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A small collection of open problems
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Abstract. This paper collects some problems that I have encountered
during the years, have puzzled me and which, to the best of my knowl-
edge, are still open. Most of them are well–known and have been first
stated by other authors. In this sad season of pandemic, I modestly
try to contribute to scientific interaction at a distance. Therefore all
comments and exchange of information are most welcome.
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1. Introduction

Here I collect a number of open problems that I have struggled with, and which
I believe maintain some interest. I hope this collection may stimulate younger
minds.

A masterly model, which gave me the inspiration to set up this small col-
lection, has been the monumental Scottish Book [28]. A peculiarity which I
especially liked in the Scottish Book is that often the proposers of the problems
offered prizes for their solutions. I shall imitate this habit here. I promise the
prizes to the solvers, the means of delivery are to be agreed depending on the
occasion.

2. Unique continuation for the p–laplacian

Dedicato a Gisella, unica compagna della mia vita,

vicina e paziente sempre, anche quando “la matematica non funziona”.

Given 1 < p <∞ we consider the so–called p–Laplace equation

div (|∇u|p−2∇u) = 0 (1)

in a connected open set Ω ⊂ Rn, n ≥ 2. The natural space in which we
may search for weak (variational) solutions is W 1,p(Ω). The problem that I
want to address here is whether solutions to (1) satisfy the unique continuation
property. However, this formulation is somewhat vague, because the unique
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continuation property can be expressed in many ways. More precise formula-
tions are the following ones.

Problem 2.1 (Weak unique continuation): Suppose u solves (1) and vanishes
on a nonempty open set U ( Ω, does u ≡ 0 on all of Ω?

Problem 2.2 (Strong unique continuation): Suppose u solves (1) and vanishes
of infinite order at an interior point x0 of Ω, does u ≡ 0 on all of Ω?

If p = 2 then (1) reduces to the classical Laplace’s equation, the solutions
are harmonic functions which are well-known to be real analytic, and hence
the strong unique continuation property holds. If n = 2 the strong unique
continuation property holds true for any p > 1. This was proved by Bojarski
and Iwaniec [14] and by myself [2] by two different methods, a gap in the proof
of Bojarski and Iwaniec was later filled by Manfredi [27].

Thus the problem, in both formulations 2.1 and 2.2, remains open in the
case n ≥ 3, p 6= 2.

I should also mention that this problem was first proposed to me by Gene
Fabes, in 1981, in an even stronger form:

Problem 2.3 (Mukenhoupt): Suppose u solves (1) and is not identically con-
stant, is |∇u| a Mukenhoupt weight?

For a definition of Mukenhoupt weights, and the basics of the theory, I refer
to Coifman and Feffermann [16].

Again, the answer is affirmative if p = 2, this can be viewed within the
general theory of unique continuation for linear elliptic equations, a benchmark
in this respect is due to Nico Garofalo and F.H. Lin [20]. When n = 2, the
positive answer can be found in a joint paper with Daniela Lupo and Edi
Rosset [10].

Prize. One bottle of barriqued Friuli Grappa.

3. Unique continuation along level surfaces

Dedicato a Giuseppe e Francesco Gheradelli, nonno e zio,

il ramo geometrico nel mio albero genealogico.

This is probably the only problem of this collection for which I can claim
some form of paternity. It originates from my work with Emmanuele Di
Benedetto on the inverse problems of cracks [7], and it could be used to extend
some of those results to the case of cracks in inhomogeneous media. It was first
formulated in a paper with Alberto Favaron [9].

Consider an elliptic equation

div (A∇u) = 0 (2)
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in a connected open set Ω ⊂ Rn, n ≥ 2. Here A = A(x) is a symmetric matrix
valued function, satisfying uniform ellipticity

K−1|ξ|2 ≤ A(x)ξ · ξ ≤ K|ξ|2 ,∀x, ξ ∈ Rn , (3)

and Lipschitz continuity

|A(x)−A(y)| ≤ E|x− y| ,∀x, y ∈ Rn , (4)

for some positive constants K,E. These assumptions are stated in order to
guarantee that the standard unique continuation property applies, see again
[20]. I propose the following less standard form of unique continuation.

Problem 3.1 (Unique continuation along level surfaces): Let u, v be two non-
costant solutions to (2), let S ⊂ Ω be a connected (n− 1)–dimensional smooth
hypersurface, and let Σ be an open proper subset of S. Suppose u = 0 on S
and v = 0 on Σ. Is it true that v = 0 on all of S?

If A ≡ I, then u, v are harmonic and in this case, S is an analytic hyper-
surface, see for instance [7, Appendix A], hence the answer is affirmative, by
analytic continuation. Some smoothness on S must be indeed assumed. This
can be easily seen in the harmonic two–dimensional case:

Let Ω = R2, u = xy, v = y. In this case, we may pick S = {x = 0, y ≥
0} ∪ {x ≥ 0, y = 0}, which is a simple curve with a corner point at the origin
and Σ = {x > 0, y = 0} ⊂ S is the positive horizontal semiaxis. Clearly v
vanishes on Σ, but it does not vanish on all of S ⊂ {u = 0}.

From another point of view, it may be noted that a parallel could be drawn
with the issue of unique continuation at fixed time for parabolic equations,
which was treated jointly with Sergio Vessella [13].

Prize. Three Havana cigars.

4. The inclusion problem

Consider a connected open set Ω ⊂ Rn, n ≥ 2, with smooth boundary: Let
k > 0, k 6= 1 be given, and let D be an open set compactly contained in Ω.
Consider the Dirichlet problem{

div ((1 + (k − 1)χD)∇u) = 0, in Ω,

u = ϕ, on ∂Ω.
(5)

This problem models the distribution of an electrostatic potential u in a body Ω
with homogeneous conductivity 1 which contains in its interior an inclusion D
whose conductivity is k 6= 1.
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Such a problem is well–posed in the Sobolev space W 1,2(Ω) for any given

Dirichlet data ϕ in the trace space W
1
2 ,2(∂Ω). As a consequence, the so–called

Dirichlet–to–Neumann map

ΛD : W
1
2 ,2(∂Ω) 3 ϕ→ ∇u · ν ∈W− 1

2 ,2(∂Ω)

is well defined, here ν denotes the outer unit normal to ∂Ω.

A special case of the celebrated Calderón’s inverse conductivity problem [15]
is to determine D, given ΛD. Victor Isakov proved uniqueness [22].

Loosely speaking, the boundary of D is determined by n − 1 parameters,
whereas the Dirichlet–to–Neumann map can be associated to a function de-
pending on 2(n− 1) variables. Therefore the problem of determining D, from
ΛD looks dimensionally overdetermined. It is thus interesting to see if a limited
sample of ΛD might suffice to uniquely determine D. A review of the available
results can be found in [5].

Let us recall here in particular a result by Jin Keun Seo in dimension n =
2 [34]. Assuming a priori that D is a simply connected polygon, given two
cleverly chosen Dirichlet data ϕ1, ϕ2, then the corresponding Neumann data
∇u1 ·ν,∇u2 ·ν uniquely determine D. Here ui denotes the solution to (5) when
ϕ = ϕi, i = 1, 2.

What is a clever choice of ϕ1, ϕ2?

Definition 4.1. We say that the pair of Dirichlet data ϕ1, ϕ2 satisfies Radó’s
condition if the mapping Φ = (ϕ1, ϕ2) : ∂Ω→ Γ is a homeomorphism onto the
boundary Γ of an open convex set G ⊂ R2.

Seo’s uniqueness theorem was originally stated under slightly different con-
ditions, but it can be readily seen that his arguments apply equally well under
the condition just stated. The rationale behind this clever choice of Dirich-
let data, is that under such condition, the mapping U = (u1, u2) becomes a
homeomorphism of Ω onto G, see my joint paper with Enzo Nesi [11]. In fact
such a condition was first devised by Radó in the context of planar harmonic
mappings, see for instance Duren [18].

Problem 4.2 (The inclusion problem with finite data): Let n = 2, let us
assume a priori D be simply connected and with smooth boundary. Let the
pair of Dirichlet data ϕ1, ϕ2 satisfy Radó’s condition, is D uniquely determined
by the Neumann data ∇u1 · ν,∇u2 · ν?

One clue that Radó’s condition might be the appropriate one comes from
the fact that it has shown to be effective in the germane inverse problem of
cracks in dimension 2. The main results, and more references, can be found
in the paper by Alvaro Diaz Valenzuela and myself [6], and in the one by Jin
Keun Seo with Kim [24].
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Of course it would be meaningful to formulate Problem 4.2 also in higher
dimensions. However it is not at all clear what might be a clever choice of
Dirichlet data in such a case.

Prize. Three bottles of Friulano (once known as Tocai).

5. The crack problem

Dedicato a Damien, che mi dà la forza di sperare nel futuro.

Consider, in a bounded and connected open set Ω ⊂ R3 a two–dimensional
orientable smooth surface Σ b Ω having a simple closed curve as boundary. We
view Σ as a fracture in a homogeneous electrically conducting body Ω. If we
prescribe a stationary current density ψ (having zero average) on ∂Ω then the
electrostatic potential u is governed by the following boundary value problem
(suitably interpreted in a weak sense)

∆u = 0, in Ω \ Σ,

∇u · ν = 0, on either side of Σ,

∇u · ν = ψ, on ∂Ω.

(6)

The inverse problem is:

Problem 5.1 (The insulating crack problem): To find appropriately chosen
current profiles ψ1, . . . ψN such that, letting u1, . . . uN be the corresponding
potentials, the boundary measurements u1|∂Ω, . . . uN |∂Ω uniquely determine Σ.

When Σ is a portion of a plane, Kubo [25] found a triple of suitable current
profiles for which uniqueness holds, in [7] suitable pairs were found.

When Σ is allowed to be curved and the full Neumann–to–Dirichlet map

NΣ : ψ → u|∂Ω

is known, uniqueness was proven by Eller [19].

Prize. One bottle of white Friuli Grappa.

6. Payne’s nodal line conjecture

In this Section and in the following one I shall discuss problems arising from
Courant’s Nodal Domain Theorem [17]. A brief introduction may be useful.
Consider, in a bounded and connected open set Ω ⊂ Rn, n ≥ 2, the eigenvalue
problem {

∆u+ λu = 0, in Ω,

u = 0, on ∂Ω.
(7)
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It is well known that there exists a complete set of eigenfunctions {um}, or-
thonormal in L2(Ω), with corresponding eigenvalues {λm}. The eigenvalues
are all positive and can be arranged in a nondecreasing, diverging sequence
0 < λ1 < λ2 ≤ λ3 ≤ . . . ..

Courant’s Nodal Domain Theorem states that every eigenfunction um cor-
responding to the m–th eigenvalue λm has at most m nodal domains, that is
the set {x ∈ Ω|um(x) 6= 0} has at most m connected components.

In particular, u1 has constant sign, and any second eigenfunction u2 (which,
being orthogonal to u1, must change its sign) has exactly two nodal domains.

L. E. Payne [32, Conjecture 5] posed the following conjecture.

Conjecture 6.1 (Payne). Let n = 2, for any second eigenfunction u2 the
nodal line

{x ∈ Ω|u2(x) = 0}
is not a closed curve.

Melas [29] proved the conjecture if Ω is convex and has smooth boundary,
the smoothness assumption was removed in [3]. Hoffmann-Ostenhof, Hoffmann-
Ostenhof and Nadirashvili [21] showed by an example that the conjecture may
fail if Ω is not simply connected.

The following remains an open problem.

Problem 6.2: Assume Ω be simply connected and with smooth boundary.
Prove that the nodal line of any second eigenfunction is a simple open curve
whose endpoints are two distinct points of ∂Ω.

It must be noted that the conjecture also fails if the eigenvalue problem (7)
is slightly modified by replacing the Laplacian ∆ with an operator of the form
∆− q where q is a variable coefficient, see the example by Lin and Ni [26].

Prize. Three bottles of Terrano.

7. Extending Courant’s nodal domain thorem

Let us consider again an elliptic eigenvalue problem, but now we admit variable
coefficients: {

div (A∇u)− qu+ λρu = 0, in Ω,

u = 0, on ∂Ω.
(8)

We shall assume throughout the ellipticity condition (3), and also

q, ρ ∈ L∞(Ω) , ρ ≥ K−1 > 0 .

It is known that Courant’s Nodal Domain Theorem maintains its validity under
one of the following conditions, either n = 2 or A satisfies the Lipschitz condi-
tion (4). See [4] for proofs and bibliography. In fact under such assumptions,
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solutions to

div (A∇u)− qu+ λρu = 0 (9)

satisfy the unique continuation property. This is in fact a typical ingredient in
the proof of the Nodal Domain Theorem.

If n ≥ 3 and (4) is relaxed to a Hölder condition

|A(x)−A(y)| ≤ E|x− y|α ,∀x, y ∈ Rn , (10)

for some α ∈ (0, 1) and some positive constant E, then a weaker result is
known: any m–th eigenfunction um has at most 2(m − 1) nodal domains, for
every m ≥ 2. See [4, Theorem 4.5]. Recall that if A is merely Hölder, then
unique continuation may fail [30, 31, 33].

Problem 7.1 (Courant): Let n ≥ 3. Under which conditions on A (not imply-
ing the unique continuation property for (9)) Courant’s Nodal Domain Theorem
remains valid?

Prize. Three bottles of Vitovska.

8. The final problem

Dedicato a Luigi Gherardelli, lo zio Gigi, ingegnere idraulico.

Consider, for a bounded, connected open set Ω ⊂ Rn, the following initial–
boundary value problem for a parabolic equation{

ut − div (a∇u) = f, in Ω× (0, T ),

u = 0, on ∂Ω× (0, T ) ∪ Ω× {0}.
(11)

Here a = a(x) is assumed to be a time independent scalar coefficient, satisfying
uniform ellipticity

K−1 ≤ a(x) ≤ K .

In [12] Sergio Vessella and I formulated the following inverse problem.

Problem 8.1 (Parabolic inverse problem): Let n = 2. Given f on all of
Ω × (0, T ), and given u(x, t) for all x ∈ Ω and for one or more fixed values of
t > 0, is a uniquely determined?

The limitation of the space dimension to n = 2 was motivated by applica-
tions, more specifically: identification of transmissivity a in groundwater flow
by piezometric head measurements u. The origin of the problem should be
searched in the hydrogeology literature, and it might be dated much earlier,
see for instance [36].
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The problem however maintains its interest in any dimension, and is still
open in general. A solution under some special assumptions on boundary data
and when n = 1 was given by Victor Isakov in [23].

Here I propose a variant to Problem 8.1.

Problem 8.2 (Parabolic inverse problem with final data): Consider the fol-
lowing initial–boundary value parabolic problem

ut − div(a∇u) = 0, in Ω× (0, T ),

u = g(x, t), on ∂Ω× (0, T ),

u = h(x), on Ω× {0}.
(12)

Given appropriately chosen functions g and h, and assuming a known on ∂Ω,
does the knowledge of u(·, T ) uniquely determines a?

This problem can be seen as an extension to a non–stationary setting of
an inverse elliptic problem with interior data, for which uniqueness can be
proven [1, 8]. In such an elliptic context, it can be seen that some boundary
information on the coefficient a is needed, that is why I have added that kind
of information also in the parabolic question.

After this paper’s preprint was posted on ArXiv (March 25, 2020) I was
informed by Faouzi Triki that a notable advance towards the solution of Prob-
lem 8.2 has been achieved by him [35].

Prize. Three bottles of Ribolla.
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