruned away, resulting in simpler and simpler nodes;

• The optimal tree selection:the maximal tree fits the learning dataset
with higher accuracy than any other tree but overestimating the perfor-
mance. The aim is to select the optimal tree, defined with respect to
expected performance on an independent set of data, and to find the
correct complexity parameter α so that the information in the learning
dataset is fit but not over fit. This means that the maximal tree will
always give the best fit to the learning dataset.

Advantages and disadvantages

The advantages to apply this method are several, in particular this machine
learning technique is very intuitive and easy to understand. Moreover, this
algorithm needs less effort for data preparation during pre processing because
it does not require either normalization or scaling of data. Another advantage
is that missing values do not affect the process of building a decision tree. On
the other hand, this structure presents some disadvantages such as it could be
unstable, a small changes in the training dataset can cause a large change in
the structure of the decision tree and it involves higher time to train the model
and the training is relatively expensive as the complexity and time taken are
more [138].

2.5 Feature selection

To select the inputs of the classification algorithms, several feature selection
techniques were proposed in order to reduce the parameter from the origi-
nal. The first technique selected the parameters correlated for less than 90%,
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the second selection utilized the stepwise regression and the last one applied
the Principal Component Analysis (PCA). The stepwise regression is a semi-
automated process of building a model in which successively variables are
added or removed based on the t-statistics of their estimated coefficients. Given
a set of potential independent variables, the process extracts the best subset to
use in the forecasting model. The regression could start or with no variables
in the model and proceed adding one variable at a time, or with all poten-
tial variables in the model and proceed removing one variable at a time. At
each step, the program performs the following calculations: for each variable
currently in the model, it computes the t-statistic for its estimated coefficient,
squares it, and reports this as its "F-to-remove" statistic; for each variable not
in the model, it computes the t-statistic that its coefficient would have if it
was the next variable added, squares it, and reports this as its "F-to-enter"
statistic. At the next step, the program automatically enters the variable with
the highest F-to-enter statistic, or removes the variable with the lowest F-to-
remove statistic, the same significance level for both entry and exit tests is
recommended [139]. On the other hand, PCA, is a linear dimension reduction
tool that can be used to reduce large dataset of variables to a small set that
presented most of the information in the large set, minimizing the correlated
variables into a smaller number of uncorrelated variables called principal com-
ponents. These are new variables that are linear functions of those in the
original dataset that maximize variance and that are uncorrelated with each
other. These components are orthogonal, ordered such that the retention of
variation present in the original variables decreases as the order decreases, it
means that the first principal component retains maximum variation that was
present in the original components [140]. In addition to these techniques of fea-
tures selections, also all the parameters were considered as inputs of machine
learning techniques. Finally, the classification performances obtained adding
or not a specific clinical parameter, namely LVEF, were evaluated.
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2.6 Classification performances

2.6.1 Confusion matrix
Starting from a basic confusion matrix of a binomial classification where there
two classes (say, Y or N), the accuracy of classification of a specific example
can be viewed one of four possible ways:

• True Positive (TP): the predicted class is Y, and the actual class is also
Y;

• False Positive (FP): the predicted class is Y, and the actual class is N;

• False Negative (FN): the predicted class is N, and the actual class is Y;

• True Negative (TN): the predicted class is N, and the actual class is also
N.

A basic confusion matrix is traditionally arranged as a 2x2 matrix as shown
in Table 2.2. The predicted classes are arranged horizontally in rows and
the actual classes are arranged vertically in columns, although sometimes this
order is reversed [141].

Observations

Predicted Class
Y N

Y True Positive
Correct result

False Positive
Unexpected result

N False Negative
Missing Result

True Negative
Correct absence of result

Table 2.2: Confusion matrix.

The statistical measures of the performance of a binary classification test are:

• Sensitivity: is defined as the ability of a classifier to select all the cases
that need to be selected. Sensitivity (SEN)=TP/(TP+FN);

• Specificity: is defined as the ability of a classifier to reject all the cases
that need to be rejected. Specificity (SPE)=TN/(TN+FP);

• Precision: is defined as the proportion of cases found that were actually
relevant. Precision (PRE)=TP/(TP+FP);

• Accuracy: is defined as the ability of the classifier to select all cases
that need to be selected and reject all cases that need to be rejected.
Accuracy (ACC)=(TP+TN)/(TP+FP+TN+FN).
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2.6.2 Receiver operator characteristic (ROC) curves and
area under the curve (AUC)

Receiver Operator Characteristic (ROC) [142] curve is used to visualize the
classifier’s performance. It is created by plotting the fraction of true positives
versus the fraction of false positives. When a table of such values is generated,
the FP rate on the horizontal axis and the TP rate (same as sensitivity or
recall) on the vertical axis were plotted. The FP can also be expressed as (1 –
specificity). The Area Under the Curve (AUC) provides an aggregate measure
of performance across all possible classification thresholds measuring the ability
of the test to correctly classify the true positive and false positive. The AUC
measures the entire two-dimensional area underneath the ROC curve. It takes
values form 0 to 1.0, for the ideal classifier this quantity is 1.0, it means that
the classifier is able to perfectly distinguish between the two classes. Instead
a values of 0 indicates a perfect inaccurate classifier. An AUC of 0.5 suggests
that the classifier has no discriminatory ability.



Chapter 3

Results and Discussions

This chapter, structured in three main sections, reported the main findings of
my research activities. All the topics have the application of biomedical signal
processing in common, providing useful information that clinicians can use to
make decisions.

In the first section, the analysis of the circadian cardiovascular signals, such as
blood pressure and heart rate, in normotensive and hypertensive subjects was
conducted showing the same basic circadian rhythm with characteristic peri-
ods of time over 24hrs. Furthermore, since the relationship over 24hrs between
these two signals could be useful to understand the control mechanism of the
autonomic nervous system, the circadian BP/HR relation was studied apply-
ing linear regression analysis in the four characteristic periods. However, the
difference between the BP and HR circadian rhythms affects their relationship,
during each hour of the day. Since the conventional measurements (office and
the average over 24hrs) did not accurately described the circadian changes due
to the sympathetic/parasympathetic control system, in my research activity
the linear approximation of BP/HR measurement in each hour of the day was
examined and its variation along the 24hrs considered.

In the second section, the influence of age, gender and other risk factors (such
as smoking, obesity and dyslipidemia) on BP and HR circadian rhythms has
been discussed. At first, the effects of smoking on BP and HR signals in
hypertensive and normotensive subjects, considering a temporal resolution of
15 minutes during day or 30 minutes during night, have been examined. Since
the signals presented characteristic linear behaviors in different period of time
over 24hrs, linear approximation in these intervals was evaluated associating
their slopes to different risk levels of cardiovascular diseases as well as to the HR
surge and decline over 24hrs. Concerning BP, it is known, from the literature,
that this biomedical signal is influenced by the presence of cardiovascular risk
factors as well as by ageing. Since, from a clinical point of view it can be
relevant to understand and quantify how the relationship BP/Age is affected
by risk factors in people with hypertension or not, linear regression analysis
was applied considering values taken from office and ABPM measurements.

36
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Finally, the influence of gender and age on the circadian rhythm of these
cardiovascular signals, in subjects without hypertension, has been reported.
In particular, the effect of age on the variation of heart beats over 24hrs was
estimated in subjects divided in three age groups and how the gender influenced
the circadian variation of BP/HR was analyzed.

In the last section, the research activity was focused on the application of
parameters extracted from the variation of heart beats over 24hrs to identify
subjects that presented different cardiovascular pathologies, in particular is-
chemic heart and dilated cardiomyopathy diseases. Two different mathematical
approaches based on machine learning techniques for DSS based on HRV pa-
rameters as well as on age and gender have been proposed. The two algorithms
concerning Artificial Neural Network based on generalized back-propagation
and Classification and Regression Tree were developed. At first, DSSs were
aimed at recognizing one single pathology, in particular, ANN being used to
classify IHD and CART to identify DCM. Successively, CART was used to
distinguish both IHD and DCM from normal subjects and between them, on
a large dataset. The classification performances were, at first, evaluated using
all the HRV parameters as input, then the algorithm was applied on features
selected by using either stepwise regression, principal component analysis or
correlation coefficients. Finally, in collaboration with clinicians and with the
aim of only non-invasive parameters being considered, one clinical outcome
(LVEF) was added to inputs to improve the classification performances.

3.1 Blood Pressure and Heart Rate circadian
rhythms

In the first section, the results of two studies concerning the relationship be-
tween BP and HR signals were presented. First at all the circadian rhythm
was examined in a large cohort of hypertensive and normotensive subjects.
Successively, matching the subjects for age, the normotensive subjects were
divided in normal/high normal and optimal BP subjects. Considering BPs
and HR values each 15 min during the day and each 30 min during the night,
the circadian trends were analyzed and four different time periods observed.
In order to evaluate the relationship of BP and HR over 24hrs and to quantify
the differences in circadian changes among subject groups, linear regression
analysis was applied.

In the second section, since the single measure obtained in office or as the aver-
age along 24hrs did not accurately describe the circadian BP/HR changes, this
relation was calculated hour-to-hour and the results were compared with those
obtained considering BP and HR values in the conventional measurements.
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3.1.1 Relationship between Blood Pressure and Heart
Rate circadian rhythms and their differences among
hypertensive and normal blood pressure subjects
[1SG] [2SG]

Materials and methods

Subjects

Firstly, the cohort of subjects was composed of 629 subjects (261 males and
367 females, mean age 68.0 ± 16 years) in particular 423 Normotensive (NH)
and 205 Hypertensive (H). Successively, matching by age, the dataset was
reduced considering only 385 subjects (153 males, 232 females, mean age 65.0
± 15.6 years) divided as 215 Hypertensive (H), 112 Normal/high normal blood
pressure (NHn) and 58 Optimal Blood pressure (NHob) subjects.

Statistical analysis

The circadian behavior of the mean values of SBP, DBP and Mean SBP (i.e.
[2*DBP+SBP]/3) among the subjects was separately examined for NH and H
subjects. The HR circadian behavior was compared in the two groups using
the Wilcoxon signed rank sum test, assumed that the subject groups were
independent and showed a non-Gaussian distribution. In the second study,
to evaluate the significance of the differences between each pair of the three
groups, the Wilcoxon rank sum test with the Bonferroni correction was applied.
Since the BP profiles during 24hrs showed to be bimodal with two maxima
and two minima (Figure 3.1), the 24hrs were divided in four intervals. In each
period the quite linear trend was fitted by a regression line and the linear
approximation goodness was measured by using the R-square statistic.

Results

The BPs presented a similar circadian trend in NH and H subjects and an
about constant difference of 20mmHg along 24hrs. The circadian rhythm of
HR (Figure 3.2) showed slow decrease during the day from about 9:30 until
19:30 and a quicker decrease from 19:30 till 2:00. From 2:00 to 6:00 the HR was
about constant followed by a quick increase during the morning from about
6:00 till 9:30. The HR values were significantly higher (p<0.001) in H than in
NH during all 24hrs with a difference between H and NH of about 2.3±0.8 bpm.
The relationships between SBP, Mean BP, DBP and HR circadian rhythms in
NH and H subjects showed that between 9:30 to 15:00 (blue line), the HR and
SBP decrease progressively while during postprandial hours, between 15:00 to
19:30 (red line), SBP increases and HR still decreases. During the first part
of the night (from 19:30 to 2:30), HR and SBP show a marked reduction with
the presence of hysteresis in respect of the quick increase of both SBP and HR
values during the successive morning period, from 2:30 to 9:30 (green line).
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Figure 3.1: Mean circadian rhythms of SBP, Mean BP, DBP (left panels)
and relationships between HR and SBP, Mean BP and DBP (right panels) in
Normotensive (solid line) and Hypertensive subjects (dashed line).

Figure 3.2: Mean circadian rhythm of HR in Normotensive (NH, solid line)
and Hypertensive (H, dashed line) subjects.
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Figure 3.3: Top panels: mean circadian rhythms of SBP, Mean BP and DBP
in H (dot-point line), NHn (solid line) and NHob (dashed line) subject groups,
subdivided in four periods: 10:00-14:30; 14:30-19:00; 19:00-2:00; 5:00-10:00.
Bottom panels: Circadian rhythms as in the top panels together with linear
regression curves.

The linear relation (Figure 3.3), which approximated the trend of the BPs
values in each of the four periods, showed high values of the R2 (R2 77%–98%
in NHn, R2 75%–96% in NHob and R2 75%–99% in H), validating the linear
approximations, and a significant relation (p-values < 0.0001) with the time.
Between 10:00 and 14:30 the slopes of SBP, Mean BP and DBP, were higher in
H group than NHn group. From 14:30 to 19:00, the BP slopes in H group were
higher than in the others two groups and BP increased more slowly in NHob
than in NHn. In the two decreasing and increasing tracts between 19:00 and
10:00, the slopes were higher in H than in NHob and NHn being very similar
in the latter (Table 3.1). Figure 3.4 shows the circadian rhythm of HR in the
three groups with no significant differences in the behavior between NHn and
the other two groups. Considering the linear approximation between 19:00
and 2:00, the slopes of the three groups were similar and lower than from 5:00
to 10:00. The corresponding two linear approximations were validated by the
high values of R2 (R2 95% in NHn, R2 87% in NHob and R2 93% in H).
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Slope Intercept

10:00-14:30 14:30-19:00 19:00-2:00 5:00-10:00 10:00-14:30 14:30-19:00 19:00-2:00 5:00-10:00

SBP

H -2.59 2.01 -3.50 5.74 172.78 104.90 209.96 44.13

NHn -1.49 1.96 -2.99 4.97 141.59 89.23 183.85 -37.81

NHob -2.45 1.97 -2.71 4.11 145.03 78.99 167.82 -21.47

Mean BP

H -2.33 1.63 -3.03 4.61 138.37 80.37 169.40 -39.28

NHn -1.42 1.62 -2.57 4.16 114.57 68.36 148.45 -38.27

NHob -2.31 1.54 -2.29 3.34 119.67 62.66 135.33 -20.71

DBP

H -2.09 1.36 2.68 3.84 111.74 60.86 138.20 -38.87

NHn -1.27 1.40 -2.29 3.50 92.27 51.02 121.65 -38.17

NHob -2.21 1.25 -1.99 2.69 100.00 48.97 110.41 -18.55

HR

H -0.81 -0.51 -1.72 4.64 87.44 82.99 107.63 -75.26

NHn -0.51 -0.36 -2.03 5.14 83.39 80.57 114.48 -91.22

NHob -0.08 -0.38 -1.87 4.56 74.03 80.03 109.79 -76.14

Table 3.1: Slope (in mmHg/hour for BPs and bpm/hour for HR) and In-
tercept (in mmHg for BPs and in bpm for HR) values of the linear regression
lines for SBP, Mean BP, DBP and HR.

Figure 3.4: a: Mean circadian behaviour of HR values in H (dot point line),
NHn (solid line) and NHob (dashed line) subjects. b: Mean circadian be-
haviour of HR values in H subjects together with the linear regression curves.
The 24hrs were divided in four periods: 10:00-14:30; 14:30-19:00; 19:00-2:00;
5:00-10:00.
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Discussion

The circadian behaviors of BP ad HR were similar both in H and NH subjects.
The changes in HR present closely parallel changes in BPs with a marked
reduction during nocturnal rest. The results confirmed previous outcomes
concerning generally lower values of HR and BP during the night than during
the day [16, 17] as well as a direct association between HR and SBP and DBP
increasing [14] at least in period in which HR increased (2:30-9:30). In the
interval between 15:30 and 19:30, HR and BP showed an inverse relationship
with decreasing HR and increasing BP (Figure 3.1, left panels) not yet reported
in the literature. Furthermore, a true linear relationship between HR and BP
values was found only during the night with a decrease of BP (from 19:30 to
2:30), partially confirming previous literature results [14]. In the other three
periods of the day, the relationship changed drastically and was mostly not
linear. Studying accurately the NH subjects, the circadian rhythms of HR
and BP presented specific trends with lower values during the night than the
day [5, 10, 15, 16, 17]. Moreover, the circadian BP and HR behaviors in H
presented the same profile as in NHn and NHob subjects partially confirming
the results of [27] only in H subjects.

Main finding

In these studies the highest values of slopes were presented during awakening,
particularly in the H group while the slowest values were found in the post
prandial period suggesting that the mechanisms that regulate the circadian
behavior of the two signals are independent. Applying linear regression tech-
nique, the slopes could be used to quantify the rate of change of the morning
blood pressure surge, associated with acute cardiovascular events.

3.1.2 Influence of the time of day on the relationship
between Heart Rate and Blood Pressure [3SG]

Materials and Methods

Subjects

The study population included 388 subjects (155 males and 233 females, aged
65±16 years old) composed of 216 Hyperthensive (H) and 172 Non Hyperthen-
sive (NH) subjects.

Stastical analysis

The BP and HR values were averaged hour-to-hour in each subject. The slope,
the intercept and the R2 of a regression line, fitting the relation between BPs
and HR data, considering all the subjects divided in the two groups (NH and
H), were evaluated for each hour. The relationship between BP and HR was
also evaluated considering, for each subject, either the office measurements or
the average along the 24hrs. Also in this case, the regression lines fitting the
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SBP/HR and DBP/HR relationships were separately estimated for NH and
H subject groups. The significance of the presence of the linear relation was
tested statistically comparing each slope with the zero value.

Results

The slope values of the hour-to-hour behavior of SBP/HR (Figure 3.5) were
significantly (p<0.05) different from zero for almost all the hours in NH sub-
jects while in H patients, from 01:00pm to 02:00pm and from 10:00pm to
11:00pm and at 07:00am the p-values presented significant values (Figure 3.6).

Figure 3.5: Relationships between SBP (vertical axis, in mmHg) and HR
(horizontal axis, in bpm) for every hour along the 24hrs, from 10:00am to
09:00am. Red points: hypertensive patients; blue points: normotensive sub-
jects; black lines: regression lines of the SBP/HR relationships in the two
subject groups.
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Figure 3.6: Slope, intercept and R-square values of the hour-to-hour regres-
sion lines of the BP/HR relationships (left panels: SBP/HR, right panels:
DBP/HR) in the two subject groups during 24hrs. Red crosses: hypertensive
patients; black circles: normotensive subjects.

The hour-to-hour relationship between DBP and HR had corresponding slope
values significantly different from zero (p<0.05) in almost all the hour except
from 02:00am to 04:00am in NH and at 03:00am and at 08:00am in H sub-
jects (Figure 3.6). From 05:00am to 07:00pm, the slope presented significantly
(p<0.0001) higher values in NH than in H subjects for SBP/HR relationship
with a similar behavior also for DBP/HR relation. During the night, the
slope of SBP/HR presented comparable values in both subject groups while
DBP/HR presented significant (p<0.0001) higher values in H. The difference
between the two groups was significant during the day in both relationships
while during the night the difference was reduced for SBP/HR and almost
nulled for DBP/HR relation. For SBP/HR, R2 was always lower than 0.02 in
H group, highlighting a very large inter-subject variability while in NH group,
the variability was high during the night. The R2 for DBP/HR were always
greater than 0.01 for H and NH during the day, instead comparable values
between subject groups were presented during the night. Figure 3.7 shows
that, for SBP, the slopes in H were negative while positive values were found
in NH (Table 3.2); under no circumstances the slopes were significantly dif-
ferent from zero (no relation between HR and SBP) although the difference
between the two groups was significant (p<0.0001) in both cases. Considering
the DBP, the slopes in both subject groups were positive (Table 3.2), always
significantly different from zero (p<0.01) except for H in office condition. The
difference between slopes in the two subject groups was significant (p<0.01)
in both measurements. Moreover, the intercept values, both for SBP/HR and
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DBP/HR, were greater in office than in the average on 24hrs in both subject
groups (Table 3.2) and significantly (p<0.001) different between them except
in the average on 24hrs for DBP/HR.

Office 24hrs
H NH H NH

SBP
Slope [mmHg/bpm] -0.09 0.07 -0.1 0.1
Intercept [mmHg] 157 114 145 107

R2 0.0001 0.006 0.008 0.01

DBP
Slope [mmHg/bpm] 0.07 0.1 0.2 0.2
Intercept [mmHg] 90 67 69 57

R2 0.008 0.04 0.03 0.06

Table 3.2: Slope, intercept and R2 values of the linear approximations of
Fig.3.7.

Figure 3.7: SBP/HR and DBP/HR relationships in the two subject groups
(red points: hypertensive patients; blue points: normotensive subjects) calcu-
lated in office condition (left panels) and as average on 24hrs (right panels).
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Figure 3.8: Left panels: HR profiles in the two subject groups (NH and H);
Central and right panels: SBP and DBP circadian profiles estimated from HR
profile by using slope and intercept values calculated either in the hour-to-hour
analysis of Figure 3.7 (black line), or in the office (red line) or in the average on
24hrs (blue line) of Table 3.2. The bars correspond to ±1 Standard Deviation
among the subjects.

Finally, the R2 for SBP was in both groups always lower than 0.01 while for
DBP it was always lower than 0.06. To compare the reliability of the linear
approximation estimated in the different ways such as hour-to-hour, office and
average on 24hrs, the circadian BPs profiles were estimated form HR using the
slope and intercept evaluated in Figure 3.8. The rhythms evaluated starting
from office as well as from averages on 24hrs relationships, were very poor,
especially using office values in H subjects (Figure 3.8). Furthermore, the cir-
cadian variability along 24hrs in these two situations was markedly reduced in
comparison of the correct circadian rhythm; in H the trend was even opposite.
In addition, as expected since the slope and intercept are unique for all the
hours, the circadian profiles were similar to that of the HR rhythm rather than
to that of SBP or DBP.

Discussion

The slopes for SBP/HR and DBP/HR were significantly different from zero
almost exclusively in NH showing the greatest values during the morning.
This fact supports the hypothesis of a negligible relation between HR and
both SBP and DBP and that the two systems controlling cardiac and pressure
variability could work independently in night time period as well as during
most of the day for H. The variability (measured as the standard deviation) of
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slopes and intercepts along the 24hrs were quite large and similar in the two
groups and for SBP/HR and DBP/HR relations (about 0.08-0.11mmHg/bpm
for slopes and 6-12mmHg for intercepts). This may suggest that only one
punctual measure (as that in office or as the average on 24hrs) could be not
adequate to describe the effective link between BP and HR during the day in
each category of subjects. The circadian rhythms of SBP and DBP in H and
NH, estimated using the linear regression obtained starting from office as well
as from average on 24hrs relationships, very poorly approximate the correct
profile (Figure 3.8), especially using office values in hypertensive subjects. By
using the hour-to-hour slope and intercept estimations is possible to obtain,
from HR values, good approximation values for both SBP and DBP for all
24hrs. In fact, mean values of SD bars in Figure 3.8 were of about 2.9mmHg
in NH and 1.5mmHg in H subjects for SBP and of 2.7mmHg in NH and
2.6mmHg in H subjects for DBP. This fact underlines the limitation due to
the use of a single measure (office or 24hrs average) to explain the relationship
between the two variables that changes during 24hrs in a different way in the
two populations and that HR is not the only determinant of SBP and DBP
changes in the circadian rhythm. In conclusion, for a correct estimation of
both the relationships BP/HR and of BP values from HR ones along the 24hrs,
it is suggested to use linear approximations extracted from the hour-to-hour
analysis rather than those used so far.

Main findings

The circadian trend of the relationship between BPs and HR was evaluated
applying a regression line for each hour along the 24hrs considering the two
subject groups. The slopes presented values near zero in the night supporting
the hypothesis that the two system controlling cardiac and pressure variabil-
ity could work independently. Moreover, the large variability of slopes and
intercepts along the 24hrs suggests that the punctual measurement either in
office or as the average over 24hrs are not sufficient to describe the BPs/HR
relationship.

3.2 Influence of age, gender and other risk fac-
tors on Blood Pressure and Heart Rate
circadian rhythms

In this section, the effects of smoking on cardiovascular circadian rhythms
in hypertensive and normotensive subjects, are reported. To evaluate the
influence on HR, the linear approximation of the circadian behavior was applied
in specific characteristic periods of time. Since no large differences were found
in the trend between 10:00-14.30 and 14:30-19:00 in both subject groups, the
24hrs were divided in only three periods of time, from late morning to evening
(10:00-20:00), from evening to night (20:00-04:00) and from early morning to
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late morning (05:00-10:00). Furthermore, the effect of smoking on the circadian
BP linear trend was evaluated, dividing the 24hrs in four periods, due to the
bimodal behavior of BP. In that case, the subjects which presented other risk
factors (such as obesity and dyslipidemia) were not considered and the cohort
of subjects reduced. However, there are other risk factors such as obesity and
dyslipidemia, that affected the circadian rhythms and the periods of time along
the 24hrs, in which the signal’s alterations were manifested, could be associated
with different risk levels of cardiovascular diseases. Thus, the influence of each
of these risk factors on HR circadian rhythm was examined in normotensive
and hypertensive subjects applying a linear regression on the three periods over
24hrs. Successively, since age increases BP, the relationship between BP and
age was examined considering the presence of other risk factors, evaluating and
comparing the differences between office and ABPM measurements. Moreover,
the influence of age on the circadian rhythm of HRV in subjects between 15 and
90 years old was evaluated and a possible model of this relation was estimated.
Finally, how the relationship between BP and HR depends on gender, their
relation over 24hrs was accurately described, using both office and ABPM
measurements.

3.2.1 Influence of smoking on Heart Rate and Blood
Pressure circadian rhythm in hypertensive and
non-hypertensive subjects [4SG] [5SG]

Material and Methods

Subjects

To evaluate the effect of smoking on HR, the cohort was composed of: 58
Hypertensive Smoker (HS) (36 female and 26 male, 56±14 mean age), 351 Hy-
pertensive Non Smoker (HNS) (223 female ad 128 male, 66±15 mean age), 39
Non Hypertensive Smokers (NHS) (26 female and 13 male, 53±15 mean age)
and 166 Non Hypertensive Non Smokers (NHNS) (92 female and 74 male,
63±15 mean age). Since the presence of other several cardiovascular risk fac-
tors such as obesity, dyslipidemia and diabetic mellitus could affect the BP
circadian rhythm, in the second study the subjects without those factors were
selected. Hence, the cohort was composed of 32 Hypertensive Subjects (HS)
(18 male and 14 female, 52±14 mean age), 113 Hypertensive Non Smokers
(HNS) (58 male and 55 female, 56±13 mean age), 20 Non Hypertensive Smok-
ers (NHS) (13 male and 7 female, 54±15 mean age) and 83 Non Hypertensive
Non Smokers (NHNS) (46 male and 37 female, 59±16 mean age).

Statistical analysis

The 24hrs HR profiles showed three specific intervals corresponding to: late
morning to evening (10:00-20:00), evening to night (20:00-04:00) and early
morning to late morning (05:00-10:00). In each period the quite linear trend
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was fitted by a regression line and the slopes and intercepts were evaluated.
In the second study, the same technique was applied to study mean values of
BPs for each subject groups. Since the BP profiles during 24hrs presented a
bimodal trend, the 24hrs were divided into four intervals and in each period the
quite linear trend was fitted by a regression line. Finally, the trends between
normotensive smokers and non smokers and between hypertensive and non-
smokers were compared in each interval and for both signals using the Wilcoxon
rank sum test, assuming that the subject groups were independent and showed
a non-Gaussian distribution.

Results

All the linear HR trends decrease slowly between 10:15 and 19:45 (day time),
then decrease quickly from 20:00 to 4:00 (night time) and finally they increase
very quickly during the early morning (5:00-10:00) (Figure 3.9, Table 3.3).

Figure 3.9: Mean circadian HR rhythms in Hypertensive Smokers (HS),
Hypertensive Non Smokers (HNS), Non Hypertensive Smokers (NHS) and Non
Hypertensive Non Smokers (NHNS) together with the linear approximations
in the three separate periods.

The differences between the HR circadian trends in smokers and non-smokers
were significant and about constant during the 24hrs both in H (mean value
2.8±2.0 bpm, p-value<10-10) and in NH (mean value 6.4±2.3 bpm, p-value<10-
10) subjects. On the other hand, the differences between circadian SBP and
DBP values in HS compared with HNS were significant in the three periods
between 10:00 and 02:00 (p<0.05)(Table 3.4). Moreover, in NH, the differ-
ence between smokers and non-smokers was significant only for SBP values
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between 10:00 and 19:00 (p<0.04). The BPs behaviours were approximated,
by linear regressions (Figure 3.10) presenting slopes that differ among groups
and intervals (Table 3.5).

Groups Age (years)
Gender

Periods during 24hrs

10:15-19:45 20:00-04:00 05:00-10:00

F M Mean±SD Slope r Mean±SD Slope r Mean±SD Slope r

NHS 63±15 92 74 72.9±2.1 -0.65 0.88 65.4±3.9 -1.42 0.98 68.1±5.6 3.92 0.99

NHS 53±15 26 13 80.0±1.8 -0.32 0.49 71.9±5.2 -1.89 0.97 73.0±6.9 4.51 0.91

HNS 66±15 223 128 74.7±2.6 -0.88 0.95 66.3±3.8 -1.36 0.98 70.2±6.6 4.55 0.98

HS 56±15 36 26 77.7±2.7 -0.71 0.74 69.9±5.1 -1.87 0.98 71.5±6.2 4.28 0.98

Table 3.3: HR mean values (±SD) (bpm), slopes (bpm/hour) and correla-
tion coefficient of the linear approximation in each of the three periods of the
circadian profile for the four groups.

Systolic BP NHNS NHS HNS HS
10:00-14:30 124-128# 121-126# 137-143* 142-146*
14:45-19:00 124-126# 121-125# 134-137* 136-144*
19:15-02:00 116-127 112-125 121-138* 126-144*
02:30-09:45 113-122 109-122 120-139 120-134
Day time 122-127§ 120-125§ 134-140$ 136-145$
Night time 113-116§ 107-113§ 118-121 118-125

Dyastolic BP NHNS NHS HNS HS
10:00-14:30 77-81 77-81 88-90* 88-93*
14:45-19:00 76-78 77-81 83-86* 85-91*
19:15-02:00 68-79 71-79 72-85* 75-91*
02:30-09:45 66-75 68-79 73-86 72-84
Day time 75-80 77-81 83-88$ 85-92$
Night time 66-68 67-71 69-74 70-77

Table 3.4: 25th and 75th percentiles of BP pressures (in mmHg) in the
four subject groups for each period and during day- and night times. Differ-
ences between smokers and non-smokers: # p<0.04, * p<0.05, § p<0.003, $
p<0.0001.
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NHNS NHS HNS HS
Systolic BP m q m q m q m q
10:00-14:30 -2.01 151 -0.52* 130 -3.13 179 -2.32 173
14:45-19:00 1.03 108 2.04 88 1.06 117 2.92 90
19:15-02:00 -2.62 180 -3.71 201 -3.77 213 -4.25 229
02:30-09:45 2.12 53 2.77 31 4.32 -4 3.71 14

Dyastolic BP m q m q m q m q
10:00-14:30 -1.67 99 -0.58* 86 -2.37 118 -2.15 118
14:45-19:00 1.13 59 1.69 50 1.13 65 2.95 38
19:15-02:00 -2.52 129 -2.34 127 -3.28 152 -4.04 173
02:30-09:45 2.15 6 2.24 6 3.39 -24 3.22 -20

Table 3.5: Slopes (m in mmHg/hour) and intercepts (q in mmHg) of the
regression lines between hours of the day and BP, in the four groups for each
period. *No significantly different from zero.

Figure 3.10: Circadian Systolic and Diastolic BP rhythms in Hyperten-
sive Smokers (HS), Hypertensive Non-Smokers (HNS), Normotensive Smok-
ers (NHS) and Normotensive Non-Smokers (NHNS) together with the linear
approximations in the four separate periods.
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The slopes were generally greater for SBP in smokers than in non-smokers
(in H and NH subjects) in the three periods after 14:45 while an opposite
trend was present between 10:00 and 14:30 with slope values greater in non-
smokers (Table 3.5). For DBP the slopes were quite similar among the subject
groups, excluded HS, in the three periods after 14:45 while from 14:45 to 02:00
in the HS group, the slopes were much higher. For BPs between 10:00 and
14:45 the slopes were greater in non-smokers than in smokers. R2 presented
values between 0.40 and 0.95 for both SBP and DBP, confirming a good linear
approximation. The only interval in which the BP presented a quite constant
behaviour was between 10:00 and 14:30 in NHS. In all the other cases the
slopes were significantly (p<0.01) different from zero

Discussion

In all the tree periods selected, smokers presented significant higher HR values
than non-smokers with NHS subjects showing the highest values and NHNS
subjects the lowest (Figure 3.9). The differences remained quite constant dur-
ing the 24hrs with higher values in NH subjects supporting the hypothesis that
smoking has a larger impact on this category of subjects confirming the out-
comes reported by [36, 37]. The analysis using linear approximation highlights
different velocity changes of HR during day time, in the second period similar
slopes in HS and NHNS, and during night time greater changes velocity of HR.
A similar behavior was presented by non-smokers but with slightly lower slopes.
In the last period, a very similar trend among all subjects demonstrated a very
quick increase of HR, not associated with either the smoking or the hyperten-
sion, probably due to the increase of metabolic and oxygen needs during the
early morning. Considering BPs along 24hrs, normotensive subjects presented
higher mean values of SBP in non-smokers than in smokers partially confirm-
ing [37]. HS presented significant higher values than HNS along the periods,
between 10:00 and 02:00, while during the awaking the behavior was opposite.
These results confirm the findings of numerous authors [35, 36] on day time,
enlarging the time interval in which this occurs. The direct pharmacological
effects of nicotine in different daily activities reduced during the night time
could explain this fact. Using linear approximation it was observed that in the
first period the slopes were different among the four subject groups, showing
different velocity changes of BPs with higher values in both hypertensive and
normotensive non-smokers than in smokers. In the successive three periods,
the smokers had slopes generally greater than non-smokers in both H and NH
subjects. The values were similar between smokers and non-smokers only dur-
ing both the third period for DBP in NH and the fourth period, the awaking,
for SBP in H. This behavior could underline that during awakening, BP varia-
tions were mostly regulated by the autonomic nervous system that minimizes
the effect of smoking. There were significant differences between smokers and
non smokers in hypertensive and non hypertensive during the day time with
higher rates in non smokers between 9:00 and 14:30 and in smokers in the other
three periods. In conclusion, the different linear velocity rates of HR and BP



Results and Discussions 53

changes during 24hrs could be linked to different risk levels of cardiovascular
diseases.

Main findings

Smoking affected both HR and BP circadian rhythms over 24hrs. In particular
higher linear velocity rates of HR were found during day and night time in
smokers than in non smokers, both in normotensive and hypertensive subjects.
Considering BP, between 10:00 and 14:30 the changing rate was higher in non-
smokers than in smokers for both normotensive and hypertensive subjects while
an opposite behavior was found from 14:30 to 10:00. The different velocity
rates could have a prognostic meaning because they could be associated with
different risk levels of cardiovascular diseases

3.2.2 Influence of smoking and other cardiovascular risk
factors on Heart Rate circadian rhythm in nor-
motensive and hypertensive subjects [6SG]

Materials and methods

Subjects

It was considered a sample of 618 subjects composed of: 83 Normotensive with-
out risk factors NH (46 male and 37 female, 59±15 mean age), 20 Normotensive
Smoker NHS (13 male and 7 female, 54±15 mean age), 44 Normotensive with
dyslipidemia (NHD) (23 male and 21 female, 70±11 mean age), 23 Normoten-
sive obese (NHO) (95 male and 74 female, 61±17 mean age), 169 Hypertensive
without risk factors (H) (95 male and 74 female, 64±16 mean age), 32 Hyper-
tensive Smoker (HS) (18 male and 14 female, 52±14 mean age), 99 Hyperthen-
sive with dyslipidemia (HD) (73 male and 26 female, 70±13 mean age) and
53 Hyperthensive obese (HO) (34 male and 19 female, 65±14 mean age).The
information about risk factors were collected in accordance with international
guidelines [143].

Statistical analysis

The 24hrs HR profiles were subdivided in three intervals corresponding to:
late morning to evening (10:00-20:00), evening to night (20:00-04:00) and early
morning to late morning (05:00-10:00). In each period, a regression line fitted
the linear trend and the linear approximation significance was measured by
using the R2 and the p-value. Moreover, the mean and standard deviation val-
ues of HR among the subjects was separately examined in each period for each
groups. In each period, the differences between the HR mean values calculated
in H and in each of other normotensive groups (NHS , NHD and NHO) as well
as between H and each of other hypertensive groups were evaluated (HS, HD
and HO). Furthermore, to assess the influence of hypertension on HR rhythm
when the same risk factor was present. The differences were estimated between
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each pair of normotensive and hypertensive corresponding groups (NH vs H ,
NHS vs HS, etc.). In order to calculate these pair comparisons, the Wilcoxon
rank sum test, assuming that the subject groups were independent and showed
a non-Gaussian distribution, with the Bonferroni correction was applied.

Results

Between 10:00 and 20:00 the HR slopes were higher in H, HS and HO groups
than in the corresponding normotensive groups while in the two groups with
dyslipidemia the values were quite similar. From 20:00 to 04:00, the HR slopes
in NHS groups were higher than in NH while in NHD and in NHO the slopes
presented lower values than in NH. In this period, the HS presented higher val-
ues of the slope than the other three hypertensive groups. In the early morn-
ing, the hypertensive groups presented higher slope values than normotensive
groups showing that HR increased quicker in the hypertensive patients than
in normotensive subjects (Figure 3.11 to 3.13, Table 3.6).

Figure 3.11: Circadian rhythms of HR in normotensive and hypertensive sub-
jects with and without smoking (left panel) and their linear regression (right
panel) in the three periods considered (10:00-20:00, 20:00-4:00, 5:00-10:00).
NH=Normotensive (green points), NHS=Normotensive smoking (red points),
H=Hypertensive (black points), HS=Hypertensive smoking (blue points).
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Figure 3.12: Circadian rhythms of HR in normotensive and hypertensive
subjects with and without dyslipidemia (left panel) and their linear regression
(right panel) in the three periods considered (10:00-20:00, 20:00-4:00, 5:00-
10:00). NH=Normotensive(green points), NHD=Normotensive with dyslipi-
demia (red points), H=Hypertensive (black points), HD=Hypertensive with
dyslipidemia (blue points).

Figure 3.13: Circadian rhythms of HR in normotensive and hypertensive
subjects with and without obesity (left panel) and their linear regression (right
panel) in the three periods considered (10:00-20:00, 20:00-4:00, 5:00-10:00).
NH=Normotensive (green points), NHO=Normotensive obese (red points), H
=Hypertensive (black points), HO=Hypertensive obese (blue points).
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NH NHS NHD NHO H HS HD HO

Slope [bpm/hour]

10:00-20:00 -0.42 -0.13 -1.07 -0.25 -0.81 -0.52 -0.95 -0.99

20:00-04:00 -1.77 -1.99 -1.17 -1.30 -1.30 -1.80 -1.35 -1.49

05:00-10:00 4.12 2.52 4.61 3.21 4.45 3.57 4.68 4.80

Intercept [bpm]

10:00-20:00 80.6 81.06 86.06 76.48 86.86 83.76 86.43 92.80

20:00-04:00 107.6 117.65 89.92 97.09 96.83 111.80 95.01 104.70

05:00-10:00 -62.04 -7.59 -78.41 -35.92 -69.85 -43.50 -80.50 -79.92

R square

10:00-20:00 0.63 0.17 0.80 0.25 0.94 0.62 0.88 0.79

20:00-04:00 0.96 0.96 0.97 0.93 0.98 0.97 0.96 0.95

05:00-10:00 0.98 0.75 0.96 0.88 0.98 0.89 0.97 0.93

Table 3.6: Slope, intercept and R2 values of the linear regression calculated
in the three time periods in the eight subject groups.

In the first period, there were significant differences between each pair of groups
except between H vs HS (Table 3.7-3.8). Between 20:00 and 04:00, there were
significant differences only between NH vs NHS, H vs HD and H vs HO. The
means along 24hrs shown significant differences as during the day time, except
between NH and NHO (Table 3.8). Considering the comparison between NH
and H groups presenting the same risk factor (Table 3.9), in the first period,
as well as in day time, the differences were statistically significant only when
a risk factor was present. In the interval 20:00-04:00 no significant difference
was found between each pair while during awakening and night time only
the difference between NHO and HO was significant. Along the 24hrs the
differences between NH and H groups were significant only considering smoking
and obesity (Table 3.9).

Discussion

During day time and early morning, H without other risk factors as well as
smokers or presenting obesity showed greater velocity change than correspond-
ing normotensive subjects. In the night time, the differences between the slopes
in HO and in NHO as well as between HS and NHS patients became similar,
while H patients showed lower slopes than NH subjects. In subjects affected by
dyslipidemia, the differences between NH and H were negligible in all periods.
The slopes calculated in the third period could be used to quantify the morning
HR surge associated with acute cardiovascular effects while the values calcu-
lated from 20:00 to 04:00 could be used to measure the decline during night.
The different slopes could indicate different control ways of HR changes along
the 24hrs depending on the risk factor. Considering the mean HR values, the
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results (Table 3.7-3.8) highlighted that all risk factors affected the mean HR
values with a significant variation during day. Smokers presented significant
higher HR values than non-smokers with NHS subjects showing the highest
values and NHNS subjects the lowest. Higher values in NH subjects supporting
the hypothesis that smoking has a larger impact on this category of subjects
than in H confirming the outcomes reported by [36, 35] due to a worse oxygen
exchange in the lungs of smokers. Considering the four hypertensive groups,
the smoking does not affect significantly the HR mean values in any of the
three periods. Hypertensive patients with obesity showed statistically higher
HR values during all the three periods than hypertensive without risk factors,
confirming the results of [39, 43] obtained on patients affected by metabolic
syndrome during both day time and night time and in office condition. More-
over, the results suggested that the presence of dyslipidemia reduce the HR
values during all day, significantly from 10:00 to 04:00, extending the results
of [44, 45] in which only office measurements were considered. This reduction
was probably due to the reduced activation of sympathetic nervous system.
For hypertensive patients, the mean HR values calculated on day time were
comparable to those evaluated during the first period (10:00-20:00) while the
values estimated on 24hrs as well as on night time presented intermediated
values between those of the second and third periods. In this study, it was
highlighted that from 10:00 to 04:00 smokers presented higher HR values and
subjects with dyslipidemia lower values than subjects without risk factors both
in H and in NH subjects.

NH NHS NHD NHO N HS HD HO

10:00-20:00 74±2 79±2 70±4 73±3 75±2 76±2 72±3 78±3

20:00-04:00 66±5 71±5 62±3 66±4 66±3 70±5 63±3 70±4

05:00-10:00 68±6 72±5 68±7 66±5 71±6 70±6 68±7 72±7

Day time

(08:00-21:00)
74±2 78±3 70±4 72±3 75±3 76±3 72±3 78±3

Night time

(23:00-06:00)
61±2 66±3 59±2 63±2 63±1 65±3 60±1 66±2

24hrs 71±6 75±5 67±6 69±5 71±5 73±5 69±6 74±6

Table 3.7: Mean values ± SD of HR values (bpm) in the three periods, during
day time, night time and along the 24hrs, for each subject group.
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NH vs NHS NH vs NHD NH vs NHOH vs HS H vs HD H vs HO

10:00-20:00 <0.0006 <0.0006 0.02 n.s. 0.002 <0.0006

20:00-04:00 0.02 n.s. n.s. n.s. 0.04 0.04

05:00-10:00 n.s. n.s. n.s. n.s. n.s. n.s.

Day time

(08:00-21:00)
<0.00006 <0.00006 0.002 n.s. 0.0006 <0.0006

Night time

(23:00-06:00)
<0.00006 n.s. n.s. n.s. <0.0006 <0.002

24hrs <0.00006 0.001 n.s. n.s. 0.009 0.01

Table 3.8: P-value of the comparison between normotensive and hypertensive
groups with and without risk factors.

NH vs H NHS vs HS NHD vs HD NHO vs HO
10:00-20:00 n.s. <0.0004 0.006 <0.0004
20:00-04:00 n.s. n.s. n.s. n.s.
05:00-10:00 n.s. n.s. n.s. 0.03
Day time

(08:00-21:00)
n.s. <0.00004 0.002 <0.00004

Night time
(23:00-06:00)

n.s. n.s. n.s. 0.01

24hrs n.s. 0.001 n.s. <0.00004

Table 3.9: P-value of the comparison between normotensive and hypertensive
groups presenting the same risk factor.

Main finding

Until now, to evaluate the HR changes due to presence of these risk factors,
a single HR office measure or a mean evaluated on day time or night time
or 24hrs was used. However, since HR shows a circadian behavior with three
characteristic behaviors, a single value represents only a rough approximation
of this behavior. Applying linear regression analysis in each period, the slopes
could be used to estimate the morning HR surge associated with acute car-
diovascular effects in the awakening and to evaluate the decline during the
night. Furthermore, considering the influence of the risk factors, the smoking
increased and dyslipidemia decreased mean HR values from 10:00 to 04:00,
both in normotensive and hypertensive subjects in comparison with subjects
without risk factors. During the awakening (05:00-10:00) the slopes were simi-
lar among all groups with no significant difference among the mean HR values.
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3.2.3 Influence of some cardiovascular risk factors on
the relationship between Blood Pressure and age
[7SG]

Materials and methods

Subjects

The study population included a total of 880 subjects (365 males and 524 fe-
males, 65±16 mean age). The information about risk factors were collected in
accordance with international guidelines [143]. The subjects were then grouped
in eight classes considering them either all together or excluding those present-
ing at least one risk factor, as reported in Table 3.10.

All together Without risk factors
Office ABPM Office ABPM

H 253 241 54 60
NH 112 124 105 99

Table 3.10: Subjects group.

Statistic analysis

The SBP/Age and the DBP/Age relations were separately evaluated for H and
NH subjects, by calculating the slope, the intercept and the R2 of a regression
line the parameters of the regression lines in each subject group.

Results

Considering subjects with and without risk factors, the intercepts were higher
in H than in NH subjects and they were 2-8 mmHg greater in office than
in ABPM measurements (Figure 3.14). The SBP/Age slopes were positive
in both subject groups with higher values in office condition than in ABPM,
while the DBP/Age slopes were negative in all subjects and slightly greater
in ABPM than in office (Table 3.11). In all the subjects without risk factors
(Figure 3.15), the SBP/Age intercepts were comparable in office and ABPM
conditions while the DBP/Age intercepts were greater in hypertensive subjects
in both conditions.
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Figure 3.15: SBP/Age and DBP/Age relationships in the subject without
risk factors (black: hypertensive patients; red: normotensive subjects) calcu-
lated in office condition (top panels) and as average on 24hrs (bottom panels)

Figure 3.14: SBP/Age and DBP/Age relationships in all the subjects (black:
hypertensive patients; red: normotensive subjects) calculated in office condi-
tion (top panels) and as average on 24hrs (bottom panels)
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All the subjects
Office ABPM

NH H NH H
SBP/Age Intercept 112 140 116 138.

Slope 0.15* 0.22* 0.01 0.09
DBP/Age Intercept 78 103 76 95

Slope -0.05 -0.16* -0.10* -0.17*
Subjects without risk factors

Office ABPM
NH H NH H

SBP/Age Intercept 113 131 117 133
Slope 0.15 0.32* 0.005 0.157

DBP/Age Intercept 83 101 77 96
Slope -0.13 -0.11 -0.12* -0.17*

Table 3.11: Subjects group.

The SBP/Age slopes were positive in all measurements with the lowest val-
ues in normotensive subjects evaluated in ABPM, while the DBP/Age slopes
presented lower values in office than in ABPM and in NH than in H subjects
(Table 3.11). The differences between the regression lines of SBP/Age rela-
tion calculated on all subjects and on subjects without risk showed, in NH
subjects (red lines in Figure 3.16, left panels), negligible and independent be-
havior of age while, in H subjects (black lines) the differences were related
to age, decreasing toward zero in elderly. These trends were similar for BP
calculated both in office and in ABPM ways. On the contrary, the differences
between the regression lines of the DBP/Age relation decreased with ageing
more remarkable if office was used, especially in NH subjects (red lines in Fig-
ure 3.16, right panels). In H the differences had trends that were opposite in
office and ABPM, presenting a negligible relation with ageing. The differences
between the regression lines of the SBP/Age relation calculated in office and
ABPM ways in H (Figure 3.17, left panels) as well as in N subjects increased
with age either in all the subjects or in those without risk factors. The dif-
ferences between the regression lines of the DBP/Age relation increased with
ageing when the subjects were considered all together while, if we considered
only those without risk factors, the increase with age was presented only in H
(Figure 3.17, right panels).
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Figure 3.16: Regression lines of SBP/Age and DBP/Age relationships cal-
culated on all the subjects and on subjects without risk factors, in office (top
panels) and ABPM (bottom panels) modalities. Black lines: hypertensive
patients; red lines: normotensive subjects.

Figure 3.17: Differences between the regression lines of SBP/Age and
DBP/Age relationships calculated in office and ABPM modalities on all the
subjects (top panels) and on subjects without risk factors (bottom panels).
Black lines: hypertensive patients; red lines: normotensive subjects.
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Discussion

Several studies evaluated the relation between BP and age measurements but
none of them distinguished between subjects with and without the presence of
at least one risk factor although it is known that many factors could increase
BP values [47, 48, 50]. Our results suggest that SBP increased significantly
with age (Table 3.11), presenting different values (between 1.5 and 2.2mmHg
per decade) in all subjects only for office measurements, while for ABPM the
increment was negligible. On the other hand, DBP, after a quite constant
behavior in the first decades of age, significantly decreases over 50 years, espe-
cially for BP measured in ABPM way. According to [54, 55, 56, 57] the increase
in DBP with ageing maybe due to a large artery stiffness and to the peripheral
vascular resistance in small vessel, instead the increase of DBP up to the age
of 50 was due to peripheral vascular resistance and the successive decrease
was due to the increase of large artery stiffness. About subjects without risk
factors, our results highlighted that the dependence on age of DBP in H, both
considering office and ABPM measures, was greater than that assessed con-
sidering all subjects together, with decreasing differences with age (black lines
in Figure 3.16, left panels). The DBP/Age relationships were substantially
the same considering all the subjects or only those without risk factors when
ABPM was used, while differences of opposite sign in H and NH were present
for the office measures (Figure 3.16 , right panels). Comparing the differences
between the SBP/Age relations obtained measuring the BP in office and in
ABPM (Figure 3.17), a large increase of the differences with age is present in
all the situations. The differences in the DBP/Age relations increase with age,
although less than in the SBP/Age except in normotensive subjects without
risk factors for which the difference is approximately constant and equal to
5-6mmHg in all ages considered (Figure 3.17). Those findings highlighted the
risks involved in estimating a correct BP when using the office measurement
and underlines how ageing increases the error introduced by the measurement
method in subject with or without risk factors.

Main findings

In subjects with and without risk factors (smoking, obesity and dyslipidemia),
the slopes of the Systolic BP/Age relation were higher in hypertensive than
in normotensive subjects in both office and ABPM conditions. This fact high-
lighted the risk involved in estimating a correct BP when using the office
measurement and underlines how ageing increases the error introduced by the
measurement method in subject with or without risk factors.
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3.2.4 Influence of ageing on circadian rhythm of HRV
in normal subjects [8SG]

Materials and methods

Subjects

A total of 140 (70 men and 70 female) normal subjects aged from 15 to 90
years separated into three age groups: 15-39 years old (47 subjects, Young
Group (YG)); 40-64 years old (47 Adult Group (AG)); 65-90 years old (46
Senior Group (SG)).

Statistical analysis

Several linear and non-linear HRV parameters were calculated on each seg-
ment and they were averaged among the subjects of each age group. The
HRV parameters were examined averaging (for each subject and age group)
the values in three different time periods: along the whole 24hrs, during the
day (from 14:00 to 19:00) and during the night (from 2:00 to 7:00). Finally, the
relationship between age and each parameter, calculated on each subject as
the average along the 24hrs, was considered and modelled by using linear and
quadratic approximations. Adjusted determination coefficient, R2, was used
to compare the two models. The comparisons between groups were carried
out by the Wilcoxon rank sum test, assuming that the subject groups were
independent and showed a non-Gaussian distribution, and Bonferroni correc-
tion was conducted. The Brown–Forsythe statistic test or the non-parametric
Kruskal-Wallis test were used when the assumption of equal variances did not
hold. The difference between each pair of groups was considered significant if
p-value was lower than 0.05.

Results

Circadian rhythm of the MeanRR was comparable between groups (Figure
3.18) highlighting that the YG showed the greatest difference between day
and night mean values while SG presented the lowest one. Moreover, the AG
presented intermediate mean values with a maximum value during the night,
similar to the SG, and a minimum value during the day, comparable to the
YG (Table 3.12). Significant differences of these values between each pair of
groups (Table 3.13) were found only during day time for AG vs SG (p<0.02).
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YG AG SG

24h Day Night Day vs Night 24h Day Night Day vs Night 24h Day Night Day vs Night

MeanRR (ms) 868±138 795±83 1015±68 <0.00001 846±120 771±70 958±71 <0.00001 884±92 840±66 952±59 <0.00001

SDNN (ms) 85±33 79±24 100±35 <0.0001 60±26 56±20 65±28 0.006 57±25 58±21 61±25 ns

NN50 77±39 66±29 101±29 <0.0001 32±24 28±17 38±20 0.007 35±25 40±19 33±20 ns

pNN50 0.24±0.14 0.19±0.09 0.35±0.11 <0.0001 0.10±0.08 0.08±0.05 0.13±0.07 0.0007 0.11±0.07 0.12±0.06 0.11±0.07 ns

RMSSD (ms) 67±28 58±20 86±23 <0.0001 46±24 44±19 48±20 ns 56±28 57±23 58±26 ns

LF (ms2) 1984±1514 1788±1041 2498±1810 0.0001 998±945 950±701 1099±891 0.02 887±902 837±702 943±867 ns

HF (ms2) 1709±1347 1227±894 2554±1217 <0.0001 716±810 672±628 761±614 ns 1116±1148 1124±870 1200±1046 ns

LFn 0.62±0.15 0.66±0.13 0.55±0.14 <0.0001 0.63±0.17 0.65±0.14 0.59±0.16 0.001 0.52±0.16 0.52±0.14 0.53±0.16 ns

HFn 0.38±0.15 0.34±0.13 0.45±0.14 <0.0001 0.37±0.17 0.35±0.14 0.41±0.16 0.001 0.48±0.16 0.48±0.14 0.47±0.16 ns

LF/HF 2.6±2.0 3.0±1.8 2.0±1.4 <0.0001 2.9±2.4 3.3±2.3 2.4±2.0 0.002 1.9±1.7 1.7±1.2 2.1±1.7 ns

SD1/SD2 0.23±0.08 0.22±0.06 0.24±0.07 ns 0.24±0.09 0.24±0.08 0.22±0.08 0.02 0.28±0.11 0.30±0.10 0.26±0.09 0.002

Beta exponent 1.27±0.35 1.30±0.30 1.25±0.34 ns 1.28±0.40 1.26±0.36 1.31±0.40 ns 1.00±0.42 0.96±0.36 1.06±0.41 0.02

FD 1.45±0.11 1.44±0.09 1.47±0.09 ns 1.47±011 1.48±0.10 1.46±0.09 ns 1.56±0.11 1.59±0.09 1.52±0.09 0.0001

Table 3.12: Mean values (±SD) of all the parameters in the three groups
during 24hrs, day and night times together with p-values of the differences
between day and night in each group.

Figure 3.18: Circadian rhythm of MeanRR values in the three age groups
together with ±1SD.
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24h Day Night

YGvsAG YGvsSG AGvsSG YGvsAG YGvsSG AGvsSG YGvsAG YGvsSG AGvsSG

MeanRR (ms) ns ns ns ns ns 0.02 ns ns ns

SDNN (ms) <0.0001 <0.0001 ns <0.0001 0.0001 ns <0.0001 <0.0001 ns

NN50 <0.0001 <0.0001 ns <0.0001 0.002 ns <0.0001 <0.0001 ns

pNN50 <0.0001 <0.0001 ns <0.0001 0.004 ns <0.0001 <0.0001 ns

RMSSD (ms) 0.03 ns ns 0.03 ns ns <0.0001 0.002 ns

LF (ms2) <0.0001 <0.0001 ns 0.0001 <0.0001 ns <0.0001 <0.0001 ns

HF (ms2) 0.0007 0.02 ns 0.003 ns ns <0.0001 0.001 ns

LFn ns 0.002 0.0003 ns <0.0001 0.0001 ns ns 0.05

HFn ns 0.002 0.0003 ns <0.0001 0.0001 ns ns 0.05

LF/HF ns 0.007 0.0002 ns 0.0002 0.0001 ns ns ns

SD1/SD2 ns 0.01 0.03 ns 0.002 ns ns ns ns

Beta exponent ns 0.0008 0.001 ns 0.0001 0.002 ns ns 0.008

FD ns <0.0001 0.0001 ns <0.0001 0.0001 ns 0.03 0.01

Table 3.13: P-values of the differences between each pair of groups for all the
parameters averaged on 24hrs, day and night times.

For all parameters calculated in the time domain, the YG showed a sudden and
significant increase between day and night time, after 20:00, and a progressive
decrease after 7:00 (Figure 3.19, Table 3.12 - 3.13). Considering the frequency
domain, both YG and AG had significantly greater values of LF/HF and LFn
and significantly lower values (p<0.002) for HFn compared to SG (p<0.01),
while during night time these differences were negligible (Figure 3.20, Tables
3.12 - 3.13). LF and HF values showed a similar trend in all three groups
and significant differences between day and night time were found only in YG
(Figure 3.20, Table 3.11). Furthermore, for parameters averaged along the
24hrs, the YG showed significant differences compared to both AG and SG
groups (Table 3.13). Regarding the three non-linear parameters, significant
differences (p<0.02) between night and day were found for all parameters in
SG and for SD1/SD2 in AG (Table 3.12). Furthermore, SG showed significant
differences (p<0.03) with respect to the YG and AG groups during 24hrs and
day time periods for all the three parameters (Table 3.13, Figure 3.20). Dur-
ing night time, these differences remained significant (p<0.03) only for FD and
Beta exponent parameters (Table 3.13, Figure 3.20). Figure 3.21 shows the re-
lationships between age and those parameters that highlighted a parabolic-like
behaviour, suitably modelled by a quadratic relation. In particular, LF/HF,
LFn and Beta exponent presented an increasing trend until 55-60 years and
a decreasing trend over that age. Instead, SDNN, NN50, pNN50, RMSSD,
SD1/SD2 and HFn showed an opposite behaviour. For these parameters, the
adjusted determination coefficient, R2, showed greater values (at least of 25%)
for quadratic regression than for a linear one.



Results and Discussions 67

Figure 3.19: Circadian rhythm of SDNN, NN50, pNN50 and RMSSD linear
parameters in the three age groups.

Figure 3.20: Circadian rhythms of LF, HF, LFn, HFn, LF/HF, Beta expo-
nent, SD1/SD2 and FD parameters in the three age groups.



Results and Discussions 68

Figure 3.21: Quadratic relationships between linear and non-linear parame-
ters and age calculated considering the average among the 24hrs of each sub-
jects. Solid lines represent the parabolic relation and dashed lines represent
95% confidence intervals.

Discussion

The differences of MeanRR (Table 3.12) reflected a higher vagal tone in the
young subjects, probably blunted in the oldest group (Figure 3.18), probably
due to a better physiological adaptation in younger subjects. The YG pre-
sented significant higher values of SDNN, NN50, pNN50 and RMSSD during
the night than during the day (Table 3.12), which decreased with aging with
significant difference between YG and the other two groups (Table 3.13), sug-
gesting a reduced autonomic regulation of heart with aging [60, 72]. The oldest
group were characterized by lower fluctuations between day and night (Table
3.12), highlighting a possible deterioration of cardiac autonomic nervous con-
trol over time. The spectral parameters were very similar for AG and YG
(Figure 3.20 and Table 3.13), presenting significant differences between night
and day, as previous reported [43]. On the contrary, the oldest group had
flattened variation between day and night (Table 3.12). These results confirm
a loss of variability and complexity already found in subjects in whom age
increased up to 64 years [73]. The FD values did not present significant differ-
ences between day and night for subjects younger than 64 years (Table 3.12).
In older subjects, these parameters showed significant differences between day
and night and in the mean values over 24hrs, compared to the others two
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groups (Table 3.13). These findings highlighted a more complex generating
system in SG compared to the YG and AG groups, probably due to a higher
variability present in older subjects. A specific parabolic age-related shaped
analysis was found between almost all the considered parameters and age. In
particular, SDNN, NN50, pNN50, RMSSD, HFn, SD1/SD2 parameters showed
a negative correlation with ageing from 15 to 60 years and an inverse trend af-
ter the age of 60, while LFn, LF/HF and Beta exponent presented an opposite
behaviour (Figure 3.21). MeanRR, LF and HF parameters showed a simple
linear decreasing trend with aging without any evident behaviour change in
elderly. The inverse behaviour presented in elderly over 75 years compared
to young and adult subjects could be explained by a decreased compensatory
response of the RR variability during the 24hrs in the elderly. This important
findings underline the role of autonomic imbalance and decreased compen-
satory response with time. The value of HRV in physiological aging highlights
its clinical applicability to predict autonomic response in older subjects.

Main findings

This is the first study in literature that examined changes in linear ad non-
linear HRV parameters in subjects over 65 years old using an accurate short-
term evaluation on 288 consecutive intervals of 5 minutes among the 24hrs.
The subjects were divided in tree age groups: young group 15-39 years old;
adult group 40-64 years old; senior group, 65-90 years old. The time domain
parameters (MeanRR, SDNN, NN50, pNN50, RMSSD) presented significant
differences between young group and the other two groups along the 24hrs
while normalized spectral parameters (LFn, HFn) and non-linear parameters
(SD1/SD2, Beta exponent and FD) showed significant differences between se-
nior group and the other two groups. Evaluating the circadian rhythm of all
parameters, a significant difference between mean day and night values was
found. Another remarkable result was the parabolic-shaped relationship be-
tween each parameter and age highlighting an opposite trend over about 60
years old compared to younger sign of a progressive physiological autonomic
imbalance with ageing.

3.2.5 Influence of the gender on the relationship be-
tween Heart Rate and Blood Pressure [9SG]

Materials and methods

Subjects

The study population consisted of 172 normotensive subjects was com-posed
of 50 males (aged 61±17) and 122 female (aged 57± 19).

Statistical analysis

To examine the circadian trend of the relationship between BP and HR, the val-
ues of these parameters were averaged hour-to-hour in each subject. The slopes
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and the intercepts of the regression lines fitting the relationships SBP/HR and
DBP/HR for each gender were calculated. The significance of each relation-
ship was evaluated by examining the p-value of the difference between the
slope and zero. In order to compare the results with the literature, the rela-
tionship BP/HR was also evaluated considering, for each subject, either the
office measurements or Mean average over 24hrs (ABPMm).

Results

SBP/HR presented slope values significantly different from zero (p-value <
0.05) from 14:00 to 18:00, from 21:00 to 1:00 and from 6:00 to 12:00 in females
and only for few hours in males (Figure 3.22). The DBP/HR relation showed
slopes significantly different from zero (p-value<0.05) in all hours of the day
for females and from 6:00 to 17:00, except at 7:00 and 10:00, for males. The
slope values were comparable in male and female groups in both relationships
from 10:00 to 21:00 while after that the males’ slopes decreased. The intercepts
showed similar values between the two subject groups during day time; while
during the night females had lower values (Figure 3.23). Figure 3.24 shows
the mean values of SBP, DBP and HR caluclated hour-to-hour on females and
males separately. The circadian trend in the two subject groups was similar
with lower values in the night (Figure 3.24), females showed lower values for
BPs than males along the 24hrs. On the contrary, HR values were higher in
females than males during day time and similar during night time.

Figure 3.22: Examples of the relationship between either SBP (top panels)
or DBP (bottom panels) and HR at two different hours during 24hrs, for both
male (black) and female (red) groups together with corresponding regression
lines. Left panels at 2:00; Right panels at 19:00.
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Figure 3.23: 24hrs behaviors of the slopes, intercepts and p-values of the
hour-to-hour regression lines of the SBP/HR (left panel) and DBP/HR (right
panel) relations in male (black circles) and female (red crosses) groups.

Figure 3.24: Mean values (±SD) of SBP, DBP and HR calculated hour-to-
hour on females (red crosses) and males (black circles).
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Figure 3.25: SBP/HR and DBP/HR relationships in females (red) and males
(black) evaluated in office condition (left panels) and as ABPMm (right pan-
els).

Figure 3.25 shows the relations SBP/HR and DBP/HR calculated in male and
female subjects when BP and HR were evaluated either in office condition or
as ABPMm. The correspondign slopes, intercepts and p-values are reported in
Table 3.14. For SBP/HR relation (Figure 3.25) evaluated in office condition,
the slopes were positive for males and negative for females and they were
not significantly different from zero (Table 3.14). Considering the ABPMm,
females presented not significant higher slope values than males. Moreover,
the intercepts in office condition were similar between genders and in ABPMm
were higher in male than in female subjects. The slopes of the DBP/HR
relation presented positive values in both subject groups with significant higher
slopes in females than in males both in office and ABPMm. Figure 3.26 shows
the behavior of BP/HR relations hour-to-hour along 24hrs in both subject
groups. After 22:00 a marked decrease of HR and BP until 2:00 was present;
successively from 5:00 to 10:00 both signals quickly increased presenting an
about linear trend with high SBP/HR slopes.

Discussion

The analysis of BP/HR relationship in office highlighted a significant linear
regression only for DBP in females (Figure 3.25 and Table 3.14) partially con-
firming from the literature [24]. In males, neither SBP nor DBP showed a
significant relation with HR probably due to a large variability among our sub-
jects. The BP/HR relation estimated by using the ABPMm values confirmed
the results obtained in office. In females, the SBP/HR relation was significant
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only during day time, partially justifying the results found in the office and
on ABPMm [23, 66, 67]. The DBP/HR relationship was not significant in
males for half a day while in females the relation was significant at all hours of
the day, confirming what was found in the office and on ABPMm [23, 66, 67].
During the night, females maintained the DBP/HR relation fairly unchanged
while males between 24:00 and 5:00 reverse this reation. This behavior suggest
the association between HR and cardiovascular mortality presented only in fe-
males [23] that could be due to an increase in neural activity and to estrogen
related vascular regulation that might predispose to ventricular fibrillation and
sudden death [68]. The pair of HR and BP circadian values averaged on all
subjects (Figure 3.26) showed how this relationship presented a similar trend
in both gender groups. Moreover, two different behaviors during day time and
night time with limited change of HR (5 bpm) and BP (10 mmHg) during day
and quick variation of both variables (about 15-20 mmHg and about 20 bpm)
during the night were reported. In conclusion, the study showed in females a
more uniform behavior throughout night and day and a significant relationship
between DBP and HR while in males the relation was quite not significant and
remarkably different during the night in respect of the day time.

SBP/HR m q p-value
M Office 0.06 118 n.s.

M ABPMm 0.10 111 n.s.
F Office -0.0006 118 n.s.

F ABPMm 0.17 103 n.s.

DBP/HR m q p-value
M Office 0.05 72 n.s.

M ABPMm 0.13 63 n.s.
F Office 0.11 66 0.03

F ABPMm 0.25 55 0.001

Table 3.14: Slopes (m), intercepts (q) and p-values of the linear fitting of
SBP/HR and DBP/HR in office and as ABPMm, for male M and female F
subjects. n.s.: not significant.
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Figure 3.26: SBP/HR and DBP/HR relationships in females (red crosses)
and males (black circles) evaluated hour-to-hour during 24hrs. Each
cross/circle represents the values at a single hour. Asterisk indicates the start-
ing time of each rhythm (10:00)

Main Findings

The circadian rhythm of BP/HR relationship was similar in both genders but
with different values of HR and BP at different times of day and a different
trend between genders only during night time.

3.3 Artificial Intelligence for identification of
cardiovascular diseases

In this section, two different machine learning techniques were developed for
identifying different pathologies such as ischemic heart (IHD) and dilated car-
diomyopathy (DCM) diseases. Moreover, it was evaluated if adding a clini-
cal parameter (LVEF) would present an increase of the classification perfor-
mance. Initially, the artificial neural network (ANN) based on generalized
back-propagation algorithm was developed to identify IHD patients. At first,
several ANNs using as inputs HRV parameters, age, gender and LVEF were
trained and validated in a large dataset. Successively, a feature selection was
applied to reduce the inputs of ANNs but preserving the variance. Finally,
several ANNs based on a combination of HRV parameters together with age
and gender were evaluated and validated on a dataset matched by age and
gender, in such way these factors will not affect the results. Successively, the
Classification and Regression Tree (CART) was applied in order to identify
DCM patients having as features the same input parameters. Finally, the
CART method, considering the same input selection, was used to distinguish
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the two different pathologies (IHD and DCM) from normal situation, on a
large dataset.

3.3.1 ANN for Ischemic Heart Disease [10SG] [11SG]
[12SG]

Materials and methods

Subjects

In the first study, the population consisted of 156 (80 male and 76 female, aged
53 ± 21) normal subjects and 87 (72 male and 15 female, aged 71±10) suffered
from ischemic heart disease. In the second paper, the cohort of subjects was
composed of 681 (316 males, aged 62±15 and 365 females, aged 64±15) normal
and 284 (222 males, aged 71±10 and 62 females, aged 76±10) subjects suffered
from IHD. In the last paper, the study was composed of 496 subjects consisting
of 251 normal subjects (188 males aged 73±8 and 63 females aged 77±7) and
245 suffered from IHD (186 males 74±7 and 59 females aged 78±7) matched
by gender and age.

HRV parameters

Several linear (in time and space) and non-linear HRV parameters were eval-
uated on each segment and subject.

Neural Network Classifier

A multi-layer feed forward neural network with sigmoid activation function
was developed and a series of networks with a different number of input nodes,
hidden nodes and two output nodes were tested.

In the first study, the ANN presented as inputs the HRV parameters (MeanRR,
SDNN, RMSSD, NN50, pNN50, LF, HF, LF/HF, LFn, HFn, Beta Exponent,
SD1, SD2, SD1/SD2, FD), age, gender and LVEF.

In the second paper, three different combinations of parameters were con-
sidered as inputs of ANN. In the first situation (ANNa) the first principal
components explaining at least the 90% of system variability was considered,
in the second case (ANNb) the parameters extracted by using stepwise analy-
sis presenting significant p-values (p<0.05) were used and finally, in the third
situation, utilized for comparison, all the 15 linear and non-linear parameters
were considered (ANNc) with age and gender. The ANNs characteristics were
reported in Table 3.15.
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#input #hidden
neurons

Input parameters

ANNa 5 4 1°Comp, 2°Comp, 3°Comp, 4°Comp,
5°Comp

ANNb 5 2 MeanRR, LFn, SD1, age, gender
ANNc 17 3 MeanRR, SDNN, RMSSD, NN50,

pNN50, LF, HF, LF/HF, LFn, HFn,
Beta exponent, SD1, SD2, SD1/SD2,
FD, age, gender

Table 3.15: ANNa, ANNb, ANNc characteristics.

Finally, in the last paper several combinations of parameters were considered.
At first, only the linear parameters (ANN1) or only the non-linear parameters
(ANN3) and all the fifteen parameters all together (ANN5) were considered
as input. Successively, to reduce the number of input parameters, the Pear-
son correlation coefficient r among all parameters was evaluated and other two
ANNs excluding either linear (ANN2) or non-linear (ANN4) parameters signif-
icantly (p<0.05) correlated for more than 90% were examined. In addition, all
the ANNs obtained selecting as input one or more linear parameters were con-
sidered for ANN2 combined together with one or more non-linear parameters
considered for ANN4. We examined 31713 combinations of different network
structure varying the number of inputs, equal to the number of the considered
parameters, and of hidden neurons from 2 to 7. The input and hidden neu-
rons combination producing the highest accuracy was then selected (ANN6).
Finally, the LVEF was added to the inputs of each of the first five ANNs,
considering ANN7 to ANN11 new networks. As the last case (ANN12), the
procedure used for the ANN6 was repeated, by examining 31713 new ANNs
varying, for each of them, the number of hidden neurons from 2 to 7, selecting
the ANN producing the highest ACC.The features, the number of inputs and
the number of hidden neurons selected for each ANN are reported in Table
3.16. In all papers, the training and test sizes were respectively 75% and 25%
of the total number of data. The training of the neural network ended if the
sum of the square errors for all data was less than 0.05 or the maximum num-
ber of training epochs (1000 iterations) was reached. Each of the twelve ANNs
was simulated 100 times changing randomly the training and test dataset and
the performance parameters were evaluated.
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#input #hidden
neurons

Input parameters

ANN1 12 3 MeanRR, SDNN, RMSSD, NN50, pNN50,
LF, HF, LF/HF, LFn, HFn, age, gender

ANN2 10 2 MeanRR, RMSSD, NN50, pNN50, LF, HF,
LF/HF, LFn, age, gender

ANN3 7 3 Beta exponent, SD1, SD2, SD1/SD2, FD,
age, gender

ANN4 5 3 Beta exponent, SD2, FD, age, gender

ANN5 17 3 MeanRR, SDNN, RMSSD, NN50, pNN50,
LF, HF, LF/HF, LFn, HFn, Beta exponent,
SD1,SD2, SD1/SD2, FD, age, gender

ANN6 12 3 MeanRR, SDNN, NN50, pNN50, LF, HF,
LF/HF, LFn, Beta exponent, SD2, age, gen-
der

ANN12 8 4 MeanRR, LF, LF/HF, Beta exponent, SD2,
age, gender, LVEF

Table 3.16: ANN characteristics.

Results

In the first study, to evaluate which network structure presented the highest
accuracy, 135 combinations of different network structures varying the number
of inputs (equal to the number of the considered parameters) from 4 to 18 and
of the hidden nodes between 2 and 10 were examined. The structure with
highest ACC, presented one hidden layer with 7 nodes and the combination
of LVEF, gender, age, SDNN, pNN50, Beta exponent and SD2 as inputs. In
the training phase, the accuracy was of 98.9% and the error rate was of 1.1%
while using the validation dataset the accuracy was of 82% with an error rate
of 18%. The area under the ROC curve was 0.99 for the training dataset and
0.83 for the validation dataset.

In the second paper, carrying out the principal component analysis, five most
significant principal components, which account for 92% of the variance of the
dataset, were selected as inputs for the first ANN (ANNa). Applying step-
wise method, five features (MeanRR, LFn, SD1, gender and age) were used
as inputs for the second ANN (ANNb). Finally, all the seventeen parame-
ters were considered as input for the third artificial neural network (ANNc).
The ANNs showing the highest accuracy in the three situations were those in
which 4, 2 and 3 hidden neurons, respectively, were used. Among the three
different ANNs, ANNc presented the lowest performance values while the other
two classifiers had similar values with slightly higher values in ANNb (ACC
max=82%) (Table 3.17).
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ANNa ANNb ANNc

SEN (%)
Max 52 58 49

Mean±SD 46.6±5.9 47.5±9.5 44.1±5.9

SPE (%)
Max 92 90 87

Mean±SD 46.0±3.1 86.3±3.6 84.4±3.4

PRE (%)
Max 74 69 61

Mean±SD 58.6±6.1 59.6±5.3 54.1±6.3

ACC (%)
Max 80 82 77

Mean±SD 74.4±2.5 74.7±2.6 72.5±2.5

AUC (%)
Max 83 85 80

Mean±SD 78.1±2.8 77.78± 7.5 74.0± 3.4

Table 3.17: Mean (±SD) and maxima values of the classification performance
indexes for the three ANNs in the test phase. SEN: sensitivity, SPE: specificity,
PRE: precision, ACC: accuracy, AUC: area under the ROC curve.

In the third study, among 100 possible combinations of data used as input in
the test for each ANN, it was selected that producing the highest ACC (Ta-
ble 3.18). Almost all the best ANNs used 3 hidden neurons, only ANN8 and
ANN12 used either 2 or 4 neurons, respectively. The performances obtained
using LVEF were always better than those without it, achieving an accuracy
of 79.8% with ANN12.The distribution values of the classification performance
obtained using 100 different combinations of data input for the test set pre-
senting similar quite symmetrical distributions. The mean (±SD) values of
the sensitivity, specificity, precision and accuracy distributions for ANN2 and
ANN12 were 67.8±8, 55.7±7, 59.2±5, 60.5±4 and 65.4±7, 75.1±7, 72.0±6,
70.2±4, respectively. Slightly better results were obtained in the training phase
for all the ANNs. The mean (±SD) values for ANN2, without LVEF, were of
71.7±2 for training and 64.6±4 for test phase, respectively and for ANN12,
with LVEF, of 86.1±2 and 77.5±4 in the two phases. Finally, Figure 3.27 re-
ports the ROC curves for the ANN2 and ANN12, presenting the best accuracy,
during training and test phases.
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ANN Classifier H SEN% SPE % PRE % ACC % AUC %
ANN1 3 71.2 67.2 71.2 69.4 70.7
ANN2 2 80.3 62.1 70.7 71.8 71.5
ANN3 3 75.4 65.7 65.2 70.2 70.5
ANN4 3 74.2 58.6 67.1 66.9 73.7
ANN5 3 75.0 60.9 64.3 67.7 70.0
ANN6 3 83.1 56.9 63.6 69.4 74.5
ANN7 3 79.2 80.3 75.0 79.8 84.5
ANN8 2 80.0 78.1 77.4 79.0 84.7
ANN9 3 74.2 79.0 78.0 76.6 83.7
ANN10 3 69.6 83.8 78.0 77.4 84.7
ANN11 3 71.4 82.0 80.4 76.6 87.1
ANN12 4 75.4 84.1 82.1 79.8 86.0

Table 3.18: Best classification performance of ANNs; H=Hidden neurons,
SEN: sensitivity, SPE: specificity, PRE: precision, ACC: accuracy, AUC: area
under the ROC.

Figure 3.27: ROC curves in the training and test phases for the ANN2 (top
panels) and ANN12 (bottom panels) producing the best accuracies.
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Discussion

In the first study, with the validation test, the ANNmodelling was more specific
than sensitive tending to misclassify more IHD patients as normal. During the
training, no normal subjects were classified as IHD while, during the validation
test, about 10% of the normal subjects were identified as suffering from IHD.
However, the difference between the percentage of false positive and of false
negative, negligible during the training, was instead large during the validation
test, implying that the ANN modelling was not able to balance sensitivity and
specificity. This could be due to the low number of IHD subjects during the
validation phase. In the second study, among the possible ANNs in which the
first five components obtained using PCA were considered, the best network
presented an accuracy of 80% and an AUC of 83% in the validation test. Al-
though with a slightly lower performance, our network confirmed and extended
the results of Dua et al. [96]. The difference between the accuracies could be
due to the very small number of subjects considered in the previous work (only
20 subjects) in comparison with the large set (965 subjects) examined in this
work. Moreover, in this paper only independent measurements were consid-
ered instead of repeated measurements on the same subjects, as in [96]. The
highest ACC (82%) and AUC (85%) values were reached by the ANN2 scheme
with only five parameters as input. In the last study, a greater variability in
IHD than in normal subjects were shown with significantly greater values of
RMSSD, HF, HFn and SD1 and lower values of LFn and LF/HF, partially in
contrast with the results reported in the literature [72, 73] obtained by consid-
ering only normal beats. The presence of ectopic beats could explain this large
variability as well as the presence of slightly higher (n.s.) values of LF in IHD
since these beats, in RR series, often manifest as a derivative spike, leading to
a flat power spectral density contribution at all frequencies (except the zero
frequency). Moreover, since LF band is narrower than HF band, the presence
of ectopic beats will increase HF power much more than LF power. Such a
greater variability is confirmed by further new parameters examined in our
work both in time domain, like greater SDNN, NN50 and pNN50 values, and
in the non-linear domain like greater SD1/SD2, FD and lower Beta exponent
values in IHD patients. The latter was calculated on the whole band (0.002-
0.45Hz), contrarily to other authors [91] using only the very low frequency
band (0.0001-0.03Hz) in which this parameter showed greater values in IHD
patients. Our results also confirmed the outcomes of [83] presenting higher
MeanRR values in IHD than in normal subjects. By using as inputs some lin-
ear, non-linear or a combination of these HRV parameters together with age
and gender. The best ACC (71.8%) and AUC (71.5%) were obtained excluding
among the linear parameters that were significantly correlated for more than
90% (ANN2). This accuracy was lower than that obtained by other authors
[96, 108] applying ANN to HRV parameters on samples with a very limited
number of subjects. Successively, adding as further input the LVEF feature,
the classification performance of the examined ANNs increases of about 8% for
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ACC and of 15% for AUC. The ANN presenting the highest ACC (79.8%) and
AUC (86.0%) used as input five mixed linear and non-linear HRV parameters
(MeanRR, LF, LF/HF, Beta exponent and SD2) together with age, gender
and LVEF, highlighting the features that can be utilized for a high prognos-
tic identification of IHD disease. This performance was comparable, as done
for the first study, to the highest values reported in the literature [96] that
developed an artificial neural network after the application of principal com-
ponent analysis to only non-linear features extracted from HRV. In conclusion,
these studies proved the power of ANN techniques for the classification of IHD
patients using non-invasive parameters.

Main findings

The purpose of these studies were the identification of both ANN structures
and HRV parameters, producing the best performance to identify IHD patients
in a non-invasive way. The ANN applied to MeanRR, LF, LF/HF, Beta ex-
ponent, SD2 together with age and gender reached a maximum accuracy of
71.8% and, by adding as input LVEF, an accuracy of 79.8%.

3.3.2 CART for Dilated Cardiomyopathy [13SG] [14SG]

Materials and methods

Subjects

Initially, 773 (374 males, aged 63±19 and 399 females, aged 60±19) normal
subjects and 199 (126 males, aged 57±14 and 73 females, aged 62±15) suffered
from DCM were analyzed. Successively, a cohort of 1133 subjects, composed
of 689 normal subjects (321 males, aged 62±15, and 368 females, aged 64±16),
263 patients affected by IHD (207 males, aged 71±10, and 56 females, aged
76±10) and 181 patients suffering from DCM (111 males, aged 59±12, and 70
females, aged 63±15) was analyzed.

HRV parameters

Several linear (in time and spectral) and non-linear parameters were evaluated
on each subject and segment, containing either normal or ectopic beats. The
mean value along the 24hrs was calculated for each parameter and the average
among the subjects of each group was considered. In the second study, to de-
scribe the distribution of each parameter in the three groups, the mean (±SD)
was computed for each group. Since the subject groups were independent and
showed a non-Gaussian distribution, the significance of the difference between
each pair of groups was evaluated by the Wilcoxon rank sum test with the
Bonferroni correction considering p-values lower than 0.05.

Neural Network Classifier

In both studies, six different classifiers using three different subsets of normal-
ized HRV parameters together with age and gender, adding or not the LVEF
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parameter were considered. For the first combination of features the step-
wise regression was applied to all the 17 parameters selecting those presenting
p<0.05. In the second case, the variables correlated for less than 80% were
selected while in the third case, all the 17 parameters were considered. For the
other three trees (TREE 4, 5 and 6), we added to each of the first three com-
binations the LVEF parameter. In all studies, the training and test sizes were
respectively 75% and 25% of the total number of data, randomly selected. The
performance of each classifiers was calculated 1000 times, randomly changing
the training and test datasets, the performance parameters were evaluated and
the classifier producing the highest accuracy in the test phase was selected. In
the second study the parameters were calculated separately for each group and
weighted among the three groups as follow:

Weighted Sensitivity =
3∑
i=1

(
TPi

(TPi + FNi

)pi (3.1)

Weighted Specificity =
3∑
i=1

(
TNi

(TNi + FPi
)pi (3.2)

WeightedPrecision =
3∑
i=1

(
TPi

(TPi + FPi
)pi (3.3)

with

N =
3∑
i=1

(TPi + TNi + FPi + FNi) (3.4)

pi = (TPi + FNi)/N (3.5)

i representing the i − th group of subjects, TPi the number of true positive,
FPi the number of false positive, FNi the number of false negative, TNi the
number of true negative cases for the i− th class. Moreover, the classification
ACC was calculated as:

Accuracy =
3∑
i=1

(
TPi

TNi + FPi + FNi + TPi
)pi (3.6)

Finally, in the second study, it was evaluated the mean of the accuracy dis-
tribution for each TREE2 and the significance of the difference between each
pair of the corresponding TREE2s with and without LVEF (i.e. TREE2.1 vs
TREE2.4, TREE2.2 vs TREE2.5 and TREE2.3 vs TRE2.E6), the latter by us-
ing the Wilcoxon rank sum test because the subject groups were independent
and showed a non-Gaussian distribution.
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Tree Classifier Input Features
TREE1 pNN50, Beta exponent, gender, age
TREE2 1°Comp, 2°Comp, 3°Comp, 4°Comp, 5°Comp
TREE3 MeanRR, SDNN, RMSSD, NN50, pNN50, LF, HF,

LF/HF, LFn, HFn, Beta exponent, SD1, SD2,
SD1/SD2, FD, gender, age

TREE4 LF/HF, gender, LVEF
TREE5 1°Comp, 2°Comp , 3°Comp, 4°Comp, 5°Comp
TREE6 MeanRR, SDNN, RMSSD, NN50, pNN50, LF, HF,

LF/HF, LFn, HFn, Beta exponent, SD1, SD2,
SD1/SD2, FD, gender, age, LVEF

Table 3.19: Input features utilized in the six cases in the first study. In bold
the features selected by CART algorithm presented in the best sub-tree.

Results

About the first study, the features used by each best tree were reported in
bold (Table 3.19) and the classification performances in the test phase of all
the six classification trees were reported in Table 3.20. If the LVEF was added
to the input, higher performances values (about 13% for accuracy) than those
obtained without this clinical parameter, were achieved. The best accuracy,
both in case with or without LVEF, was achieved by using parameters selected
with stepwise regression (TREE1 and TREE4). The TREE4 produced the best
performance with an accuracy of 97%. Figure shows the ROC curves of TREE1
and TREE4 in the test phases with AUC values of 67% and 95%, respectively.

Test Set

SEN (%) SPE (%) PRE (%) ACC(%) AUC (%)

TREE1 18 99 89 84 67

TREE2 15 99 59 79 62

TREE4 90 99 95 97 95

TREE5 67 98 91 92 87

TREE6 90 98 93 96 94

Table 3.20: Classification performances on test set of the three models not
including LVEF (TREE 1-3) and of the other three models considering LVEF
(TREE4-6). In bold the highest values. SEN: sensitivity, SPE: specificity,
PRE: precision, ACC: accuracy, AUC: area under the curve.
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Figure 3.28: ROC test of TREE1 and TREE4.

In the second study, it was highlighted that almost all parameters showed sig-
nificant differences between normal and the diseased groups, except for LF,
and there were not significant differences between DCM and IHD values, ex-
cept for MeanRR (Table 3.21). In particular, patients suffering from DCM and
IHD presented higher values of the time domain measures than normal sub-
jects. Among spectral parameters, LFn and LF/HF showed statistically higher
values in normal subjects while HF and HFn presented an opposite behaviour.
Considering the non-linear parameters, Beta exponent was statistically higher
in normal than in DCM and IHD subjects while the opposite was showed by
the Poincaré measurements and FD (Table 3.21).
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Parameter NORM subjects DCM patients IHD patients p-value

Mean (± SD) Mean (± SD) Mean (± SD) NORM vs DCM NORM vs IHD IHD vs DCM

MeanRR (ms) 877±138 880±130 942±145 1.1 <0.0001 <0.001

SDNN (ms) 71±53 85±61 87±68 <0.001 <0.05 1.6

RMSSD (ms) 38±91 61±111 71±115 <0.0001 <0.0001 2.8

NN50 50±73 65±85 70±90 <0.05 0.07 0.9

pNN50 0.15±0.21 0.19±0.23 0.21±0.27 <0.05 <0.05 1.7

LF (ms2) 460±2200 521±1500 350±2400 1.9 0.2 0.4

HF (ms2) 276±5800 626±6005 640±8100 <0.0001 <0.0001 2.8

LF/HF 2.06±1.90 1.22±1.30 0.97±1.05 <0.0001 <0.0001 0.2

LFn 0.59±0.22 0.44±0.21 0.40±0.20 <0.0001 <0.0001 0.3

HFn 0.44±0.22 0.58±0.21 0.60±0.20 <0.0001 <0.0001 0.3

Beta exp (ms2/Hz) 1.06±0.57 0.75±0.58 0.67±0.55 <0.0001 <0.0001 0.4

SD1 (ms) 34.80±34.10 45.50±40.90 46.40±42.40 <0.0001 <0.001 1.7

SD2 (ms) 83.10±54.20 92.80±57.30 95.50±70.10 <0.05 0.5 1.04

SD1/SD2 0.37±0.14 0.44±0.16 0.44±0.15 <0.0001 <0.0001 2.9

FD 1.53±0.16 1.63±0.16 1.63±0.15 <0.0001 <0.0001 0.5

Table 3.21: Mean (± SD) values of the HRV parameters and p-values of the
difference between each pair of groups.

Table 3.22 presents the variables used as input for the six considered trees and
highlighted in bold the features selected by the CART algorithm to generate
the trees presenting the highest accuracy. When the LVEF was added to the in-
put, higher performances values (about 10% for the maximum accuracy) than
those obtained without this parameter, were achieved. A significant difference
(p<0.00001) between the mean values of the accuracies of each pair of corre-
sponding TREEs, with and without LVEF, was found. Table 3.23 shows the
classification performances, together with the AUC values in the test phase,
calculated both separately for each group and as weighted mean, of the two
classification trees showing the best accuracy (i.e. TREE2.2 and TREE2.4).
Finally, Figure 3.29 and Figure 3.30 showed the classification trees and the
ROC curves of the three with the best accuracy.
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Parameters
TREE2.1 MeanRR,SDNN,LFn, FD, gender,age
TREE2.2 MeanRR, SDNN, LF,LF/HF,Beta exp, gen-

der, age
TREE2.3 MeanRR, SDNN, RMSSD,NN50, pNN50, LF,HF,

LF/HF, LFn, HFn, Beta exp, SD1, SD2, SD1/SD2,
FD, gender, age

TREE2.4 MeanRR, pNN50, LF/HF, FD, gender, age,
LVEF

TREE2.5 MeanRR, SDNN, LF, LF/HF, Beta exp,gender,
age,LVEF

TREE2.6 MeanRR, SDNN, RMSSD, NN50, pNN50, LF, HF,
LF/HF, LFn,HFn, Beta exp, SD1, SD2, SD1/SD2,
FD, gender, age, LVEF

Table 3.22: Input features utilized in the six cases, in the second study. In
bold the features selected by CART algorithm presented in each best sub-tree.

TREE2.2 TREE2.4
SEN-NORM (%) 88.4 98.3
SEN-DCM (%) 11.1 71.1
SEN-IHD (%) 69.7 41.5
SPE-NORM (%) 56.8 66.4
SPE-DCM (%) 99.2 95.8
SPE-IHD (%) 86.2 96.8
PRE-NORM (%) 76.0 82.1
PRE-DCM (%) 71.4 76.2
PRE-IHD (%) 60.5 79.4
AUC-NORM (%) 78.0 86.0
AUC-DCM (%) 60.0 91.0
AUC-IHD (%) 86.0 80.0
Weighted SEN (%) 71.7 80.9
Weighted SPE(%) 70.4 78.1
Weighted PRE (%) 71.7 80.5
Weighted AUC (%) 77.0 86.0
Max ACC (%) 71.7 80.9
Median ACC (%) 61.5 74.2

Table 3.23: Classification performances, for each subject group and weighted
among groups, for the best trees considering (TREE2.4) or not (TREE2.2) the
LVEF parameter.



Results and Discussions 87

Figure 3.29: Classification trees presenting the best accuracy in cases of
use or not of LVEF. A: TREE2.2, without LVEF, B: TREE2.4, with LVEF.
Each node is the graphical representation of a set of “if. . . then” rules thus for
example, in TREE2.2, if LF/HF is less than 2.1, if the gender is female and if
age is less than 70 years old, the subject is classified as normal.
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Figure 3.30: Receiver Operating Characteristic curves and corresponding
%Area Under the Curve values for each group during the Test phase of
TREE2.2 (left) and TREE2.4 (right).

Discussion

In the first study, the CART algorithm was used to identify DCM from normal
subjects using as features a combination of HRV parameters, age, gender and
the clinical outcome (LVEF). The best performance was achieved applying
stepwise regression obtaining an accuracy of 97%. In the second study, con-
sidering normal subjects, IHD and DCM patients, almost all HRV parameters
showed significant differences between normal subjects and patients groups,
except for LF, while there were not significant differences between DCM and
IHD values, except for MeanRR. This latter parameter presented statistically
higher values in patients than in normal subjects, confirming the results of [86].
Considering IHD patients, higher values on time domain, HFn and Poincaré
parameters and lower values of LF/HF and LFn parameters than normal sub-
jects (Table 3.21) were opposite to the findings presented in [72] and in [73].
Moreover, regarding DCM patients, time domain and Poincaré parameters
(Table 3.21) showed greater values than normal subjects with an opposite be-
havior compared to that reported by [73, 82, 83]. On the other hand, LFn and
LF/HF spectral parameters decreased in DCM compared to normal subjects
and HFn values increased, according to the results of [73, 83] (Table 3.21).
Finally, our results showed significantly greater FD values and lower Beta ex-
ponent values in patients than in normal subjects, supporting the evidence of
a greater total heart rate variability in patients than in normal subjects (Table
3.21). However, these differences could be due to the presence of both normal
and ectopic beats considered in comparison with the analyses carried out in the
literature in which only normal beats were taken into account [72, 73, 82, 83].
The greater number of anomalous beats in patients produces a greater total
variability in the RR sequence with consequent higher values in HF than in
LF components as well as in time domain, FD and Poincaré parameters values
in patients than in normal.
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Nowadays, different mathematical approaches for DSS [96, 109, 110] have been
proposed for the automatic classification of heartbeats. Among them, only
Dua et al [96] used the classification and regression tree analysis to identify
IHD patients, analyzing a small cohort of subjects. Other authors [109, 110]
identified heart beat or segments of DCM patients using HRV parameters
as input of complex classifier in which the CART was combined with other
machine learning techniques but taking data from a diagnostic ECG databases1
without developing a DSS capable of classifying subjects.

In conclusion, these are the first studies able to classify cardiovascular dis-
eases using CART method on a large dataset, point out that this machine
learning technique can be a resource in optimizing early differential diagnosis
configuring it as a useful non-invasive clinical and possibly screening tool.

Main findings

Initially, the aim of the first study was to verify if parameters derived from
HRV, applied to a CART could be able to distinguish normal and idiopathic
Dilated Cardiomyopathy patients. Linear and non-linear HRV parameters
and some clinical parameters (gender, age and LVEF) evaluated on a large
cohort of subjects were considered. By using principal component analysis
and stepwise fit regression, the original parameters were reduced and used as
inputs of CART obtaining an ACC of 97%. In the second study, the CART
algorithm was applied to distinguish DCM and IHD from normal subjects
and between them. Analysing the HRV parameters, most of them showed
significant differences between normal and diseased groups. There were not
significant differences between HRV values in DCM and IHD patients, except
for the MeanRR. The features selections were applied, and applying CART
algorithms to several combinations of HRV parameters with age and gender,
an accuracy of 71.7% was reached. Moreover, adding LVEF as inputs, the
algorithm was able to distinguish the three subgroups with an accuracy of
80.9%.

1www.physionet.org



Conclusion

The aim of my research activity was the application of biomedical signal pro-
cessing as an instrument able to support clinicians in different settings such
as: to correctly evaluate physiological states over 24hrs, to quantify the car-
diovascular variations over 24hrs due to the influence of risk factors and to
early identify subjects with different pathologies from the analysis of cardio-
vascular signal over 24hrs. The activity could be subdivided in three sections
concerning three different topics.

In particular in the first section the HR and BP circadian rhythms and their
relationship were examined in detail, applying linear regression analysis in
characteristic periods of time over 24hrs, considering normotensive and hy-
pertensive subjects. In the post-prandial period, the decreasing HR and in-
creasing BP values suggested that the mechanisms that regulate the circadian
behaviour of the two signals are independent. To better describe the circa-
dian trend of the relationship between BP and HR in both subject groups, a
regression line for each hour over 24hrs was applied. The large variability of
slopes and intercepts found over 24hrs suggested that the conventional punc-
tual measurements, such as office or the simple average over 24hrs, are not
sufficient to accurately describe this cardiovascular relationship.

In the second section, the influence of some risk factors, such as age, gender,
smoking, obesity and dyslipidaemia on cardiovascular signals was studied. Ini-
tially, the influence of age on RR variability over 24hrs was analysed in subjects
from 15 to 90 years old, founding a similar circadian rhythm in all linear and
non-linear parameters with a significant differences between day and night.
Moreover, a parabolic relationship between these parameters and age, not yet
reported in the literature, was found with an opposite trend in subjects over
about 60 years old. Finally, analysing the gender effect on the relationship
between BP/HR acting on both the sympathetic/parasympathetic systems,
the results underlined a different trend in the BP/HR relationship between
gender only during the night time. The effects of smoking on BP and HR were
examined using linear regression analysis highlighting that the slopes could be
used to quantify both the morning surge and the night fall one, associated with
cardiovascular effects, in both subject groups. Moreover, the variations due to
the presence of each risk factor on HR circadian rhythm highlighted that each
factor influences the rhythm differently both in normotensive and hypertensive
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subjects. Since the circadian HR trend presented different characteristic peri-
ods, a linear regression analysis was applied on each period underlining that
during awakening there were no differences between subjects with and without
risk factors from 10:00 to 04:00 and that smoking increased HR values while
dyslipidemia decreased HR values. In addition, since BP is not only inevitably
affected by ageing but also by the presence of other risk factors, the relation-
ship between BP/age changes with the presence of risk factors in hypertensive
and normotensive subjects was studied. The regression line fitted this rela-
tionship, considering values taken from office and ABPM measurements and
the results highlighted higher slopes in the SBP/age relation in hypertensive
than in normotensive subjects in both measurements.

In the last section, in order to identify cardiovascular diseases, different mathe-
matical approaches for developing DSS based on matching learning techniques
were examined. Initially, artificial neural networks (ANNs), using as inputs
all the linear and non-linear HRV parameters evaluated along 24hrs together
with age and gender, were developed and tested on a large sample of subjects.
Successively, the clinical parameter named LVEF was added as an input and,
as a consequence, the classification performances improved. In order to reduce
the number of inputs, a feature selection (preserving the variance) was done
by using stepwise regression, principal component analysis and correlation co-
efficient. The ANN with the highest accuracy (79.8%) to distinguish normal
from Ischemich Heart patients, presented as inputs MeanRR, LF, LF/HF, Beta
exponent, SD2 together with age, gender and LVEF. Successively, another ma-
chine learning technique such as the CART algorithm was applied to identify
Dilated Cardiomyopathy patients from normal ones by using the inputs pre-
vious described, achieving an accuracy of 97%. Finally, the HRV parameters
over 24hrs were also evaluated in IHD, pointing out that most of them showed
significant differences between normal and diseased groups with not signifi-
cant differences between HRV values in DCM and IHD patients, except for
MeanRR. Applying CART algorithms to identify subjects belonging to one of
the three groups, an accuracy of 71.7% was reached. Moreover, adding LVEF
as inputs, the algorithm was able to distinguish the three subgroups with an
accuracy of 80.9%. All these studies provide a deep insight into how a combi-
nation of non-invasive parameters, obtained from signal processing and from
echocardiography (LVEF) together with age and gender, could be exploited to
reliably detect the presence of subjects affected by cardiovascular diseases.



Future research

Future research concerning the analysis of cardiovascular rhythms could com-
pare the different technologies that ensure continuous non-invasive monitoring,
in order to evaluate the limits of each technology in specific clinical areas. In
particular, the differences between the two most common measures, such as
office and ABPM, could be carried out on the two periods of time over 24hrs
(day and night) commonly examined in the literature as well as on the char-
acteristic periods highlighted in this thesis.

Furthermore, from a clinical point of view, blood pressure is an epidemic factor,
that is, a determining factor in order to create an epidemic condition of the
disease. For this reason, it can be conducted a retrospective study in order
to determine, in detail, the influence of arterial hypertension and other risk
factors on the onset of arterial plaques. In regards to the application of machine
learning techniques able to identify cardiovascular disease, further efforts will
have to be made to improve classification performances of those diagnostic
algorithms. To do that, emerging non-invasive clinical parameters such as
global longitudinal strain could be integrated in order to obtain an ever earlier
diagnosis and improve patients prognosis. In addition to this, other machine
learning techniques could be exploited and implemented such as support vector
machine and Kth nearest-neighbours.
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