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ABSTRACT: Two-dimensional (2D) nanostructures are a frontier in materials
chemistry as a result of their extraordinary properties. Metal-free 2D
nanomaterials possess extra appeal due to their improved cost-effectiveness
and lower toxicity with respect to many inorganic structures. The outstanding
electronic characteristics of some metal-free 2D semiconductors have
projected them into the world of organic synthesis, where they can function
as high-performance photocatalysts to drive the sustainable synthesis of high-
value organic molecules. Recent reports on this topic have inspired a stream of
research and opened up a theme that we believe will become one of the most
dominant trends in the forthcoming years.

Although research on two-dimensional (2D) materials
traces back several decades, its renaissance can be
pinpointed to when single-layer graphene was isolated

and characterized by Geim and Novoselov, who were awarded
the Nobel Prize in Physics for their discoveries.1,2 Since then,
graphene’s incredible properties have inspired many research-
ers investigating a wide range of possible applications. The
recognition that such distinct properties go hand in hand with
the 2D arrangement motivated and accelerated the exploration
of other 2D materials, which include both metal-based and
metal-free materials. In recent years, research on 2D metal-free
materials has become increasingly broad because of the lower
materials cost of metal-free materials, as compared to that of
metal-based structures. Among the various applications for
such materials, photocatalysis is an exceptionally attractive
field, fitting most of the aspects of the “green chemistry”
modern philosophy, where integrating sustainability criteria
into chemical production is the core mission. In this context,
exploiting the energy of solar light to trigger chemical
transformations in lieu of more energy-intensive and less
ecological production schemes represents a big step forward
toward sustainability.3,4 Despite the promising findings and the
high expectations for the use of 2D metal-free materials as
photocatalysts for organic transformations, the full potential of
these intriguing structures has yet to be uncovered, and
understanding the structure/activity relationship still requires a

great deal of investigation. In this Perspective, we identify the
critical points of 2D metal-free materials and discuss their
success as photocatalysts for advanced organic synthesis. We
also offer critical discussion on the areas to be improved to
extend applicability and increase industrial appeal. Finally, we
present emerging trends in 2D materials photocatalysis leading
toward richer organic synthesis.

TYPES OF TWO-DIMENSIONAL MATERIALS
Although different classes of 2D materials exist, 2D materials
are often described as layered solids with a high in-plane bond
strength but weak interplanar interactions, typically deriving
from van der Waals forces.5 The layered structure can be
exfoliated into thinner, few-layer structures with relative
ease.6−8 A more stringent definition of 2D materials is
restricted to those featuring single-atom-thick layers, whereby
the resemblance with relativistic Dirac particles makes them
unique.9 In contrast with monolayered 2D species, few-layered
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2D materials are more accessible and versatile, explaining their
popularity from an application-focused point of view. The
flexibility in defining 2D materials has led to a “gray area”,
where the arrangement of chemical species organized in sheets
has been taken as an indicator to claim the 2D nature, even
when multilayered structures are the subject of the reported
study. It is important to keep in mind that the two situations
(thin, few-layered vs multilayered bulk solids) usually generate
dramatic changes in the material properties.

WHY FOCUS ON TWO-DIMENSIONAL STRUCTURES
FOR PHOTOCATALYSIS?
The properties of 2D photocatalysts match some photo-
catalysis requirements well. The planar sizes in 2D materials
can reach the micron scale, with concomitant enhancement of
the specific surface area.10 In addition, thicknesses can be
reduced to a few nanometers, or even, in some cases, to
monatomic sizes, using modern synthetic approaches.11 These
geometric features are notably correlated with quantum and
dielectric confinement effects, which modify the band structure
and, consequently, the band gap.12 Typically, the band gap
widens due to quantum confinement, and upshifts of the
conduction band (CB) are observed, enhancing both the
potential energy of the photogenerated electrons and their
reduction ability.13 The 2D geometry also improves the
separation and migration of the charge carriers, which are
prerequisites for efficient photocatalysis, and higher densities of
surface active sites. Moreover, the chemical and morphological
structures can be locally modified, enabling tunability of the
defect density.14,15 It is also possible to adjust the electronic
states by doping the lattice with various elements, either metals
or nonmetals. Although doping is a versatile approach that has
also been adopted for bulk catalytic materials, this strategy
notably benefits from the 2D arrangement for reaching (i)
higher per-mass relative dopant concentrations and (ii)
superior control over the dopant environment. The former
aspect capitalizes on the easier diffusion of the dopant through
a thinner structure (as compared to bulk materials), whereas
the latter benefits from the usually higher homogeneity of 2D
layered materials.15 Finally, great opportunities arise from
creating interfaced 2D structures by combining two different
phases. This combination results in the creation of
heterojunctions (p−n) or Z-schemes, which are two of the
most modern approaches for achieving significant enhance-
ment of catalytic performance.16 Metal-free interfaces are also a
rapidly emerging field, with 2D hybrid structures offering
various advantages.17 It is evident that the effectiveness of the
interface is maximized in 2D structures for geometric reasons,

which also enables the construction of devices with higher
mechanical flexibilities (Figure 1).18

Although metal-free 2D materials can be based on several
elements including Si, Se, P, S, B, or Te, carbon has been
investigated the most for the design and synthesis of
photocatalysts. Carbon has been preferred to date because of
its easy availability and the rich arsenal of available
morphologies of carbon materials, particularly at the nanoscale,
which enables tailoring of the physicochemical and electronic
properties.19 For instance, these properties can be tuned by
simple chemical modification of graphene via introduction of
functional groups or dopants.20−25 Apart from carbon, other
nonmetal 2D materials with semiconducting properties that
have emerged include hexagonal boron nitride (h-BN) and
black phosphorus (BP), although their use has thus far mainly
involved energy-related catalysis.26−28 A key issue when
reporting metal-free catalysts is to ascertain that no
adventitious metal impurities are incorporated within the
material, as even at low parts per million (ppm) levels metals
can affect the performance, thus generating false conclusions
and reproducibility problems.29

TWO-DIMENSIONAL METAL-FREE
PHOTOCATALYSTS: PROTAGONISTS, MINOR
CHARACTERS, AND RISING STARS
Among 2D structures (Figure 2), the carbon nitrides (CNs)
represent the most popular choice for photocatalytic
applications, including organic transformations, because of
their visible-light absorption, facile synthesis, stability, and
versatility for structural modifications.30−32

Carbon-nitride-based materials diversify to large extents, and
various structures have been reported, building a portfolio of
material subclasses. From a structural point of view, the most
stable and most frequently investigated allotrope, namely,
graphitic-CN (g-CN), is proposed to be constituted by
repeating N-bridged poly(tri-s-triazine) frameworks arranged
into graphite-like π-conjugated planar layers (although other
repeating units have been proposed, such as, for example, s-
triazine).33,34 The C/N ratio in g-CN is theoretically 3/4 (as
indicated by the typically used formula, C3N4); however, the
experimental ratio deviates from this value depending on the
synthetic procedure due to the formation of defective
structures and incorporation of other elements (e.g., O). The
accurate structure of g-CN (and other CNs in general) has not
been defined in detail, and often the depiction of the structure

Among two-dimensional structures,
the carbon nitrides represent the most
popular choice for photocatalytic ap-
plications, including organic transfor-
mations, because of their visible-light
absorption, facile synthesis, stability,
and versatility for structural modifica-
tions.

Figure 1. Graphical representation of the foreseen major avenues
to organic photocatalysis by metal-free two-dimensional (2D)
materials.
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is merely a simplification for guiding the reader. Because
conventional preparation protocols (which are also the
simplest ones) based on pyrolysis of solid precursors do not
enable easy control on the final structure, detailed knowledge
of the entire structure is not accessible in most cases. This lack
of knowledge poses an extra challenge for theoretical studies
on CN catalysts, as the observed activity may rely on definite
structural features (defects, specific moieties, or others) that
could be overlooked during computational analyses, thus
generating erroneous conclusions. To mitigate this problem,
diligent and in-depth characterization of the materials should
become a routine part of the work, even when materials
syntheses are replicated from previously published articles,
because marginal differences in conditions may lead to
alterations of the final structures. Fortunately, rapid progress
is being made, leading to next generations of materials with
improved performance and better-defined structures.35 The
position of both valence and conduction bands (VB and CB,
respectively) can be modulated on the basis of the C/N ratio,
polymerization degree, crystallinity, and the presence of doping
agents (e.g., boron, sulfur, phosphorus, organic addi-
tives).30,34,36 The textural properties can also be tailored for
better photocatalytic performance, as shown by the develop-
ment of mesoporous carbon nitride (mpg-CN), which
possesses surface areas much higher than those of g-CN.37,38

Indeed, mpg-CN has recently emerged in organic reactions for
the synthetically relevant functionalization of arenes and
heteroarenes (Figure 3).39

Although CN materials are conventionally prepared as bulk,
appropriate protocols for 2D structures have been proposed.
For example, Zhao and Antonietti showed that, starting from
melamine and cyanuric acid, a g-CN consisting of thin,
multisheet structures (thicknesses in the range of 15−20 nm)
could be prepared. This catalyst effectively promoted a
photocatalyzed Diels−Alder reactions under visible light
irradiation,40 being one of the milestones in 2D CN-based
photocatalytic organic synthesis (Figure 4).

Understanding the textural properties of this material could
have provided additional information related to activity, and
we propose that future studies should carefully consider the
contributions of surface area and pore size distributions.41 A
similar g-CN prepared by pyrolysis of guanidine was employed
to carry out photo-oxidative additions of aminoalkyl radical
precursors to unsaturated acceptors.42 Researchers have
demonstrated that exfoliation of CN bulk materials into thin
2D nanosheets is one main contributing factors to the much
enhanced photocatalytic activity, as a result of the increased
active site density.43,44 Graphitic CN in its pristine form
generally exhibits moderate catalytic activity because of the
sluggish conductivity and low surface area. A great deal of
research has focused on strategies to modify the pristine
material in order to boost the resulting photocatalytic
activity.35 In this direction, our group recently investigated
how postsynthetic modifications of g-CN can influence the
outcome of a photocatalytic process, namely, perfluoroalkyla-
tion reactions of electron-rich organic molecules (Figure 5).45

Important insights into the mechanistic features were
gathered by advanced 19F nuclear magnetic resonance
techniques, revealing the criticality of the fluorinated
substrate’s affinity toward the CN surface. In our opinion,
studies that couple the screening of new organic reactions with
investigations (theoretical and experimental) on the related
mechanism could considerably accelerate the development of
2D photocatalysts toward industrial feasibility.
One subclass of CN that is flourishing in photocatalytic

applications are poly(heptazine imides) (PHI-CN). These
materials are conventionally prepared by eutectic molten salts
methods, giving rise to a nanometer-size layered structure with
continuous channels. The synthesis generates some negatively
charged N sites, which bind the cation of the employed metal
salt (usually K+ or Na+).46 Although most of the CN
photocatalysts have always been linked to electron-transfer
processes, PHI-CN is also capable of driving energy-transfer
reactions. This ability can translate into the generation of
excited-state molecules other than charged radicals, paving the

Figure 2. Typical band edge potentials of the two-dimensional metal-free semiconductors graphitic-CN (g-CN), poly(heptazine imides)
(PHI-CN), mesoporous carbon nitride (mpg-CN), hexagonal boron carbon nitride (h-BCN), and two-dimensional covalent organic
frameworks (2D-COFs) discussed herein.
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way for new reactivities.47−51 Moreover, PHI-CN materials
offer another interesting opportunity in that the alkaline metals
could be replaced by other transition metals through cation

exchange strategies, thus potentially leading to CN−single
atom materials.52

Although they have been less investigated to date, boron
carbon nitrides (BCNs) also offer interesting potential
applications. Boron CNs are ternary-component materials
made of carbon, nitrogen, and boron that can be formed with
cubic (c-BCN) or hexagonal (h-BCN) crystal structures. In
particular, h-BCN synthesis resulted from interest in
combining graphene with hexagonal boron nitride (h-BN) to
amend the 0 band gap of graphene (G) and the wide band gap
of h-BN (typically above 5 eV) simultaneously. As theoretical
studies have confirmed,53 the resulting material (h-BCN)
shows an intermediate optical behavior with absorption energy
that can be adjusted in the visible range (e.g., by varying the
BCN stoichiometry),54 with the possibility of forming
segregated domains of one of the three elements (typically
C).55,56 As a result, h-BCN is an appealing option for

Figure 3. (a) Mesoporous carbon nitride (mpg-CN) preparation from cyanamide through thermal treatment. (b) mpg-CN application in C−
H bifunctionalization of arenes and heteroarenes. (c) mpg-CN application in C−H functionalization of arenes using alkali metal salts. (d)
mpg-CN application in C−N cross-coupling reactions. DMSO: dimethyl sulfoxide.

Figure 4. (a) Graphitic carbon nitride (g-CN) preparation from
melamine and cyanuric acid through pyrolysis. (b) g-CN
application in photocatalyzed Diels−Alder reactions. LED: light-
emitting diode.

One subclass of carbon nitrides that is
flourishing in photocatalytic applica-
tions are poly(heptazine imides).
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photocatalytic applications,57 and, apart from water splitting
evolution and CO2 reduction,56,57 h-BCN has recently
attracted attention as a catalyst for synthetically relevant
photoredox reactions.58,59 König, Wang, and co-workers
studied the photochemical C−H functionalization of elec-
tron-rich arenes catalyzed by an h-BCN with notable activity,60

whereas other photo-oxidation and photoreduction reactions
were possible by simply tuning the relative content of the h-
BCN precursors (typically glucose and boric acid, Figure
6).61−63 Despite the above-mentioned encouraging case
studies, organic photocatalysis by BCN is still in its infancy;
therefore, there is fertile soil for future developments.

Finally, covalent organic frameworks (COFs) are a popular
class of single-phase 2D metal-free candidates for photo-
catalytic organic synthesis. Covalent organic frameworks are
covalent, porous crystalline polymers that enable the
integration of organic motifs into an ordered structure.64,65

The better-defined structures of COFs, as compared to those
of CN or BCN, make this class of materials distinctive. In
particular, 2D-COFs possess extended π-conjugated frame-
works and eclipsed stacked sheets with regularly aligned
columns, where the ordered columns in 2D-COFs provide
ideal channels for charge carrier transport in the stacking
direction.66 In addition, despite their heterogeneity, the
controlled, high porosity of 2D-COFs ensures great accessi-
bility to active sites, offering excellent catalytic performance
and the potential for higher reaction selectivity by means of
pore size tailoring.65,67 Thus, 2D-COFs could lead to the
development of photoactive materials for optoelectronics,
photovoltaics, and visible light photocatalysis.67−70 For COFs,
the 2D versus 3D distinction is easier to define because it
evolves from the simplified symmetry of the specific building
blocks used to construct the framework.64 In general, 2D-
COFs exhibit a richer topology than other 2D materials (i.e.,
hexagonal or tetragonal geometries of different sizes), leading
to increasing interest in the development of synthetic strategies
for the next generation of materials.71 For catalytic
applications, there are additional opportunities for introducing
organic groups within specific channel positions, endowing
COFs with enhanced functionality.72 Wang and co-workers
illustrated the photochemical oxidation of boronic acids using
three different 2D-COFs having different shapes and channel
dimensions (hexagonal or rhombic repetitive units with
dimensions of 1.4−2.8 nm).73 Recently, Yang and co-workers
envisaged the use of a hydrazone-based 2D-COF with a

Figure 5. (a) Carbon nitride (CN) preparation from melamine and related postsynthetic modifications. (b) CN applications in
photocatalyzed perfluoroalkylation reactions.

Figure 6. (a) Hexagonal boron carbon nitride (h-BCN)
preparation from urea, boric acid, and glucose through calcination.
(b) h-BCN application in photocatalyzed C−H functionalization
of arenes. DG: directing group.
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hexagonal pore system with dimensions of 2.2 nm for carrying
out photochemical alkylation of N-heterocyclic compounds
(Figure 7).74 In addition to these examples, many other

photocatalytic procedures have been reported, some of which
deal with photo-oxidation reactions of simple organic
substrates such as alcohols, amines, and sulfides.75−77 Never-
theless, more complex reactions such as photodehalogenations,
cross-couplings, and cyclizations have demonstrated and
proven the great versatility of 2D-COFs.78−82 Therefore, we
expect rapid proliferation of more challenging organic
transformations by 2D-COF photocatalysts.

EMERGING DIRECTIONS AND VISION FOR THE
FUTURE
Despite the great progress in photocatalytic organic synthesis
by metal-free 2D single-phase catalysts, the parallelism with 2D
inorganic hybrids, which, through creation of suitable
heterojunctions, can remarkably enhance photocatalytic
performance, has naturally provided a new direction for
metal-free analogues. Specifically, one frontier is combining
two metal-free phases and suitably interfacing them, thus
preparing 2D metal-free nanohybrids to combine their catalytic
behavior while exploiting the resulting new features. One
objective is to replicate the well-known inorganic Z-schemes by
relying on only nonmetal 2D structures. This method retards
electron−hole recombination rates while exploiting the higher
CB energy level and the lower VB energy level to enable
coupled energetically demanding redox processes (Figure 8).83

The synergism in 2D metal-free nanohybrids for photo-
catalysis has thus far been confined to energy-related processes.
A notable achievement was reported by He et al., who prepared
a 2D CN/h-BN nanohybrid by the direct growth of CN on h-
BN nanosheets, which they successfully used for photocatalytic
H2 and H2O2 synthesis. Enhanced activity originated from the
suitable interfacial domain between CN and h-BN, causing
physical separation of the charge carriers and prolonging their
lifetime, although, in this case, the potential energy of the
photoexcited electrons was reduced following the CN to h-BN
injection.84 Two-dimensional BP/CN catalytic heterostructure
for H2 evolution is another remarkable example of interfacial

synergism, whereby charge transfer inhibited charge recombi-
nation, making catalysis possible, even under infrared
irradiation.85 Other interesting examples with graphene/CN
and BP/covalent triazine frameworks used for water splitting
or decontamination of organic pollutants indicate the great
potential of this type of heterostructure.17,86,87 We anticipate
that their use in photocatalytic organic synthesis will soon take
off, making the synthesis of high-value organic compounds
with good solar-to-chemical efficiency possible. A thorough
evaluation of the band structures and Fermi levels of the two
phases will be critical to establish truly cooperative
mechanisms, possibly by means of the Z-scheme configuration,
and synthetic efforts must look at the phase connection,
maximizing interfacial domains with strong interactions.

Another recent trend that we expect to flourish in the near
future is coupling 2D metal-free materials with metal
complexes. The concept is to make use of transition metal
complexes for combining photocatalysis with conventional
organic catalysis. More specifically, the photocatalyst is
intended to serve as a single-electron-transfer (SET) shuttle
to harness the metal complex with specific oxidation states and
the coordination environment to perform the tasks required by
the mechanism. Although not purely metal-free overall, this
strategy still builds on the ability of metal-free materials to
absorb light, to generate the separated excited charges, and to
transfer the charges. Pioneering work by Durrant, Reisner, and
co-workers coupled CN photocatalysts with Ni diphospine
complexes to achieve the dual function of H2 solar generation
and the simultaneous oxidation of benzyl alcohol.88 This work
also inspires studies of more challenging purely organic
reactions. Pieber and co-workers exploited this metal/OA-
CN (oxamide-based carbon nitride) dual mechanism to enable
a variety of organic reactions such as esterifications, (thio)-
etherifications, and aminations under white light irradiation
(Figure 9),89−92 while Ghosh et al. used dual catalysis by Ni

Figure 7. (a) Two-dimensional covalent-organic framework (2D-
COF) preparation from 2,5-dimethoxyterephthalohydrazide and
1,3,5-triformylbenzene through solvothermal treatment. (b) 2D-
COF application in photocatalyzed alkylation of N-heterocyclic
compounds.

Figure 8. Graphical sketch of a Z-scheme and its function. Two
semiconductors (SCs) opportunely interfaced and with staggered
band configuration (and suitable band Fermi levels and work
functions) give rise to band bending. The built-in internal electric
field and the band bending cause coupling of the photogenerated
holes and electrons of SC1 and SC2, respectively, whereas the
electrons and holes in SC1 and SC2 are maintained and spatially
separated, able to function for reduction and oxidation reactions.

Two-dimensional covalent organic
frameworks could lead to the devel-
opment of photoactive materials for
optoelectronics, photovoltaics, and
visible light photocatalysis.
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derivatives and mpg-CN to drive coupling of aryl halides with
aliphatic/aromatic amines and sulfamides (Figure 3).39

Such examples are quite recent and exclusively include CN
as the 2D photocatalyst. The key mechanistic aspects are not
yet well understood and require further exploration, but it is
likely that the specific steps will differentiate according to the
type of reaction and catalytic system.93 Nevertheless, these
examples highlight the immense potential for organic synthesis,
possibly encompassing a wide range of reactivity. Future
developments will depend on the study and definition of the
main features of the catalytic cycle for each class of investigated
reactions, such as, for example, the dynamics of the SET steps
(whether it is a direct transfer, a second coordination sphere
transfer, or a solvent-mediated transfer) and the nature of the
metal active site.
To sum up, several examples of non-metal-based 2D

materials beyond graphene have all the qualifications to satisfy
the strict requirements of photocatalysis. Thus far, a great
effort has focused on their use as components in hybrid
catalytic systems, with widespread use in energy-related
photocatalysis. However, photocatalytic organic synthesis is
experiencing a great deal of attention, and we expect that it will
take a central role for future applications of this class of
materials. Future avenues of development of 2D metal-free
catalysts will converge toward (i) the ability to control and to
modify the structure by synthetic schemes; (ii) the appropriate
advanced characterization tools and methods required to reveal
the substructure/functionality relationships in photocatalysis;
(iii) nonreliance on high metal loadings (i.e., exploring possible
introduction of low fractions of single metal atoms); and (iv)
the possibility of interfacing different 2D nonmetal phases with
suitable contacts and interactions, both to extend the possible
applicability to more demanding classes of reactions and to
improve photocatalytic activity. More complex catalytic
systems, such as the inclusion of metal species for performing
traditional organic steps also represent an attractive oppor-
tunity, driving organic transformations of higher complexity.
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