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Abstract: Primary immunodeficiencies (PIDs) are a large and growing group of disorders commonly
associated with recurrent infections. However, nowadays, we know that PIDs often carry with them
consequences related to organ or hematologic autoimmunity, autoinflammation, and lymphoprolifer-
ation in addition to simple susceptibility to pathogens. Alongside this conceptual development, there
has been technical advancement, given by the new but already established diagnostic possibilities
offered by new genetic testing (e.g., next-generation sequencing). Nevertheless, there is also the need
to understand the large number of gene variants detected with these powerful methods. That means
advancing beyond genetic results and resorting to the clinical phenotype and to immunological or
alternative molecular tests that allow us to prove the causative role of a genetic variant of uncertain
significance and/or better define the underlying pathophysiological mechanism. Furthermore, be-
cause of the rapid availability of results, laboratory immunoassays are still critical to diagnosing
many PIDs, even in screening settings. Fundamental is the integration between different specialties
and the development of multidisciplinary and flexible diagnostic workflows. This paper aims to
tell these evolving aspects of immunodeficiencies, which are summarized in five key messages,
through introducing and exemplifying five clinical cases, focusing on diseases that could benefit
targeted therapy.

Keywords: primary immunodeficiencies; recent thymic emigrants; X-chromosome inactivation; au-
toinflammatory diseases; lymphoproliferative immune defects; mendelian susceptibility to infections;
flow cytometry; next generation sequencing

1. Introduction

According to an old paradigm, the possibility of a primary immunodeficiency disease
(PID) should be considered in subjects with recurrence of serious infections. Whilst the
easy assessment of blood cell count and immunoglobulin levels together with a careful
evaluation of clinical data can address the suspicion of PID in many severe cases, the
availability of specific immunological phenotyping in the last twenty years of the 20th
century led to a significant advance in the diagnosing of this group of disorders [1]. Flow
cytometry-based classification also facilitated studies leading to the identification of many
genetic errors underlying PIDs. Even after the identification of causative genes for several
defects, laboratory immune evaluation remained crucial for diagnosis of many PIDs due to
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the prompt availability of the results and to the functional significance of assays that could
reflect the severity of the underlying molecular defect.

More recently, the widespread use of molecular genetics greatly increased the capacity
to identify PIDs, and correlations between genotypes and phenotypes have begun to be
established, raising the question whether it was still justified to base a diagnosis only on a
clinical and phenotypical evaluation [2,3].

With improved capability of diagnosing immune defects, a new paradigm of PID
emerged, showing that immunodeficiencies can be characterized by autoimmune, lym-
phoproliferative, and neoplastic symptoms, in addition to infections [4]. Indeed, a search
for PID is now recommended in subjects with refractory cytopenia or with multiple au-
toimmune manifestations. Furthermore, even a single severe infection, especially if it
arises from a commensal or unusual pathogen, can raise the suspicion of a PID. Thus,
according to a new paradigm, a PID should be considered in subjects with a wide range
of infectious, inflammatory, and autoimmune manifestation due to an improper immune
function. Even if cytometry laboratories of immunology have evolved improved panels to
take into account a wider range of phenotypes [5], immunophenotyping can yield normal
results in many cases, and thus, it cannot be used as the sole tool to rule out the diagnosis
of a PID, with maybe the exception of Severe Combined Immunodeficiencies (SCIDs).

Conversely, improved molecular diagnostics allowed us to search for disease-causing
mutations in hundreds of immune-related genes simultaneously by exploiting next-
generation sequencing (NGS) capabilities. Gene panels have been implemented for distinct
groups of PIDs and, more recently, clinical exome sequencing has been proposed to analyze
hundreds of PID genes at once. Current guidelines recommend moving on from targeted
gene panels to clinical exome data, which can be analyzed starting from nearly 400 genetic
defects identified in patients with distinct primary immunodeficiency [6]. In the cases in
which there is no obvious genetic explanation for the disease, the analysis may be further
expanded in silico. The use of targeted gene panels can still be applied in cases in which
the clinical suspicion is oriented toward a narrow set of genes, allowing higher sequences
coverage and an easier first-line evaluation of results. In the selected case, whole genome
sequencing can be preferred due to the possibility of identifying copy number variations,
large deletions, and other genomic rearrangements [7], as reported by some authors [8-10],
even though it requires complicated analysis given the large amount of data and thus
should be performed as a second-line investigation. Overall, exome and genome sequenc-
ing give the opportunity to re-analyze data in the light of newly discovered disease-related
genes in patients without a genetic diagnosis. However, several pitfalls can hinder the
interpretation of genetic results. First, exome sequencing may miss structural defects such
as gene inversions or large deletions, and some genes may be poorly covered in NGS, as
in the example of IKBKG due to the presence of a closely related pseudogene. Moreover,
disease-causing mutations present in somatic mosaicism in a proportion of cells can be
hardly identified by conventional techniques, as in the case of adult-onset autoimmune
lymphoproliferative syndrome. Thus, the appropriate genetic testing should be thoroughly
considered based on the strength of clinical suspicion of a given condition. Lastly, genetic
studies may yield lots of data of uncertain significance, requiring new immunologic studies
for a definite confirmation.

We present case studies to discuss how the diagnostics of PIDs moved from a straight-
forward sequence, which led from the clinical picture to hematological and flow cytometry
diagnostics, to a more articulated multidisciplinary workflow connecting various clinical
specialties and requiring the collaboration between laboratory immunologists and geneti-
cists. Of note, in some cases, the knowledge of molecular defects has allowed targeting
the diseased mechanism with precision drugs [11-13]. This is especially true for PIDs
associated with Gain-of-Function pathways [14] that can be targeted by pharmacological
inhibitors, which could be already available as developed to cure cancers [15]. The early
detection of such “druggable” disorders is crucial to prevent the development of severe
organ damage [16].
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By exploiting the discussion of a case series, we present five typical scenarios, high-
lighting some developments in diagnostics of PIDs. This article could scarcely describe
the complex field of PIDs and is not intended to give diagnostic recommendations. It is
just meant to discuss how the diagnostics of PIDs is moving in the era of NGS, requiring
an intimate collaboration among various specialists in multidisciplinary teams. Some
tables are provided to highlight how some key assays such as the measure of recent thymic
emigrants (RTE) or the assessment of X-chromosome inactivation (XCI) could contribute
together with genetic analysis to the diagnosis of PIDs. Particular attention is paid to
disorders that can be effectively treated by hematopoietic stem cell transplantation, gene
therapy, or molecularly targeted therapies.

2. Case Presentation
2.1. Case 1. Recent Thymic Emigrants

Case #1 was a firstborn male born at full term after a normal pregnancy without
perinatal problems. At the start of weaning, around five months of age, his weight started
to grow less. After some months of poor weight growth, he performed a wide range of
blood tests that showed normal complete blood count (CBC), hepatic and renal function
indices, electrolytes, and no antibodies for celiac disease. The only pathological finding
was agammaglobulinemia. The infant had no infections until nine months of age when
he was admitted to intensive care with respiratory failure due to interstitial pneumonia
caused by Pneumocystis jirovecii. Among the investigations for PID, a flow cytometric
study of lymphocyte subsets was diagnostic of T-B+ NK-SCID (supplementary materials).
Male sex, the period of onset and clinical features, along with typical immunophenotype,
were suggestive of X-linked SCID (X-SCID). As expected, genetic tests revealed an IL2RG
gene mutation (c.741insG:p.5248fs) [17], confirming the clinical suspicion. At the age of
11 months, the patient received a bone marrow transplant with good outcome and no
significant complications.

2.2. Case 2. X-Linked PIDs

A male baby was born by spontaneous delivery after a full-term pregnancy compli-
cated by intrauterine growth restriction. Given his low birth weight, he was admitted to
the neonatal unit for clinical observation and initiation of early feeding. At approximately
three hours of life, the neonate manifested diffuse petechiae, predominantly in the trunk
and back, and a left parietal cephalohematoma. Investigations for bleeding showed normal
coagulation function but severe isolated thrombocytopenia (13,000/mmc, MPV 8.2 fL).
Bone marrow aspirate was normocellular and showed no blastic cells, rare megakaryocytes
of variable dysmorphic appearance, and no signs of dyserythropoiesis. Familial history
was contributive for a maternal uncle death at two years of age from cerebral hemorrhage
due to an undefined congenital platelet disease (genetic investigations were not available at
the time), and a great-uncle death at four months of age from sepsis. In the first days of life,
the infant developed fever, general decay, and jaundice, so he started empirical antibiotics
and phototherapy. Due to the persistence of unexplained jaundice after microbiological
and radiologic examination, a liver biopsy was performed, which showed a histologic
picture compatible with either herpes virus hemophagocytic syndrome or maternal GVHD
(graft-versus-host disease), which was supportive of an underlying immunodeficiency.
Flow cytometry analysis performed in the suspicion of Wiskott-Aldrich syndrome (WAS)
showed absent WASP expression (supplementary materials). Directed sequencing of the
WAS gene on the X-chromosome led to the detection of a likely pathogenic mutation
(c.708delT:p.A236AfsX24), which has never been described before (supplementary ma-
terials). The evidence of a skewed XCI pattern in the mother’s peripheral blood cells
(supplementary materials), together with the pedigree compatible with X-linked disorders,
eventually confirmed the pathogenic role of the mutation. Unfortunately, the boy died
from transplant-related complication with severe infections.
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2.3. Case 3. Immunodeficiencies with Autoinflammation

A 7-year-old girl came to our attention for hepatopathy with positive antinuclear anti-
bodies (ANA) but with normal results from liver biopsy. She also complained of recurrent
aphthous stomatitis since the age of four years, with some episodes complicated by oral
thrush and painful swallowing. She had been previously evaluated with the suspicion
of Behget disease, but without reaching a definite diagnosis. In the last years, she also
presented a couple of episodes of paronychia, which had been considered due to the
girl’s habit of biting the skin of her fingers. When she referred to our hospital, laboratory
investigations revealed increased aminotransferase, raised erythrocyte sedimentation rate
(ESR), high-titer ANA, positive direct Coombs test, and positive anti-double-stranded
DNA antibodies. Furthermore, a strikingly positive interferon score was measured in her
peripheral blood (supplementary materials). A diagnosis of systemic lupus erythematosus
(SLE) was made and a treatment with mycophenolate mofetil (MMF) and hydroxychloro-
quine started, together with on-demand fluconazole for oral candidiasis. Whilst both
aminotransferase and ESR dropped to nearly normal levels, episodes of oral aphthosis with
superimposed oral candidiasis persisted, as well as recurrent paronychia. Colchicine was
added to reduce the recurrence of oral aphthosis. Furthermore, a PID was suspected, and
targeted genetic testing was performed (supplementary materials), revealing c.862A>G
mutation in the STAT1 gene (p.T288A, rs387906765), which confers an increased activity of
the STAT1 protein [18]. This condition, called “STAT1 Gain-of-function” (GOF) syndrome,
is in fact characterized by the presence of chronic mucocutaneous candidiasis in almost all
cases and autoimmune disease in a great proportion of affected patients [19]. Based on this
genetic diagnosis, a treatment with a JAK 1/2 inhibitor (baricitinib, 2 mg once daily) was
started instead of MMEF, obtaining good control of the disease.

2.4. Case 4. Immunodeficiencies with Lymphoproliferation

The fourth patient is a woman with a clinical history of recurrent respiratory infections,
in some cases requiring hospitalization, and a few episodes of colitis, up to 20 years of
age. After a period of well-being that lasted about ten years, pulmonary and urinary
infections began to recur. Immunological tests were performed that showed an IgA defect
(23 mg/dL). In addition to recurring infections, she developed alopecia areata at ten years
of age and eczematous lesions on knees and genitals during puberty. Over various con-
sultations, several non-specific findings were noted: mild Diffusing capacity of the Lungs
for Carbon monOxide (DLCO) reduction, dermal hyperplasia, mild gastric atrophy, mild
colic eosinophilic inflammation, and a peculiar hypertrophy of the lingual tonsil. Further
laboratory investigations revealed a mild lymphopenia (960/mcrL) with B-cell defect. The
woman was referred to our center by an Ear Nose and Throat specialist because of the
uncommon finding of a lingual tonsil hypertrophy. Immunophenotyping evidenced an
inversion of the CD4/CDS8 ratio and increase of senescent (CD57 + CD45RA+) CD8 T cells,
which, together with low IgA values, supported the hypothesis of a primary immunodefi-
ciency (supplementary materials). Furthermore, lingual tonsil hypertrophy was noticed as
a sign of abnormal lymphoproliferation. A genetic panel for PID predominantly associated
with hypogammaglobulinemia evidenced the presence of the variant c.G454A:p.A152T in
the PIK3CD gene (rs138463758) (supplementary materials), which was consistent with a
possible diagnosis of activated phosphoinositide 3-kinase 6 syndrome (APDS). Again, we
were faced with a variants of uncertain significance (VUS), the pathogenicity of which had
to be confirmed. Knowing the specific molecular pathway to which the mutated gene’s
protein encoded belongs, it is possible to use ancillary tests to evaluate the pathway’s ex-
pression of molecules. In our case, the mutation was in PIK3CD, which is a molecule of the
PI3K/AKT/mTOR/S6K pathway, so a test was performed to evaluate the functionality of
the cascade, namely the phosphorylation of the downstream molecule S6 in B cells, which
proved to be high (56 more phosphorylated) [20] and therefore indicated that there was
increased PIK3CD activity: that means GOF mutation. Of note, IgA deficiency, increase
of senescent CD8 and lymphoproliferative features are all typical features of APDS in
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addition to recurrent infections [21]. A therapeutic attempt with theophylline 200 mg daily
was attempted for six months, based on a previous experience in a younger case with type
II APDS (due to mutations in PIK3R1 [22]), however without a clear benefit. The oppor-
tunity of starting a treatment with leniolisib, a specific inhibitor of PIK3CD, is currently
under evaluation.

2.5. Case 5. Susceptibility to: EBV, Mycobacteria, Candida, Warts

Case #5 is about an 18-year-old boy patient admitted for mononucleosis with pul-
monary, hepatic, and cerebral involvement with seizures. Polymerase chain reaction (PCR)
examination on blood and bronchoalveolar lavage demonstrated the presence of high viral
load Epstein—Barr virus (EBV). At the same time, signs of lymphoproliferation appeared
(systemic lymphadenomegaly, hepato-splenomegaly with poor liver function indices, ele-
vated serum lactate dehydrogenase). A worsening of respiratory function followed, with
the need for intubation and transfer to ICU. Based on the diagnosis of complicated EBV
infection, a treatment was started with antiviral and rituximab. After initial improvement
in respiratory function and extubation, the patient had a relapse that affected the nervous
system and led to a state of coma with the need for a second intubation. EBV DNA was
amplified by PCR in cerebrospinal fluid, while blood examination showed moderate-to-
severe anemia, hypofibrinogenemia, and hypertriglyceridemia. Overall, these data were
consistent with a diagnosis of severe EBV infection complicated with hemophagocytic
lymphohistiocytosis, leading to the search of genetic susceptibility to this kind of infection.
Genetic analysis revealed that the boy was hemizygous for the ¢.3G>C p.M1I mutation in
the SH2D1A gene, allowing the diagnosis of X-linked lymphoproliferative disorder (XLP).
Based on these results, the patient underwent therapeutic conditioning followed by bone
marrow transplantation, with good long-term outcome.

3. Discussion

Case #1 was a typical case of SCID. The description of the case serves to illustrate
the importance of reliable methods to measure thymic output both for diagnosis and in
newborn screening. SCIDs are the most severe PIDs, presenting in the first year of life with
various combinations of symptoms, ranging from severe infections, often from opportunist
germs, to inflammatory and autoimmune manifestation, such as enteropathy, dermatitis,
and autoimmune cytopenia. An SCID can be suspected also in infants with unexplained
failure to thrive or with slow healing from a trivial infection. Infants with SCID usually
have low lymphocyte count: attention should be paid to percentiles for age, since in
the first months of life, reference values are much higher than ever [23]. Low levels of
immunoglobulins can contribute to raised suspicion of PID. However, since the lymphocyte
count may be normal in a few cases, lymphocyte immunophenotyping is necessary to
confirm or rule out the diagnosis [5]. The most informative subset in evaluating an SCID is
represented by RTE, which are a direct measure of the thymic output of naive cells, with
a proper maturation of their T cell receptor. RTE are identified by the co-expression of
CD3, CD45RA, and CD31 and are better evaluated on the subset of CD4 T cells [24,25].
The number of RTE well correlates with the results of the T cell receptor excision circle
(TREC) assay, which measures the number of T cells bearing the genetic print of an effective
receptor maturation [24,26,27] (Figure 1a). Whilst the RTE assay by flow cytometry is
currently used for the analysis of cases with suspicion of a SCID, the TREC assay is best
suited for analysis on dried blood spots in newborn screening for SCIDs [28]. Indeed,
infants with a familial history of SCID who received the diagnosis of the disease at birth
had better outcomes compared with their siblings in whom the diagnosis had been made
because of symptoms, as they could be cured by hematopoietic stem cell transplantation
in elective conditions [29]. This is one of the main reasons that fostered initiatives of
SCID screening in several countries. The availability of the TREC assay, and of «-deleting
recombination excision circles (KREC) assays investigating B cell receptor recombination,
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made it possible to add SCID among several genetic disorders screenable on Guthrie’s card
blood spots [30].
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Figure 1. Recent thymic emigrants (RTE) in healthy people and in subjects with immunodeficiencies arising from defective
TCR recombination. (a) Difference in the portion of RTE lymphocytes between normal and immunodeficiency condition,
at equal lymphocyte count. A subject with immunodeficiency may present a smaller fraction of thymic-matured T cells,
which do not yet expand in the periphery after antigen (Ag) encounter. APC: antigen-presenting cell. MHC: major
histocompatibility complex. (b) Analysis of RTE in a healthy control (left dot plot) and in a patient affected with X-linked
SCID (X-SCID) (right dot plot). The cytograms are obtained after gating on CD45Mgh CD3+, and CD4+ population. RTEs
are identified by the co-expression of CD45RA and CD31 on CD4 T cells (upper right quadrant).

In the case described, the abnormal lymphocyte subpopulation pattern (lacking
T cells and NK cells, but with normal numbers of B cells) and the low number of RTE
allowed addressing the suspicion toward an X-SCID (Figure 1b), and the diagnosis was
promptly confirmed by the sequencing of the gamma-chain gene. In this case, clinical and
immunological data were sufficient to guide the right diagnosis.
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In cases with a reference TREC assay at the screening, the diagnostic path is less
straightforward: if results are confirmed in a second blood spot, a clinical and immunologi-
cal evaluation must be performed promptly, especially in cases with undetectable TREC
results. Imnmunophenotype must include the assessment of RTE [31]. Preterm newborns
with low but not absent TREC can be followed for some weeks before intensive investiga-
tion for an SCID [32-34]. In subjects with confirmed pathological results, genetic analysis
can be performed by direct gene sequencing or by NGS of several SCID-related genes at
once. Immunologic investigation may be required again to improve the interpretation of
results of uncertain significance obtained by NGS panels. Of note, newborns with the SCID
due to adenosine deaminase deficiency (ADA-SCID) may have normal levels of TRECS,
as the toxic metabolites produced because of the enzymatic deficiency are detoxified in
utero through the placenta. Thus, ADA-SCID is not detected by TREC screening but by
the biochemical measure of adenosine and 29-deoxyadenosine [35]. Table 1 shows a list of
conditions in which the measure of RTE or TREC can be contributive for diagnosis.

Table 1. Diseases with low RTE/TREC.

Primary Immune Defects

%ﬂ:g;lf\ﬁg Assessment of STAT phosphorylation can help

SCID subclassification [36,37]. Subjects with engraftment of maternal
T-B-NK- lymphocyt h: 1T cell t but have absent RTE [5]
Other combinations ymphocytes may have normal T cell count but have absen .
CHH CVIDs with severe lymphopenia and/or severe reduction of naive

Pediatric onset CVIDs o T cells should be classified as CID [40,.41] .
Del 22q11.2 syndrome and other Pediatric onset CVIDs have usually low RTE [42], with the exception

Combined ID ' of NFKB2 deficiency that may display increased RTE [43,44].

immunodeficiencies with defective thymic

Assessment of associated clinical features can help the
identification of specific syndromes such as CHH [45], 22q11.2
syndrome [46-48], and APDS (PIK3CD and PIK3R1 gene) [49].

development [38].
Other CID [39]

Secondary Immune Defects [50]

Specific reference values for naive T and B cells have to be

Preterm infant considered in preterm infants [51,52]

Neonatal thymectomy Reduced RTE [53,54]
HIV infection Increase of RTE if HAART started < 6 months from infection [55]
HSCT Increase of RTE if reconstitution from pre-thymic precursors [56-58]
Drugs Cytostatic drugs, cyclosporine [59]
Elderly people Immunosenescence [60]

Note: SCID: severe combined immunodeficiency; RTE: recent thymic emigrants; CHH: cartilage-hair hypoplasia; CVID: common
variable immunodeficiency; CID: combined immunodeficiency; APDS: activated phosphoinositide 3-kinase 5 syndrome; HIV: human
immunodeficiency virus; HAART: highly active antiretroviral therapy; HSCT: hematopoietic stem-cell transplantation; TREC: T cell receptor

excision circle.

The Case #2 description serves to illustrate how the analysis of X-chromosome in-
activation still plays a significant role in diagnostics of PIDs. In this case, the diagnosis
was straightforward, considering the typical clinical presentation and the familial history.
Wiskott—Aldrich should always be considered in newborns with thrombocytopenia even if
a small platelet volume can sometimes be missed by automatic counters, while it can be
noticed by an experienced hematologist looking at peripheral blood smears. In our case,
the diagnosis was supported by flow cytometry results showing absent WASP expression
together with increased CD4/CDS8 ratio. A skewed XCI pattern in the mother linked these
results with the familial history of a death from infection in a maternal uncle.

XClI assay has been an important test supporting the suspicion of specific X-linked
PIDs in the pre-genomic era [61,62]. Even if XCI tended to go into disuse with the advent
of NGS, it still retains usefulness, both to reinforce suspicion of an X-linked PID and to
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indirectly support the pathogenic role of variants of uncertain significance (VUS) identified
by genetic analyses.

Basically, due to the random lyonization process, female cells usually display random
XCI. However, a skewed pattern can be recognized if one of the two X-chromosomes
bears gene mutation resulting in the reduced proliferation/survival fitness of particular
types of cells [63]. For example, since functional BTK is required for the differentiation
of B cells, female carriers for pathogenic BTK mutation will have only peripheral B cells
expressing the wild-type allele, while staminal cells expressing the diseased BTK allele
will fail to differentiate into B cells. Thus, the XCI assay will show a skewed pattern in B
cells and a random one in other cell types (Figure 2) [61]. The findings from XCI in female
heterozygous patients for diverse X-linked PIDs are shown in Table 2. Even if XCI analysis
may be useless in cases with de novo mutation not inherited by the mother, it can be highly
contributive when a skewed inactivation profile is demonstrated in the proper subset of
the mother’s cells. In almost all cases, female heterozygous patients for X-linked PIDs are
completely healthy, but rare exceptions may exist in subjects having a skewed XCI for other
reasons (Table 2). In these cases, flow cytometry analysis can show double peaks reflecting
the presence of two cell populations, activating respectively the wild-type or the diseased
allele (Figure 2).

Table 2. Functional assay to address suspicion or to assess relevance of genetic variants of unknown significance.

Disease XCI Routine Lab and Disease in Hz Females with Functional Assavs
(Gene) Skewed in Immunophenotype Skewed Inactivation Y
T cells and . Proliferation; response
X-SCID (IL2RG) NK [61] B+ T- NK- Not described to IL.2
WAS Leukopenia; From XLT to WAS (due to WASP expression
(WAS) WBC [64] thrombocytopenia with skewed XCI [65-67] or uniparental (cytometry);
small platelets isodisomy 6 [68]) roliferation
p y p
CGD . From lupus discoid and stomatitis
(CYBB) No effect Leukocytosis to CGD [69—71] DHR or NBT test
XLA (BTK) B cells [72] Low B cells [73] BTK expression
IPEX . I Autoimmune disorders possibly Measure of Tregs numbers;
(FOXP3) Tregs [74] High activation markers associated with carrier status [75] measure of TSDR [76]
NEMO WBC [77] Non- ifi Icontinentia pigmenti [78,79] R nse to TLRs [78,80]
deficiency (IKBKG) on-specific continentia pigmenti [78, esponse to s [78,
Dyskeratosis congenita
XLR WBC [81] Non-specific [81,82] Telomere flow-FISH [83]
(DKC1)
XLP2 » B Measure of XIAP
(XIAP) No effect Non-specific HLH [84], Crohn’s Disease [85] expression [86]
XLP1 i . . Measure of SAP
(SH2D1A) No effect Non-specific Dysgammaglobulinemia [87,88] expression [86]
HIGM1 (CD40LG) No effect Reduced switched XCI [89,90] Mee.isure of CD40LG on
memory B cells activated lymphocytes

XMEN
(MAGTI)

Leukocytes [91]

Reduced RTE

Not described

Glycosylation defect [92]

Note: XCI: X-chromosome inactivation; Hz: heterozygous; X-SCID: X-linked severe combined immunodeficiency; WAS: Wiskott—Aldrich
syndrome; WBC: white blood cells; XLT: X-linked thrombocytopenia; CGD: chronic granulomatous disease; DHR: dihydrorhodamine; NBT:
nitroblue tetrazolium; XLA: X-linked agammaglobulinemia; IPEX: immunodysregulation polyendocrinopathy enteropathy X-linked; TSDR:
Treg-specific demethylated region; XLR: X-linked recessive; FISH: fluorescence in situ hybridization; XLP: lymphoproliferative syndrome,
X-linked; HLH: hemophagocytic lymphohistiocytosis; HIGM1: X-linked hyper-IgM syndrome; XMEN: X-linked immunodeficiency with
magnesium defect, Epstein-Barr virus infection, and neoplasia; RTE: recent thymic emigrants.

Today, NGS panels or clinical exome sequencing are increasingly used to assist the
genetic diagnosis in the field of X-linked PIDs [93,94]. However, as discussed above,
some X-linked PIDs are so well characterized to justify a provisional diagnosis based
only on clinical and immunological data. For example, this is true for WAS, X-SCID and
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CGD. Of note, in some cases with high clinical suspicion of these disorders, exome-based
genetic analysis can yield false negative results, and more complex genomic analyses are
required. In such cases, the reliability of flow cytometry-based functional assays (e.g.,
measure of WASP protein, analysis of gamma chain signaling, assessment of superoxide
production), together with the results of XCI studies in the mother, can allow making
a diagnosis guiding more complex genomic analyses, for example to search for gene
inversions, promoter mutations, and other rare genomic changes. The possibility of false
negative exome-sequencing results was reported for WAS [10], X-SCID [95], and chronic
granulomatous disease (CGD) [96]. Conversely, for some PIDs, also flow cytometry can
yield false negative results, as reported about the expression of SAP protein in XLP [97].
Thus, clinical, immunological, and genomic investigations remain reciprocally necessary for
a reliable diagnostic process. Flow cytometry investigations to assess PIDs with immune-
dysregulation have been recently reviewed by Cabral-Marques et al. [98].

Case #3 illustrates how primary immune defects may result at a same time in suscepti-
bility to infection and in seemingly unprovoked inflammatory activation. It also highlights
how PIDs may be hidden in cases diagnosed with a rheumatological condition. Mono-
genic autoinflammatory diseases are included in the International Union of Immunological
Societies (IUIS) classification of inborn errors of immunity [99]. Apart from the group of
pure autoinflammatory disorders, some PIDs can present autoinflammatory symptoms in
addition to other signs of immune deficiency. Patients with this kind of disorder can be
firstly referred to rheumatologists with the suspicion of a pure autoinflammatory disorder.
Table 3 lists some PIDs that can present both infectious and autoinflammatory features.

~N

Zygote XCl mechanism
K“ x“ Xist R
Q> ‘\E ’fﬁ)\“\.{' 8
P b o o
im im Embryonic ; o Vi Qﬁ 7
development
Random XCI Skewed XCI

@ Balanced

»

\

@ Favorable fitness

* mutation Unfavorable fitness @

(\7) A’t:‘

ol iy )
‘ fao I

wgl e

Humara assay 4

C/' E:O. y
u /
60%
Active WT chr
40%
0%
281 287 271 278 271 282

Created with BioRender.com

(a)

Figure 2. Cont.



Diagnostics 2021, 11, 532

10 of 24

FSC-Height FSC-H

250 ]

200 ]

150 ]

100 ]

50

DHR+ 250 ] DHR+
%P:43,62 %P:8,82
200 ]
5 150 ]
)
w
7]
% 100 ]
b 50 ]
101 102 103 104 101 102 108 104
DHR FL1-H DHR123 FL-1-Log

(b)

Figure 2. X-chromosome inactivation (XCI) assay in females heterozygous for X-recessive immune disorders. (a) A random
X-chromosome inactivation occurs in each female during embryogenesis, and the expected inactivation percentage is estimated
about 50% (1). Howevet, nonrandom or skewed XCI may be found in peripheral blood if the female is heterozygous for a mutation
affecting cell proliferation (2). For example, if a mutation is associated with defective cell maturation, only cells that activated the
wild-type allele will be found in the blood of female carries, who will be completely healthy (2a). However, in some cases, one of
the two X-chromosome may be silenced due to the presence of some other structural chromosomal abnormality. In these cases, the
other X-chromosome will be always active, even if it carries mutation in immune genes. In these unfavorable conditions, females
may express X-recessive immunodeficiency (2b). Human androgen receptor assay (HUMARA) allows us to indirectly assess
the relative activation of the two X-chromosomes. The AR gene presents a hypervariable CAG short tandem repeat that permits
distinguishing between the paternally and maternally derived X-chromosome (the peaks present in the figure above). Exploiting
methylation-sensitive restriction sites to selectively digest the active allele (unmethylated) allows us to distinguish the percentage
of active (enzyme digested and not amplified with PCR) from the inactive alleles. (b) Flow cytometric analysis of the DHR test
performed in two female carriers of X-linked CGD (supplementary materials). Deficiency in the CYBB gene associated with CGD
only impacts granulocyte function and not their proliferative fitness; thus, heterozygous females normally display random XCI
and are healthy (left panel); in rare cases, XCI can be skewed for other unknown factors: heterozygous females displaying skewed

XCI may have too low a percentage of functional neutrophils and can thus express the disease (right panel).

Inflammatory and autoimmune manifestations can occur in almost all PIDs. However,
only a few PIDs display autoinflammatory features with a prevalent involvement of a
single cytokine, behaving similarly to typical autoinflammatory conditions and benefiting
from specific cytokine blocking treatments. Some exemplary PIDs with autoinflammation
are reported in Table 3, highlighting precision therapies, when available.

Of particular interest is the newly described group of actinopathies [100-102], in
which the disturbed homeostasis the cytoskeleton can reflect both on defective formation
of immune synapsis and on autoinflammatory response. Actinopathies encompass a wide
spectrum of diseases ranging from severe immune deficiencies due to defective immune
synapsis at one end to autoinflammatory disorders associated with an increased release
of IL-1 at the other end (Figure 3). On one hand, an impaired formation of the immune
synapse reflects on reduced cooperation between immune cells and defective lymphocyte
activation and cytotoxic function, leading to more or less severe combined immunodefi-
ciency, as in DOCK2 [103], DOCKS8 [104,105], Coronin 1, and WIP deficiencies. On the other
hand, defective dynamics of actin polymerization leads to abnormal activation of pyrin
inflammasome and autoinflammation, as in PAPA syndrome [106-108], Familial Mediter-
ranean Fever [108-110], Hyper-IgD syndrome [109], and CDC42 deficiency [111,112]. Thus,
actinopathies may predominantly present with phenotypes related to combined immunod-
eficiency or to autoinflammation, but some disorders may present with mixed phenotypes,
as in the case of Wiskott—Aldrich syndrome [10,113], ARPC1B deficiency [114], or WDR1
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deficiency (in which, however a defective neutrophil function is associated with the dys-
regulation of IL-18 instead of IL-1 [115,116]).

Immunological synapse
defects: combined
immunodeficiencies
e - ARP2/3 N\
. complex
Immunological synapse CEEIE
defects/Autoinflammatory ARPC1B

disases

Autoinflammatory
disases

Created with BioRender.com

(@

(b)

Figure 3. Actinopathies. (a) Schematic representation of immune disorders associated with impaired actin cytoskeleton
regulation, affecting the immune synapsis and lymphocyte activation, the regulation of IL-1 autoinflammation, or both.
(b) Autoinflammatory manifestations responsive to IL-1 inhibition in a case of Wiskott-Aldrich syndrome.

In these disorders, it could be difficult to distinguish infective from autoinflammatory
manifestations. In some cases, the ex-juvantibus response to IL-1 inhibition with anakinra
has proved useful by providing indirect evidence of the autoinflammatory nature of clinical
manifestations such as skin rashes and unexplained fever [10,111].
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Of note, some patients with PID associated with autoinflammation may be initially re-
ferred to rheumatologists for complaints supportive of SLE or Behget disease (as in the case
of STAT1 GOF, A20 haploinsufficiency syndromes, WDR1 deficiency), and infective symp-
toms may be misinterpreted as a complication of immunosuppressive treatments [117].

Table 3. Inmunodeficiencies with autoinflammation.

Precision Therapies for the

Disease Gene Predominant Cytokine Autoinflammatory Component
STAT1 GOF syndrome STAT1 GOF Interferons JAK inhibitors
Wiskott-Aldrich syndrome WAS [10]
Immunodeficiency 71 with
inflammatory disease and ARPCIB [114]
congenital thrombocytopenia IL-1% Anakinra

Immunodeficiency with
dyshematopoiesis, CDC42 [112]
inflammation, and HLH

Autoinflammation, antibody
deficiency, and immune

. PLGC2 GOF [118] IL-1 Anakinra
dysregulation syndrome
(APLAID)
Autoinflammatory periodic
fever, immunodeficiency, and WDR1 [116,119,120] 1L-18 Partial response to anakinra
thrombocytopenia (PFIT)
Immunodeficiency 72 with NCKAPIL [121] IL-18, IFN-g Not defined
autoinflammation
A20 haploinsufficiency TNFAIP3 [122] TNF-alpha Anti-TNF

* Disturbance of the actin cytoskeleton in these three disorders, also referred to as pertaining to the new group of actinopathies, is associated
with IL-1 mediated autoinflammation responsive to anakinra [101]. Note: HLH: hemophagocytic lymphohistiocytosis.

Case #4 presentation serves to illustrate the importance of lymphoproliferative fea-
tures in raising the suspicion of a PID. APDS has been only recently characterized as
a specific PID. Since it may present with variable clinical pictures, subjects with APDS
in the past could be classified as having common variable immunodeficiency (CVID),
Hyper-IgM syndrome, or combined immunodeficiency (CID). Accordingly, the treatment
for patients included prophylactic antibiotics, immunoglobulin replacement, and in some
cases, hematopoietic stem-cell transplantation (HSCT). Many other diseases (e.g., CTLA4-
Cytotoxic T-Lymphocyte Antigen 4- deficiency, LRBA- LPS responsive beige-like anchor
protein- deficiency, CD40/CD40L deficiency), prior to the discovery of their monogenic
cause, were classified as CVID, which is a heterogeneous group (the term “variable” refers
to this heterogeneity) of disorders characterized by predominant antibody deficiency not
due to other well-defined PIDs. More recently, widened awareness of PID together with the
availability of NGS techniques led to the discovery of more and more genes underpinning
PIDs [123] and to the characterization of new pathogenic mechanisms. This allowed better
clustering of pathogenetic pathways and phenotype combinations (endotype) in already
established PID, in some cases paving the way to the development of targeted treatments.

Therefore, when a new mutation in a specific disease-related gene is identified, this
new clinical entity should be considered as independent disease, especially when the
identification of the causative gene gives us a therapeutic target for precision therapies that
can be implemented in addition to, or even before, conventional prophylactic treatments
with antimicrobials and immunoglobulins [11].

Of particular interest are two groups of disorders, respectively characterized by
hyperactivation of the PI3BK-AKT-mTOR pathway, as autoimmune lymphoproliferative
syndrome (ALPS), APDS, immuno-TORpathies [124,125], and by defective function of
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regulatory T cell functions, such as immunodysregulation polyendocrinopathy enteropathy
X-linked (IPEX), CTLA4 deficiency, and LRBA deficiency. Both groups of diseases are
associated with lymphoproliferation, often with chronic enlargement of spleen and liver in
addition to peripheral lymph nodes. However, the clinical phenotype and the assessment
of biomarkers can help distinguish these conditions even before performing NGS. For
example, high serum vitamin B12 is typically elevated in ALPS; brain, lung and gut lesions
may characterize CTL4 and LRBA deficiency, and chronic EBV infections are more typical
of disorders such as X-linked immunodeficiency with magnesium defect (XMEN, already
mentioned in Table 2).

Although only two cases have been described so far, enlargement of lingual tonsil
might be a sign of lymphoproliferation supportive of APDS. Of note, lymphoproliferative
and autoimmune symptoms in ALPS and APDS may respond to treatment with sirolimus
even at a lower than usual dosage [126,127].

More interestingly, other treatments can even rescue the defective immune develop-
ment, as in the case of PI3K inhibitors in APDS syndrome [128-130], or correct autoimmune
features related to abnormal immune activation, as in the case of CTLA4 or LRBA deficien-
cies, which can strongly benefit from a therapy with abatacept, surrogating the defective
regulatory function of CTLA4 [131,132].

Most of these lymphoproliferative diseases also constitute a form of susceptibility to
Epstein-Barr virus (EBV) infection, and in some cases, lymphoproliferation may be evident
only after such infection.

EBV infects about 90% of the population by 30 years of age, being clinically manifested
during the primary infection and remaining latent in B or T/NK lymphocytes. It is known
that it induces lymphoproliferation, especially of B lymphocytes, but also T and NK cells.
Subjects with PID, especially those with defective T cell immunity or those with minor
cytotoxic defects accounting for specific susceptibility to EBV, are less able to control the
infection and have a high risk of developing EBV-positive lymphocyte proliferation diseases
(LPDs) and leukemia/lymphomas, or they may show clinical manifestations consistent
with chronic active EBV disease (CAEBV, XMEN) [133,134].

We do not yet know if precision treatments available for some of these PIDs with
lymphoproliferation may impact on lymphoma risk. As we previously wrote [127], the
experience of sirolimus in kidney transplantation suggests that this medication affects
cancer risk less than other immunosuppressive treatments or even reduces it. Based
on these data, we thought that mTOR inhibitors (everolimus/sirolimus) prescribed in
immunological diseases with a hyperactivated PI3K-AKT-mTOR pathway (e.g., ALPS,
APDS, APDS-like) might also be effective in reducing the risk of developing immune
malignancies, even if there is still no clinical evidence about this (Figure 4). Table 4 shows a
group of immunodeficiency with lymphoproliferation treatable with precision therapies.
In general, lymphoproliferation is associated with increased risk of developing lymphoma.
A more complete list of PIDs associated with immune dysregulation can be found in the
updated IUIS classification [99].

Case #5 is an example of PIDs associated with susceptibility to specific infections. It
is worth noting that subjects affected with these PIDs may have a completely healthy life
until the encounter of a specific microbe that highlights a single weak point in the system.
Indeed, the apparent redundancy of the immune system can be easily understood when
we can see how apparently minor immune defects may result in serious consequences.
Table 5 summarizes some conditions of specific Mendelian susceptibility to infections. In
general, they concern microbes or viruses that evolved effective mechanisms to elude most
(but not all) of the host’s immune defenses.
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Figure 4. Examples of pathogenic mechanisms in immunodeficiencies with lymphoproliferation (a) PI3BK-AKT-mTOR
pathway from APDS to ALPS and immuno-TORpathies. (b) Representative flow cytometry dot plot of double negative T
cells expressing alpha/beta or gamma/delta T cell receptor (supplementary materials). Percentage values shown in the
graphs are calculated on CD4-CD8- T cells; percentage values of DNT alpha/beta calculated on CD3+ population are 1,4-15,
7-5. From the left to the right: healthy control, ALPS syndrome and LRBA deficiency.
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Table 4. Immunodeficiencies with lymphoproliferation.

Lympho-

Autoimmune

Disease Genes Immuno-Phenotype Proliferation Cytopenia Enteropathy Infections Inheritance  Precision Therapy
Fﬁ?LS G ++ EBV-induced Sirolimus
ALPS [135] CASPI10 DNT — lymphoprolif- AD, AR [136,137]
PRKCD SLE-like features eration [127,138,139]
IPEX FOXP3 Activated lymphocytes ++ +++ — XLR Sirolimus [140,141]
Senescent CD8 CD57+ T s
APDS ?Iﬁzlc{? cells; reduced switched + + + AD Slr(.)h;l];l.i’ PI3K
memory B cells nhibrtors
STAT3 GOF STAT3 DNT ++ — — AD JAK inhibitors
CTLA4 CTLAL Some“é‘}eﬁﬁdu“d ++, risk of - - ) AD Abatacept,
deficiency . lymphoma sirolimus
expression
Reduced LRBA
LRBA expression; reduced ++, risk of Abatacept,
deficiency LRBA CTLA4 lymphoma * A * AR sirolimus
expression

Note: ALPS: autoimmune lymphoproliferative syndrome; DNT: double negative T cells; SLE: systemic lupus erythematosus; EBV: Epstein—
Barr virus; AD: autosomal dominant; AR: autosomal recessive; IPEX: immunodysregulation polyendocrinopathy enteropathy X-linked;
XLR: X-linked recessive; APDS: activated phosphoinositide 3-kinase 6 syndrome; CTLA4: Cytotoxic T-Lymphocyte Antigen 4; LRBA: LPS
responsive beige-like anchor protein; —: not present; +: mild expression; ++: moderate expression; +++: severe expression.

Table 5. Susceptibility to severe course from specific microbial infections.

Selective Susceptibility Main Involved Pathway Phenotypes Reviewed Precision Therapies
Mucocutaneous candidiasis, hyper-IgE
syndrome, recurrent oral ulcerations, s . )
. Defective Th17 function, defective candidiasis with SLE-like overlap ) JAK 1nh1b1t0rs n STAT1. GOF [H%]
Candida . . . [142] G-CSF in CARD?9 deficiency [144]
sensing of candida (STAT1 GOF), APECED (autoimmune : - .
; T Only anti-candida prophylaxis in APECED
polyendocrinopathy-candidiasis-
ectodermal dystrophy)
Cytotoxic lymphocyte and NK CAEBV, B lymphoproh'ferahve Antl-C]'DIZO therapy helps clee'u‘mg_the v1§al
. disorder, HLH, persistent reservoir; donor lymphocyte infusions with
EBV function; CD8 T cell/ APC synapse 1 . . . . . oo
L A ymphoproliferation and hematologic [145,146] whole peripheral blood or EBV-specific T
formation; CD8 T cell priming; : . . L -
EBV specific CD8 T cell function autoimmunity (as in ALPS and cell lines; EBER cytometry to characterize
APDS syndromes) the infected cells [147]
Deficiency in CD4 function; APC Epidermodysplasia verruciformis, Specific inhibitors for CXCR4 for WHIM
Warts and HPV . . . . ) R .
. functions; keratinocyte innate non-melanoma skin cancers, cutaneous [148] (Warts, Hypogammaglobulinemia,
related disorders . . . ; . .
immunity warts, anogenital lesions Infections, and Myelokathexis).
Sensing of viral components and Encephalitis (especially if recurrent), Lo 15 Antiviral therapy and prevention
HSV 3 . A ; [149-153]
Interferon cascade disseminated herpes virus infection of relapses
Pathway of sensing mycobacterial JAK inhibitors in STAT1 GOF Recombinant
PAMPS to the production of BCGitis, Disseminated IFN-g in patients with IL12 cascade
Mycobacteria gamma interferon in dendritic 4 [154]

cells, phagocytes, lymphocytes
and natural killer cells

atypical mycobacteriosis,

deficiency [155]
Recognize CGD and NEMO deficiency

Note: Several other PIDs may be associated with any of these specific infections; however, in these cases, the susceptibility is not
so selective. No mention is made to defects with broader susceptibility to infections. SLE: systemic lupus erythematosus; APECED:
autoimmune polyendocrinopathy—candidiasis—ectodermal dystrophy; G-CSF: granulocyte-colony stimulating factor; EBV: Epstein—Barr
virus; APC: antigen-presenting cells; CAEBV: chronic active EBV infection; HLH: hemophagocytic lymphohistiocytosis; ALPS: autoimmune
lymphoproliferative syndrome; APDS: activated phosphoinositide 3-kinase 5 syndrome; HPV: human papilloma virus; WHIM: Warts,
Hypogammaglobulinemia, Infections, and Myelokathexis; HSV: herpes simplex virus; PAMPS: pathogen-associated molecular patterns;
CGD: chronic granulomatous disease.

4. Conclusions

PIDs include more than 300 genetic disorders that can be classified in 10 categories
according to the IUIS [99]. Clinical exome is gaining more and more indication for diag-
nosing, but the integration with clinical and immunological data is still critical to make a
proper and defined diagnosis. In the experience of a pediatric reference hospital in Italy,
in the last twenty-five years, we diagnosed 178 subjects with inborn error of immunity
due to mutations in about 59 distinct genes, highlighting the high genetic heterogeneity
underpinning PID (Figure 5). The five settings described in the present article are meant
only for exemplary purposes. In fact, many PIDs can fit into diverse scenarios, and many
others cannot fit into any of them. The aim of our presentation is just to highlight the
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five general messages resumed in Summary Box. Furthermore, we chose to include some
PIDs in which a proper diagnosis can allow prescribing precision therapy with a favorable
prognostic impact (druggable PIDs). A similar principle is at the basis of the initiative from
the Jeffrey Modell Foundation to promote a global genetic sequencing pilot program to
identify specific primary immunodeficiency defects to optimize disease management and
treatment [94]. Indeed, since the clinical phenotype of “druggable” PIDs may overlap with
common rheumatologic or gastroenterological disorders, it is important to increase the
awareness of the possible genetic diagnosis among diverse medical specialists.

\ Total=178

Number of\

Disease group distinct genes

found mutated
[ 8.43% PID affecting cellular and humoral immunity 5
[ 20.79% CID with associated or syndromic features 12
1 11.80% Predominantly antibodies deficiency 9
[] 16.29% Disease of immune dysregulation 12
B 7.30% Congenital defect of phagocyte number or function 6
M 1.12% Defects in intrinsic and innate immunity 1
@ 30.34% Autoinflammatory disorders 11
[ 2.81% Bone marrow failure 2

B 1.12% Phenocopies or inborn error of immunity

(due to somatic mosaicism mutations) 1

)

Figure 5. Primary immunodeficiency disease (PID) diagnosis in the last twenty-years in the experience of a pediatric
hospital in Italy. The pie chart displays the proportion of subject affecting by distinct inborn error of immunity and the

number of diverse genes mutated for each condition.

Summary Box

SCIDs can be identified and classified by basic flow cytometry. Deficiency in recent
thymic emigrants (RTE) is highly indicative of SCID. Defective thymic output can be also
measured by molecular techniques (TREC analysis) in dry blood spots in newborn screen-
ing. Positive results from TREC screening require further analysis to obtain a diagnosis,
with both flow cytometry techniques and NGS panels.

Several PID have X-recessive inheritance. Immunological assays remain of crucial
importance both for driving the diagnosis (as in the case of dihydrorhodamine (DHR) test
for CGD or measure of WASP expression in WAS) and for confirming the causative role
of variants of uncertain significance (VUS) detected by NGS. X-chromosome inactivation
(XCI) analysis in appropriate subsets of cells from heterozygous mothers still has a role
in interpreting genetic results. Moreover, the study of XCI is useful also in rare cases of
heterozygous females affected because of unbalanced XCI. Other specialist tests can help
diagnosis in specific disorders such as dyskeratosis congenita (telomere length analysis),
ectodermal dysplasia with immunodeficiency (response to TLRs), and X-SCID (response to
IL-2 stimulation).

Several PIDs can present with autoinflammatory phenotype. Distinguishing autoin-
flammation from infection is a critical issue. Basic flow cytometry and genetics may not be
sufficient to recognize the autoinflammatory component in PIDs, whilst the assessment
of serum biomarkers and transcriptomic signatures can be greatly useful. Ex-juvantibus
response to selective anti-cytokine treatment can also give valuable help.
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Lymphoproliferation is also a feature shared among various PIDs. Increased Double
Negative T cells are typical of ALPS and can be found also in other ALPS-like conditions.
The assessment of antigens related to immune regulation, such as FOXP3 and CTLA4, is
also of some help, but NGS panels are increasingly adopted in subjects with immunodefi-
ciency and lymphoproliferation. However, VUS are often encountered, which can be of
challenging interpretation, especially when associated with protein gain-of-function (GOF),
as in the case of activated PI3K kinase syndrome or STAT3 GOF.

Mendelian susceptibility to specific infections, such as candida, EBV, herpes viruses,
and mycobacteria, is not easily detected by common immunological investigations. NGS
is often used to address the diagnosis, but specialistic immune assays may be required to
interpret the pathogenic role of VUS.
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8/11/3/532/s1 which describe in more details laboratory methods that have been used.
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