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Chapter 1

Introduction

1.1. Motivations

The work presented in this thesis concerns the study and the development of a
numerical method belonging to the particular class of meshless methods based on
Radial Basis Functions (RBF), with specific reference to the field of Computational
Fluid Dynamics (CFD) for the simulation of fluid flow and heat transfer problems
of engineering relevance.

Alongside the introduction and wide acceptance of traditional mesh-based
methods in the field of numerical computations, meshless methods have also been
introduced in order to overcome the intrinsic difficulties connected to the mesh.
Such difficulties include different aspects in mesh generation, strong influence of
mesh quality on the numerical results and computational issues when dealing with
moving or deformable meshes.

The theoretical and practical foundations of classical mesh-based methods such
as the Finite Element Method (FEM) [110] and the Finite Volume Method (FVM)
[67], which are traditionally employed for the numerical simulation of engineering
relevant problems, date back to the 70’s, while their basic principles remained
practically unchanged up to present. Such lasting history is mainly due to impor-
tant numerical properties of these methods, e.g., strong mathematical foundations
for FEM and conservation laws for FVM, as well as their ability to face practical
problems with high robustness.

Meanwhile, the point of view in facing numerical simulations has evolved over
time for different reasons, especially in industrial applications which require prod-
uct simulations to be more and more reliable and, above all, fast. This challenging
task can be accomplished thanks also to the continuous increase in the availabil-
ity of computational resources. With an eye to the future, this evolution process
should involve also the numerical methods themselves, looking for more and more

1
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effective numerical techniques which can exploit the most recent emerging tech-
nologies.

From this point of view, emerging meshless methods have proven to be ex-
cellent candidates for this purpose since they rely on a completely different and
new approach, for which only a node distribution is needed. Such approach brings
great advantages over standard mesh-based approaches since a great number of
difficulties connected to the mesh are overcome. For example, mesh generation
over complex-shaped domains can be cumbersome because of intrinsic geometrical
issues, while fast and automatic node generation over complex-shaped domains
has proven to be possible [33, 103, 109]. Another issue which may require impor-
tant efforts is mesh quality, which is crucial for a correct and accurate solution
of the problem equations. Meshless methods does not suffer such a problem since
connectivity information is no longer needed. Meshless nodes can easily be moved
when dealing with geometry modifications or node refinement, which are complex
and onerous operations if a mesh is employed. Furthermore, such geometric flexi-
bility make meshless methods very good candidates for robust simulations within
optimization processes.

Last, but not least, meshless methods are typically easier to implement com-
pared to mesh-based method because of the much simpler data structure required.
Basically, from a geometrical point of view, only a set of nodes and a fast nearest-
neighbour search are required, for which a great variety of algorithms exists.

Because of the presented advantages over mesh-based methods, meshless meth-
ods and the related topics, e.g., node generation, are receiving growing attention
in the field of engineering numerical simulations, to which the presented work is
intended to contribute.

1.2. Meshless methods

1.2.1. Basic principles

A great variety of meshless (or meshfree) methods have been proposed for the
solution of a wide range of engineering problems, and many others continue to be
proposed [68, 71].

The basic principle of meshless methods is the construction of a trial function
ũ which is intended to approximate the sought solution field u. Given a set of
N nodes xi which are suitably distributed over the physical domain Ω, the trial
function ũ is formally expressed by the following expansion:

ũ(x) =
N∑
i=1

aiΠi(x) (1.1)
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where ai are the expansion coefficients and Πi are the basis functions. Then, the
values of the coefficients ai have to be expressed in terms of the nodal values ui
for the sought solution field, taking also account of boundary conditions. Different
techniques can be employed to express such relations ai(u1, . . . , uN), i = 1, . . . , N ,
including strict interpolation, least squares approximations [81], or more sophis-
ticated techniques such as reproducing kernel [72] or kriging [61]. In this work
we employed only the strict interpolation conditions for the construction of the
approximant ũ since it is the cheapest and straightforward choice. Nonetheless,
such technique yields very good results if proper conditions are employed.

Different choices can also be made with respect to the choice of the basis
functions Πi. An important distinction depends upon the choice of global basis
functions, which are non-zero over the whole domain, and local basis function,
which are non-zero only over a limited part of the domain. In this last case the
expansion (1.1) is thus a local expansion which depends upon a small number of
nodes which constitute the local support for ũ. The benefits in the use of local
(or localized) approaches are well known in the field of meshless simulations of
engineering problems [105, 107], and therefore this approach will be used in this
work.

Regardless of the global or local nature of the basis function, different types of
basis functions can be employed, among which polynomials and radial functions are
the most used. Polynomials are typically coupled with least squares approaches,
while radial basis functions are typically employed in the context of strict inter-
polation approaches. This is not surprising since RBFs have been widely studied
and used for interpolation purposes in approximation theory [26].

Once the formal expression (1.1) for the approximation has been completely
defined, it can be employed for the actual discretization of the governing equation
that is intended to solve. Such discretization process, which aims to approximate
a continuous partial differential equation (PDE) with a finite set of equations, can
be carried out using both the weak form of the PDE or its strong form. The
former case belongs to the class of Galerkin approaches which require to perform
some integrals with respect to the basis functions, while the latter case belongs
to the class of collocation approaches which require the evaluation of the involved
derivatives at the nodes only.

Galerkin formulations are usually more stable than collocation formulations
since the governing equations are spatially averaged by integration. Nonetheless,
the collocation technique has been chosen for the present work because no addi-
tional geometrical construction is required, therefore it represents a “truly” mesh-
less approach. Furthermore, its implementation is simple and straightforward,
while complex governing equations can be taken into account with no additional
analytic manipulation.
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(a)

(b)

Figure 1.1: Meshless node distribution on a complex-shaped domain as predicted by
Jensen in 1972 [51], (a). Irregular node distribution employed by Perrone and Kao in
1975 [84], (b).

1.2.2. History of local collocation meshless methods

The finite difference method (FDM) was formally introduced in 1928 by a paper
of Courant, Friedrichs and Lewy [18], and it has been the first approach for the
numerical simulation of physical problems. Cartesian grids were typically used,
while the dealing with curved boundaries and locally refined grids was possible but
troublesome. These limitations were already recognized in the early 70’s when two
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extensions of the FDM to irregular node distributions were proposed by Jensen [51]
and Perrone and Kao [84], Figure 1.1. Although the node distribution conceived by
Jensen in 1972 and reported in Figure 1.1a was not used for actual calculations, it
is very interesting to note that this pioneering prediction is incredibly actual after
over 40 years.

The problem of the ill-conditioned or even singular differentiation matrix due
to singular node arrangements, in the case of polynomial basis functions, was then
improved by Liszka and Orkisz in 1980 [70] by the use of a least squares procedure
for the calculation of the finite difference coefficients. Another way of avoiding
ill-conditioned interpolation matrices due to singular node arrangements is the use
of positive definite RBFs [26], which ensures the solvability of the interpolation
problem for each set of distinct nodes.

The application of RBFs to the solution of PDEs was introduced by Kansa in
1990 [52, 53], where a global collocation approach using Multiquadrics RBFs was
employed. This particular approach is often referred to as Kansa method. The
Kansa method was able to successfully solve PDEs on a set of scattered nodes
with great accuracy, but suffered from ill-conditioning problems because of the use
of global basis functions which requires a dense matrix to be solved. This issue
limited the employment of the Kansa method to the solution of small size problems
only, and no practical application followed.

In the mid 90’s Oñate et al. [81] and Liszka et al. [69] proposed two meshless
methods based on least squares approximation with low order polynomials over
a small number of local nodes, and succeeded in solving practical engineering
problems. The practical success in the application of local approximants was then
followed by the introduction of analogous local RBF methods at the beginning of
the 2000’s, starting from Lee et al. [65] in 2003.

Since then, the local RBF collocation meshless methods, also known as radial
basis function-generated finite difference method (RBF-FD), has gained widespread
acceptance in the community of numerical engineers and physicists because of its
reliability, accuracy, flexibility and ability to face a great variety of practical prob-
lems. In the field of CFD, important and pioneering contributions are due the
works of Šarler and Vertnik [89], Divo and Kassab [22–24], Kosec and Šarler [58]

1.3. Targets and outline of the work

The main target of this thesis is to develop an efficient RBF-FD meshless scheme
for the numerical simulation of 2D/3D fluid flow problems with heat transfer of
engineering relevance. This main goal has guided all the work that has been
conducted during the PhD, which comprehends many of the different aspects that
contribute to the design of a functional numerical method in its entirety. Each
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of these aspects has been studied and efficient algorithms/procedures have been
proposed. Following the philosophy of meshless methods, the implementation of
these procedures is kept as simple as possible.

Following the order of the meshless simulation chain, we can subdivide the
present work into three main topics: node generation, RBF-FD discretization and
solution phase.

The aspect of node generation has been thoroughly studied because it is obvi-
ously one of the key points in making meshless methods really competitive with
mesh-based methods. Two novel node generation processes based on node-repel
refinement have been developed, showing the capability of simple, efficient and
automatic node generation on complex 2D/3D domains starting from a defined
spacing function.

The analysis of the RBF-FD discretization, which is the main ingredient of the
developed meshless scheme, has been conducted in order to give important insights
about the accuracy, stability and computational efficiency of the RBF meshless
discretization from an engineering point of view. Such properties are studied
considering all the different elements which characterize the RBF-FD approach,
e.g., number of local nodes, degree of the polynomial augmentation, influence
of boundary conditions and RBF shape factor. The Poisson equation and the
advection equation have been considered as 2D/3D model problems in this phase.
In the case of the incompressible Navier-Stokes equations with a primitive variables
formulation, particular attention is given to the development of stable RBF-FD
discretizations. This issue is more and more important as the Reynolds or Rayleigh
flow numbers increase, which are characteristic features of most fluid flow problems
of engineering relevance.

The solution phase is not less important than the previous aspects, since the
possibility to deal with large size problems, i.e., large number of meshless nodes, is
also crucial in the development of numerical methods intended to solve practical
problems. For this purpose, two novel multicloud techniques based on multigrid
principles have been developed and successfully employed for the acceleration of
the convergence in the iterative solution of the linear systems arising from the
RBF-FD discretization in the case of a 2D Poisson equation. In the case of the
incompressible 2D/3D Navier-Stokes equations, particular attention is given to the
efficient solution of the set of equations in their unsteady formulation in order to
provide an effective time integration procedure.

The presented meshless approach is therefore composed by the coupling of all
the previous elements which thus represent a complete framework for any kind of
meshless simulation.

This meshless framework is ultimately employed for the solution of various
isothermal and non-isothermal fluid flow problems over different 2D and 3D do-
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mains. The important features of these calculations are the use of a high number of
nodes, e.g., N > 105, the employment of non-trivial node distributions, e.g., very
small nodal spacing at the walls, and possible applications to complex-shaped
domains. These are all essential features for the accurate solution of typical en-
gineering problems, representing an important challenge posed by academic and
industrial applications. The work presented in this thesis is therefore intended to
contribute to face this challenge through the use of flexible, robust and efficient
RBF-FD meshless approaches.

1.4. Implementation details

The implementation of the presented procedures and algorithms has been done
through MATLAB R© environment using MATLAB linked MEX functions which
are compiled from C source code for the computational expensive tasks, on a
modern laptop equipped with an Intel R© i7 2.6GHz processor with 4 cores. Multi-
core parallelism is achieved by using OpenMP R© API for the C source code. Most
of the remaining MATLAB operations are natively parallelized on all available
cores by MATLAB. Some examples of C code for the nearest neighbour search
and node-repel refinement are listed in Appendix F.
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Chapter 2

Node generation

Node generation is clearly one of the key elements of meshless methods. The
development of efficient and flexible node generation algorithms is therefore crucial
for the practical success of meshless methods over mesh-based methods [79] for
which a very good degree of maturity is reached in mesh generation [40, 82]. The
aim of node generation is to create a suitable distribution of nodes which are
properly scattered over the domain in accordance to some requirements. These
requirements are typically less strict than the ones imposed for mesh generation,
making node generation a potentially easier task than mesh generation.

Different strategies have been employed for node generation within meshless ap-
proaches. These strategies include uniform and random distributions [22, 58, 105],
transfinite interpolation (TFI) and elliptic node generation (ENG) [44]. Other
applications employed standard mesh generators to obtain a high quality polygo-
nization of the domain for which only the vertices were kept as meshless nodes
[56, 81].

In recent years the general trend moved to the development and employment
of node generation algorithms which are specifically designed for meshless applica-
tions only. This change in perspective can be traced back to the works of Löhner
and Oñate [73, 74] and Lee [64] where the use of polygonization was reduced of
even abandoned in favour of point/node-based techniques.

More recent node generation algorithms employ a node-repel refinement tech-
nique which is capable of generating high quality node distributions starting from
a prescribed spacing function [33, 103, 109]. These techniques have proven to be
flexible and effective tools in practical meshless applications [47, 57, 76]. For this
reason the repel-based approach has been chosen as the key element in the devel-
oping of novel node generation techniques which will be presented and analyzed
in this chapter.

In addition to meshless applications, another interesting use of node generation
algorithms is stippling, which is a technique used for the approximation of greyscale

9
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x

y

(a) (b) (c)

Figure 2.1: 2D examples of node arrangements: (a) hexagonal, (b) uniform cartesian,
(c) non-uniform cartesian.

images through the arrangement of scattered points in 2D. At the end of this
chapter some visual test cases are presented for this side application in order to
show how the proposed node generation algorithms can also be used for an efficient
and accurate halftoning approximation of greyscale images.

2.1. Definitions for the node generation

problem

In this thesis isotropic node distributions are considered only. Isotropic node distri-
butions are characterized by equal nodal spacing along all spatial directions, while
the nodal spacing is variable in space allowing locally refined node distributions.

Three significant 2D examples are shown in Figure 2.1, where a hexagonal,
a uniform cartesian and a non-uniform cartesian node distributions are depicted.
The hexagonal distribution is isotropic since the nodal spacing is equal in all
directions. The uniform cartesian distribution is not strictly isotropic since the
nodal spacing along x and y directions is smaller than the spacing along the 45
degrees directions. The non-uniform distribution is strictly non-isotropic since the
spacing along x is different from the spacing along y.

The distinction between isotropic (hexagonal) and not strictly isotropic (carte-
sian) is not unique since it depends upon the choice of neighbouring nodes: the
cartesian distribution can be considered isotropic when 4 neighbouring nodes are
considered. However, since the cartesian arrangement is not stable within a node-
repel process, i.e., it does not maximize the number of nodes per area, only locally
hexagonal or nearly-hexagonal node distributions will be considered as 2D isotropic
in this context. For such arrangements, each node has 6 nearest neighbours. In
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3D the corresponding highest density node arrangement follows the face-centered
cubic (FCC) or the hexagonal close-packed (HCP) lattices where each node has
12 neighbours. Each of these 3D arrangements can be obtained by packing planes
filled with 2D hexagonal node arrangements.

The dependency of the nodal spacing upon the position is given by a spacing
function s(x) which defines the point-wise nodal spacing. An isotropic node dis-
tribution X(s) inside the domain Ω can be formally defined as a function of the
prescribed spacing function s(x) as follows:

X(s) = {xi ∈ Ω : nodal spacing satisfies s; i = 1, . . . , N} (2.1)

Let us define the nodal density δ(x) as the number of nodes per unit area/vol-
ume:

δ(x) = lim
P→x
k→+∞

#nodes(X(s/κ),P)

κDµ(P)
(2.2)

where κ is a positive real number, P is a portion of Ω, µ(P) is the area/volume of
P , #nodes(X,P) gives the number of nodes of distribution X lying inside P and
D is the number of dimensions, e.g., D = 3 in 3D. In the limit (2.2) the notation
P → x means µ(P)→ 0 with x ∈ P , while P must satisfy µ(P) ≥ cκ−α for some
constants α < D and c > 0.

The definition of the spacing function s is obtained by using the definition of
the nodal density in the case of isotropic node distributions:

δ(x) =
number of nodes

unit area/volume
=

2

ζsD(x)
(2.3)

where ζ =
√

3 in 2D and ζ =
√

2 in 3D (ζ = 2 in 1D).

The explicit definition of the spacing function is therefore:

s(x) = D

√
2

ζδ(x)
(2.4)

Given a prescribed spacing function s(x), the corresponding prescribed number
of nodes NP contained in a portion P of the domain is therefore given by the
integration of Eq. (2.3) over P :

NP =

∫
P
δ(x) dP =

∫
P

2

ζsD(x)
dP (2.5)

where NP is non-integer in general.
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For a generic node distribution X̃ = {x̃i ∈ Ω; i = 1, . . . , N} the error EP
between the actual number of nodes in P and the prescribed number NP is simply
given by:

EP = #nodes(X̃,P)−NP (2.6)

The error EP has an average meaning when the size of P is larger than the
maximum spacing function sM encountered in P , i.e., D

√
µ(P) � sM . When the

size of P is comparable with the prescribed spacing s(P), EP assumes the meaning
of quantization error between the integer number of nodes in P and the prescribed
non-integer number NP (nodal quantization error).

Given a domain Ω with boundary Γ and a prescribed spacing function s(x), the
node generation problem consists in creating an isotropic node distribution of the
type of Eq. (2.1) which is conformal to the boundary Γ, i.e., nodes are required
to lie also on the boundary whilst fulfilling the prescribed spacing function.

2.2. Initial node positioning

2.2.1. Some remarks on the node-repel technique

The developed node generation algorithms are composed by two phases: an initial
node placing phase and a consequential iterative refinement phase. The initial
phase creates a distribution whose node spacing matches the prescribed spacing
function s(x) except for some high-frequency error that is smoothed out in the
refinement phase which improves the quality of the distribution. In the refine-
ment phase, which is based upon an iterative node-repel algorithm, nodes move
according to the mutual radial repulsion forces of the nearest neighboring nodes.

The initial node placing phase is required because the node-repel algorithm
efficiently smooths out only the high-frequency component of the error between
the actual spacing of the node distribution and the prescribed spacing s(x), while
any low-frequency component in space requires a very high number of iterations
to be significantly reduced [33].

This property is highlighted by Figure 2.2, where two initial 1D node distri-
butions with high-frequency and low-frequency errors are subjected to node-repel
iterations using 2 neighboring nodes. The initial node distributions are obtained
from a uniform distribution which is perturbed with small random deviations in
the first case, while in the second case the perturbations are larger and are given
by a positive linear function along x. The spacing function is s(x) = 1/(N − 1).

In these 1D cases the spacing deviation σ[∆x] quantifies the global deviation
between the prescribed nodal spacing s(x) and the actual nodal spacing:
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Figure 2.2: Evolution of the node-repel phase for 1D node distributions with an initially
high-frequency (top) and low-frequency (bottom) error in space in the case of a constant
spacing function and N = 80 nodes.

σ[∆x] =

√√√√ 1

N − 1

N−1∑
i=1

[
∆xi/s(xi)− 1

]2

(2.7)

where ∆xi is the spacing between nodes xi.

In the first case (high-frequency error) the deviation σ[∆x] rapidly decrease to 0
within a small number of repel iterations. In the second case (low-frequency error)
the deviation stagnates for a large number of repel iterations before a significant
decrease.

Therefore it is very important to develop some method which is capable of gen-
erating an initial node distribution which satisfies the prescribed spacing function
s(x) in average sense, i.e., the error EP defined by Eq. (2.6) should be sufficiently
small for any portion P ∈ Ω which is larger than the spacing function. The
quantization error, i.e., EP for P with size comparable to the spacing function,
can be high since this high-frequency error is efficiently reduced in the node-repel
refinement phase. Local deviations from isotropy are also allowed in this phase.

Two different node placing algorithms have been developed and are presented
as follows.
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Figure 2.3: Node placing through the VS algorithm in the case of a decreasing spacing
function s along y.

2.2.2. Vertical strips (VS) algorithm

This algorithm has been developed for 2D cases only. The smallest rectangle
B bounding domain Ω is considered, with axis-aligned sides. This rectangle is
partitioned into vertical strips Si with width wi = max s in Si. Then the algorithm
proceeds by filling each vertical strip Si in a recursive way using the VS algorithm
whose pseudocode is given by Algorithm 1, where:

– GenerateNodesVS(Nodes,S, s) fills the whole strip S using spacing func-
tion s, appending new nodes to the existing Nodes;

– LinearDistribution(Nodes,S, s) fills the strip S as long as wi/2 < s ≤
wi, where w is the width of S. The filling takes place with an alternating
horizontal nodal offset ∆x = ±(wi − s)/2 from the vertical midline of the
strip, while the vertical offset between nodes ∆y is chosen in order to follow
the prescribed node density δ = 2/(

√
3s2) = 1/(wi∆y)⇒ ∆y =

√
3s2/(2wi);

– H(S) are the two vertical substrips of the unfilled portion of S;

– ParentStrip(S) is the unfilled portion of the parent strip of S.

The function LinearDistribution(·,S, s) fills the strip S in such a way that
the error EP between the actual number of placed nodes and the prescribed number
in the portion P = S is very small if the spacing function is sufficiently smooth.
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Algorithm 1 Vertical strips (VS) node generation inside strip S
Input: strip S, prescribed spacing function s
Output: node distribution Nodes inside S

1: function GenerateNodesVS(Nodes,S,s)
2: LinearDistribution(Nodes,S,s)
3: if s < w/2 then
4: for each SubStrip ∈ H(S) do
5: GenerateNodesVS(Nodes,SubStrip,s)

6: else
7: ParentStrip← ParentStrip(S)
8: GenerateNodesVS(Nodes,ParentStrip,s)

9: end function

A graphical representation of the working principle for this algorithm is de-
picted in Figure 2.3 in the case of a linear spacing function s decreasing with y.
Starting from the bottom of the strip Si, nodes are placed in an alternated fashion
along y according to the spacing function: the smaller the spacing, the higher the
horizontal offset from the strip vertical midline. When the spacing s is less than
half of the strip width wi, the remaining upper portion of the strip is subdivided

s ∝ 2 + sin(10π(x2 + y2))
N = 93915

s ∝ 2 + sin(e2(x+1)) sin(e2(y+1))
N = 100770

Figure 2.4: Examples of node distributions generated by the VS algorithm in the case
of simple spacing functions s.
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into two substrips H(Si) for which the VS algorithm is recursively called.
The VS algorithm is very easy to implement and gives very good results in

the case of sufficiently smooth spacing functions s. The computational cost and
the memory requirement are both linear in the number of nodes N . Neverthe-
less, if s has steep variations or discontinuities, the VS algorithm in its easiest
implementation may produce artifacts and is not robust in general.

Some examples of node distributions generated by the VS algorithm are shown
in Figure 2.4 and Figure 2.5 in the case of simple analytic spacing functions s(x, y)
in the square [−1, 1]2. The examples of Figure 2.4 employ a high number of nodes,
i.e., N ≈ 105, and spacing functions with some high-frequency components. The
examples of Figure 2.5 employ a low number of nodes, i.e., N ≈ 5000, and spacing
functions with very smooth variations in order to better evaluate the graphical
patterns due to the working principle of the VS algorithm.

The computing times for two limit cases represented by the highly-varying
function s ∝ 2 + sin(e2(x+1)) sin(e2(y+1)) of Figure 2.4 and the smooth function
s ∝ 1 + 5(x2 + y2) of Figure 2.4 are 0.16s/(mln nodes) and 0.059s/(mln nodes),
respectively, using a C implementation and 1 core. The VS algorithm is thus
extremely fast and therefore represents a very efficient approach for 2D node gen-
eration in the case of sufficiently smooth spacing functions.

The extension to 3D cases is made possible by considering vertical paral-
lelepipeds as volume strips which are filled by the VS algorithm, as shown in
Figure 2.6. The projection of the bounding box B = [−1, 1]3 onto the x− y plane
is partitioned into a cartesian grid according to the maximum value of the spacing
function, and the corresponding vertical volume-strips along z are considered. The
VS algorithm is then applied to each of these vertical strips which can be recur-
sively partitioned into 4 smaller parallelepipeds when the spacing function drops
below w/2, where w is the side length of the initial vertical strip. However, since
the VS algorithm is not robust in its easiest implementation, its 3D extension has
not been considered.

2.2.3. Quadtree/Octree algorithms

The 2D quadtree (QT) and 3D octree (OT) algorithms [86, 87] are widely used
space partitioning techniques which are characterized by high efficiency and ro-
bustness. Quadtrees and octrees proceed by recursive partitioning of the space
into four or eight equally sized child boxes as shown in Figure 2.7 where l is the
QT level.

In the context of meshless methods, QTs and OTs can be employed for fast and
robust node generation. An example of quadtree node generator for 2D meshless
discretizations can be found in [102]. This task can be accomplished during the
recursive space partitioning process by considering a single node placement at the



node generation 17

s ∝ 1 + 2.5(y + 1)2

N = 4978

-1 0 1
x

-1

0

1

y

s ∝ 1 + 5(x2 + y2)
N = 2752

-1 0 1
x

-1

0

1

y

s ∝ 1 + 0.5(x+ y + 2)2

N = 3317

-1 0 1
x

-1

0

1

y

s ∝ 2 + sin(2πx) sin(2πy)
N = 6389

-1 0 1
x

-1

0

1

y

Figure 2.5: Examples of node distributions generated by the VS algorithm in the case
of simple spacing functions s.

center of the boxes when their size wl at level l is comparable to the prescribed
spacing function. These boxes where node are placed represent therefore the leaf
nodes in the tree (leaf boxes). The pseudocode for this algorithm is given by
Algorithm 2, where:
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Figure 2.6: Possible working principle of the VS algorithm for 3D cases.

– GenerateNodesTree(Nodes,P , s,m) fills the whole box P using the QT/OT
algorithm and spacing function s, appending new nodes to the existing
Nodes. Up to m nodes are inserted into the leaf boxes;

– InsertNodes(Nodes,P , n) inserts n nodes in the box P ;

– NP is the prescribed number of nodes inside the box P ;

– C(P) are the four/eight child boxes of P for QT and OT, respectively.

The choice of placing one single node at the center of the leaf boxes thus cor-
responds to the case m = 1 in Algorithm 2. An example of the application of this
simple algorithm to 2D node generation is given in Figure 2.8(a) where the spacing
function decreases going towards the center of the box B. The node generation is
obtained by calling GenerateNodesTree on the smallest square/cubic box B
(root box) bounding the boundary Γ.

This simple version of the QT/OT algorithm for node generation suffers from
one main problem: high nodal quantization errors. Nodal quantization error (see
Eq. (2.6)) is due to the fact that only finite nodal densities δ = 1/wDl can be
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Figure 2.7: Recursive space partitioning in 2D using quadtree.

Algorithm 2 Quadtree/octree (QT/OT) node generation

Input: box P , prescribed spacing function s, maximum node insertions m
Output: node distribution Nodes inside P

1: function GenerateNodesTree(Nodes,P ,s,m)
2: if NP < m+ 1/2 then
3: InsertNodes(Nodes,P ,bNPe)
4: else
5: for each ChildBox ∈ C(P) do
6: GenerateNodesTree(Nodes,ChildBox,s,m)

7: end function

obtained, i.e., one node is placed over boxes which have fixed size wl = L/2l,
therefore nodal quantization errors are always present. Nodal quantization errors,
which are defined at the small scales of the nodal spacing, can also imply large-
scale errors, i.e. large differences between the prescribed number of nodes and the
actual number of node placed over large areas of the domain. This can occur when
nodal quantization errors accumulates over large portions of the domain as shown
in the 1D example of Figure 2.9(a). The QT algorithm in 1D is simply obtained
by recursive bisection of a segment, and therefore we will refer to it as bisection
tree (BT) algorithm.

In Figure 2.9(a) the prescribed spacing function s(x) = w5(1 + x/L) increases
linearly from s(0) = w5 to s(L) = 2w5 = w4, where L is the length of the domain
and wl = L/2l is the size of the 1D boxes P at level l. For this spacing function the
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Figure 2.8: 2D node generation through the quadtree algorithm: (a) basic application;
(b) modified version with multiple node insertions.

BT algorithm generates small boxes with width w5 for the left half of the domain,
while the width w4 = 2w5 doubles in the right half. The width of the boxes thus
matches the prescribed spacing function at both ends x = 0, L, while it is smaller
and larger than the prescribed spacing function in the left and right halves of the
domain, respectively, as reported by the graphs of Figure 2.9(a). This obviously
results in a larger number of nodes than the prescribed number in the left half,
while the opposite situation occurs in the right half, as reported by the diagram
of Figure 2.9(b) which shows the error EP per unit length for each box P at each
level l.

The BT node distribution thus shows a large low-frequency component, i.e.,
at level l = 1, for the error EP . As showed previously, the low-frequency compo-
nents of EP are slowly reduced by the node-repel algorithm that is intended to
follow this initial node placing phase. In fact, the nodes from the BT distribution
in Figure 2.9(a) have to sustain large displacements in order to reach the exact
distribution given in the same figure. Such displacements can be larger than the
spacing function itself for nodes near x = L/2, while the node-repel algorithms
is efficient only in the case of small displacements which are comparable to the
spacing function. Furthermore, the more nodes are employed, the larger the dis-
placements if compared to the spacing function, and therefore the more iterations
the node-repel algorithm will require to reach the equilibrium.
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Figure 2.9: (a) Example of large differences between 1D node distributions obtained
from the same spacing function s: exact (top) and BT generated (bottom). (b) Error per
unit length EP/wl between the actual number of BT nodes and the prescribed number
for each box P at each level l.

The analysis of the diagrams of Figure 2.9(b) for l = 1, 2 also reveals that in
this case the excess of nodes in the left half of the domain is not balanced by
the lack of nodes in the right half, and the total number of nodes generated by
the BT algorithm is slightly larger than the exact value, i.e., 24 BT nodes vs.
NP = w−1

5 log 2 = 22.18 exact nodes.

Multiple node insertions

The previous analysis highlights the necessity of an improved QT/OT node placing
algorithms in order to eliminate or reduce the nodal quantization errors. A simple
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technique which is capable of reducing such problem is the employment of multiple
node insertions within the leaf boxes, according to the spacing function. The
only modification in the QT/OT Algorithm 2 involves the function InsertNodes
which is modified for the suitable insertion of m ≥ 1 nodes, according to the
spacing function s.

With this modification the realizable nodal densities grow from δ = 1/wDl to
δ = 1/wDl , . . . ,m/w

D
l , thus increasing in number. The problem of nodal quantiza-

tion is apparently overcome by using a large number m of nodal insertions, but this
choice simply shifts the nodal quantization problem to the choice of correct nodal
insertions. However, small numbers 1 ≤ m < 2D for multiple nodal insertions
can bring significant improvements. In this case these few nodes are distributed
uniformly in the leaf box. An example of the application of this technique to a 2D
problem is depicted in Figure 2.8(b) where m = 3 nodal insertions are employed:
each leaf box can therefore contain up to m = 3 nodes. Variations in the nodal
spacing are smoother and less steep than the ones obtained with the original QT
algorithm.

Dithering

Besides the technique of multiple node insertions reduces the nodal quantization
error, the problem is still present, requiring unnecessary iterations in the node-repel
refinement phase. In order to overcome this issue, the dithering algorithm used in
signal and image processing can be used [30, 96]. The aim of dithering is to diffuse
quantization errors in space in order to maintain an almost zero quantization error
on average. In the context of node generation, this translates into an almost zero
error EP for length scales from L (size of the domain) to the small scales close to
the spacing function. This operation is performed by properly diffusing EP , i.e.,
the local excess/lack of nodes, over the domain.

The Floyd-Steinberg algorithm [30], which is a widely used dithering technique
for 2D image processing, is employed for diffusing nodal quantization error. This
algorithm scans the pixels by rows and distributes the quantization error onto
the unvisited neighbouring pixels using the scheme depicted in Figure 2.10(a).
Figure 2.11 shows an example of the application of the Floyd-Steinberg dithering
algorithm to the colour quantization of a greyscale image with a black and white
palette: the quantization without an appropriate error diffusion leads to large-scale
errors.

The application of the Floyd-Steinberg algorithm to the node generation using
the QT/OT algorithm with multiple node insertions gives rise to the dithered
quadtree/octree (DQT/DOT) algorithm, whose pseudocode is given by Algorithm
3. Two new elements are required: a numerosity variable Ms and a QT/OT
dithering correction function DitheringTree.
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Figure 2.10: Floyd-Steinberg dithering algorithm: (a) original scheme for image pro-
cessing; (b) adaptation to the quadtree data structure.

The numerosity variable Ms, which uses the QT/OT hierarchical data struc-
ture, retains the number of nodes for each box in the tree. The value of Ms for
any box equals the sum of the values of Ms for each of its child boxes (summation
property), if any, and therefore the value of Ms for the root box B equals the total
number of nodes to be generated.

The dithering correction function DitheringTree diffuses the nodal quan-
tization error EP by modifying the values of numerosity Ms for the unvisited
neighboring boxes using the Floyd-Steinberg algorithm, which has been adapted
to the QT/OT hierarchical data structure as showed in Figure 2.10(b). The (red)
processed box, i.e., where node insertion(s) is occurring (leaf box), transfers the
opposite of its quantization error to the four (grey) unvisited neighbouring boxes
using the Floyd-Steinberg coefficients shown in Figure 2.10(b). In order to pre-
serve the summation property for Ms, each of these (grey) neighbouring boxes
then recursively distributes the received fraction of the error to its child boxes in
equal parts, until the leaf boxes are reached. Analogously, the same fraction of the
error is recursively added to the parent box for each of these (grey) neighbouring
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(a) (b) (c)

Figure 2.11: Quantization of image colours: (a) original greyscale image; (b) black
and white palette; (c) black and white palette with Floyd-Steinberg dithering (256×256
pixels).

box, until the root box is reached. To conclude, the same recursive procedure is
also performed by the (red) processed box for the summation of the quantization
error towards its parent boxes in order to guarantee the perfect conservation of
numerosity Ms, i.e., the total number of nodes and the summation property are
maintained after each node insertion.

Algorithm 3 Dithered quadtree/octree (DQT/DOT) node generation

Input: box P , numerosity Ms, maximum node insertions m
Output: node distribution Nodes inside P

1: function GenerateNodesDitheredTree(Nodes,P ,Ms,m)
2: n←Ms(P)
3: if n < m+ 1/2 then
4: InsertNodes(Nodes,P ,bne)
5: QuantizationError ← bne − n
6: DitheringTree(Ms,QuantizationError,P)
7: else
8: for each ChildBox ∈ C(P) do
9: GenerateNodesDitheredTree(Nodes,ChildBox,Ms,m)

10: end function

The numerosity Ms is initialized by traversing the tree from the root box and
assigning the prescribed number of nodes NP for each box until the leaf boxes
are reached, i.e., when NP < m + 1/2. The node generation is then obtained by
the application of the actual DQT/DOT algorithm, whose pseudocode is given by
Algorithm 3, where:
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Figure 2.12: Coefficients for 3D Floyd-
Steinberg error diffusion through octree
boxes at the same level.

Figure 2.13: Order for the visits of child
boxes in 3D octree (left) and 2D quadtree
(right).

– GenerateNodesDitheredTree(Nodes,P ,Ms,m) fills the whole box P
using the DQT/DOT algorithm and numerosity Ms, appending new nodes
to the existing Nodes. Up to m nodes are inserted into the leaf boxes;

– DitheringTree(Ms,QuantizationError,P) diffuses theQuantizationError
of box P across the tree data structure of numerosity Ms, as depicted in Fig-
ure 2.10(b).

In 3D cases, the Floyd-Steinberg coefficients for the diffusion of the quantiza-
tion error are shown in Figure 2.12, where the coefficient 4/20 accounts for the
error diffusion from the (red) processed box to the (grey) unvisited neighbour box
sharing a face along the +y direction.

The dithered versions of both QT and OT algorithms must follow the order
reported in Figure 2.13 when visiting each of the child boxes in order to diffuse
the quantization error onto unvisited boxes only, similarly to the processing order
in the standard Floyd-Steinberg dithering algorithm which proceeds by rows of
pixels.

Two comparisons between the proposed node generation algorithms for the
initial node placing phase are reported in Figure 2.14 and Figure 2.15 in the case
of two smooth spacing functions in the square [−1, 1]2.

In Figure 2.14 the spacing function s is proportional to 1 + (y + 1)/2, there-
fore the spacing is constant along horizontal lines. In this case the VS algorithm
produces very smooth nodal spacing since s depends upon y only, which is the
direction of the vertical strips in the VS algorithm. The QT node distribution
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shows evident bands due to the limited number of realizable nodal densities, for
which nodes appear to be grouped into large regions with constant nodal densi-
ties. The spacing function is therefore highly discontinuous with steep variations
moving from one region to the other. This issue is partially addressed by the use
of m = 3 multiple node insertions, for which the bands are less evident but still
present.

Ultimately, the coupling of m = 3 multiple node insertions with dithering for
the QT algorithm (DQT) solves the problem almost completely: the regions with
constant spacing are discontinued by the periodical appearance of small zones with
different spacing which guarantee an almost exact nodal density on average. The
fulfillment of the prescribed nodal density for the DQT algorithm is also highlighted
by the total number of generated nodes N = 9452 which is very close to the exact
value NP =

∫ 1

0

∫ 1

0
δ(x, y) dx dy = 9459.31. The number of nodes generated by

the VS algorithm, i.e., N = 9522, is also close to the exact value since the VS
algorithm also fulfills the prescribed nodal densities almost exactly. Because of
the large quantization errors occurring with the QT algorithm without dithering
or multiple node insertions, the number of generated nodes N = 10432 is very far
from the exact number.

The same considerations can be made for the comparison depicted in Figure
2.15, where the spacing function is proportional to ∝ 1 + (x2 + y2). Although the
spacing function depends also upon x, the VS algorithm performs well anyway, be-
cause s is sufficiently smooth along both x and y. The QT node distribution shows
two distinct regions and therefore it is again unacceptable, while the application
of multiple node insertions and dithering bring remarkable improvements.

Although the VS algorithm produced very smooth node distributions which
are also aesthetically pleasant in the previous 2D examples, we point out that this
approach is not robust in the case of non-smooth spacing functions and therefore
has not been employed any further, and the DQT algorithm with m = 2D − 1
multiple insertions has been chosen as the best candidate for the initial node
positioning phase.

Computing times and memory requirements

Table 2.1 reports the complexity, memory requirements and computing times for
QT/OT and DQT/DOT algorithms implemented in C.

The computing times refer to the generation of N ≈ 106 nodes for the spacing
function s ∝ 3 + 2 sin(πx) sin(πy) in the square [−1, 1]2 for the 2D case, while
s ∝ 3 + 2 sin(πx) sin(πy) sin(πz) in the cube [−1, 1]3 for the 3D case. The employ-
ment of the dithering technique doubles the computing times in both 2D and 3D
cases. Anyway, such computing times are almost negligible when compared to the
computing times required by the successive node-repel refinement phase, therefore
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Figure 2.14: Comparison between different node generation algorithms for s ∝ 1 +
(y + 1)/2. The exact number of nodes is NP = 9459.31.

the use of the dithering technique is highly recommended and justified.
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Figure 2.15: Comparison between different node generation algorithms for s ∝ 1 +
(x2 + y2). The exact number of nodes is NP = 8233.57.

2.3. Node-repel refinement

2.3.1. Theoretical background

The node distributions generated by the DQT algorithm have correct nodal den-
sities which fulfill the prescribed ones, as previously presented, but the local ar-
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Table 2.1: Features of OXC and MQT algorithms

Computing time1

Algorithm Complexity Memory 2D 3D
QT/OT O(N) O(N) 0.18s 0.85s

DQT/DOT O(N logN) O(N) 0.33s 1.45s
1For N ≈ 106 nodes and using 1 core.

rangement of nodes does not fulfill the isotropy requirement which is beneficial for
the RBF-FD meshless discretizations that will be employed. The local isotropy for
nodal spacing, i.e., local arrangements which are nearly hexagonal in 2D or nearly
FCC/HCP in 3D, can be achieved by the application of an iterative refinement
process which moves the nodes according to the mutual repulsion forces of the
nearest neighbouring nodes.

This node-repel approach can be viewed as an iterative process which mini-
mizes the total potential energy U of the node distribution X = {xi, i = 1, . . . , N}
by moving one node at a time. The total potential energy U is built using neigh-
bouring nodes only, taking the spacing function s into account as follows:

U(x1, . . . ,xN) =
N∑
i=1

∑
j∈J(i)

Φ
(rij
sij

)
(2.8)

where J(i) is the set of the indices of the neighbours of node xi, Φ is a suitable
potential function, rij = ‖xj−xi‖ is the distance between nodes xi and xj, and sij
is the mean spacing function in between these two nodes. Any suitable symmetrical
expression for s can be employed, e.g.:

sij =
s(xi) + s(xj)

2
, sij = s

(xi + xj
2

)
(2.9)

where the first expression is more convenient because spacing function is usually
evaluated at node locations.

By taking the gradient of the potential U with respect to the cartesian coordi-
nates of node xi = (xi, yi, zi)

T only, we obtain:

∂U

∂xi
= 2

∑
j∈J(i)

FΦ

(rij
sij

) ∂

∂xi

(rij
sij

)
(2.10)

where FΦ = Φ′ is the derivative of the potential function Φ while the gradient
operator ∂/∂xi is defined as follows:

∂U

∂xi
=
( ∂

∂xi
,
∂

∂yi
,
∂

∂zi

)T
(2.11)
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The simple expression of ∂U/∂xi in Eq. (2.10) is due to the assumption of
symmetry in the construction of neighbours J(i): if xj is a neighbour of xi, then
xi is a neighbour of xj. This assumption is obviously fulfilled in the case of nearly
isotropic node distributions, which is the aim of the presented node generation
algorithms.

For the sake of simplicity, the dependence of sij upon xi is neglected in the
derivative on the RHS of Eq. (2.10), yielding:

∂

∂xi

(rij
sij

)
≈ 1

sij

∂rij
∂xi

=
xi − xj
rijsij

(2.12)

Eq. (2.10) can then be recast in the following form:

∂U

∂xi
= 2

∑
j∈J(i)

1

sij
FΦ

(rij
sij

)xi − xj
rij

(2.13)

which states that the direction of maximum growth of the potential U equals the
sum of the radial forces with magnitude 1

sij
|FΦ(

rij
sij

)| exerted on node xi by the

neighbouring nodes xj, j ∈ J(i). Therefore, this is the direction along which node
xi should be moved in order to minimize U efficiently.

To calculate the actual magnitude of the displacement x
(k+1)
i −x

(k)
i at iteration

k, let us suppose U can be approximated by the following quadratic form with a
minimum at the unknown node x

(k+1)
i :

U(x) ≈ α
(‖x(k)

i − x
(k+1)
i ‖

s̄

)2

(2.14)

where s̄ = s(x
(k)
i ) and α is a positive constant.

The gradient of Eq. (2.14) with respect to x
(k)
i is:

∂U

∂x
(k)
i

= 2α
x

(k)
i − x

(k+1)
i

s̄2
(2.15)

which gives the actual displacement for node xi:

x
(k+1)
i − x

(k)
i

s̄
= − s̄

2α

∂U

∂x
(k)
i

= − 1

α

∑
j∈J(i)

s̄

sij
FΦ

(rij
sij

)x
(k)
i − x

(k)
j

rij
(2.16)

where the derivative ∂U/∂x
(k)
i is obtained from Eq. (2.13) at iteration k.

Eq. (2.16) is then modified by neglecting the term s̄/sij as follows:
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x
(k+1)
i − x

(k)
i

s̄
= − 1

α

∑
j∈J(i)

FΦ

(rij
sij

)x
(k)
i − x

(k)
j

rij
(2.17)

which is the operative expression for the iterative procedure. The removal of
the term s̄/sij from Eq. (2.16) is not a mere approximation, it is required in order
to obtain a consistent process which converges to a node distribution which fulfill
the prescribed spacing function. The iterative process defined by Eq. (2.16) is
not consistent because even in the case rij = sij, i.e., nodal spacing matching the
prescribed spacing, the denominator of ratio s̄/sij leads to nonzero displacements
which cause the nodal spacing to slowly drift from the prescribed value.

The final Eq. (2.17) states that the displacement of node xi, normalized with
the the spacing s̄, equals the sum of the radial forces exerted by its neighbours xj,
followed by a multiplication by the factor 1/α. α is unknown, but it is approxi-
mately independent upon nodal arrangements and it can be considered constant
over the domain. Therefore the value 1/α acts as a gain factor which has to be
tuned by trial and error in order to maximize the convergence speed while avoiding
instabilities.

The determination of the neighbours for each node is performed using a fast
nearest neighbour search (NNS, see Appendix A). The efficiency of this task is
crucial since the list of the neighbours is updated at each iteration. This choice
is necessary during the early stages of the refinement process when local arrange-
ments change radically, requiring a continuous update of the list of neighbouring
nodes. For the latest refinement iterations, the list of neighbours can be updated
less frequently, since the nodal arrangements change moderately. However, since
the cost of the employed NNS is negligible when compared to the cost of the repel
iteration, it is still performed at each iteration.

It is convenient to employ potential functions Φ with repulsive forces −FΦ =
−Φ′ > 0, e.g., electric potential Φ = kr−1 with −FΦ = kr−2 > 0 for k > 0.
With the choice of repulsive potentials, which has proven to be an effective choice
for node refinement, the iterative procedure defined by Eq. (2.16) is actually a
node-repel technique.

As outlined in Subsection 2.2.1, this node-repel procedure is not effective in
the refinement of large-scale errors EP since it operates locally: one node at a
time with node displacements which are smaller than the local spacing. A “good”
initial node distribution, i.e., with small errors EP for large scales down to the
small scales of the spacing function, is therefore essential for the efficiency of the
overall node generation process.

The refinement process is iterated till a certain convergence criterion is met. In
the limit of k → ∞ iterations, a stable node distribution is reached, correspond-
ing to a minimum for U which can be a simple local minimum. In these limit



32 node-repel refinement

configurations, each nodes is in perfect equilibrium with the radial forces exerted
by its neighbours, as stated by Eq. (2.17) with a zero LHS. If sufficiently smooth
spacing functions s are employed, it is likely that almost each node is surrounded
by a nearly isotropic arrangement of neighbouring nodes. Since the error EP is
assumed to be negligible, as shown for the DOT/DQT algorithm, it is concluded
that the generated spacing matches the prescribed value. Anyway, few singular
node arrangements which are not isotropic can also occur.

2.3.2. Boundary

The node-repel process obviously requires a strategy for boundary confinement,
otherwise nodes would drift outside the domain. The simplest boundary confine-
ment technique requires the generation of a boundary node distribution before the
application of the refinement process. This distribution is not allowed to move
during the repel iterations (fixed boundary nodes), while its nodes contribute to
the repulsion of the nodes inside the domain (internal nodes). The boundary
distribution has also to fulfill the prescribed spacing function s.

In 2D this technique is very simple since the boundary is composed by one or
more closed curves and therefore the fulfillment of the prescribed spacing function
is straightforward. Let us consider Eq. (2.5) in the 1D case along the boundary,
which consists in a single curve Γ for the sake of simplicity:

NΓ(t) =

∫ t

t0

dL

s
(2.18)

where t is a parameter for Γ(t), e.g., the curvilinear length itself, and dL is the
corresponding infinitesimal boundary length. NΓ(t) therefore gives the cumulative
number of nodes along Γ starting from Γ(t0). Boundary nodes x̆k = Γ(tk), k =
1, . . . , NB are then generated when NΓ(tk) = k.

The extension of this technique to 3D cases is not straightforward since the
boundary Γ is a surface which requires an appropriate 2D node distribution itself.
Therefore a more general approach for boundary confinement must be employed.

A possible solution for the 3D boundary confinement is given by the projection
technique. This strategy projects nodes onto the nearest boundary during each
node-repel iteration when these nodes cross the boundary, as depicted in Figure
2.16. The projected nodes become boundary nodes and can implicitly move along
the boundary only, while the prescribed spacing is fulfilled as well as for the internal
nodes. This is perhaps the most natural technique for boundary confinement in
the case of the node-repel refinement process. Problems may arise in the case of
sharp concave boundaries, but this is beyond the scope of the presented work.

The projection technique requires two new elements: the detection of the nodes
crossing the boundary and suitable projection techniques. In the case of boundaries
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Figure 2.16: Projection of a node xi crossing the boundary Γ at iteration k in 2D (a)
and 3D cases (b).

defined by few simple geometric entities, these new elements are straightforward
to implement, which is the case of the 3D domains employed in the present work.
In the case of general-shaped boundaries, efficient techniques can be employed for
these tasks. Obviously, the projection technique can also be employed in 2D cases
if required.

2.3.3. 2D cases

Figure 2.17 illustrates the different phases involved in the node generation process
for a simple 2D case. A circular domain Ω is considered together with a prescribed
spacing function s(x) which decreases from smax at the center of the domain to
smin at the boundary Γ, as depicted in Figure 2.17. The initial node distribution
is obtained for the whole bounding box B with the DQT algorithm previously
introduced. The spacing function outside the domain is considered to be s = smax
in order not to generate a high number of unnecessary nodes. Nodes outside
the boundary Γ are then eliminated and a boundary distribution fulfilling s is
generated. The node generation process concludes with the application of a certain
number of node-repel iterations which refine the distribution.

For 2D cases, the following type of radial force −FΦ is found to give satisfactory
results:

−FΦ(r) =
1

(r2 + β)2
(2.19)

where β is an adjustable parameter. The repulsion force defined by Eq. (2.19) is
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Figure 2.17: 2D node generation process for a circular domain Ω with a spacing
function s.

decreasing with r and decays as r−4 for large nodal distances r. The parameter β
acts as a force limiter in the case of close nodes or coincident nodes, i.e., r → 0,
in which cases the force is limited to the finite value −FΦ(0) = β−2.

Another parameter which has to be tuned is the number of nearest neighbours
nR employed in the calculation of the the radial forces acting on each node, Eq.
(2.17). The choice of this parameter affects both the computational costs and
the quality (isotropy) of the generated distribution: a small value for nR yields
unsatisfactory results, e.g., cartesian-like patterns and holes, while big values for
nR require unnecessary computational effort since the contributions of the furthest
nodes are almost negligible due to the decreasing nature of the force −FΦ.

The influence of these parameters on the characteristics of the generated dis-
tribution is studied for a node distribution with N ≈ 105 nodes in a square and a
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Figure 2.18: (a) Mean distance ratio R̄H after 500/nR refinement iterations; (b) R̄H
convergence history for β = 0.20. N ≈ 105 nodes.

constant spacing function. A distance ratio RH is defined for each node as the ratio
of maximum to minimum distances between the 6 nearest neighbouring nodes. RH

can be interpreted as an isotropic quality index with respect to hexagonal distri-
butions for which RH = 1, while RH ≥ 1 for generic distributions, e.g., RH =

√
2

for a cartesian distribution. The value of 1/α which defines the gain factor for
the nodal displacements is chosen to be 0.1 in order to maximize the convergence
speed while avoiding instabilities, regardless of the remaining parameters.

Figure 2.18(a) shows the influence of the number of neighbours nR upon the
mean distance ratio R̄H , i.e., the mean value of RH over the whole distribution,
after k = 500/nR repel refinement iterations. The choice k = 500/nR iterations
takes account of the increasing computational cost with respect to nR, i.e., each re-
pel iteration requires N ·nR operations. The mean distance ratio shows a minimum
for nR = 10 and β = 0.15 which are the optimal parameters for the minimization
of R̄H for a given computational work. Anyway, in order to avoid instabilities and
other side effects arising in different situations, nR = 12 and β = 0.20 have been
preferred and employed from now on.

A geometrical interpretation of the influence of the number of neighbouring
nodes nR upon the distance ratio can be derived from Figure 2.19 which depicts
a 2D hexagonal node distribution, which represents the ideal node distribution
to be reached in the case of constant spacing. Obviously, the minimum number
of neighbours to consider is nR ≥ 6, while a non-negligible contribution is also



36 node-repel refinement

x

y

n  = 18

n    = 6  

n  = 12

R

R

R

Figure 2.19: Neighbouring nodes for the node-repel phase with a 2D hexagonal node
distribution.

given by the 6 nearest neighbours contained in the strip between nR = 6 and
nR = 12. Therefore a significant improvement in the reduction of the distance
ratio is expected by increasing nR from 6 to 12. Above nR = 12 the contribution
of the 6 successive nearest neighbours, contained in the strip between nR = 12
and nR = 18, is negligible since the repulsive force −FΦ decays rapidly with the
distance, therefore representing unnecessary operations.

Figure 2.18(b) shows the convergence histories of the mean distance ratio R̄H

for different values of nR = 12, 18. R̄H decreases rapidly during the first 20 node-
repel iterations, while an apparently asymptotic behaviour is reported for large
k. A significant element is represented by the slow convergence towards a unitary
mean distance ratio. This is due to the appearance of a non-negligible number
of nearly stable nodal arrangements which are not hexagonal. The appearance
of these arrangements is reported in Figure 2.20 where nodes with nR >

√
2 are

coloured in red. The enlarged view reveals that such singular arrangements are
typically characterized by a pentagonal structure for the nearest neighbours with
the 6th nearest neighbour at a larger distance.

The asymptotic behaviour of R̄H is also confirmed by the distributions of the
distance ratio, which are reported in Figure 2.21 for k = 2, 20, 200 and 2000 repel
iterations. At the beginning of the iterative process, i.e., k = 2, most of the nodes
have large distance ratios RH > 1.4, while the application of a small number of
k = 20 iterations leads to a significant shift of the distribution towards smaller
values RH < 1.4. At this point, significant improvements can be obtained by the
application of k = 200 iterations, for which most of the nodes have RH < 1.25.
Successive iterations have limited effect: after k = 2000 iterations the fraction of
nodes at RH = 1.05 is increased while a significant fraction at RH = 1.2 is still
present.

Despite the slow asymptotic convergence of the node-repel process, the pre-
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Figure 2.20: (a) Node distribution and the corresponding distance ratio RH for a
constant spacing function after 200 refinement iterations; (b) enlarged view. RH >

√
2

for red nodes, N ≈ 5000 nodes.
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Figure 2.21: Distributions of the distance ratio RH for N ≈ 105 nodes and nR = 12.

sented procedure can efficiently generate “good” node distributions with a reason-
ably small mean distance ratio R̄H < 1.3 by using a moderate number of node-repel
iterations, e.g., k = 50 − 200. The generated distributions are therefore excellent
candidates for their use in RBF-FD meshless discretizations in order to yield an
accurate and flexible discretization process.
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Figure 2.22: Examples of node distributions over 2D complex-shaped domains (top)
and the corresponding distributions of the distance ratio RH (bottom).

Two examples of practical node distributions generated over complex-shaped
domains are given in Figure 2.22 together with the corresponding distributions of
the distance ratio at the beginning and at the end of the node-repel refinement.
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The employed node-repel process has been capable of an effective reduction of the
mean distance ratio from large values R̄H > 1.6 to a reasonable value R̄H ≈ 1.2
within k = 100 repel iterations in both cases where N ≈ 65000 nodes have been
employed.

2.3.4. 3D cases

The node generation process in 3D cases employs the same approach used in 2D
cases. An initial distribution is generated for the whole box bounding the domain
Ω using the DOT algorithm previously introduced. The spacing function outside
the domain is again considered to be s = smax in order not to generate a high
number of unnecessary nodes. Nodes outside the boundary Γ are then eliminated,
while no boundary distribution is generated since the boundary projection tech-
nique presented in Subsection 2.3.2 is employed. This technique greatly simplifies
the whole node generation approach since no additional boundary distribution
is required, which would need the employment of a 2D node generator for each
boundary surface. Instead, the boundary confinement is implicitly introduced
within each node-repel iteration, where nodes crossing the boundary are projected
onto it and therefore they are implicitly constrained onto the boundary itself.

For the node-repel process, the employed radial force has the same expression
of the one employed in 2D cases, Eq. (2.19), for which the number of neighbouring
nodes nR and the parameter β have to be optimized again in order to maximize the
effectiveness of the refinement process while minimizing the computational cost.

The influence of these parameters on the characteristics of the generated dis-
tribution is studied for a node distribution with N ≈ 50000 nodes in a sphere
and a constant spacing function. The distance ratio RH for 3D cases is defined
for each node as the ratio of maximum to minimum distances between the 12
nearest neighbouring nodes. RH can be interpreted as an isotropic quality index
with respect to FCC/HCP lattices for which each node has 12 equally distanced
neighbours and thus RH = 1. For a cartesian distribution RH =

√
2. The optimal

value of 1/α which defines the gain factor for the nodal displacements is found to
be 0.1 again, as in the 2D case. Such optimal value maximizes the convergence
speed while avoiding instabilities, regardless of the remaining parameters.

Figure 2.23(a) shows the influence of the number of neighbours nR upon the
mean distance ratio R̄H , i.e., the mean value of RH over the whole distribution,
after k = 1000/nR repel refinement iterations. The choice k = 1000/nR iterations
takes account of the increasing computational cost with respect to nR, i.e., each
repel iteration requires N · nR operations. The mean distance ratio shows a min-
imum for nR ≈ 32 and β = 0.10. Anyway, in order to avoid possible instabilities
arising in different situations, nR = 36 and β = 0.15 have been preferred and
employed from now on.
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Figure 2.23: (a) Mean distance ratio R̄H after 1000/nR refinement iterations; (b) R̄H
convergence history for β = 0.15. N ≈ 50000 nodes.
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Figure 2.24: Distributions of the distance ratio RH for N ≈ 50000 nodes and nR = 36.

A geometrical interpretation of the influence of the number of neighbouring
nodes nR upon the distance ratio can be made by considering the FCC/HCP
lattices which are obtained by packing planes of hexagonal arrangements. The
minimum number of neighbours to consider is then nR = 12, from which the ad-
dition of a small number of neighbours is not effective since their contribution is
highly non-symmetric. Non-negligible contributions are then given by nR > 20
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neighbours which can restore a spatial symmetry, bringing significant improve-
ments. Above nR = 40 the contributions of the successive nearest neighbours are
negligible because of the large distances and should not be employed since they
require unnecessary operations.

The convergence histories for the mean distance ratio R̄H are shown in Figure
2.23(b) for different values of nR = 36, 48. The employment of a large number nR =
48 of neighbours appears to be even less effective than the cheaper choice nR = 36.
In both cases R̄H decreases rapidly during the first 10-20 node-repel iterations,
while a slow convergence towards a unitary mean distance ratio is reported.

The distributions of the distance ratio are shown in Figure 2.24 for k =
2, 20, 100 and 1000 repel iterations. At the beginning of the iterative process,
i.e., k = 2, most of the nodes have large distance ratios centred on RH ≈ 1.45,
while the application of a small number of k = 20 iterations leads to a significant
reduction towards smaller values centred at RH ≈ 1.3. The application of k = 100
iterations leads to almost negligible improvements and the application of a high
number k = 1000 of iterations brings to a limited reduction of RH .

Figure 2.25 shows two 3D examples of generated distributions together with
the corresponding distributions of the distance ratio. In the first example a simple
spherical domain and a constant spacing function are employed.

In the second example the domain is defined by using the following function:

fΩ = 4(x2 + y2)− cos(3πz) + 3z4 − 3 (2.20)

for which the domain Ω is implicitly defined by fΩ < 0 and the boundary Γ is
implicitly defined by fΩ = 0. The employed spacing function is s(x) ∝ 2 − efΩ/2

which is minimum at the boundary and doubles at the center of the domain.
Using the previous definitions, the projection technique required for the bound-

ary confinement of a node xi can be easily implemented at each iteration k as
follows:

if fΩ(x
(k+1)
i ) > 0

x
(k+1)
i,⊥ − x

(k+1)
i = −

(
fΩ∇fΩ

‖∇fΩ‖2

)
x=x

(k+1)
i

where x
(k+1)
i,⊥ is the first order projection of node x

(k+1)
i onto the boundary Γ. With

the previous projection formulation, nodes escaping from the domain because of
the repulsive forces are continuously constrained onto the boundary.

The distributions of the distance ratio depicted in Figure 2.25 confirm that in
3D cases the node-repel technique is slightly less effective in the reduction of RH

than in 2D cases. However, for both the presented examples the employment of
a moderate number k = 100 of node-repel iterations leads to a uniform reduction
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Figure 2.25: Examples of node distributions over 3D domains (top) and the corre-
sponding distributions of the distance ratio RH (bottom).

of the distance ratio for the whole set of nodes, i.e., there are no regions where
nodes exhibit excessive anisotropy. These node distributions therefore represent
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Table 2.2: Computing times(speedup) for k = 100 node-repel iterations.

A (2D) B (2D)
N Cores: 1 2 4 4 (8 threads) 4 (8 threads)

100,000 4.15 2.20(1.9) 1.40(3.0) 1.00(4.2) 1.50
250,000 10.5 5.50(1.9) 3.50(3.0) 2.40(4.4) 3.30
500,000 22.0 11.3(2.0) 6.70(3.3) 4.70(4.7) 6.45

C (3D) D (3D)
N Cores: 1 2 4 4 (8 threads) 4 (8 threads)

100,000 15.4 7.80(2.0) 4.80(3.2) 3.20(4.8) 3.00
250,000 40.1 20.8(1.9) 12.8(3.1) 8.40(4.8) 7.50
500,000 87.5 46.0(1.9) 26.5(3.3) 17.8(4.9) 15.25

2D cases: A: circle, constant spacing
B: first example of Figure 2.22

3D cases: C: sphere, constant spacing
B: second example of Figure 2.25

good candidates for their use in RBF-FD meshless discretizations.

2.3.5. Computing times

The complexity of the node-repel algorithm is linear in the number of nodes N
in both 2D and 3D cases if a fixed number of iterations k is employed, which
is recommended. The computing times for k = 100 node-repel iterations and
different 2D and 3D cases are reported in Table 2.2 together with the speedup
values obtained by using an OpenMP parallelized C code. In 2D cases nR = 12
neighbours are employed, while nR = 36 in 3D cases.

The computing times are comparable for cases A (2D circle, constant spacing)
and B (first 2D example of Figure 2.22), despite the latter case employs a more
complex domain and a more complex spacing function than the former. The same
applies when comparing cases C (3D sphere, constant spacing) and D (second
3D example of Figure 2.25), where the latter case performs even better than the
former, despite its non-trivial geometry.

The speedup values are also satisfying for both 2D and 3D cases, with a max-
imum speedup value of 4.9 for the 3D case where N = 500, 000 nodes and 4 cores
(8 OpenMP threads) are employed.
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Original k = 10 (0.017s)

k = 100 (0.22s) k = 1000 (1.8s)

Figure 2.26: Halftone approximation of a greyscale test image through stippling with
k node-repel iterations. N = 16543 nodes.

2.4. Stippling

The proposed node generation procedure in 2D cases can also be used for the
halftone approximation of black/white images through the stippling technique [75].
This technique is employed to approximate the continue halftones of a greyscale
image with an adequate distribution of equally sized black dots over a white back-



node generation 45

ground. It differs from the dithering techniques which are widely used in image
processing where the black dots can only have fixed positions and sizes, i.e., pixels.

In order to employ the presented node generation algorithm for stippling, the
prescribed spacing function s has to be expressed as a function of the image bright-
ness ν ∈ [0, 1] (ν = (R + G + B)/3 if the brightness is obtained from a coloured
image). For simplicity, we assume that the complement of the brightness, i.e., the
blackness, is proportional to the nodal density δ through the area AD of each dot:

1− ν =
number of nodes

unit area/volume
· AD = δAD =

2√
3s2

(2.21)

which does not account for overlapping dots.
The spacing function is then obtained from Eq. (2.21):

s =

√
2AD√

3(1− ν)
(2.22)

Obviously, the smaller the dots, the smaller the spacing function and therefore
more and more dots will be needed for the approximation of the image.

Figure 2.26 shows an example of stippling of a test image using the presented
node generation algorithm with k = 10, 100 and 1000 node-repel iterations and
N = 16543 nodes. nR = 12 nearest neighbours have been employed, while the
gain factor 1/α is reduced to 0.05 in order to prevent possible instabilities arising
from the brighter regions where the spacing is large.

The resulting stippled images show a remarkable graphic quality for k = 100
and k = 1000 iterations, while k = 10 iterations are not sufficient to eliminate
the graphical patterns due to the DQT algorithm employed for the generation of
the initial node distribution. This example also shows that the presented node
generation algorithm can effectively handle nodal densities with steep variations
with robustness.

2.5. Conclusions

Different algorithms for the 2D/3D node generation problem over arbitrarily-
shaped domains have been proposed. Such algorithms are characterized by a
meshless approach where no polygonization of the domain is required, resulting
in flexible and efficient procedures. The node generation process is composed of
an initial node placing phase which is followed by a refinement phase based on
the mutual repulsion of the nodes. This kind of approach is very general and ro-
bust, and it can be applied to a wide range of node generation problems with no
limitations.
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These procedures are developed in order to generate the node distributions
required by generic meshless methods, with particular reference to the localized
radial basis function (RBF) approach which is employed in this work.



Chapter 3

RBF-FD method

The basis of each of the methods employed in the numerical solution of PDEs
is the construction of suitable approximations for the solution itself and for its
derivatives. These formal approximations are then introduced into the involved
PDE in order to obtain the sought solution.

In the FDM the solution is assumed to be known at some grid points only,
while the derivatives are obtained from local polynomial functions which interpo-
late the solution at the grid points. The PDE is then made valid at grid points
through the collocation technique. In the FEM the solution is assumed to be
piecewise continuous within each element, typically using a polynomial expansion
which matches the solution at the element nodes. The derivatives are obtained
by deriving the polynomial expansion and the weak form of the PDE is properly
satisfied. In the FVM the solution is assumed to be known at the cell centers and
the PDE is averaged on each cell, requiring suitable interpolation schemes for the
solution and its derivatives.

In the radial basis function-generated finite difference method (RBF-FD), the
solution is assumed to be known at some scattered nodes and a local interpolant is
defined in the neighbourhood of each node by using a RBF expansion. The deriva-
tives are formally obtained by the analytic differentiation of the RBF expansion,
while the PDE is made valid at node locations using the collocation technique.
The RBF-FD denomination is due to the fact that its approach resembles the
FD method, but using arbitrarily scattered nodes and a RBF approach for the
construction of the interpolant. The RBF-FD approach is also known as local
RBF collocation method (LRBFCM) [59, 76, 77, 89] and localized RBF meshless
method [22, 105].

Since the RBF-FD method is composed by a RBF interpolation and a following
collocation approach, it is therefore important to analyze the characteristics of the
RBF-FD discretization scheme by studying the properties of these two elements
in a consequential order.

47
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3.1. Scattered data RBF interpolation

3.1.1. Problem definition

The problem of scattered data interpolation is of primary importance in meshless
applications for obvious reasons. In D dimensions it can be stated as follows: given
a set of n nodes xi ∈ RD and n real values fi, find a continuous function g such
that:

g(xi) = fi (3.1)

for i = 1, . . . , n. We suppose the values fi = f(xi) are generated by an unknown
function f .

When the nodes have regular arrangements, e.g., cartesian, or the problem is
1D with distinct nodes, polynomial interpolants can be successfully employed since
the interpolation problem is always well-posed. In the case of uniform cartesian
arrangements, the use of polynomials brings great advantages in terms of imple-
mentation ease and accuracy: in 1D cases the interpolation error is |g− f | < cnh

n

where h is the cartesian spacing and the function f has continuous derivatives up
to order n.

The problem of polynomial interpolation arises when the nodes have arbitrary
arrangements in more than one dimension. Singular node arrangements leads to
ill-posed interpolation problems, e.g., interpolation with a plane in 2D for n = 3
nodes lying on a line.

The ill-posedness is common to every interpolation scheme of the type:

g(x) =
n∑
i=1

aiφi(x) (3.2)

which employs basis functions φj that are independent upon the nodal positions
xi. This is explained by the Mairhuber-Curtis theorem [26]; let us consider the
system of equations obtained from the interpolation conditions expressed by Eq.
(3.1) using the expansion defined in Eq. (3.2):φ1(x1) · · · φn(x1)

...
. . .

...
φ1(xn) · · · φn(xn)



a1
...
an

 =


f1
...
fn

 (3.3)

where ai are the unknown coefficients of the interpolating function g. The compact
notation of Eq. (3.3) is:

φφφ(x1, . . . ,xn)a = f (3.4)

Consider now a closed path along which two nodes are continuously moved
without interfering with the remaining nodes, until the two nodes exchange their
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position. This corresponds to a row exchange in the interpolation matrix in Eq.
(3.3), resulting in a change of the sign of its determinant. Therefore the de-
terminant is 0 somewhere along this nodal exchange, since the determinant is a
continuous function of xi (φj are also continuous).

This ill-posed problem arises for singular node arrangements that are not eas-
ily predictable in general situations, which is the case of the node distributions
employed in meshless methods. Despite different criteria for a proper choice of the
interpolation nodes have been proposed in order to address this problem, nearly
singular node arrangements can still be encountered causing large numerical er-
rors. Another possibility is to use more interpolation nodes than the number of
the basis function and employing a least squares approach [70, 84].

A different choice can be made in order to overcome this problem by using basis
functions φj depending upon the nodal positions. Radial basis functions represent
very good candidates for scattered data interpolation in multiple dimensions [26]
since the basis functions depend upon a distance, which is typically the Euclidean
distance.

3.1.2. Radial basis functions

Radial basis functions are defined as follows:

φj(x) = ϕ(‖x− xj‖) (3.5)

for which there is a dependence upon the distance from the interpolation node
xj, as suggested by the Mairhuber-Curtis theorem. We note that the interpolation
matrix φφφ(x1, . . . ,xn) is now symmetric since its entries are ϕ(‖xi−xj‖). The func-
tion ϕ must be chosen in order to guarantee a unique solution of the interpolation
problem expressed by Eq. (3.3) for each set of n distinct nodes xi.

This solvability condition is met in the case of a strictly positive definite func-
tion ϕ, which means that the associated quadratic form satisfies:

aTφφφ(x1, . . . ,xn)a > 0 (3.6)

for any set of distinct nodes xi and for any a 6= 0. The condition expressed by Eq.
(3.6) implies the non-singularity of the interpolation problem. Strictly positive
definite functions include the Gaussian (GA) and the Inverse multiquadric (IMQ)
functions reported in Table 3.1.

The interpolation with strictly positive definite radial functions therefore leads
to well-posed interpolation problems for any set of distinct nodes. This important
result, however, does not supply any additional information about the accuracy of
the interpolation, which also depends upon the type of functions that are intended
to approximate. From an engineering point of view, the exact reproduction of
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Table 3.1: Most used types of RBF generating functions.

Name Abbreviation ϕ(r)

Multiquadric MQ
√

1 + (εr)2

Inverse multiquadric IMQ 1/
√

1 + (εr)2

Thin plate splines TPS rk log r, k even

Gaussian GA e−ε
2r2

Polyharmonics PHS rk, k odd

constant, linear or higher degree polynomial fields must also be required, e.g., con-
stant strain in an elastic body, steady temperature field in a differentially heated
wall, translations and rotations. The use of polynomials is not only recommended
but also necessary for the convergence under certain assumptions.

An expansion with only radial basis functions can not reproduce polynomial
fields exactly, therefore the following augmentation of the RBF interpolant with
an appended polynomial of degree P is required:

g(x) =
n∑
i=1

aiϕi(‖x− xi‖) +
m∑
j=1

bjpj(x) (3.7)

where pj are the basis of the polynomial expansion, bj are the corresponding coeffi-
cients and m = (P+D

P ) is the number of the polynomial basis functions of degree less
than or equal to P in D dimensions. For example, the basis for linear polynomials
in 2D has m = 3 elements: p1 = 1, p2 = x, p3 = y.

When the polynomial augmentation is employed, it is convenient to shift the
nodal coordinates to their mean point x̄ =

∑n
i=1 xi/n in order to avoid numerical

instabilities when the nodes have large magnitudes ‖xi‖. Each polynomial com-
ponent pj(x) in Eq. (3.7) is therefore replaced by pj(x− x̄). Since this shift does
not affect any interpolation property, it is omitted in the following for the sake of
simplicity, while it is considered in the numerical implementations.

The interpolation system in Eq. (3.3) must also be augmented with additional
conditions in order to obtain a square interpolation matrix which guarantees the
polynomial reproduction. This requirement is obtained by imposing the following
orthogonality conditions between the polynomial basis functions and the RBF
coefficients a:

{
pj(x1) , . . . , pj(xn)

}
a1
...
an

 = 0 (3.8)

for j = 1, . . . ,m.
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The final interpolation system is:

ϕ(‖x1 − x1‖) · · · ϕ(‖x1 − xn‖) p1(x1) · · · pm(x1)
...

. . .
...

...
. . .

...
ϕ(‖xn − x1‖) · · · ϕ(‖xn − xn‖) p1(xn) · · · pm(xn)

p1(x1) · · · p1(xn) 0 · · · 0
...

. . .
...

...
. . .

...
pm(x1) · · · pm(xn) 0 · · · 0





a1
...
an
b1
...
bm


=



f1
...
fn
0
...
0


(3.9)

where the symmetry of the coefficient matrix is maintained.
The compact notation of Eq. (3.9) is:

M

{
a
b

}
=

{
f
0

}
(3.10)

where 0 ∈ Rm is a zero column-vector and M is the interpolation matrix.
The functions ϕ to be employed for a well-posed RBF interpolation with the

polynomial augmentation can be found in the set of strictly conditionally positive
definite functions of order P +1, which is a superset of the strictly positive definite
functions. Strictly conditionally positive definite functions of order P + 1 satisfy
the positive definite condition of Eq. (3.6) under the orthogonality constraints
of Eq. (3.8), thus guaranteeing a well-posed RBF interpolation with polynomials
of degree P for each set of distinct nodes. Strictly conditionally positive definite
functions of order P+1 are also strictly conditionally positive definite of any higher
order.

Strictly conditionally definite functions of order 1, i.e., RBF interpolation with
an appended constant, include Polyharmonics (PHS) with k = 1 (distance), Thin
plate splines (TPS) with k = 0 (log r), and the Multiquadric (MQ), and are
reported in Table 3.1. The corresponding RBFs grow with the distance from the
corresponding node, which is a counterintuitive behaviour of the basis functions
employed for interpolation. Contrary to these RBFs, the Inverse multiquadric and
the Gaussian RBFs decrease with the distance from the corresponding node.

A comprehensive and practical analysis of the theory of radial basis functions
can be found in [26].

3.1.3. RBF interpolation with boundary conditions

The interpolation system in Eq. (3.9) solves the classic scattered data interpolation
problem defined in Subsection 3.1.1, where a set of values fi are interpolated at
the nodes. Since the RBF interpolation is intended to be employed in the solution
of PDEs, we introduce a different interpolation condition which takes account of
the boundary conditions (BCs).
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Boundary conditions are imposed on the interpolant g along the boundary Γ:

BH
(
g(x)

)
= f̄(x) on Γ (3.11)

where BH is the homogeneous part of the boundary condition and f̄ is a known
function along Γ. For example, the Robin BC αg + β∂g/∂n = γ is expressed by
BH = α + ∂/∂n and f̄ = γ, where n is the unit outward vector.

Since we suppose that the node distribution is conformal to the boundary,
a certain number nB < n of nodes can lie on Γ. For these boundary nodes
x̂k, k = 1, . . . , nB, the interpolation condition expressed by Eq. (3.1) is dropped
and replaced by the corresponding BC:

BH
(
g(x)

)
x=x̂k

=
n∑
i=1

aiΨi(x̂k) +
m∑
j=1

bjΠj(x̂k) = f̄(x̂k) (3.12)

where Ψi(x) = BH
(
ϕi(‖x − xi‖)

)
and Πj(x) = BH

(
pj(x)

)
are given by the appli-

cation of the homogeneous part of the BC on the basis functions, and are known
functions.

Eq. (3.12) is made valid on each of the nB boundary nodes, which are supposed
to follow the remaining nI = n− nB internal nodes:

ϕ(‖x1 − x1‖) · · · ϕ(‖x1 − xn‖) p1(x1) · · · pm(x1)
...

. . .
...

...
. . .

...
ϕ(‖xnI

− x1‖) · · · ϕ(‖xnI
− xn‖) p1(xnI

) · · · pm(xnI
)

Ψ1(x̂1) · · · Ψn(x̂1) Π1(x̂1) · · · Πm(x̂1)
...

. . .
...

...
. . .

...
Ψ1(x̂nB

) · · · Ψn(x̂nB
) Π1(x̂nB

) · · · Πm(x̂nB
)

p1(x1) · · · p1(xn) 0 · · · 0
...

. . .
...

...
. . .

...
pm(x1) · · · pm(xn) 0 · · · 0





a1
...
an
b1
...
bm


=



f1
...
fnI

f̄1
...
f̄nB

0
...
0


(3.13)

whose compact form is still in the form of Eq. (3.10), where the last nB components
of the vector f are now the known values f̄1, . . . , f̄nB

.

3.1.4. Derivatives approximation with RBFs

Any required partial derivative D is obtained by differentiating the interpolation
expansion in Eq. (3.7):

D
(
g(x)

)
=

n∑
i=1

aiΨi(x) +
m∑
j=1

bjΠj(x) = ΨΨΨ(x)Ta + ΠΠΠ(x)Tb (3.14)



rbf-fd method 53

where Ψi(x) = D
(
ϕi(‖x − xi‖)

)
and Πj(x) = D

(
pj(x)

)
are the derivatives of the

basis functions, which are known functions and are organized in column vectors
ΨΨΨ(x) and ΠΠΠ(x), respectively.

When the interpolation system defined by Eq. (3.9) (if no boundary nodes) or
Eq. (3.13) (with boundary nodes) is solved for the RBF coefficients ai and poly-
nomial coefficients bj, the required derivative can therefore be directly evaluated
using Eq. (3.14). This approach can be employed for the reconstruction of the
derivatives from given values of the function f .

A formal expression for the required derivative can still be computed by solving
Eq. (3.10) for the coefficients a and b even if the coefficients are not known:{

a
b

}
= M−1

{
f
0

}
(3.15)

which is then used in Eq. (3.14):

D
(
g(x)

)
=

{
ΨΨΨ(x)
ΠΠΠ(x)

}T {
a
b

}
=

{
ΨΨΨ(x)
ΠΠΠ(x)

}T
M−1

{
f
0

}
(3.16)

Eq. (3.16) can be recast in the following form in order to clarify the role of the
derivatives of the basis functions and the role of the function values f :

D
(
g(x)

)
=

(
(MT )−1

{
ΨΨΨ(x)
ΠΠΠ(x)

})T {
f
0

}
= d(x)T

{
f
0

}
(3.17)

which is the sought expression for the required derivative as a function of the
values f at the scattered nodes, which comprehends the contributions of possible
boundary nodes.

In the case of no boundary nodes, the column vector d(x) represents the vector
of the shape functions for the derivativeD since each of its components is multiplied
by the value of the function at the corresponding node, Eq. (3.17):

D
(
g(x)

)
= f1d1(x) + · · ·+ fndn(x) (3.18)

In the case of the identity operator D(g) = g, i.e., no derivation, the com-
ponents of d(x) are the actual shape functions which satisfy the interpolation
conditions di(xj) = δij, where δij is the Kronecker delta.

The expression of the sought derivative changes if boundary nodes are consid-
ered, Eq. (3.17):

D
(
g(x)

)
= f1d1(x) + · · ·+ fnI

dnI
(x) + f̄1dnI+1(x) + · · ·+ f̄nB

dn(x)︸ ︷︷ ︸
known terms

(3.19)

where the known terms represent the contributions of boundary nodes.
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The column vector d(x) can be directly evaluated since it is obtained from the
solution of the following linear system:

MTd(x) =

{
ΨΨΨ(x)
ΠΠΠ(x)

}
(3.20)

where the interpolation matrix M and the RHS vector of the derivatives of the
basis functions are both known. The accurate solution of the system (3.20) is
the main element of the RBF interpolation since good interpolation properties are
often associated with ill-conditioned interpolation matrices [25, 26, 36, 62, 106].
For this purpose, in this work we employed a LDLT factorization in the case of the
symmetric interpolation matrix of Eq. (3.9) (no boundary nodes), while in the case
of the non-symmetric interpolation matrix of Eq. (3.13) a Schur complement [48]
is performed on the non-symmetric part of M, followed by a LDLT factorization
on the remaining symmetric part (see Appendix B). Different techniques can be
used to overcome the ill-conditioning problem [36, 106] and are discussed in the
following.

3.1.5. Global versus local interpolation

The previously introduced RBF interpolation can be employed using two ap-
proaches: global and local. Given a set of N nodes, the global approach employs
all the available nodes n = N in the construction of the interpolant g, while in the
local approach only a small number of local nodes n� N is considered. These n
local nodes represent the local support and are usually chosen between the closest
nodes to the evaluation point xe. Therefore, in the global approach a full and large
(≈ N ×N) interpolation system must be solved only once, while in the local ap-
proach a small (≈ n×n) interpolation system has to be solved for each evaluation
point.

Since the interpolation matrix in the global approach is large and full, this ap-
proach suffers from efficiency issues and ill-conditioning problems if a moderately
high number of nodes is employed, while for small N it gives very accurate solu-
tions. The employment of local interpolants greatly reduces both problems since
only small interpolation matrices are involved, at the cost of slightly less accurate
results [88, 105].

An example of comparison between a global and a local approach is given in
Figure 3.1, where a 2D cartesian arrangements of N nodes in the unit square
[0, 1]2 is considered. The considered interpolant employs the distance RBFs, i.e.,
ϕ(r) = r, augmented with a constant. In the local approach the number of local
nodes is n = 16. The evaluation point xe is chosen to be the mid-point of the 4
nodes closest to the center of the unit square x = 0.5, y = 0.5, while the chosen
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Figure 3.1: Comparison between local (n = 16) and global (n = N) RBF interpolation.
Error (a), condition number of the interpolation matrix and computing times (b).

function to approximate is:

f(x, y) = e−(x2+y2) (3.21)

The error curves shown in Figure 3.1a reveal a faster decay for the global ap-
proach, while the computing times1 and the condition number of the interpolation
matrix for the global approach, Figure 3.1b, exhibit a considerably larger growth
when compared to the local approach. For these reasons the local approach has
been preferred and it is considered from now on.

3.1.6. Multiquadric RBFs

Among the possible choices for the type of RBF to employ, Table 3.1, the Multi-
quadric RBF has been chosen because it is proven to be the best choice for scattered
data interpolation in an extensive comparison performed by Franke [38, 39].

Hardy’s Multiquadric (MQ) [45, 46] is defined by:

ϕ(r) =
√

1 + (εr)2 (3.22)

where ε is the shape factor parameter which defines the flatness of the RBF. In the
limit ε→ 0 the RBFs become increasingly flat and the corresponding interpolant

1With a MATLAB implementation
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without polynomial augmentation converges to the minimum degree polynomial
which interpolates the data, under certain conditions on the node arrangement
[25, 62]. For example, in 1D with two nodes x1 = 0, x2 = 1 and data f1, f2, the
interpolation system of Eq. (3.9) is:[

1
√

1 + ε2
√

1 + ε2 1

]{
a1

a2

}
=

{
f1

f2

}
(3.23)

for which the corresponding interpolant g(x) can be computed explicitly:

g(x) =

(
f1 − f2

√
1 + ε2

)√
1 + (εx)2 +

(
f2 − f1

√
1 + ε2

)√
1 + ε2(1− x)2

−ε2

=
(f1 + f2x− f1x)ε2 +O(ε4)

ε2
−−→
ε→0

f1 + (f2 − f1)x

(3.24)

which is the linear interpolant.

Examples of MQ shape functions for different shape factors ε are depicted in
Figure 3.2 for a 5 × 5 cartesian node arrangement with constant spacing s. The
smoothness of the shape function grows as ε decreases, with the appearance of the
typical oscillations due to a polynomial nature, i.e., Runge’s phenomenon. When
ε increases, the oscillations decreases because the interpolant loses its smooth
polynomial character in favour of a sharp behaviour. Therefore it is expected
to obtain better interpolation properties when using small ε, especially in the
approximation of derivatives. On the other hand, the use of small shape factors
involves numerical issues because of the ill-conditioned interpolation matrix due
to the increasingly flat basis functions. This fact leads to the so-called trade-off
principle, for which the best results are obtained using an intermediate ε value
which avoids numerical issues while ensuring enough smoothness.

Nonetheless, interesting methods have been proposed for the exact evaluation of
the interpolant in the limit ε→ 0, including the limit value ε = 0. These methods
are based on the extension of ε to the complex plane together with a Contour-
Padè algorithm [36], or on the use of vector-valued rational approximations [106].
However, the employing of these methods has not been investigated and a proper
choice of the shape factor has been preferred.

Influence of RBF parameters

It is of great importance to study the effects of the different RBF parameters
on the accuracy and stability of the interpolation. These parameters include the
number n of interpolation nodes, the degree P of the augmented polynomial, the
MQ shape factor ε and the number nB of boundary nodes.
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s · ε = 0.1 s · ε = 1.0

s · ε = 10 s · ε = 100

Figure 3.2: Shape function d23 for the node x23 = (2s, 4s)T. s is the cartesian spacing.

Influence of n, P , ε. The influence of these parameters is studied by carrying
out different numerical experiments using the following test function in the 2D
case:

f(x, y) = cos(x) cos(y) (3.25)

The interpolation nodes are displaced in a hexagonal arrangement with spacing
s which is then perturbed with random displacements in the order of s/10 to avoid
distorted results due to symmetries. The nodes are then shifted in order to position
the first node at x1 = (π/8, π/8)T , while the n nodes closest to x1 are chosen as
interpolation nodes. The error for the partial derivative ∂/∂x and for the laplacian
∇2 at the central node x1 are chosen to measure the accuracy of the interpolation
g.

The first set of numerical results is reported in Figure 3.3 and highlights the
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effects of the shape factor ε for three numbers of interpolation nodes n = 7, 13, 19
and different polynomial degrees P ≤ 4, using a spacing s = π/64. The choice of
these particular numbers of interpolation nodes is due to the hexagonal arrange-
ment, Figure 2.19, where each node has 6 nearest neighbours at distance s, 6 more
neighbours at distance

√
3s and 6 more neighbours at distance 2s, corresponding

to the choices n = 7, 13, 19, respectively, which includes the central node. For these
values n = 7, 13, 19 the maximum allowable degree for the augmented polynomial
is P = 2, 3 and 4, respectively.

The most evident element is the appearance of numerical instabilities for small
ε due to the ill-conditioned interpolation matrix, as expected. The more the ε gap
between the instabilities and the reaching of a sufficiently small error, the more
reliable a combination (n, P ) is. In the case n = 7 and considering the partial
derivative, the choice of no polynomial augmentation or P = 0 is not reliable since
a small error is reached near the instable region, while P = 1, 2 yield small errors
for almost each ε. In the case of the laplacian, the only reliable choice is P = 2.
The choice P > 2 is not possible since the number of monomials m = (P+2

P ) is
larger than the number of nodes n.

The same principle applies to the case n = 13 where P = 3 is the best choice
for both errors, while P = 2 is also a reasonable choice. In the case n = 19 the
best choice is again obtained for the highest degree P = 4 which can be employed,
followed by P = 3.

The second set of numerical results is reported in Figure 3.4 where convergence
tests are carried out by gradually reducing the spacing s starting from s0 = π/4.
A non-stationary interpolation is employed, i.e., the shape factor ε = 2 is kept
constant and it is not rescaled with the spacing s. The non-stationary interpolant
maintains its smoothness regardless of the spacing s, allowing the convergence of
the process. Ill-conditioning instabilities arise when the spacing decreases under a
certain threshold value, precluding possible applications where a small spacing is
required.

In the case n = 7 for the partial derivative, the choices of no polynomial aug-
mentation and P = 0 perform equally, as well as P = 1 and P = 2. Instabilities
appear below the threshold spacing for which s · ε = 2s ≈ 3 · 10−3 in the cor-
responding graph of Figure 3.3. The order of accuracy pE, defined by an error
proportional to spE , is 2 for each P . In the case of the laplacian, pE is also approx-
imately 2 except for P = 2 which shows a slower decrease, but with smaller errors
than any other P until the threshold spacing is reached. Similar behaviours are
found in the remaining cases, where the increase of P is followed by a reduction of
the absolute value of both errors without an increase in the order pE. For example,
the case n = 19 is characterized by pE ≈ 4 for the partial derivative and pE ≈ 3
for the laplacian, regardless of the employed polynomial degree P . Approximately,



rbf-fd method 59
n

=
7

10!3 10!2 10!1 100 101

s " "

10!8

10!7

10!6

10!5

10!4

10!3

10!2

10!1

jg
x
(x

1
)
!

f x
(x

1
)j

No polynom.
P = 0
P = 1
P = 2

10!3 10!2 10!1 100 101

s " "

10!8

10!6

10!4

10!2

100

102

jr
2
g
(x

1
)
!

r
2
f
(x

1
)j

No polynom.
P = 0
P = 1
P = 2

n
=

13

10!3 10!2 10!1 100 101

s " "

10!8

10!7

10!6

10!5

10!4

10!3

10!2

10!1

jg
x
(x

1
)
!

f x
(x

1
)j

No polynom.
P = 1
P = 2
P = 3

10!3 10!2 10!1 100 101

s " "

10!8

10!6

10!4

10!2

100

102

jr
2
g
(x

1
)
!

r
2
f
(x

1
)j

No polynom.
P = 1
P = 2
P = 3

n
=

19

10!3 10!2 10!1 100 101

s " "

10!8

10!7

10!6

10!5

10!4

10!3

10!2

10!1

jg
x
(x

1
)
!

f x
(x

1
)j

No polynom.
P = 1
P = 3
P = 4

10!3 10!2 10!1 100 101

s " "

10!8

10!6

10!4

10!2

100

102

jr
2
g
(x

1
)
!

r
2
f
(x

1
)j

No polynom.
P = 1
P = 3
P = 4

Figure 3.3: Influence of the shape factor ε on the interpolation error for the partial
derivative w.r.t. x (left) and for the laplacian (right), 2D case, s = π/64.
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Figure 3.4: Convergence curves for the partial derivative w.r.t. x (left) and for the
laplacian (right), 2D case, non-stationary interpolation (ε = 2).
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Figure 3.5: Convergence curves for the partial derivative w.r.t. x (left) and for the
laplacian (right), 2D case, stationary interpolation (s · ε = 0.1).
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pE increases in steps of 1 going from n = 7 to n = 13 to n = 19 for both the first
derivative and the laplacian.

The third set of numerical results is reported in Figure 3.5 where convergence
tests are carried out with a stationary interpolation. In stationary interpolation
the shape factor is rescaled with the spacing as s · ε = constant in order to avoid
the instabilities arising for small spacing s. Therefore, the smaller the spacing s,
the larger the shape factor and the sharper the MQ basis functions. This can lead
to stagnation errors, i.e., errors failing to decrease to zero under continuing spacing
reduction [32], as reported in the case of n = 7 for low polynomial degrees P . This
phenomenon occurs because the smooth function which is interpolated can not be
approximated by increasingly sharper MQ basis functions, which may also cause
the divergence in the approximation of the derivatives as reported in the case of
the laplacian for n = 7 and no polynomial augmentation or P = 0. However, this
problem can be solved by the polynomial augmentation if P ≥ 1 in the case of the
partial derivative and P ≥ 2 in the case of the laplacian, as shown in Figure 3.5.

The constant for the shape factor rescaling is chosen to be s · ε = 0.1 since it is
a reasonably small value while it is sufficiently larger than the threshold value at
which instabilities occur for all the cases n = 7, 13, 19, Figure 3.3. The convergence
curves shown in Figure 3.5 highlight the increase of the order of accuracy pE when
P is increased, while the instabilities for small spacing are no longer present (the
instabilities for n = 19 and P = 4 are due to machine precision errors in the final
computation of the derivatives and are not due to an ill-conditioned interpolation
matrix).

When P ≥ 2, the order of accuracy is pE = P for the partial derivative and
pE = P − 1 for the laplacian, as expected.

In the 3D case, the test function is:

f(x, y, z) = cos(x) cos(y) cos(z) (3.26)

The interpolation nodes are displaced in a HCP node arrangement (see Section
2.1) with spacing s and perturbed with random displacements in the order of
s/10. The nodes are then shifted in order to position the first node at x1 =
(π/8, π/8, π/8)T , while the n nodes closest to x1 are chosen as interpolation nodes.
Similarly to the 2D case, the error for the partial derivative ∂/∂x and for the
laplacian ∇2 at the central node x1 are chosen to measure the accuracy of the
interpolation g.

The chosen values for the number of neighbours is n = 13, 21, 39. These choices
are due to the HCP node arrangement where each node has 12 nearest neighbours
at distance s, 8 more neighbours at distance less than

√
8/3s (6 at distance

√
2s

and 2 at distance
√

8/3s) and 18 more neighbours at distance
√

3s, corresponding
to the choices n = 13, 21, 39, respectively, which includes the central node. For
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Figure 3.6: Influence of the shape factor ε on the interpolation error for the partial
derivative w.r.t. x (left) and for the laplacian (right), 3D case, s = π/64.
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Figure 3.7: Convergence curves for the partial derivative w.r.t. x (left) and for the
laplacian (right), 3D case, non-stationary interpolation (ε = 2).
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Figure 3.8: Convergence curves for the partial derivative w.r.t. x (left) and for the
laplacian (right), 3D case, stationary interpolation (s · ε = 0.1).
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Figure 3.9: Interpolation nodes (local support) near the boundary Γ.

these values n = 13, 21, 39 the maximum allowable degree for the augmented
polynomial is P = 2, 3 and 4, respectively.

The influence of the shape factor is reported in Figure 3.6, while the results of
the convergence tests are reported in Figures 3.7 and 3.8 for the non-stationary
and the stationary interpolations, respectively. The remaining parameters are
the same of the 2D case: spacing s = π/64 in the study of the influence of ε,
initial spacing s0 = π/4 in the convergence tests, ε = 2 in the non-stationary
interpolation, s · ε = 0.1 in the stationary interpolation.

The results are very similar to the 2D ones in the corresponding cases: in
the non-stationary convergence, Figure 3.7, the order of accuracy pE increases
approximately in steps of 1 going from n = 7 to n = 13 to n = 19 for both the first
derivative and the laplacian, while in the stationary convergence, Figure 3.8, the
order of accuracy for P ≥ 2 is pE = P for the partial derivative and pE = P − 1
for the laplacian, as expected.

Influence of nB. In the 2D case the influence of the number of boundary nodes
nB is studied by considering the same numerical setup employed in the previous
2D studies where the test function f was expressed by Eq. (3.25). The employed
node arrangement is depicted in Figure 3.9 where the evaluation node x1 is near
the boundary Γ, while the nB boundary nodes are also chosen between the nearest
neighbours of x1. Random displacements in the range s/10 are again applied to
this hexagonal arrangement. Since no nodes are available outside the boundary,
more interpolation nodes have to be considered in the opposite direction and the
local support is neither symmetric nor centered around x1 any longer.

The chosen numbers of interpolation nodes are again n = 7, 13, 19 and the cor-
responding polynomial degrees are chosen to be P = 2, 3, 4, respectively. Dirichlet
and Neumann BCs have been chosen as meaningful conditions at the boundary
nodes. Dirichlet BCs do not affect the interpolation system without BCs expressed
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Figure 3.10: Influence of the number of boundary nodes nB on the interpolation error
for the partial derivative w.r.t. x (left) and for the laplacian (right), 2D case, s = π/64.
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by Eq. (3.9) since the Dirichlet condition is expressed by the identity operator
BH(g) = g in Eq. (3.11), matching the canonical interpolation condition of Eq.
(3.1). Neumann BCs are expressed by BH = −∂/∂y, f̄ = −∂f/∂y in Eq. (3.11),
for which the accuracy of the interpolation is altered with respect to the canonical
interpolation conditions.

Similarly to the previous studies, the influence of the number nB of boundary
nodes on the errors is reported in Figure 3.10 for both the partial derivative with
respect to x and the laplacian. As expected, in each case the errors increase when
Neumann BCs are imposed. It is found that nB = 2 is a good choice for each case.
In the case n = 7 this is the most natural choice since the interpolation support
remains symmetric and centered around x1, while in the cases n = 13, 19 the choice
nB = 2 implies an interpolation support which is increasingly shifted towards the
internal part of the domain. With the choice nB = 2 the reduction of accuracy due
to Neumann BCs amounts to one order of magnitude in absolute value for each
case, while slightly larger reductions are observed for nB > 2, especially in the
case n = 19. However, the choice nB > 2 is also valid and further investigations
are required for the actual applications.

In the 3D case the influence of nB is studied by considering the same numerical
setup employed in the previous 3D studies where the test function f was expressed
by Eq. (3.26). The employed 3D node arrangement is the usual HCP where the
evaluation node x1 is near the boundary Γ, which in this case is the x− y plane,
similarly to the 2D arrangement depicted in Figure 3.9. The nB boundary nodes
are chosen between the nearest neighbours of x1 and random displacements in the
range s/10 are also applied to the nodes. Similarly to the 2D case, there are no
nodes outside the boundary and therefore more interpolation nodes have to be
considered in the opposite direction: the local support is neither symmetric nor
centered around x1 any longer.

The numbers of interpolation nodes are again n = 13, 21, 39 and the corre-
sponding polynomial degrees are P = 2, 3, 4, respectively. Dirichlet and Neumann
BCs have been chosen on the boundary nodes, where Neumann BCs are expressed
by BH = −∂/∂z, f̄ = −∂f/∂z in Eq. (3.11). The influence of the number nB
of boundary nodes on the errors is reported in Figure 3.11 for both the partial
derivative with respect to x and the laplacian. Contrary to the 2D case, the effect
of Neumann BCs is no longer monotone, i.e., errors can be larger or smaller than
the case of Dirichlet BCs, depending upon the specific case. A good choice is
nB = 3 boundary nodes for n = 13 and n = 21, while for n = 39 the choice nB > 3
results in smaller errors and therefore it is preferable. Again, further numerical
investigations on the influence of nB are required in the actual applications.
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Figure 3.11: Influence of the number of boundary nodes nB on the interpolation error
for the partial derivative w.r.t. x (left) and for the laplacian (right), 3D case, s = π/64.
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3.2. RBF-FD

In the previous Section the use of the local RBF interpolant g(x), Eq. (3.7),
provided an approximation for the sought derivative D

(
f(x)

)
as a function of the

vector f of the function f at the n interpolation nodes, Eq. (3.17). If boundary
nodes are present, the corresponding boundary conditions are directly imposed
on the interpolant g(x) and are thus exactly satisfied at the boundary nodes,
regardless of the values f .

In this Section the RBF interpolant and the collocation technique are employed
to discretize a partial differential equation (PDE) in order to obtain a finite ap-
proximation of the PDE which can be solved numerically. The involved partial
derivatives are expressed in terms of the nodal values through the RBF interpolant,
while the collocation technique is used to obtain a pointwise approximation of the
PDE at the nodes only, obtaining a finite number of equations NI which equals
the number of unknown nodal values.

This approach is known as RBF-generated finite difference method (RBF-FD)
since it resembles the classic finite differences approach where the PDE is satis-
fied at the nodes only, using a polynomial interpolation through the neighbouring
nodes. The RBF-FD technique therefore represents a “truly” meshless approach
since approximations are required at the nodes only, without any connectivity in-
formation or integration requirement [71]. These features bring great advantages
over mesh-based methods in terms of geometrical flexibility, making the RBF-FD
method an effective tool for the solution of practical problems.

3.2.1. RBF collocation

Let us consider the following PDE:

D
(
f(x)

)
= q(x) in Ω (3.27a)

BH
(
f(x)

)
= f̄(x) on Γ (3.27b)

where D and BH are linear differential operators while q and f̄ are known functions.
Let us then consider a node distribution X(s) which satisfies the prescribed spacing
function s as defined by Eq. (2.1). X(s) is composed by N = NI + NB nodes:
NI internal nodes lying inside the domain Ω and NB boundary nodes lying on the
boundary Γ. The collocation technique is applied by writing Eq. (3.27a) for each
of the NI internal nodes xi using the RBF approximation expressed by Eq. (3.17)
for the required derivatives:

D
(
g(x)

)
x=xi

= d(xi)
T

{
f
0

}
= q(xi) (3.28)
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for i = 1, . . . , NI and where the global indexing of the nodes is such that the
boundary nodes follow the internal nodes for the sake of simplicity. The basis
functions d for the operator D and the values f are local quantities which refer to
the local support for the node xi. The local support, i.e., the chosen nodes for the
local RBF interpolation, is built by considering the n closest nodes to xi, including
possible boundary nodes which are limited to be the nB ≤ n̄B closest boundary
nodes to xi. The choice n̄B ≥ n implies no limitations on the number of boundary
nodes, while the influence of the values of n and n̄B within the collocation approach
is discussed in the following Subsection.

The boundary conditions expressed by Eq. (3.27b) are directly imposed on
the interpolant g and the corresponding contributions are given by the last nB
components of the vector f in Eq. (3.28), as previously stated in Subsection 3.1.3.
Recalling the explicit form given by Eq. (3.19), the collocation Eq. (3.28) becomes:

nI∑
j=1

fjdj(xi) = q(xi)−
nB∑
k=1

f̄kdnI+k(xi) (3.29)

where the RHS terms are known values while the LHS values fj are unknown.
The compact notation of Eq. (3.29) for each internal node xi can be written

in the following global form, i.e., using the global indexing for the nodes:

Dfg = q−Df̄g (3.30)

where D ∈ RNI×NI is the sparse coefficients matrix, q ∈ RNI is the vector of the
known terms q at the nI internal nodes and D ∈ RNI×NB is the sparse coefficient
matrix for the BCs. fg ∈ RNI is the vector of internal nodal unknowns and
f̄g ∈ RNB is the vector of the known terms f̄ of the BCs at the nB boundary
nodes, Eq. (3.27b), using the global indexing for the nodes.

Eq. (3.30) represents the final linear system which solved for fg gives the nodal
values of the sought solution f . For small size problems, e.g., N < 50, 000 in
2D and N < 10, 000 in 3D, a direct solution through a LU decomposition of
the unsymmetric coefficient matrix D is employed, while for larger problems the
BiCGSTAB iterative solver [97] coupled with an incomplete LU (ILU) factorization
as preconditioner [85] are employed. In this last case the use of more accurate
factorizations than ILU(0), i.e., ILU factorization with 0 level of fill-in, is found to
be an effective choice for which the value of the drop tolerance for the incomplete
factorization has to be optimized case by case. The Cuthill-McKee ordering [19]
is used for the minimization of the bandwidth of the coefficient matrix D. For
stationary problems the relative tolerance for the residual is set to 10−14 in order
to avoid any effect due to convergence errors, while for time-dependent problems
the chosen relative tolerance is 10−10 for 2D and small size 3D problems; for large
size 3D problems the relative tolerance for the residual is set to 10−8.
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3.2.2. Time stabilization

Theoretical considerations

When the RBF-FD technique is used to discretize time-dependent problems, it
is important to ensure that the resulting scheme is stable when integrating in
time. Numerical, non-physical instabilities may arise as a result of the coupling be-
tween the chosen time discretization scheme and the employed space discretization
scheme [54]. With particular reference to CFD problems, stability requirements
due to the time discretization are typically imposed on the time step ∆t and are
assumed to be satisfied.

Numerical instabilities may also arise due to the space discretization only, even
if the stability requirements are satisfied or even in the case where the time is not
discretized, i.e., by the use of the analysis of the associated eigenvalues. This means
that the space discretization leads to a finite dimensional model that possesses
non-physical modes which are not related to the physical behaviour of the system
that is intended to simulate. Therefore these spurious modes appear regardless of
the employed time discretization scheme, showing a typical exponential growth or
decay in time.

In order to clarify this aspect, let us consider the following advection equation
for the variable f :

∂f

∂t
+ u · ∇f = 0 (3.31)

where t is the time and u is the advection velocity which is considered uniform
and constant for the sake of simplicity. Eq. (3.31) therefore represents a trans-
port equation which translates the initial profile f0(x) = f(x, t = 0) without any
modification, i.e., f(x, t) = f0(x− ut).

The application of the RBF-FD discretization to the spatial differential oper-
ator D = u · ∇ of Eq. (3.31) yields the following discrete model:

∂fg
∂t

+ Dfg = −Df̄g (3.32)

where the notation follows the one expressed in Eq. (3.30). If we suppose constant
boundary conditions, i.e., f̄g is constant, Eq. (3.32) with the substitution fg =
f ′ −D−1Df̄g becomes:

∂f ′

∂t
+ Df ′ = 0 (3.33)

which is the transport equation for the deviation f ′ from the equilibrium state
fg = −D−1Df̄g.

The solution of Eq. (3.33) is f ′(t) = e−Dtf ′(0) and it should model a purely
advective phenomenon with constant BCs. The stability of the RBD-FD dis-
cretization therefore depends upon the real part of the eigenvalues λi of D. If
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Re(λi) = 0 for all i, the RBF-FD discretization does not exhibit spurious modes.
If Re(λi) < 0 for some i, the discretization is not stable because of the presence
of diverging spurious modes with exponential growth in time. If Re(λi) ≥ 0 with
the strict inequality for some i, the discretization is stable with some numerical
diffusion because of the presence of converging spurious modes with exponential
decay in time.

The RBF-FD approach as previously presented in this Chapter does not guar-
antee a stable discretization for each type of differential operator D. For example,
the distribution of the eigenvalues of matrix D obtained by the discretization of
the advection Eq. (3.31) on the unit square Ω = [0, 1]2 with a uniform distribution
of N = 2000 nodes is shown in Figure 3.12a. The velocity is u = (1, 0)T , the
left vertical side is the inlet where Dirichlet BCs are imposed, Neumann BCs are
imposed at the horizontal sides while the right vertical side requires no BCs since
it is the outlet. The RBF-FD discretization employs n = 30 local interpolation
nodes, polynomial degree P = 4 and s · ε = 0.4.

The distribution of the eigenvalues in Figure 3.12a reveals an unstable dis-
cretization since there are eigenvalues with negative real part. The eigenvectors
ψ1 and ψNI

associated with λ1 and λNI
, i.e., the eigenvalues with smaller and

largest real part, respectively, are depicted in Figure 3.12b. λ1 is the most unsta-
ble eigenvalue with Re(λ1) = −1.84 and the associated eigenvector ψ1 is large near
the inlet boundary where the RBF-FD stencils have an unsymmetric shape with
downwind orientation, i.e., in the direction of u, giving rise to convective instabili-
ties. λNI

is the most stable and diffusive eigenvalue with Re(λNI
) = 31.99 and the

associated eigenvector ψNI
is large near the outlet boundary where the RBF-FD

stencils have an unsymmetric shape with upwind orientation, i.e., in the opposite
direction with respect to u, which is responsible of the numerical diffusion.

Artificial viscosity

The simplest way to stabilize an unstable discretization is to add a small amount
of artificial diffusion in order to dampen the unstable modes. In the case of the
advection equation Eq. (3.31), it is slightly modified as follows:

∂f

∂t
+ u · ∇f = δ∇2f (3.34)

where δ > 0 is a small constant which has to be chosen in order to stabilize the
discretization without adding unnecessary artificial diffusion, i.e., δ is the minimum
value which guarantees Re(λi) ≥ 0 for all i for the RBF-FD discretization of the
modified advection operator D = u · ∇f − δ∇2f .

The distribution of the eigenvalues of the stabilized discretization is shown
in Figure 3.12a. The effect of the artificial diffusion using the laplacian ∇2 is
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Figure 3.12: (a): eigenvalue distribution for the derivative operator (red) and for the
stabilized derivative (black). (b): eigenvectors associated to the most unstable eigenvalue
at the inlet (ψ1) and to the most diffusive eigenvalue at the outlet (ψNI

); boundary nodes
are coloured in green.

the shift of the eigenvalues towards the diffusive region Re(λ) > 0, implying a
certain amount of numerical diffusion. The amount of this artificial diffusion can
be unacceptable in some case depending upon the type of equation that is intended
to solve. For example, when the advection Eq. (3.31) is integrated over long time
periods, the laplacian stabilization can excessively dampen the low space-frequency
components of the initial profile f0 causing large errors.

Hyperviscosity

Besides the classic laplacian diffusion, other types of artificial diffusion can be
employed. An effective choice is hyperviscosity [35] which employs the powers of
the laplacian ∇2k instead of the laplacian ∇2. This choice is due to the fact that
the powers of laplacian are more effective in smoothing the high space-frequency
components and preserving the low space-frequency components than the simple
laplacian, which is the key element in the damping of unstable modes without
introducing unacceptable numerical diffusion. The advection Eq. (3.31) with
hyperviscosity becomes:

∂f

∂t
+ u · ∇f = δ∇2kf (3.35)

In order to illustrate the smoothing properties of the hyperviscosity, let us
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consider Eq. (3.35) with no advection, i.e., u = 0, for a harmonic component
f = ejωωω·x/s−λt, where ωωω is the vector of spatial frequencies and s a generic spacing.
The resulting decay rate λ is:

λ = δ
‖ωωω‖2k

2

s2k
(−1)k+1 (3.36)

Eq. (3.36) states that the larger k, the faster the decay of high space-frequency
components with respect to the spacing s, i.e., ‖ωωω‖2 = O(1), and the slower the
decay of low space-frequency components, i.e., ‖ωωω‖2 � 1. This implies very low
numerical diffusion for the length scales which carry physical information and
should not be damped, while non-physical spurious modes with frequency compa-
rable to the spacing s are effectively damped. The laplacian diffusion is obtained
when k = 1, for which the decay is proportional to ‖ωωω‖2

2 which shows that low
space-frequency components ‖ωωω‖2 � 1 sustain a non-negligible damping.

Since we want a positive decay λ to be independent upon the spacing s for a
given ωωω, from Eq. (3.36) we can write:

δ̄k := δ
(−1)k+1

s2k
> 0 ⇒ δ = δ̄ks

2k(−1)k+1 (3.37)

where δ̄k > 0 is the specific amount of artificial hyperviscosity and depends upon
the problem and the RBF-FD parameters but not upon the spacing s. Eq. (3.37)
states that the amount δ of artificial hyperviscosity decreases to zero with order 2k
under nodal refining, i.e., increasing the number of nodes. This is another strength
of hyperviscosity with k > 1 since the introduced artificial diffusion decreases
rapidly to zero when the nodal spacing is reduced.

The formulas for the calculation of the powers of the laplacian for the multi-
quadric RBF are reported in Appendix C.

3.2.3. Test cases

In order to assess the numerical properties of the RBF-FD approach for the solution
of 2D/3D CFD problems, several stationary and non-stationary tests are carried
out. The chosen model problem for stationary cases is the Poisson equation which
is representative of steady-state diffusion problems, while the model problem for
non-stationary cases is an advection equation which is representative of convection-
dominated transport phenomena, i.e., convection-diffusion problems where low or
no diffusion is considered. The choice to consider a purely advective model problem
is motivated by the necessity to assess the stability properties of the RBF-FD
approach for time-dependent simulations where no diffusion is considered. These
analyses will allow to develop stable RBF-FD schemes for the simulation of time-
dependent flows which will be presented in Chapter 5.
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The error norm employed for the required comparisons is:

‖u‖ =

√
1

µ(Ω)

∫
Ω

u2 dΩ ≈

√∑nI

i=1 s
D(xi)u2(xi)∑nI

i=1 s
D(xi)

(3.38)

where µ(Ω) is the area/volume of domain Ω and D = 2, 3 is the number of dimen-
sions.

Domains and node distributions. In 2D cases, a circular domain Ω with unit
radius and centered at the origin is considered, while a constant nodal spacing is
employed. In 3D cases, the considered domain Ω is a sphere with unit radius
and centered at the origin, while a constant nodal spacing is employed. The node
distributions are obtained through the node generation techniques presented in
Chapter 2: the DQT (2D) and DOT (3D) algorithms are employed to generate
an initial node distribution which is then refined by the application of k = 100
node-repel iterations. A fixed boundary node distribution is employed in 2D cases,
while the boundary projection technique is employed in 3D cases.

Poisson equation

The Poisson equation is:

∇2f = q(x) (3.39)

for which the differential operator in Eq. (3.27a) is D = ∇2 and the RHS term
q(x) is obtained from the Poisson Eq. (3.39) itself for a given analytical solution
f . Robin boundary conditions are considered, i.e., the differential operator in
Eq. (3.27b) is BH = αf + (1 − α)∂f/∂n and the RHS term f̄ in Eq. (3.27b) is
obtained from the same equation for a given analytical solution f . Dirichlet BCs
are obtained for α = 1 while Neumann BCs are obtained for α = 0.

2D case. The chosen analytical solution is:

f(x, y) = sin(πx) sin(πy) (3.40)

The influence of the number of the interpolation nodes n on the norm of the
absolute error g − f and on the norm of the discretization error for the laplacian
is shown in Figure 3.13 for polynomial degrees 2 ≤ P ≤ 5, N ≈ 10, 000 nodes
and s · ε = 0.1. The discretization error is ∇̃2f − ∇2f where ∇̃2 is the RBF-FD
discretized laplacian operator. The minimum number of interpolation nodes using
a polynomial augmentation with degree P is n ≥ m = (P+2

P ) which is the number
of the polynomial basis functions in 2D.
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The curves for both errors in Figure 3.13 show that for a given polynomial
degree P the increase of the number of interpolation nodes from n = m is initially
followed by a strong decrease of the error, while larger n do not bring any significant
improvement. For this Poisson problem is therefore convenient to employ n =
15, 20, 25, 35 interpolation nodes for p = 2, 3, 4, 5, respectively.

An important difference between the absolute error and the discretization error
can be observed in Figure 3.13: the discretization error exhibits a monotonic
decrease with the polynomial order P whereas the decrease of the absolute error
is discontinuous since the curves for P = 2, 3 are very similar, as well as for the
curves for P = 4, 5.

The influence of the shape factor ε is reported in Figure 3.14 for the values
10−3 < s · ε < 1 using the numbers of interpolation nodes n previously chosen
and N ≈ 10, 000 nodes. As expected, the errors decrease for increasingly flat
RBFs, i.e., ε→ 0, until the numerical errors due to the increasingly ill-conditioned
interpolation matrix become significant. The optimal values for s·ε lie in the range
[0.01, 0.1], while reliable values can be chosen in the range [0.05, 0.5].

The results of the convergence studies, i.e., increasing the total number of nodes
N , are shown in Figure 3.15 using the stationary interpolation for which s · ε is
kept constant for each P . Similarly to the previous observations, the convergence
curves for the absolute error g − f in Figure 3.15a do not exhibit a monotonic
decrease when P is increased: the increase from P = 2 to P = 3 and from P = 4
to P = 5 does not improve neither the absolute error nor the order of accuracy pE
which is pE ≈ 2 for P = 2, 3 and pE ≈ 4 for P = 4, 5. This observation does not
hold for the convergence curves of the discretization error in Figure 3.15b, showing
an order accuracy pE ≈ P − 1 as expected.

The influence of the refinement iterations k in the node-repel phase of the node
generation process is shown in Figure 3.16 for both errors and N ≈ 10, 000 nodes.
The effect of the iterations k is very limited in each case with non-negligible effects
only for P = 2. These graphs show that in this stationary case the accuracy of
the RBF-FD discretization is unaffected by the quality of the node distribution,
especially when large stencils n with high degree polynomials are employed.

The last influence analysis regards the effects of the parameter α defining the
Robin boundary conditions. The results for α ∈ [0, 1] are reported in Figure 3.17
for both errors and N ≈ 50, 000 nodes. The decrease of α, i.e., moving towards
Neumann BCs, results in a significant deterioration of the solution, Figure 3.17a,
especially in the case P = 5, n = 35 where the accuracy of the solution is reduced
by almost three orders of magnitude. As expected, Figure 3.17b shows a limited
effect of α on the discretization error since the deterioration of the accuracy occurs
at the boundary only.
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Figure 3.13: Influence of the number of interpolation nodes n on the errors: (a)
solution, (b) laplacian. 2D case, s · ε = 0.1, N ≈ 10, 000 nodes.
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Figure 3.14: Influence of the shape factor ε on the errors: (a) solution, (b) laplacian.
2D case, N ≈ 10, 000 nodes.

3D case. The chosen analytical solution is:

f(x, y, z) = sin(πx) sin(πy) sin(πz) (3.41)
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Figure 3.15: Convergence curves for (a) solution and (b) laplacian. 2D case, s·ε = 0.05
for P = 2, s · ε = 0.075 for P = 3 and s · ε = 0.1 for P = 4, 5.
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Figure 3.16: Influence of the number of refinement iterations k on the errors: (a)
solution, (b) laplacian. 2D case, N ≈ 10, 000 nodes, s · ε = 0.05 for P = 2, s · ε = 0.075
for P = 3 and s · ε = 0.1 for P = 4, 5.

The influence of the number of the interpolation nodes n on the norm of the
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Figure 3.17: Influence of the boundary condition BH(g) = αg + (1− α)∂g/∂n on the
errors: (a) solution, (b) laplacian. 2D case, N ≈ 50, 000 nodes, s · ε = 0.05 for P = 2,
s · ε = 0.075 for P = 3 and s · ε = 0.1 for P = 4, 5.

absolute error g − f and on the norm of the discretization error for the laplacian
is shown in Figure 3.18 for polynomial degrees 2 ≤ P ≤ 5, N ≈ 50, 000 nodes and
s · ε = 0.2. The minimum number of interpolation nodes using a polynomial aug-
mentation with degree P is n ≥ m = (P+3

P ) which is the number of the polynomial
basis functions in 3D.

Similarly to the 2D case, the curves for the absolute error in Figure 3.18a show
that for a given polynomial degree P the increase of the number of interpolation
nodes from n = m is initially followed by a strong decrease of the error, while
for P = 5 this effect is not evident because the cases m < n < 64 have not
been calculated due to issues with the ILU factorization. The curves for the
discretization error in Figure 3.18b also reveal a positive effect of the increase of
the stencil size n for a given polynomial degree P , although less evident. In this
case it is therefore convenient to employ n = 30, 35, 55, 80 interpolation nodes for
p = 2, 3, 4, 5, respectively.

The influence of the shape factor ε is reported in Figure 3.19 for the values
10−3 < s · ε < 1 using the numbers of interpolation nodes n previously chosen and
N ≈ 50, 000 nodes. The errors decrease for increasingly flat RBFs as predicted by
the RBF theory, while the deterioration effect due to the ill-conditioned interpo-
lation matrix for smaller values of s · ε has not been calculated because it resulted
in convergence issues also. The optimal values for s · ε lie in the range [0.01, 0.1],
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Figure 3.18: Influence of the number of interpolation nodes n on the errors: (a)
solution, (b) laplacian. 3D case, s · ε = 0.2, N ≈ 50, 000 nodes.
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Figure 3.19: Influence of the shape factor ε on the errors: (a) solution, (b) laplacian.
3D case, N ≈ 50, 000 nodes.

while reliable values can be chosen in the range [0.05, 0.5], which is the same range
employed in the 2D case.
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Figure 3.20: Convergence curves for (a) solution and (b) laplacian. 3D case, s · ε = 0.1
for P = 2, 3; s · ε = 0.2 for P = 4, 5.

The results of the convergence studies are shown in Figure 3.20 using the
stationary interpolation for which s · ε is kept constant for each P . Similarly to
the 2D case, the convergence curves for the absolute error g−f in Figure 3.20a do
not exhibit a monotonic decrease when P is increased. The increase from P = 2
to P = 3 and from P = 4 to P = 5 does not improve neither the absolute error
nor the order of accuracy pE which is pE ≈ 3.5 for P = 2, 3 and pE ≈ 5 for
P = 4, 5. Again, this observation does not hold for the convergence curves of the
discretization error in Figure 3.20b which reveals a monotonic increase of the order
of accuracy pE with P , going from pE ≈ 2.3 for P = 2 to pE ≈ 4.6 for P = 5.

The last influence analysis for the 3D Poisson equation regards the effect of the
node-repel refinement iterations k on the errors. The results for both errors and
N ≈ 10, 000 nodes are shown in Figure 3.21, revealing a slightly difference with
respect to the 2D case. In each of the reported cases, the application of the first
k = 10 iterations results in non-negligible improvements, probably because of the
boundary projection technique employed in the 3D refinement phase only. In the
case P = 5 it has been found that the limitation of the number of boundary nodes
nB < n̄B = 10 in the RBF-FD discretization resulted in a decreased sensitivity to
the node distribution. The effects of this boundary limitation can be observed in
Figure 3.21 where this strategy is denoted by (B).

Anyway, the effects of the node-repel iterations are limited and the RBF-FD
approach proves to be robust also in this 3D stationary case.
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Figure 3.21: Influence of the number of refinement iterations k on the errors: (a)
solution, (b) laplacian. 3D case, N ≈ 10, 000 nodes, s · ε = 0.1 for P = 2, 3; s · ε = 0.2
for P = 4, 5.

Advection equation

The advection Eq. (3.31) is here considered in the stabilized version with hyper-
viscosity as expressed by Eq. (3.35):

∂f

∂t
+ u · ∇f = δ∇2kf (3.42)

where δ = δ̄ks
2k(−1)k+1 and δ̄k has to be found in order to guarantee the stability

while minimizing the numerical diffusion. A rotational field around the z axis is
considered for the advective velocity which is u = (−y, x)T in the 2D case and
u = (−y, x, 0)T in the 3D case.

The following gaussian wave is chosen for the initial profile:

f0(x,x0) = e−50‖x−x0‖22 (3.43)

where x0 = (0.3, 0)T in the 2D case and x0 = (0.3, 0, 0)T in the 3D case. The
analytical solution is therefore given by f(x, t) = f0(x,x0(t)) where x0(t) = 0.3 ·
(cos t, sin t)T in the 2D case and x0(t) = 0.3 · (cos t, sin t, 0)T in the 3D case.

The differential operator in Eq. (3.27a) for the stabilized advection equation
is D = u · ∇− δ∇2k and the RHS term is q(x) = 0. Dirichlet boundary conditions
are employed on the circular/spherical boundary. Since the maximum value of the
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Figure 3.22: Influence of the number of refinement iterations k on the real part of the
most unstable eigenvalue of D with N ≈ 2000 nodes, 2D case.

employed gaussian profile at the boundary is 2 × 10−11, it is approximated by a
zero-valued Dirichlet BC with negligible errors.

With the previous assumptions, the RBF-FD discretization of Eq. (3.42) leads
to the following vector equation:

∂fg
∂t

+ Dfg = 0 (3.44)

Before moving on to the time discretization, it is useful to understand how the
quality of the node distribution affects the stability of the discretization for this
non-stationary problem without any stabilization, i.e., δ = 0. This effect can be
quantified by studying the influence of the node-repel refinement iterations k on
the real part of the most unstable eigenvalue λ1 of the coefficient matrix D, i.e., the
eigenvalue with the smaller real part. The results for the 2D case with N ≈ 2000
nodes and for two values s · ε = 0.1 and s · ε = 0.4 for the RBF-FD discretization
are reported in Figure 3.22.

The curves for s · ε = 0.1, Figure 3.22a, indicate no clear influence of k on the
stability, while in the case s · ε = 0.4, Figure 3.22b, there is a significant stability
improvement in each case since Re(λ1) is significantly increased after the first
k = 20−40 iterations. Regardless of the influence of the refinement iterations, the
case s · ε = 0.1 is “more unstable” than the case s · ε = 0.4 since the values Re(λ1)
are smaller in the former case. These observations are confirmed by numerical
experiments where discretizations with s · ε < 0.1 are found extremely unstable,



rbf-fd method 85

while the node-repel iterations are found to enhance the stability with larger shape
factors, e.g., s · ε = 0.4 which is chosen for the following computations.

The time discretization is obtained by integrating Eq. (3.44) over a time step
∆t using a third order approximation for the term Dfg:

f (n+1)
g − f (n)

g + ∆tD
(
β1f

(n+1)
g + β2f

(n)
g + β3f

(n−1)
g

)
= 0 (3.45)

where n is the time level and the weights βi are β1 = 5/12, β2 = 8/12, β3 = −1/12.
The integration is performed over a single revolution with period T = 2π

using 3000 time steps ∆t = 2π/3000 which are sufficiently small to avoid any
appreciable time discretization error. Three cases k = 1, 2, 3 for the hyperviscosity
are considered, corresponding to the stabilization terms ∇2,∇4,∇6. The specific
amount of hyperviscosity δ̄k defined in Eq. (3.37) is found in each case by trial
and error in order to prevent the appearance of unstable modes over the whole
revolution for small number of nodes N ≈ 5000. This value is kept constant for
each specific discretization approach, i.e., for a given P and n, while the scaling
with the number of nodes N follows Eq. (3.37) resulting in an artificial diffusion
which decreases to zero with order 2k.

2D case. Figure 3.23 shows the results in the case P = 2 and n = 20 interpo-
lation nodes. The time histories of the norm of the absolute errors g − f over the
revolution period T are depicted in Figure 3.23a for N ≈ 100, 000 nodes, where
the specific amount of hyperviscosity is δ̄1 = 25 for k = 1, δ̄2 = 15 for k = 2 and
δ̄3 = 20 for k = 3. The initial growth of the error is due to the initial gaussian
shape, while the employment of the k = 2 hyperviscosity leads to a significant
reduction of the error because of the reduced artificial diffusion. The use of the
k = 3 hyperviscosity does not improve the solution since the totality of the error is
now due to the RBF-FD discretization with P = 2. This behaviour is confirmed by
the convergence curves at t = T , i.e., after a whole revolution, which are depicted
in Figure 3.23b. The k = 1 hyperviscosity (laplacian) introduces a lot of numerical
diffusion which enters the asymptotic regime only for N & 100, 000 (

√
N ≈ 300).

The k = 2 and k = 3 hyperviscosities differ only for small N since their diffusive
effect rapidly decrease to zero with order 4 and 6, respectively. The convergence
curve for k = 3 is therefore representative of the advective RBF-FD discretization
error only, having order pE ≈ 2 as expected.

Figure 3.24a shows the convergence curves for the k = 3 hyperviscosity and dif-
ferent polynomial degrees 2 ≤ P ≤ 5. The chosen number of interpolation nodes n
is slightly larger than the recommended values presented in the 2D stationary case
in Subsection 3.2.3 since this choice resulted in slightly more stable discretizations.
The specific amount of hyperviscosity is δ̄3 = 20 for P = 2, δ̄3 = 10 for P = 3,
δ̄3 = 5 for P = 4 and δ̄3 = 3.5 for P = 5. Since 2k = 6 > P in each case, i.e.,
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Figure 3.23: Time history of the error norm forN ≈ 100, 000 nodes (a) and convergence
curves at t = T (b) for polynomial degree P = 2, n = 20 interpolation nodes, s · ε = 0.4,
2D case. k is the power of the laplacian for the hyperviscosity ∇2k = ∆k.
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Figure 3.24: Convergence curves at t = T for (a) hyperviscosity ∇6 (k = 3) and (b)
different combinations of hyperviscosity and polynomial degree, 2k ≥ P . 2D case.

the order 2k of the hyperviscosity is higher than the polynomial degree P , it is
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Figure 3.25: Time history of the error norm forN ≈ 100, 000 nodes (a) and convergence
curves at t = T (b). 3D case, s · ε = 0.4, k = 3 hyperviscosity (∇6).

expected that the convergence curves are representative of the advective RBF-FD
discretization errors only. The obtained orders of accuracy are pE ≈ 2 for P = 2,
as expected, pE ≈ 4 for P = 3, 4 and pE ≈ 6 for P = 5.

Figure 3.24b shows the convergence curves for various combinations of polyno-
mial order P and and hyperviscosities k, 2k ≥ P . The cases 2k < P make no sense
for convergence studies since a larger order of the artificial hyperviscosity 2k than
the polynomial order P would introduce asymptotic diffusion errors. The curve
P = 2, k = 1 is discussed before and it is reported for comparison. The increase
from P = 3 to P = 4 with k = 2 does not bring any improvement, as reported
in Figure 3.24a for k = 3, as well as for the increase from k = 2 to k = 3 for the
same degree P = 4. A further increase from P = 4 to P = 5 with k = 3 leads to
an increase in the order of accuracy from pE ≈ 4 to pE ≈ 6.

The comparison of the previous convergence curves therefore suggests that a
good strategy is to employ hyperviscosities with 2k > P for which the stabilizing
effect allows the use of high polynomial degrees P , e.g., up to P = 5 in these tests,
for the solution of non-stationary problems with very low artificial diffusion.

3D case. In this case no stability analysis is carried out with respect to the
shape factor ε and the same value s ·ε = 0.4 employed in the 2D case is considered
here. Polynomial degrees P = 2, 3, 4, 5 are considered, for which the corresponding
number of employed interpolation nodes is n = 30, 40, 60, 85, respectively. Simi-



88 conclusions

larly to the 2D case, these values n are slightly larger than the recommended values
presented in the 3D stationary case in Subsection 3.2.3 since this choice resulted
in slightly more stable discretizations. A stabilization through hyperviscosity with
k = 3, i.e., ∇6, is employed since negligible numerical diffusion was obtained in
the 2D case.

The time histories of the norm of the absolute errors g− f over the revolution
period T are depicted in Figure 3.25a for N ≈ 100, 000 nodes. The specific amount
of hyperviscosity which has been employed is δ̄3 = 1.25 for P = 2, δ̄3 = 0.5 for
P = 3 and δ̄3 = 0.4 for P = 4 and P = 5. Since the artificial diffusion due to
the k = 3 hyperviscosity can be assumed to be negligible, the growth of the error
curves in Figure 3.25a is only due to the RBF-FD discretization errors which show
a monotonic decrease when P is increased from P = 2 to P = 5.

The corresponding convergence curves at t = T , i.e., after a whole revolution,
are depicted in Figure 3.25b and reveal that the asymptotic regime is only par-
tially reached (the maximum number of nodes is N ≈ 150, 000). Nonetheless, the
increase of P is followed by a monotonic increase of the order of accuracy pE,
especially going from P = 2 (pE ≈ 1.3) to P = 4 (pE ≈ 4.8), while the accuracy in
the case P = 5 is very similar to the case P = 4. Since the asymptotic regime is
not fully reached, the case P = 5 is expected to outperform the case P = 4 when
larger number of nodes N > 150, 000 are considered.

3.3. Conclusions

In this chapter the RBF-FD approach is presented and several 2D/3D test cases
are considered in order to highlight the numerical properties of this meshless ap-
proach. In particular, a stationary diffusion equation (Poisson equation) and a
non-stationary transport equation (advection equation) are considered as model
problems in order to assess the accuracy of the RBF-FD discretizations for which
the influence of the discretizations parameters is thoroughly investigated.

The findings presented in this chapter represent an important basis on which
to rely when facing more complex problems which are characterized by a diffusive
component and an advective component, e.g., the incompressible Navier-Stokes
equations.



Chapter 4

Multicloud techniques

In the case of linear or linearized PDEs, the linear system arising from the RBF-FD
discretization presented in Chapter 3, Eq. (3.30), is characterized by a large, sparse
and unsymmetric coefficient matrix. For small problem sizes, e.g., N < 50000 in
2D and N < 10000 nodes in 3D, the direct solution through a LU factorization
[85] can be employed, while large size problems require the use of iterative meth-
ods in order to overcome the limitations of direct methods regarding memory and
computing time requirements. A typical choice [4] for an iterative approach is the
BiCGSTAB method [97] with an incomplete LU factorization (ILU) as precondi-
tioner [85]. When the size of the problem becomes very large, e.g., N > 106, even
this choice can be prohibitive in terms of both time and memory consumption, and
therefore more efficient solvers have to be used. In order to achieve such desired
convergence acceleration, the basic concepts of multigrid (MG) methods [78] are
in this Chapter extended to the linear systems arising from RBF-FD discretization
of a 2D Poisson equation in the case of n = 7 interpolation nodes. We use the
name multicloud (MC) for the developed techniques since the multilevel approach
is coupled to the meshless discretization and data structure. The multicloud de-
nomination is also used by Katz and Jameson [55] to define meshless coarse-level
operators within a similar multilevel approach.

Although algebraic multigrid (AMG) [94, 95] could be employed with RBF-FD
discretizations since it operates at equation level without any additional geomet-
rical information (“black box” matrix solver), it is useful to develop simple MC
approaches which are specifically designed and tuned for the RBF-FD discretiza-
tions. This is of utmost importance for the use of the RBF-FD approach in large
scale problems.

The working principle of the MG approach, formally defined in the paper of
Brandt [9], is to optimally reduce the various frequency components of the error
on a hierarchy of coarser grids by means of proper interpolation/restriction and
smoothing operators. The key idea behind this working principle was somehow
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previously discovered by some authors that implicitly introduced a two-level cor-
rection which is the foundation of the recursive definition of the MG algorithm.
Southwell [92] proposed block/group relaxations for mechanical frameworks and
stated that such techniques are “almost essential to practical success”. Stiefel [93]
proposed an analogous block relaxation for a FD discretization of a Poisson prob-
lem and observed that the steepest descent for the quadratic function of residuals
is equivalent to impose zero-mean residuals on the block, i.e., the summation of
block equations; it is then suggested to use smaller blocks within the starting block,
i.e., a MG approach. Fedorenko [27, 28] formalized the first correction scheme with
a two-level FD discretization of a 2D Poisson problem and bilinear interpolation.
De la Vallee Poussin [20] obtained an additive block correction strategy from the
case of a FD discretized heat conduction problem with internal “slots” with infi-
nite thermal conductivity and reported convergence acceleration also for the case
of constant thermal conductivity, while Settari and Aziz [91] formalized a general
additive correction strategy showing its feasibility to practical problems.

Even after the formalization of the MG approach, many additive correction MG
approaches have been proposed and employed to solve practical problems [6–8, 49]
because of their easy implementation, since the involved interpolation/restriction
operators are given by piecewise constant functions. Another slightly more com-
plex, but still simple choice, for interpolation/restriction operators is given by
smoothing the piecewise constant operators using the problem equations them-
selves [98–101]. These two types of AMG are particularly attractive for meshless
applications because of their ease of implementation, independence upon geometric
discretization and because they require only a single fine-grid discretization.

The application of MG principles to meshless methods has been previously
investigated only with a limited number of works: Leem, Oliveira and Stewart
[66] studied the application of AMG with smoothed transfer operators to a Pois-
son problem discretized with the Reproducing Kernel Particle Method (RKPM).
Seibold [90] studied the same problem with AMG but using a Generalized Finite
Difference Method (GFDM). More recently, Katz and Jameson [55] developed a
multigrid technique with meshless transfer operators at coarse levels, and called it
multicloud (MC).

The work presented in this Chapter regards the extension of the multigrid so-
lution approach to RBF-FD meshless methods in the case of straight additive cor-
rection and smoothed transfer operators strategies. Such strategies are employed
to develop two simple MC techniques: additive correction multicloud (ACMC)
and smoothed restriction multicloud (SRMC) which differ for the type of restric-
tion strategy only. In ACMC the restriction operator is piecewise constant over
the restriction support while in SRMC it is smoothed from constant by applying
one Jacobi iteration using the problem equations themselves, resulting in an in-
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creased support size. The implementation of such procedures is very simple and
straightforward within the RBF-FD meshless data structure. Both techniques can
be used as standalone solvers and as preconditioners for iterative solvers such as
BiCGSTAB, allowing the convergence acceleration in the case of RBF-FD dis-
cretizations of a 2D Poisson equation.

A particular attention is given to the study of the factors influencing the con-
vergence properties of the proposed MC approaches. Tests are carried out with
two different complex-shaped domains and different boundary conditions for a 2D
Poisson equation in order to assess the characteristics of the developed techniques
from a practical point of view, in the simple case of a multiquadric RBF-FD
discretization with n = 7 interpolation nodes and linear polynomial augmentation
P = 1. High benefits in terms of savings in computing time and amount of work to
convergence have been achieved when compared to a standard BiCGSTAB solver
with ILU preconditioning in the case of large number of nodes, e.g., N ≈ 105−106.
The coupling of the developed MC algorithms with a classical iterative solver such
as BiCGSTAB allows additional gains in the performances and in the reduction of
the sensitivity to MC parameters.

4.1. Domains, node distributions, BCs and

analytical solutions

Two complex shaped domains are employed in order to demonstrate the applica-
tion of the proposed MC techniques to practical problems which are characterized
by complex geometries and non-trivial node arrangements. The introduction of
the domains is required here because preliminary analysis will be carried out in
the following Section 4.3 (stencil positivity).

4.1.1. Case 1

Geometry The geometry of the domain Ω is a circle with Ng = 8 periodical
angular grooves, as depicted in Figure 4.1a together with the coordinate system.
The ratio Ri/Re between the internal and the external radii of the grooves has
been chosen to be 0.8.

Node distributions The following spacing function s(x) is employed for the
generation of node distributions over this domain:

sM
s(x)

= 1 + r̄2 2− cos(2Ngϑ)

3

[
1 + kE exp

(
− kS(r̄ − r̄S)2

)]2

(4.1)
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Figure 4.1: Case 1: geometry (a), analytical solution (b), example of node distribution
with N ≈ 104 nodes (c) and a snapshot of the particular part P of the domain (d).

where sM is the maximum spacing function over the domain, r̄ = r/Ri is the
dimensionless radius, kE = 0.75, kS = 50 and r̄S = 1 − (1 + kE)/(2kEkS). The
ratio between the maximum and the minimum nodal spacing is sM/sm ≈ 4. An
example of node distribution with N ≈ 104 nodes is displayed in Figure 4.1c. A
snapshot of the particular part P of the node arrangement in the neighbourhood
of a corner is displayed in Figure 4.1d.

Boundary conditions Dirichlet BCs on the whole boundary Γ are considered.
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Analytical solution The following analytical solution is used for BCs and
for the definition of the error norms:

f(x) = r̄3
[
2− cos(2Ngϑ)

][
1 + kE exp

(
− kS(r̄ − r̄S)2

)]3

(4.2)

A graphical representation of this analytical solution is reported in Figure 4.1b,
after scaling it to the interval [0, 1].

4.1.2. Case 2

Geometry The domain Ω is implicitly defined as the set {x ∈ R2 : G(x) ≥ 0}
where G is defined as:

G(x) =
2

3

[
cos(6πx) cos(6πy)− 2(x4 + y4)2 +

1

2

]
(4.3)

The geometry of such complex shaped domain with multiple holes is depicted
in Figure 4.2a together with the coordinate system. The boundary Γ is simply
given by the level set G(x) = 0.

Node distributions The spacing function s(x) employed for the generation of
node distributions over this domain is:

s(x) = sM

[
1 + kGG

2(x)
]

(4.4)

where sM is the maximum spacing function over the domain and kG = 3. The ratio
between the maximum and the minimum nodal spacing is sM/sm = 1 + kG = 4.
An example of node distribution with N ≈ 15000 nodes is displayed in Figure
4.2c. A snapshot of the particular part P of the domain is displayed in Figure
4.2d, showing the node arrangement in the neighbourhood of a double boundary.

Boundary conditions Two types of BCs have been considered for this domain:

• Case 2Dir: Dirichlet BCs on the whole boundary;

• Case 2Mix: Mixed BCs: Dirichlet BCs on the “external” boundary, Neu-
mann BCs on the boundary of the 40 “internal” holes.

Analytical solution The analytical solution that has been used for BCs and
error norms is simply defined as f(x) = G(x). A graphical representation of this
analytical solution is shown in Figure 4.2b, after scaling it to the interval [0, 1].
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Figure 4.2: Case 2: geometry (a), analytical solution (b), example of node distribution
with N ≈ 15000 nodes (c) and a snapshot of the particular part P of the domain (d).

4.2. Model problem and RBF-FD

discretization features

The chosen model problem is the following 2D Poisson equation for which a neg-
ative laplacian is considered in order to deal with positive-definite matrices in the
following:

−∇2f = q(x) (4.5)
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which is subjected to mixed boundary conditions: Dirichlet BCs on the Dirichlet
boundary ΓD and Neumann BCs on the Neumann boundary ΓN .

The required node distributions are obtained through the node generation tech-
niques presented in Chapter 2. The DQT algorithm is employed to generate an
initial node distribution which is then refined by the application of k = 100 node-
repel iterations with a fixed boundary node distribution.

For the sake of simplicity in the development of the MC algorithms, a RBF-FD
discretization with n = 7 interpolation nodes and linear augmentation P = 1, Eq.
(3.7), is considered only.

A non-stationary MQ-RBF interpolation is employed, where the shape factor
is rescaled as:

ε = sM ε̄/s(x̄) (4.6)

where ε̄ is the rescaled shape factor, sM is the maximum prescribed spacing func-
tion on the domain Ω and x̄ is the mean point for each local support as defined
in Subsection 3.1.2. In the non-stationary interpolation the shape factor ε is kept
constant under continuing node refinement, which is the case of Eq. (4.6) since the
ratio sM/s(x̄) is constant for each point regardless of the spacing s, i.e., regardless
of the total number of nodes N .

4.3. Multicloud techniques

In this Section the basic concepts of MG methods are introduced and extended to
the employed RBF-FD discretization in the case of the considered Poisson problem.
The analyses of MG methods are elaborated in [9, 78, 94].

4.3.1. Multigrid

Mathematical formulation

Let us consider the following sparse linear system arising from the employed RBF-
FD discretization of the Poisson Eq. (4.5), which is the case of Eq. (3.30) with
the differential operator D = −∇2:

Df = b (4.7)

The solution of system (4.7) using classical iterative methods, e.g., Jacobi,
Gauss-Seidel, successive over-relaxation (SOR), leads to an efficient reduction of
the high-frequency error components in space, while the low-frequency error com-
ponents are slowly reduced [28]. This property can be seen by considering the
Jacobi iteration:

Mfk+1 = Nfk + b (4.8)
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where M = diag(D) and N = M − D. Let us consider the local, continuous-
space approximation of the previous Jacobi iteration where the vector quantities
are replaced by the corresponding continuous variables:

fk+1 = fk + α(q +∇2fk) (4.9)

where α = O(h2) > 0 with grid spacing h. Then, considering a Fourier component
of the error ek = f − fk = Eke

jωωω·x with ωωω the vector of spatial frequencies, Eq.
(4.9) gives the following convergence factor µ(ωωω):

µ(ωωω) =
∣∣∣Ek+1

Ek

∣∣∣ = 1−O(‖ωωω‖2
2h

2) (4.10)

where O(1) = ωm ≤ ‖ωωω‖2 ≤ ωM = O(h−1) since the realizable frequencies for f on
a given grid lie in the range [ωm, ωM ] on local basis. Therefore, rapidly fluctuating
errors, i.e., ‖ωωω‖2 ≈ ωM , have favourable convergence factors µ � 1, while low-
frequency components, i.e., ‖ωωω‖2 ≈ ωm, are very slowly decaying because µ ≈ 1.
The Jacobi iteration (4.8) acts as an error smoother and thus cannot be used as a
practical single-grid solver for discretizations with a large number of unknowns.

Nevertheless, this smoothing property can be somehow exploited to improve
this iterative method: the application of k smoothing iterations (typically SOR)
leaves only a smooth error ek = f− fk with both geometric and algebraic sense [94]
since the Poisson equation is isotropic and the grid is also assumed to be isotropic.
Then, the linear system (4.7) in terms of error becomes

Dek = b−Duk =: rk (4.11)

which states that the error ek can alternatively be computed from the residual rk.
Since ek is smooth because of the k Jacobi/SOR iterations, it can therefore be
well approximated using a smaller number of meaningful unknowns ẽk through a
suitable interpolation operator IhH :

ek = IhH ẽk (4.12)

The application of a restriction operator IHh to Eq. (4.11) with the smooth ap-
proximation of Eq. (4.12) gives the following coarse grid correction equation:(

IHh DIhH
)︸ ︷︷ ︸

D̃

ẽk = IHh rk︸︷︷︸
r̃k

(4.13)

where D̃ and r̃k are the coarse correction matrix and the coarse residual, respec-
tively.
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Eq. (4.13), solved for ẽk, allows the final coarse grid correction:

f′k = fk + IhH ẽk (4.14)

where f′k is the sought approximation for f obtained by improving fk through the
addition of the coarse grid correction IhH ẽk.

This correction is then followed by further k smoothing iterations needed to
smooth the high-frequency error components introduced by the interpolation op-
erator IhH in Eq. (4.14). If the coarse linear system of Eq. (4.13) is still too large to
be solved directly or by simple iterative methods, the previous two-level approach
can then be recursively applied to the solution of the coarse grid correction system
itself. This iterative approach yields the classical V-cycle MG algorithm [9].

The pseudocode of the V-cycle MG algorithm is given by Algorithm 4, where:

– k is the number of smoothing iterations;

– rI is the iteration multiplier between successive MG levels. rI thus defines
the amount of smoothing work at coarse levels;

– t is the overcorrection factor;

– Smooth(f ,D,b, k, ω) performs k smoothing iterations (e.g., SOR with re-
laxation factor ω) on vector f ;

– NMG is the threshold size for vector f0 under which a direct solution is
calculated.

Algorithm 4 Multigrid

Input: vector f0, matrix D, RHS vector b, parameters k, ω, t, rI
Output: solution f ′′k

1: function Multigrid(f0,D,b, k, ω, t, rI)
2: if size(f0) > NMG then
3: fk ←Smooth(f0,D,b, k, ω)
4: r̃k ← IHh (b−Dfk)
5: ẽk ←Multigrid(0, D̃, r̃k, brIke, ω, t, rI)
6: f ′k ← fk + tIhH ẽk
7: f ′′k ←Smooth(f ′k,D,b, k, ω)
8: else
9: f ′′k ← D−1b

return f ′′k
10: end function
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Transfer operators

The performances of MG methods depends upon the choice for the transfer op-
erators between MG levels, i.e., interpolation IhH and restriction IHh , and their
interaction with the smoothing operator. A recommended choice [94] is:

IHh = (IhH)T (4.15)

which states that the restriction is obtained from interpolation in order to fulfill
variational principles [94]. With this choice the sign definiteness and symmetry
(if any) of the coarse matrix D̃ = (IhH)TDIhH are maintained between the MG
levels, as well as the squared error energy norm eTkMek = ẽTk M̃ẽk. This condi-
tion is not always respected in the present work in favour of a simpler numerical
implementation.

For second order PDEs such as the Poisson Eq. (4.5), the following condition
has to be satisfied [9] in order to obtain the real MG convergence, i.e., convergence
rate independent from the size of the problem:

rR + rI > 2 (4.16)

where rR and rI are the order of restriction and interpolation operators, respec-
tively. For this reason piecewise linear interpolation (rI = 2), with its transpose
piecewise linear restriction (rR = 2), is very common in geometric MG [78]. Eq.
(4.16) can also be satisfied if only one operator is piecewise linear while the other is
piecewise constant, as suggested by Gjesdal [41] with a piecewise linear restriction
which is easier to implement.

We briefly present two AMG approaches which are particularly attractive for
RBF-FD discretizations because of their simple implementation, independence
upon geometric discretization, low memory requirements and their need of the
fine grid discretization only, i.e., no coarse-level discretizations are needed. There-
fore boundary conditions are needed only at the finest level and do not need any
explicit treatment at the coarse levels.

Aggregation-type MG The simplest AMG approach, also known as aggrega-
tion -type MG or additive correction MG, is given by piecewise constant transfer
operators and it can be implemented very easily. Nonetheless, a straight additive
correction implementation does not produce a true MG convergence for diffusion
problems because of an incomplete reduction of the smooth error components
[7, 94], as reported in Appendix D. This lack of MG convergence is also confirmed
by Eq. (4.16) which is not satisfied since rR = rI = 1 for piecewise constant
transfer operators.
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A partial solution to this problem is overcorrection [7], which amplifies the
coarse grid correction (4.14) with an overcorrection factor t > 1 as follows:

f′p = fp + tIhH ẽp (4.17)

where IhH is piecewise constant. For a Poisson equation the optimal value of t
depends upon the size of the aggregates and therefore it depends upon the specific
geometric discretization.

MG with smoothed transfer operators Instead of overcorrection, it is
possible to overcome the problem of the incomplete reduction of the smooth error
components encountered with the aggregation-type MG by smoothing transfer
operators [98–101]. An under-relaxed homogeneous Jacobi iteration, i.e., with
a relaxation smoothing factor ωS < 1 [28], is applied to the piecewise constant
interpolation using the matrix coefficients D of the problem itself [95] at each MG
level, while the restriction operator is given by Eq. (4.15). This choice allows higher
convergence rates with a moderate increase in computational effort and memory
requirements since the interpolation (and the restriction) radius will increase.

4.3.2. Multicloud

C/F-splitting

A coarsening strategy is required to define a set of coarse-level variables required
by interpolation, Eq. (4.12), resulting in a Coarse/F ine-splitting (C/F -splitting),
using AMG terminology. In the RBF-FD context, variables and equations are
associated to nodes, therefore a C/F -splitting is simply given by a set of coarse
nodes obtained from a set of fine nodes by using a nodal coarsening strategy. We
assume that the coarse-level node set is a subset of the fine-level node set.

In the presented work we employ the nodal coarsening strategy proposed by
Katz and Jameson [55] which is similar to the one proposed by Chan et al [11]:
starting from a fine-level set where each node has a null flag F (free node), each
free node is visited sequentially, its flag is set to 2 and the free nodes from its 6
nearest neighbors are set to have F = 1. Then the coarse-level set is given by
the nodes with F = 2. This choice leads to coarse sets whose number of nodes is
approximately 4 times less than the number of fine-level nodes in 2D cases. Such
isotropic coarsening strategy is suitable for a RBF-FD discretization of a Poisson
equation with isotropic node distribution.

Additive correction multicloud technique (ACMC)

The first MC technique which has been developed is additive correction multi-
cloud (ACMC), which is based on the aggregation-type MG with overcorrection,
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Figure 4.3: Interpolation and restriction support nodes for ACMC (a) and SRMC (b).

described in Subsection 4.3.1, where both transfer operators are piecewise constant
over their support. Given a C/F -splitting, the interpolation support is defined by
choosing which coarse-level variables/nodes are employed to interpolate a fine-level
variable, Eq. (4.12). Similarly, the restriction support is defined by choosing which
fine-level equations are employed to obtain a coarse-level correction equation by
restriction, Eq. (4.13).
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One nearest neighboring coarse-level node is used as the support for the con-
stant interpolation. The restriction is given by Eq. (4.15), i.e., the constant
restriction support is given by the fine-level nodes employing the same coarse-level
node as interpolation support. This strategy is depicted in Figure 4.3a where the
arrows indicate interpolation (coarse to fine nodes) or restriction (fine to coarse
nodes) with uniform and isotropic coarse/fine node distributions. For the sake of
graphic clarity, the coarse-level nodes have been moved in order not to coincide
with fine/coarse-level nodes. The coincidence of some fine/coarse-level nodes is
actually assumed in the nodal coarsening strategy described in Subsection 4.3.2
since the coarse-level node set is a subset of the fine-level node set.

By considering a stencil with n = 7 neighboring nodes for the RBF-FD ap-
proach (this particular choice is explained in Subsection 4.3.3), the corresponding
MC strategy maintains a constant stencil size, on average, at each level. This prop-
erty can be deduced from Figure 4.3a by considering the central coarse-level node
C1 and its related equation: its stencil is given by the coarse-level nodes employed
to interpolate all the fine-level nodes (marked with symbol •+ in Figure 4.3a) which
are involved in restriction to C1. For example, the equation for fine-level node f1,
which is one of the nodes used for the restriction to C1, depends upon its 6 fine-
level neighbors whose interpolation support employs only coarse-level nodes C1,
C2 and C3. Finally, it is possible to observe that the coarse correction equation
for C1 depends upon 6 coarse-level neighbors, and therefore the stencil size n = 7
is maintained at all coarse levels on the average.

Smoothed restriction multicloud technique (SRMC)

The second MC technique proposed in this work is smoothed restriction multicloud
(SRMC), which is obtained from ACMC by smoothing the piecewise constant
restriction operator only, using one under-relaxed homogeneous Jacobi iteration
as described in Subsection 4.3.1. The interpolation is still maintained piecewise
constant and therefore Eq. (4.15) does not hold anymore.

As in the previous technique, we used one nearest neighboring coarse-level
node as support for the constant interpolation, while the restriction operator is
obtained in two steps: an initial restriction operator is obtained from Eq. (4.14)
which is then smoothed using one under-relaxed homogeneous Jacobi iteration
with under-relaxed factor ωS, resulting in an increased radius for the restriction
support.

This strategy is depicted in Figure 4.3b where the solid line arrows indicate
interpolation (coarse to fine nodes) or restriction (fine to coarse nodes) with uni-
form and isotropic coarse/fine node distributions. Again, for the sake of graphic
clarity, the coarse-level nodes have been moved in order not to have coincident
fine/coarse-level nodes.
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By considering the central coarse-level node of Figure 4.3b and a RBF-FD
stencil with n = 7 neighboring nodes, we observe that the radius of the restriction
support is increased from 4 fine-level nodes of ACMC approach to 14 fine-level
nodes (marked with symbol •+ in Figure 4.3b) because of the smoothing operation
on the piecewise constant operator. This “extended” restriction support is given
by the fine-level nodes whose stencils include any of the “original” four fine-level
nodes defining the piecewise constant restriction support.

We also observe that this MC strategy does not maintain a constant stencil
size, on average, across the levels. This property can be deduced from Figure
4.3b by considering again the central coarse-level node and its related equation:
its stencil is given by the coarse-level nodes employed to interpolate all the fine-
level nodes involved in the restriction to the central coarse-level node. It is then
possible to observe that the coarse correction equation for the central coarse-level
node depends upon 9 coarse-level neighbors, and therefore the stencil size n = 7
is not maintained across levels, on average, but will grow at coarse levels. To
avoid a growing stencil size that would imply larger memory and computational
requirements, we propose a modified restriction strategy which ensures a constant
stencil size: considering Figure 4.3b, a coarse-level node is marked G (“good”)
if it is involved in the interpolation of any of the 14 fine-level nodes defining the
central coarse-level node restriction support, otherwise it is marked B (“bad”).
Then, the restriction contribution of B coarse-level nodes is replaced by G coarse-
level nodes only. For example, when the fine-level equation for node f1 is considered
by restriction, the contribution of interpolation of the fine-level node f2, which is
included in f1 stencil, is now given by the coarse-level node C1 and not by C2
anymore, because C1 is the G coarse-level node employed for the interpolation of
f1. Numerical tests confirmed that this strategy ensures a constant stencil size
n = 7 at all coarse levels, on average.

4.3.3. Multicloud convergence

As previously outlined, the RBF-FD discretization employed in this work leads
to an unsymmetric coefficient matrix. Therefore the classic positive definiteness
requirement for symmetric matrices cannot be used to guarantee the convergence
of the proposed MC techniques. An analogous requirement for the convergence
of MG methods in the unsymmetric case is that the matrix be an M -matrix [43].
We briefly present the sufficient conditions leading to a M -matrix structure (see
Seibold [90] and Hackbusch [43] for further details) in the context of the present
meshless approach.
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M-matrices

Definition 1 (Z-matrices and L-matrices). A square matrix D = (Dij) ∈ RNI×NI

is called Z-matrix if Dij ≤ 0 ∀i 6= j. A Z-matrix is called L-matrix if Dii > 0 ∀i.

The notation D ≥ 0 indicates that its matrix entries satisfy Dij ≥ 0 ∀i, j.

Definition 2 (M -matrices). A Z-matrix is called M-matrix if it is nonsingular
and D−1 ≥ 0.

Definition 3 (Essentially diagonally dominance). A square matrix D is called
essentially diagonally dominant if it is weakly diagonally dominant:

|Dii| ≥
∑
j 6=i

|Dij| ∀i

and every node is connected (directly or indirectly) through stencil entries to a node
k which satisfies the strict diagonal dominance relation |Dkk| >

∑
j 6=k |Dkj|.

Definition 4 (Stencil). Given the RBF approximation of Eq. (3.17) at the first
node x1:

D
(
g(x)

)
x=x1

= f1d1(x1) + · · ·+ fnI
dnI

(x1) + f̄1dnI+1(x1) + · · ·+ f̄nB
dn(x1) (4.18)

the corresponding stencil is defined by the internal nodes x1, . . . ,xnI
and by the

coefficients d1(x1), . . . , dnI
(x1).

The first node x1 of a stencil is the “central” node where the derivatives are
sought.

Definition 5 (Positive stencil). A stencil is called positive if its coefficients d1, . . . , dnI

satisfy d1 > 0 and d2, . . . , dnI
≤ 0, where nI ≤ n is the number of internal nodes.

Benefits on the use of positive stencils in the context of generalized-FD methods
can be found in Demkowicz et al. [21].

Theorem 1. Matrix D of Eq. (4.7) is essentially diagonally dominant if at least
one Dirichlet node is employed and if positive stencils are employed for every in-
ternal node.

Proof. Consider the interpolation system of Eq. (3.13) with constant data, i.e.,
fi = 1, f̄i = 1 if x̂i is a Dirichlet boundary node and f̄i = 0 if x̂i is a Neumann
boundary node. Since such interpolation is exact for constant data because a
linear augmentation P = 1 is employed, we get ai = 0, (b1, b2, b3) = (1, 0, 0), i.e.,
g(x) = 1. Eq. (4.18) with D = −∇2 then becomes

∑n
i∈D di = 0 where D is
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the set of internal and Dirichlet boundary nodes. Since the stencil is positive,
the previous relation can be written as d1 =

∑n
i∈D, i>1 |di|. If the stencil has

no Dirichlet nodes, the last relation implies a weakly diagonally dominant row
in terms of matrix coefficients, otherwise a strictly diagonally dominant row is
obtained since d1 =

∑n
i∈D, i>1 |di| >

∑nI

i=2 |di|. Finally, in the present RBF-FD
approach every node is always directly or indirectly connected to a Dirichlet node
through stencil entries because of the employed node distributions and strategy
for the choice of stencil support nodes (nearest neighbours).

Theorem 2. An essentially diagonally dominant L-matrix is an M-matrix.

Proof. See Hackbusch [43], pp. 154-155.

The coefficient matrix D of Eq. (4.7) resulting from the present RBF-FD
discretization is an M -matrix if the conditions of Theorem 1 hold.

Positive stencils

In the previous subsection the RBF-FD coefficient matrix D is proved to be an
M -matrix under the hypothesis of positive stencils for every internal node. The
validity of such hypothesis depends upon the number of interpolation nodes n
for the MQ-RBF interpolation, their geometrical arrangement and upon the MQ
shape factor ε. The investigation of these factors on stencil positivity is here
investigated.

First of all, we investigate the effect of the number of support nodes n and
MQ shape factor ε on stencil positivity for a local node arrangement given by a
central node surrounded by n − 2 nodes which are distributed over a circle with
angular intervals ∆α = 2π/(n − 1), while the position y of the remaining node
is free. The positions of such a free node allowing a positive stencil are depicted
as hatched areas in the diagrams of Figure 4.4 for n = 7, 8, 9 and ε = 0.1, 1, 10,
while the areas delimited by red-dashed curves represent “safe” areas where the
stencil coefficients d1(y), . . . , dn(y) satisfy the condition G(y) > GM/2, where
G(y) = min{d1(y),−d2(y), . . . ,−dn(y)} and GM is the maximum value for G
over the whole plane. The larger these areas, the more likely it is to get a positive
stencil from general node arrangements with n support nodes.

From Figure 4.4 it is possible to deduce that increasing n from 7 to 9 nodes will
decrease the positive stencil area, also due to obvious geometric reasons, while the
effect of shape factor ε is non-monotonic: the positive stencil area decreases and
then increases considering an increasing shape factor from ε = 0.1 to ε = 10. This
is unwanted because “small” ε will produce numerical instabilities when solving
the interpolation system, while “big” ε will produce bad interpolants as outlined in
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Figure 4.4: Stencil positivity plots for n = 7 (top row), n = 8 (middle row) and n = 9
(bottom row): grey hatched areas represent positive stencil areas, while red dashed
curves delimit “safe” areas for stencil positivity (see Subsection 4.3.3).

Chapter 3. Nonetheless, ε has to be chosen on the basis of discretization properties
for a specific problem, and therefore it is not an adjustable parameter [62].

Lastly, we investigate the effect of the node distribution on stencils positivity
for node distributions with N ≈ 105 nodes for Case 1 and Case 2Mix. The fraction
of nodes with non-positive stencils is reported in Figure 4.5 as a function of the
number of refinement iterations in the node generation phase for n = 7, 8, 9 and
for two strategies for the choice of RBF neighboring support nodes:
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Figure 4.5: Effect of refinement iterations on stencils positivity for Case 1 (a) and Case
2Mix (b), N ≈ 105 nodes and ε̄ = 1.

• Neighbor strategy A: n nearest neighboring nodes are always chosen;

• Neighbor strategy B: all the nodes within a circle of radius proportional to
s(x)
√
n are chosen.

The difference between the two previous strategies is that the number of sup-
port nodes is exactly n with Neighbor strategy A, while with Neighbor strategy B
the number of support nodes is n only on average and a small deviation from n (1
or 2 nodes) can occur depending upon the local node arrangement.

The curves reported in Figure 4.5 reveal that the refinement iterations have a
positive effect in the reduction of the fraction of non-positive stencils for n = 7
only, while for n = 8, 9 this effect is limited and non-monotonic. Neighbor strategy
B is also more effective than Neighbor strategy A in the reduction of the fraction
of non-positive stencils, especially with n = 8, 9. Nonetheless this strategy is found
to produce unacceptable discretization errors and therefore only Neighbor strategy
A (n nearest neighbors) is employed.

To conclude, n = 7 is found to be the most appropriate choice, for which
50 − 100 refinement iterations are a reasonable balance between computational
effort and an adequate reduction of non-positive stencils. For this choice the
fraction of non-positive stencils drops significantly below 1% for both cases 1 and
2, and therefore the presence of these few non-positive stencils destroys the M -
matrix property. However, this is not a necessary condition [90] for the convergence
of the proposed MC techniques.
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Table 4.1: MC parameters.

Parameter Symbol ACMC SRMC Range

- MC pre/post smoothing SOR it-
erations

k 1** 1** N+

- SOR relaxation factor ω 1.2∗ 1.2∗ [1, 1.4]
- ACMC overcorrection factor t variable − [1, 3]
- SRMC under-relaxation smooth-

ing factor
ωS − variable [0, 1]

- SOR iteration multiplier at
coarse levels

rI 1∗ 1∗ [1, 4]

* unless otherwise specified.
** at finest level.

4.3.4. Preconditioning

Similarly to the traditional MG methods, both the proposed MC techniques can be
used as standalone solvers and as preconditioners for traditional iterative solvers.
As suggested by Stüben [95], the coupling of MG methods as preconditioners with
reliable and robust iterative methods is more effective than trying to fine-tune
a standalone MG solver, especially in cases where the exact convergence proofs
cannot be stated. This is our situation because of the presence of non-positive
stencils.

When the proposed MC techniques are used as preconditioners, then the BiCGSTAB
method [97] is used as an iterative solver. Such iterative solver is one of the most
common choices for the solution of nonsymmetric linear systems. The resulting
approaches are denoted by BiCGSTAB/ACMC and BiCGSTAB/SRMC.

4.3.5. Multicloud parameters

The working parameters that completely define the proposed MC approaches are
briefly summarized in Table 4.1. The coarsest level is assumed to be reached
when the number of equations at this level is less than NMG = 4000, and the
corresponding linear system is solved by direct LU solution.

4.3.6. Work count and residual norm

The comparison of the amount of computational work, i.e., the number of floating
point operations in the different algorithms is measured in terms of work units
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(WU), which is defined as the amount of work needed for one residual evaluation
at the finest level. For the MC techniques, the amount of work is automatically
evaluated by considering the pre/post smoothing SOR iterations, residual evalua-
tion, restriction and interpolation phases. For BiCGSTAB solver, each full itera-
tion is composed by two semi-iterations, each of which has a cost of 1 WU+10NI

operations [97], where NI is the number of internal nodes (number of fine-level
equations).

The convergence histories are plotted in terms of normalized RMS residual,
which is defined as ‖r‖2/‖b‖2, where b is the RHS of Eq. (4.7) and r is the
corresponding residual vector. A null vector is employed as a starting solution
vector.

4.3.7. Error norm

The comparison between the computed solution g and the corresponding analytical
solution f is done by computing the normalized RMS norm of the error:

Normalized RMS error =

√
1

A(Ω)

∫
Ω

(
g − f

fmax − fmin

)2

dΩ ≈

≈ 1

|fmax − fmin|

√∑nI

i=1 s
2(xi)(g(xi)− f(xi))2∑nI

i=1 s
2(xi)

(4.19)

where A(Ω) is the area of Ω.

4.4. Results

4.4.1. Preliminary analyses

First of all, we investigated the effect of the rescaled shape factor ε̄ ∈ [0.1, 10] on
the normalized RMS error as reported in Figures 4.6a and 4.6c for both domains
and for N ≈ 105 and N ≈ 106 nodes. As expected, the error reduces as ε̄ decreases,
while below ε̄ = 1 the error reaches an asymptotic behaviour and therefore ε̄ = 1
has been chosen for the following results. The choice ε̄ < 1 would also imply
numerical stability issues for large N in the local RBF interpolation.

Figures 4.6b and 4.6d show the convergence curves in the case ε̄ = 1 for both
domains, revealing an order of accuracy1 p ≈ 1.8 for Case 1 and p ≈ 1.7 for Case
2Dir. Convergence curves for Case 2Mix confirm the sensitivity of the RBF-FD
approach to the imposition of Neumann BCs.

1For 2D cases the order of accuracy p is defined by a normalized RMS error proportional to
N−p/2
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Figure 4.6: Normalized RMS error as function of rescaled shape factor ε̄, Case 1 (a)
and Case 2Dir (c), and as function of number of the nodes N , Case 1 (b) and Case 2
(d).

4.4.2. Case 1

Multicloud parameters

The influence of MC parameters on the convergence work, i.e., the work needed
to reach a normalized RMS residual less than 10−14, is reported in Figure 4.7 for
ACMC and SRMC employed both as standalone solver and as preconditioners for
BiCGSTAB in the case N ≈ 105 nodes.

Figure 4.7a shows that for the standalone ACMC the convergence work de-
creases with the overcorrection factor t as expected, until a minimum is reached
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Figure 4.7: Effect of ACMC overcorrection parameter t (a,b) and SRMC smoothing
factor ωS (c,d) on the convergence work, N ≈ 105 nodes, Case 1.

for an optimal value of t depending upon the choice for SOR iteration multiplier rI
and SOR relaxation factor ω. Beyond this optimal value, which lies in the range
[1.7, 2.0] for the MC parameters considered here, the convergence work quickly
increases and therefore an accurate choice for t is crucial. The convergence works
for ACMC used as preconditioner for BiCGSTAB are reported in Figure 4.7b,
where the almost flat curves reveal that this strategy is more effective than the
standalone ACMC strategy because its sensitivity to MC parameters is very low,
especially for an overcorrection factor t ∈ [1.5, 3.0].
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Convergence works for standalone SRMC are reported in Figure 4.7c where it
can be observed that the effect of rI and ω is very limited and therefore there
is a “single” optimal smoothing factor ωS ≈ 0.6, beyond which the growth of
the convergence work is very steep. Once again, the effect of using SRMC as
preconditioner for BiCGSTAB, shown in Figure 4.7d, is beneficial since the curves
show a smoothed behaviour near the optimal ωS ≈ 0.6, but the steep growth
beyond this optimal value is present as well.

An initial comparison between the previous strategies reveals that the precondi-
tioned versions are always convenient. BiCGSTAB/ACMC strategy is less sensitive
than BiCGSTAB/SRMC to the choice of MC parameters, while BiCGSTAB/S-
RMC strategy can offer a slightly smaller optimal convergence work than BiCGSTAB/ACMC.

Multicloud results

Figure 4.8 shows the convergence histories in the case of N ≈ 105 and N ≈ 106

nodes for all the MC strategies previously proposed and also for BiCGSTAB with
incomplete LU factorization (ILU) preconditioning and reverse Cuthill-McKee or-
dering [19]. In the case of N ≈ 105 nodes, Figure 4.8a, each MC strategy has shown
to be much more effective in the reduction of the residual than BiCGSTAB with
ILU(0) preconditioning, i.e., 0 level of fill in. Comparable performances between
ACMC and BiCGSTAB/ILU can be obtained employing a small ILU factorization
drop tolerance thr = 0.002, which implies non-negligible memory requirements
and time consumptions in the initial factorization phase. In the case of N ≈ 106

nodes, Figure 4.8b, shows that BiCGSTAB/ILU(0) is practically unfeasible (its
convergence history is not even reported since it converged in much more than
1600 WU), the convergence work for BiCGSTAB/ILU with the same drop toler-
ance thr = 0.002 grows rapidly over 1600 WU while the convergence works for
the MC strategies show a moderate growth which is subsequently analysed in a
greater detail.

The convergence works for each MC strategy and also for two BiCGSTAB/ILU
cases (thr = 0.002 and thr = 0.0005, the latter requiring twice the memory re-
quired by the former) are reported in Figure 4.9 for N ranging from 2 · 104 to
8 · 106. The most evident fact is that the growth of convergence work for both
BiCGSTAB/ILU cases is considerably larger than the MC ones, and such strategies
become uncompetitive with MC strategies for N > 106 nodes, taking also account
of the fact that drop tolerances below thr = 0.0005 are practically unfeasible due
to high memory requirements for such large problem sizes. For N < 105 nodes
both BiCGSTAB/ILU cases are comparable or even better than the proposed MC
approaches.

BiCGSTAB/SRMC with ωS = 0.55 turns out to be the most efficient strategy,
whose convergence work grows very slowly from 300 WU for N ≈ 2 · 104 nodes
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Figure 4.8: Comparison of convergence histories for N ≈ 105 nodes (a) and N ≈ 106

nodes (b), Case 1.

to 400 WU for N ≈ 8 · 106 nodes. BiCGSTAB/ACMC with t = 1.9 performs
almost identically. The less efficient strategy, as expected, is standalone ACMC
with t = 1.9, whose convergence work grows from 400 WU for N ≈ 2 · 104 nodes
to 900 WU for N ≈ 8 · 106 nodes.

The comparison between the specific times, i.e., time per node, is reported
in Figure 4.10 for each of the previous strategies considering the time required to
reach a normalized RMS residual less than 10−14, and also for two ILU factorization
cases (thr = 0.002 and thr = 0.0005) considering the initial factorization time. 8
OpenMP threads have been employed for the parallelized C code. Similarly to
the behaviour of convergence work, specific times for both BiCGSTAB/ILU cases
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Figure 4.9: Convergence work vs number of nodes N , Case 1.
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Figure 4.10: Specific time vs number of nodes N , Case 1.

show a larger growth than MC ones and become uncompetitive compared to each
MC strategy beyond N ≈ 2 · 105 nodes, while the specific times for MC strategies
turn out to be almost constant for N > 3 · 105. Again, BiCGSTAB/SRMC with
ωS = 0.55 turns out to be the best (faster) strategy, requiring approximately
3 · 10−6 s/node for N > 3 · 105. BiCGSTAB/ACMC with t = 1.9 performs almost
identically, while standalone ACMC with t = 1.9 is the less performing and shows
a very moderate growth in specific time for high N . The speedup between a
traditional approach like BiCGSTAB/ILU with drop tolerance thr = 0.0005 and
BiCGSTAB/SRMC with ωS = 0.55 ranges from 4 for N ≈ 3 · 105 nodes, to almost
20 for N ≈ 8 · 106 nodes.

The specific times for the remaining main tasks are almost constant and are
as follows: 3.5 · 10−7 s/node for matrix coefficients calculation (discretization) and
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Figure 4.11: Convergence work vs number of nodes N for Case 2Dir (a) and Case
2Mix (b).
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Figure 4.12: Specific time vs number of nodes N for Case 2Dir.

1.5 · 10−7 s/node for the MC setup phase (coarsening and coarse-level coefficients
calculation).

4.4.3. Case 2

Multicloud results

The convergence works for each MC strategy and also for two BiCGSTAB/ILU
cases (thr = 0.002 and thr = 0.0005) are reported in Figure 4.11 for N ranging
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from 2 · 104 to 8 · 106, for both Case 2Dir and Case 2Mix. Again, as in Case 1, the
most evident fact is that the growth rate of convergence work for BiCGSTAB/ILU
cases is considerably larger than the MC ones for both types of BCs. In Case
2Dir, Figure 4.11a, MC strategies outperform BiCGSTAB/ILU strategies only for
N > 4 · 105 nodes, while in Case 2Mix, Figure 4.11b, MC strategies outperform
BiCGSTAB/ILU strategies from N > 6 ·104 nodes already. Both BiCGSTAB/ILU
strategies turned out to be unfeasible due to both high time consumption and large
memory requirements for N > 2 · 106 nodes in Case 2Mix.

BiCGSTAB/SRMC with ωS = 0.55 is again the most efficient strategy for both
BCs and BiCGSTAB/ACMC with t = 1.9 perform almost identically. In Case 2Dir
the convergence work for these strategies is almost constant (≈ 300 − 400 WU),
while in Case 2Mix the convergence work shows a moderate growth from 300 WU
for N ≈ 2 · 104 nodes to 550 WU for N ≈ 8 · 106 nodes. Therefore the less efficient
strategies are again standalone ACMC and SRMC, especially in Case 2Dir where
their convergence work shows a moderate but constant growth from N ≈ 3 · 105

nodes.

The comparison between the specific times is reported in Figures 4.12 and 4.13
for each of the previous strategies (normalized RMS residual less than 10−14), and
also for two ILU factorizations (thr = 0.002 and thr = 0.0005) for both cases 2Dir
and 2Mix. 8 OpenMP threads have been employed for the parallelized C code.
Similarly to the behaviour of convergence work, specific times for BiCGSTAB/ILU
cases show a larger growth than MC ones and become uncompetitive compared
to each MC strategy beyond N ≈ 2 · 105 nodes in Case 2Dir, (Figure 4.12),
while in Case 2Mix, (Figure 4.13), the MC strategies outperforms BiCGSTAB/ILU
strategies from N ≈ 7 · 104 nodes already. Specific times for all MC strategies are
practically constant for N > 3 · 105 nodes. The specific times for the remaining
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main tasks (node generation, matrix coefficients calculation and MC setup phase)
remain the same as in Case 1.

The speedup between a traditional approach like BiCGSTAB/ILU with drop
tolerance thr = 0.0005 and BiCGSTAB/SRMC with ωS = 0.55 ranges from 4 for
N ≈ 106 nodes, to 8 for N ≈ 8·106 nodes, in Case 2Dir. In Case 2Mix such speedup
ranges from 2 for N ≈ 105 nodes, to 10 for N ≈ 2 · 106 nodes. Therefore the use
of MC strategies can bring great advantages especially in case of Neumann BCs,
which is a typical condition encountered in many practical applications such as
Poisson problems in computational fluid dynamics. Furthermore, in these cases the
proposed MC strategies are able to deal with very large problems where traditional
BiCGSTAB/ILU approaches can not deal with.

4.4.4. OpenMP speedup

The measured speedup values obtained using 2, 4 and 8 OpenMP threads for the
parallelized C code for the MC algorithms are reported in Table 4.2 for Case 1
and cases 2Dir and 2Mix where N ≈ 106 nodes. The speedup values are listed for
each of the main tasks separately.

From the previous tables it can be observed that the matrix coefficients cal-
culation is the task that exhibit the largest speedup (4.3 − 4.7 with 8 OpenMP
threads), while the achieved speedup for the MC solvers is lower and does not
exceed 2.7. In particular, the speedup for BiCGSTAB with MC preconditioning is
always lower than the speedup for the corresponding standalone MC solver because
BiCGSTAB is always parallelized on all available cores in MATLAB by default,
as well as other vector operations (vector sums) that are carried out in MATLAB
in the present implementation.

4.5. Conclusions

The proposed multicloud techniques for the fast solution of linear systems aris-
ing from RBF-FD discretizations of Poisson problems have proven to bring great
advantages over traditional approaches, e.g., BiCGSTAB with incomplete LU fac-
torization as preconditioner, in terms of both reduction of the convergence work
and reduction of the required computational time. Such reductions can reach a
factor 10 for convergence work and even a factor 20 for computational time in the
case of extremely large problem sizes, e.g., N ≈ 8 · 106 nodes. These advantages
over traditional approaches have proven to be particularly evident in the case of
Neumann boundary conditions, which often characterize many problems of en-
gineering relevance. Furthermore, in cases where Neumann boundary conditions
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Table 4.2: Speedup values, N ≈ 106 nodes.

ACMC SRMC

Cores Cff Slv-A Bi/A Cff Slv-S Bi/S

Case 1

2 1.9 1.9 1.6 1.9 1.6 1.5
4 3.7 2.5 2.0 2.6 2.2 2.0
4 (8 threads) 4.7 2.7 2.1 4.4 2.4 2.3

Case 2Dir

2 1.8 1.6 1.5 1.8 1.8 1.5
4 2.7 2.1 1.9 2.7 2.4 2.0
4 (8 threads) 4.3 2.3 1.9 4.4 2.6 2.0

Case 2Mix

2 1.8 1.8 1.6 1.9 1.7 1.6
4 3.1 2.3 2.1 2.8 2.3 2.2
4 (8 threads) 4.3 2.5 2.2 4.3 2.4 2.1

Cff = matrix coefficients phase (meshless discretization)
Slv-A, Slv-S = solution phase with A=ACMC, S=SRMC
Bi-A, Bi-S = BiCGSTAB precond. with A=ACMC, S=SRMC

are employed, the proposed MC strategies have proven to be able to deal with
very large size problems where traditional solver approaches can not deal with
because of excessive memory and time requirements. Therefore, the proposed MC
strategies are extremely attractive for problems where complex-shaped domains
and large number of nodes are employed.

The extension of the proposed algorithms to 3D cases is straightforward since
the RBF-FD data structure is implicitly unstructured, while further extensions
can include higher order RBF-FD discretizations, i.e., larger stencil sizes n > 7
with P > 1, as well as the extension to different PDEs.
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Chapter 5

RBF-FD solution of CFD
problems

The employment of the RBF-FD method for solving fluid flow problems has
received increasing attention in both academic and industrial fields since the
early 2000s, when such approach has been initially proposed and proved to be
competitive with traditional mesh-based methods [12, 14, 15, 22–24, 58]. Many
works dealing with a RBF-FD solution of CFD problems followed since then
[31, 34, 60, 104, 105].

In this chapter the RBF-FD meshless approach presented in Chapter 3 are
employed for the numerical solution of 2D and 3D incompressible fluid flow prob-
lems with possible heat transfer. The time dependent Navier-Stokes equations are
solved using primitive variables, i.e., velocity and pressure, since this is the most
generic formulation which can be easily employed to characterize and solve fluid
flow problems with engineering relevance.

Different benchmark test cases will be considered in the 2D case: a laminar
flow inside a circular domain, the lid-driven cavity, the differentially heated cavity
and the flow past a circular cylinder between parallel walls. The 3D lid-driven
cavity problem is then considered. Besides these test cases are characterized by
simple geometries, the use of generic node arrangements as obtained with the
node generation algorithms proposed in Chapter 2 will allow the assessment of the
numerical properties of the RBF-FD approach to be extended to arbitrary 2D/3D
geometries.

5.1. Governing equations

An incompressible and non-isothermal flow is considered, for which the conser-
vation equations of mass, momentum and energy in the unsteady form are the
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following:

∇ · u = 0 (5.1)

∂u

∂t
+ (u · ∇)u = − 1

ρ0

∇p+ ν∇2u− gβ(T − T0) (5.2)

∂T

∂t
+ u · ∇T = α∇2T (5.3)

where u is the velocity vector, ν is the kinematic viscosity, α is the thermal dif-
fusivity, T is the temperature, g = −gey is the gravity acceleration and p is the
pressure, deprived of the hydrostatic component. The Boussinesq approximation
is employed, i.e., constant thermophysical properties except for the density in the
buoyancy term which has a linearized dependence on the temperature:

ρ

ρ0

= −β(T − T0) (5.4)

where T0 and ρ0 are the reference values for temperature and density in the lin-
earization, respectively. In the case of isothermal flows, the energy Eq. (5.3) is
not considered and the buoyancy term is dropped, i.e., β = 0.

Eqs. (5.1)-(5.3) can be made nondimensional using the following reference
values: L for length, u0 for velocities, L/u0 for time, ∆T for temperature and ρ0u

2
0

for pressure. For isothermal flows, the flow Reynolds number is defined as Re =
u0L/ν, while for non-isothermal flows the Rayleigh number Ra = gβ∆TL3/(να) =
u2

0L
2/(να) and the Prandtl number Pr = ν/α are chosen as nondimensional groups.

A Prandtl number Pr = 0.71 is chosen, which is representative of air.

The nondimensional form of Eqs. (5.1)-(5.3) is therefore:

∇ · u = 0 (5.5)

∂u

∂t
+ (u · ∇)u = −∇p+

1

Du

∇2u + B (5.6)

∂T

∂t
+ u · ∇T =

1

DT

∇2T (5.7)

where B = (T − T0)ey in the non-isothermal cases; T0 is assumed to be 0 without
loss of generality. The values for Du, DT and B are reported in Table 5.1 for
isothermal and non-isothermal cases.
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Table 5.1: Parameters for Eqs. (5.6)-(5.7) for isothermal and non-isothermal cases.

Case Du DT B

Isothermal Re − 0

Non-isothermal
√
Ra/Pr

√
Ra · Pr Tey

5.2. Numerical procedure

5.2.1. Time discretization and solution procedure

A second order backward Euler scheme (three-level Gear scheme) is employed for
the time discretization of Eqs. (5.6)-(5.7). Such choice is found to be much more
stable than the second order Crank-Nicolson scheme for which divergent spurious
oscillations with period 2∆t appeared in some case, and it is therefore preferred.

A segregated approach is chosen for the decoupling of the system of Eqs. (5.5)-
(5.7) which are solved separately for each variable. The projection approach [16] is
employed for the decoupling of mass and momentum equations. In this approach
the pressure p assumes the role of a distributed Lagrange multiplier which enforces
the continuity constraint expressed by Eq. (5.5). At each iteration k within
the time step ∆t, a tentative velocity u∗ is computed by implicitly solving the
momentum Eq. (5.6) with a linearized advective (non-linear) term as follows:

3u∗k
2∆t

+ un+1
k−1∇u∗k −

1

Du

∇2u∗k =
4un − un−1

2∆t
−∇pn+1

k−1 + Bn+1
k−1 (5.8)

where the values with iteration index k − 1 are extrapolated at the first iteration
k = 1 as follows: un+1

0 = (γ + 1)un − γun−1, Bn+1
0 = (γ + 1)Bn − γBn−1, while

the pressure is always initialized as pn+1
0 = pn. γ = 1 is employed for the accurate

simulation of time-dependent flows, while γ = 0 is employed when a steady-state
solution is expected, allowing the use of large time steps.

The tentative velocity u∗k is then projected onto the space of divergence-free
fields in order to satisfy the continuity constraint [16], i.e., u∗k is deprived from its
irrotational component ∇φ:

un+1
k = u∗k −∇φ (5.9)

The equation for the potential φ is obtained by taking the divergence of Eq.
(5.9) and enforcing the continuity constraint ∇ ·un+1

k = 0, obtaining the following
Poisson equation:

∇2φ = ∇ · u∗k (5.10)

subject to the boundary condition ∇φ · n = 0 on the whole boundary Γ in order
not to modify the normal component of the tentative velocity u∗k at the boundary.
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Therefore, after the velocity correction of Eq. (5.9), the normal velocity still
satisfies the boundary condition (BC) imposed for the solution of Eq. (5.8) since
un+1
k ·n = u∗k ·n. This does not hold for the remaining components of the velocity

for which the exact satisfaction of the BCs occurs only when the iterative process
within the time step converges. The Poisson Eq. (5.10) has to be solved at each
time step in order to compute the velocity correction of Eq. (5.9).

The pressure is then updated as:

pn+1
k = pn+1

k−1 +
φ

∆t
(5.11)

Lastly, the temperature is computed by implicitly solving the energy Eq. (5.7)
for T n+1

k :
3T n+1

k

2∆t
+ un+1

k ∇T n+1
k − 1

DT

∇2T n+1
k =

4T n − T n−1

2∆t
(5.12)

where the divergence-free velocity un+1
k is now considered for the advective term.

The whole system of Eqs. (5.8)-(5.12) is iterated kSUB times for each time step
in order to properly address the non-linear coupling between the different vari-
ables, especially when using large time-steps. kSUB = 4 subiterations are typically
employed for the accurate simulation of time-dependent flows, while kSUB = 1
iteration is employed when a steady-state solution is expected, resulting in a very
cheap time-marching procedure for the reaching of the steady-state.

Since implicit solvers are employed for both the computation of velocities, Eq.
(5.8), and temperature, Eq. (5.12), there is no stability requirement for the choice
of the time step ∆t, i.e., CFL condition, and therefore it is possible to employ
large time steps, i.e., large Courant numbers C = ∆t‖u‖/s � 1 where s is the
nodal spacing. Large time steps are typically employed for a fast integration in
time when a steady-state solution is expected.

5.2.2. Solution techniques

The RBF-FD discretization of the Poisson Eq. (5.10) leads to a constant coefficient
matrix, therefore it is convenient to perform a single LU factorization for this
matrix at the beginning of the simulation and use it at each time step for the
calculation of the potential φ, allowing a very fast and accurate solution for both
2D and 3D problems. Since Neumann boundary conditions are employed, the
Poisson equation is undetermined up to a constant and the uniqueness of the
solution is obtained by using a Lagrange multiplier λ:

∇2φ+ λ = ∇ · u∗k (5.13a)∫
Ω

φ = 0 (5.13b)
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which corresponds to adding a constant row and a constant column to the coeffi-
cient matrix, with a 0 on the main diagonal.

The RBF-FD coefficient matrices for momentum and energy Eqs. (5.8), (5.12)
are time-dependent because of the advection term which depends upon the veloc-
ity, therefore the previous LU approach cannot be used. The BiCGSTAB iterative
solver [97] is employed, using an incomplete LU (ILU) factorization [85] as precon-
ditioner and reverse Cuthill-McKee ordering [19]. The relative tolerance for the
residuals is set to 10−10 for 2D and small size 3D problems, while for large size 3D
problems the relative tolerance for the residual is set to 10−8.

During the transients, i.e., starting from resting fluid or restarting from a pre-
vious solution at lower Re/Ra numbers, as well as for time-dependent flows with
strong recirculations, the ILU factorization is performed whenever the number of
iterations IT needed by the BiCGSTAB to converge exceeds IT > 2IT0, where
IT0 is the number of iterations required immediately after the ILU factorization.
The employed ILU drop tolerance tolILU varies depending upon the size of the
problem N ; a typical value is tolILU = 10−3. The typical computing time for 2D
fluid-flow problems is 0.2 − 0.8 s/(time step) when N ≈ 40, 000 nodes are em-
ployed, depending upon the size of the stencil n, the Re/Ra number and the time
step ∆t. For the 3D lid-driven cavity, the computing time is roughly 3 to 6 times
larger than the time required by the corresponding 2D lid-driven problem.

5.2.3. Pressure-velocity coupling and stabilization

It is known that the discretization schemes for the pressure-velocity coupling in
the incompressible Navier-Stokes equations must fulfill certain conditions in or-
der to ensure the uniqueness of the discrete solution. For example, the unequal-
order interpolation is employed in the FEM in order to satisfy the Ladyzhen-
skaya–Babuška–Brezzi (LBB) condition; staggered grids are employed in the FVM
to avoid the appearance of spurious pressure modes.

Spurious pressure modes also appear with RBF-FD discretizations. This prob-
lem was initially addressed by considering an additional node distribution for the
pressure, which has twice the spacing of the starting node distributions. The po-
tential φ was still solved on the original node distribution and was also used for
the velocity correction on the starting node distribution, Eq. (5.9). φ was then
interpolated onto the coarse node distribution for the pressure update, Eq. (5.11),
and for the calculation of pressure gradient in Eq. (5.8). A very small pressure
smoothing was anyway required for the obtaining of a stable scheme. Such pro-
cedure was then abandoned because its implementation is impractical since two
node distributions and two RBF-FD discretizations are required; furthermore, the
pressure discretization is always less accurate than the velocity discretization since
a coarse node distribution is involved.
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A stable “equal-order” RBF-FD discretization scheme is then obtained by ap-
plying the following explicit hyperviscosity smoothing (see Subsection 3.2.2) to the
pressure:

p̃ = p+ δ∇2kp (5.14)

where p̃ is the smoothed pressure and δ is a small constant. Similarly to the
analysis carried out in Subsection 3.2.2, let us consider a harmonic component
p = Aejωωω·x/s with amplitude A for the pressure. Eq. (5.14) for this harmonic
component gives:

p̃ = A
[
1 + δ

‖ωωω‖2k
2

s2k
(−1)k+1

]
ejωωω·x/s (5.15)

which states that the amplification factor for the harmonic component with fre-
quency ωωω is given by the term between the square brackets. The effect of explicit
smoothing with hyperviscosity is very similar to the hyperviscosity stabilization:
high-frequency components are effectively reduced while low-frequency compo-
nents sustain small reductions; the quality of the smoothing depends upon k.
Since we want the amplification factor to be independent upon the spacing s, i.e.,
independence upon space scaling, we obtain δ = δ̄ks

2k(−1)k+1 which is the same
expression obtained in Subsection 3.2.2. The higher the hyperviscosity exponent
k (k applications of the laplacian), the faster the decay of the artificial hypervis-
cosity when decreasing s, i.e., increasing the number of nodes N . The explicit
hyperviscosity smoothing is found to be very effective in avoiding the appearance
of spurious pressure modes even with very small hyperviscosity factors δ̄k, e.g.,
δ̄3 = O(10−6) with k = 3 and N ≈ 100, 000 nodes in 2D.

The explicit hyperviscosity smoothing is also employed for the velocities, al-
lowing the use of different number of interpolation nodes n for the RBF-FD dis-
cretization of the Navier-Stokes equations and nH for the RBF-FD discretization
of the hyperviscosity term ∇2k. nH > n is typically chosen because the hyper-
viscosity smoothing is performed explicitly while the solution of the momentum
equation (5.8) is performed implicitly and therefore the costs of a larger stencil
are not justified. Furthermore, nH > n is usually required also because a high-
order hyperviscosity k ≥ 2 is preferable (the laplacian smoothing k = 1 introduces
unacceptable numerical diffusion). The application of the explicit hyperviscosity
smoothing to the velocity can also overcome the problem of convective instabilities
arising when dealing with convection-dominated flows as presented in Subsection
3.2.2. The need of more complex upwinding techniques [108] is therefore avoided,
still maintaining small or even negligible artificial effects. The use of the same
amount of artificial hyperviscosity δ̄k for both pressure and velocity is found to be
an effective choice. A practical way to determine the minimal δ̄k which guarantees
the stability in each specific case is to perform very short test runs employing zero
boundary conditions for the velocity and starting from a small random initial field
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for velocity and pressure, e.g., in the order of 10−3. δ̄k is then increased from 0
until all the variables exhibit a uniform decrease to 0 after the initial overshoot
due to the initial conditions.

5.2.4. Auxiliary computations

The calculation of the streamfunction ψ, required for vortices detection and graph-
ical evaluation of the flow features for the cavity problems and the flow past a
cylinder between parallel walls, is carried out by solving the following Poisson
equation:

∇2ψ = −∇× u (5.16)

subject to the boundary condition ψ = ψ̄. The boundary streamfunction ψ̄ is
constant at all solid walls, while ψ̄ is obtained from the imposed velocities at
the inlet and from the solved velocities at the outlet, by integrating the normal
component. Eq. (5.16) is discretized through the same RBF-FD approach em-
ployed for the discretization of the Poisson Eq. (5.10) and solved using a direct
LU decomposition.

The local Nusselt number Nuy at the cold wall for the the differentially heated
cavity is obtained using the following expression:

Nuy =
Tm − TC
1− xm

(5.17)

where m is the index of the internal node xm = (xm, ym)T which is closest to the
point x = (1, y)T and Tm is its temperature. The mean Nusselt number Nu on the

cold wall is therefore given by Nu =
∫ 1

0
Nuy dy.

The drag coefficient CD for the case of the flow past a circular cylinder between
parallel walls is defined as follows:

CD =
2Fx

ρ0u2
0Ldcyl

(5.18)

where Fx is the x-component of the force exerted by the fluid on the cylinder,
which is time-averaged over a period t̄ in the case of unsteady periodic flows.

5.2.5. Node generation

The required node distributions are obtained through the node generation tech-
niques presented in Chapter 2: the DQT (2D) and DOT (3D) algorithms are
employed to generate an initial node distribution which is then refined by the ap-
plication of k = 100 node-repel iterations. A fixed boundary node distribution is
employed in 2D cases, while the boundary projection technique is employed in the
3D case.
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5.3. 2D cases

For all the 2D cases, the k = 3 explicit hyperviscosity smoothing (∇6) with nH =
40 interpolation nodes is employed, except for the case of the flow past a circular
cylinder between parallel walls where a laplacian smoothing with nH = n = 7 is
employed.

5.3.1. Isothermal laminar flow inside a circular domain

Geometry, parameters, initial and boundary conditions

A circular domain with radius L is considered. No-slip conditions are imposed on
the fixed circular boundary, while the nondimensional initial conditions at t = 0
are given by the analytical solution reported in Appendix E for M = 50 terms in
the expansion. Such analytical solution is characterized by a tangential velocity
profile which is depicted in Figure 5.2a for the chosen value Re = 1000 and for
three different times. The reference velocity u0 is the maximum of the initial
tangential velocity at t = 0 in the limit M →∞.

Node distributions

The node distribution is obtained by using the following spacing function:

s(r)

sm
= 1 + 4

atan
(
20(1− r)

)
atan(20)

(5.19)

where r is the nondimensional radius and sm and sM are the minimum and the
maximum spacing function. The radial profile of the spacing function is depicted
in Figure 5.1b while an example of a node distribution with N ≈ 7500 nodes is
depicted in Figure 5.1a. A refined distribution is employed near the boundary
since the initial velocity profile uϑ exhibits a large gradient at r = 1 and a large
curvature near r = 0.95 which is rapidly smoothed by the viscous dissipation.

Results

The isothermal Navier-Stokes equations are integrated starting from the initial
conditions at t = 0 for π time units, corresponding to half a revolution for a con-
stant tangential velocity uϑ(r = 1) = 1. The chosen time step is ∆t = π/500 and
kSUB = 4 subiterations are employed. With these parameters the time discretiza-
tion error is very small and negligible when compared to the RBF-FD discretization
errors.

Calculations are carried out for polynomial degree P = 2, 3, 4, 5 using n =
20, 25, 30, 40 interpolation nodes, respectively and s · ε = 0.4. The employed
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Figure 5.1: Node distribution with N ≈ 7500 nodes (a) and the corresponding spacing
function (b).
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Figure 5.2: (a) analytical velocity profiles (Re = 1000,M = 50) at different times. (b)
relative error of the tangential velocity at r = 0.95 for N ≈ 100, 000 nodes.

amount of explicit hyperviscosity is δ̄3 = 4 · 10−4. An example of the time history
of the relative error between the computed solution and the analytical solution at
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Figure 5.3: Error norms at t = π: convergence curves (a) and error norm as a function
of the computing time (b).

r = 0.95 is given in Figure 5.2b for N ≈ 100, 000 nodes. From this figure it can
be seen how the relative error is drastically reduced by increasing the polynomial
order P .

Convergence analysis are carried out by considering the following error norm
for the difference δu = u − uanalyt between the computed solution u and the
analytical solution uanalyt at t = π:

‖δu‖ =

√
1

2π

∫
Ω

‖δu‖2
2 dΩ ≈

√∑nI

i=1 s
2(xi)[δu2(xi) + δv2(xi)]

2
∑nI

i=1 s
2(xi)

(5.20)

where δu = (δu, δv)T .

Figure 5.3a shows the convergence curves at t = π for different polynomial
orders P . The resulting order of accuracy pE exhibits a monotone behaviour and
increases from pE = 2.2 for P = 2 to pE = 6.4 for P = 5. Figure 5.3b shows the
error norm at t = π as a function of the computing time. These curves, which
show a behaviour very similar to the convergence curves of Figure 5.3a, suggest
that for this problem the increase of the polynomial order P always results in an
increase of the numerical efficiency of the whole procedure.
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Figure 5.4: Geometry (a), spacing function (b) and enlarged view of the node distri-
bution for the bottom left corner (c) with N ≈ 80, 000 nodes for the lid-driven cavity
problem.

5.3.2. Lid driven cavity

Geometry and boundary conditions

The lid-driven cavity problem, Figure 5.4a, is defined by a square cavity with side
length L where the top wall moves to the right with velocity u0. The boundary
conditions in terms of nondimensional variables are u = 0 at x = 0, 1 and y = 0,
u = (1, 0)T at y = 1.
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Spacing function

The spacing function employed for the node generation is the following:

s(x, y)

sM
=

1

5
+

1

5

[
1 + cos

(
π(2x− 1)4

)][
1 + cos

(
π(2y − 1)4

)]
(5.21)

for which the maximum spacing at the cavity center is sM , while the minimum
spacing at the walls is sm = sM/5 in order to accurately resolve the boundary
layers. A graphical representation of the spacing function is given in Figure 5.4b,
while 5.4c shows an enlarged view of the node distribution for the bottom left
corner in the case N ≈ 80, 000 nodes.

Results

The lid-driven cavity problem has been solved for Reynolds numbers Re = 1000
and Re = 5000 with three different node distributions with N ≈ 20, 000, N ≈
40, 000 and N ≈ 80, 000 nodes. The employed polynomial order is P = 2, 3, 4, 5
using n = 20, 25, 30, 40 interpolation nodes, respectively, with s · ε = 0.4. The
employed amount of explicit hyperviscosity is δ̄3 = 5 · 10−6 for Re = 1000 and
δ̄3 = 1 · 10−5 for Re = 5000.

The calculation at Re = 1000 is started from rest using a time step ∆t = 0.1,
reaching an asymptotic steady solution after an appropriate long time integration,
i.e., over 500 time units. Steady solutions are also found for Re = 5000 using the
same time step ∆t = 0.1, starting from the steady solution at the Re = 1000 and
integrating for additional 500 time units. These steady solutions are in perfect
agreement with the findings of Fortin et al. [37] and Bruneau and Saad [10],
which predicted a critical Reynolds number Recr ≈ 8000. The extrema of the
streamfunction for the primary vortex at the center of the cavity and for the
secondary vortices at bottom corners are reported in Table 5.3, where the reference
results of Bayona et al. [4] and AbdelMigid et al. [1] are also reported. The
reference results of Bayona et al. are obtained using a high order RBF-FD meshless
approach with n = 90 local support nodes, N ≈ 40000 total nodes and a steady-
state streamfunction formulation. The reference results of AbdelMigid et al. are
obtained using a second order FV scheme with a 13012 grid. Good agreement is
found in each case, with less than 3% deviations in each case. Nonetheless, the
results for Re = 5000 exhibit a strange behaviour when N is increased, especially
for P = 4 and P = 5, while the cases P = 2 and P = 3 show a very good agreement
with the reference results on the fine distribution with N ≈ 80, 000 nodes.
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Table 5.2: Streamfunction values for lid-driven cavity streamline plots.

-1×10−1 -8×10−2 -6×10−2 -4×10−2 -2×10−2 -1×10−2 -3×10−3 -1×10−3

-3×10−4 -1×10−4 -3×10−5 -1×10−5 -3×10−6 -1×10−6 -1×10−7 -1×10−8

-1×10−9 -1×10−10 -1×10−11 -1×10−12 -1×10−13 -1×10−14 0 1×10−14

1×10−13 1×10−12 1×10−11 1×10−10 1×10−9 1×10−8 1×10−7 1×10−6

3×10−6 1×10−5 3×10−5 1×10−4 3×10−4 1×10−3 3×10−3 1×10−2

Figure 5.5 shows the velocity profiles along the centerlines for P = 3, n = 25
and two node distributions N ≈ 20, 000 and N ≈ 80, 000. The comparison with
the reference results of AbdelMigid et al. [1] shows a very good agreement to
graphical accuracy.

The streamlines for P = 3, n = 25 and N ≈ 80, 000 nodes at steady state
for the streamfunction values reported in Table 5.2 are depicted in Figure 5.6
for Re = 1000 and Re = 5000, with enlarged views of the corner regions. Such
streamline figures agree, to graphical accuracy, to the ones reported in [4, 80].

A time dependent solution for Re = 10000 is then calculated using N ≈ 40, 000
nodes, P = 3, n = 25 interpolation nodes and kSUB = 3 subiterations, expecting
a flow bifurcation between a steady solution at Re = 7500 and a time-dependent,
periodic solution for Re = 10000, as suggested by different authors [10, 37, 80].
The employed amount of explicit hyperviscosity is δ̄3 = 5 · 10−5. The calculation
is started from the steady solution at Re = 5000 using a time step ∆t = 0.05,
reaching an apparently periodic solution after about 1000 time units. Such periodic
behaviour is deduced from the analysis of the time trace of the x-component of the
velocity at the cavity center x = y = 0.5, reported in Figure 5.7. The frequency
of the strongest harmonic component of this time trace is f = 0.57, which agrees
with the reference value f = 0.59 reported in [80]. Good agreement with the same
reference is also found for the mean value and the amplitude of this periodic signal.
Streamfunction contours for the streamfunction values reported in Table 5.2 are
reported in Figure 5.8 for four equally spaced time intervals along the main period
1/f . From the analysis of Figure 5.8 it can be deduced that the time-dependent
flow behaviour is originated from the periodic growing and detaching of secondary
and tertiary vortices from the bottom and left cavity walls. Again, the streamline
plots agree, to graphical accuracy, to the ones reported in [80] for the same time
instants.

5.3.3. Differentially heated cavity

Geometry and boundary conditions

The differentially heated cavity problem, Figure 5.9a, is defined again by a square
cavity with side length L where the horizontal walls are adiabatic while the vertical
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Table 5.3: Comparison of streamfunction extrema for Re = 1000 and Re = 5000.

Primary vortex, Secondary vortex BR, Secondary vortex BL,
ψ (location) ψ (location) ψ (location)

Re = 1000

N ≈ 20, 000
P = 2 -0.1195 (0.5294,0.5651) 1.760E-3 (0.8637,0.1118) 2.445E-4 (0.0834,0.0786)
P = 3 -0.1211 (0.5290,0.5647) 1.808E-3 (0.8630,0.1118) 2.526E-4 (0.0836,0.0789)
P = 4 -0.1226 (0.5288,0.5642) 1.861E-3 (0.8622,0.1118) 2.664E-4 (0.0840,0.0795)
P = 5 -0.1244 (0.5283,0.5638) 1.923E-3 (0.8616,0.1117) 2.827E-4 (0.0844,0.0800)

N ≈ 40, 000
P = 2 -0.1190 (0.5313,0.5670) 1.737E-3 (0.8640,0.1119) 2.376E-4 (0.0834,0.0783)
P = 3 -0.1189 (0.5313,0.5671) 1.737E-3 (0.8637,0.1120) 2.349E-4 (0.0833,0.0782)
P = 4 -0.1192 (0.5313,0.5670) 1.748E-3 (0.8636,0.1119) 2.376E-4 (0.0834,0.0783)
P = 5 -0.1198 (0.5313,0.5670) 1.769E-3 (0.8630,0.1118) 2.431E-4 (0.0835,0.0786)

N ≈ 80, 000
P = 2 -0.1191 (0.5329,0.5664) 1.736E-3 (0.8639,0.1116) 2.365E-4 (0.0835,0.0782)
P = 3 -0.1194 (0.5329,0.5664) 1.747E-3 (0.8637,0.1116) 2.378E-4 (0.0835,0.0782)
P = 4 -0.1199 (0.5328,0.5664) 1.761E-3 (0.8636,0.1116) 2.413E-4 (0.0836,0.0783)
P = 5 -0.1206 (0.5328,0.5663) 1.785E-3 (0.8634,0.1116) 2.474E-4 (0.0838,0.0786)

Reference [4] -0.1189 (0.5308,0.5652) 1.730E-3 (0.8641,0.1118) 2.334E-4 (0.0832,0.0781)
Reference [1] -0.1189 (0.5308,0.5657) 1.732E-3 (0.8636,0.1115) 2.334E-4 (0.0832,0.0782)

Re = 5000

N ≈ 20, 000
P = 2 -0.1183 (0.5150,0.5359) 3.039E-3 (0.8062,0.0735) 1.386E-3 (0.0729,0.1372)
P = 3 -0.1226 (0.5146,0.5357) 3.146E-3 (0.8027,0.0726) 1.413E-3 (0.0726,0.1373)
P = 4 -0.1237 (0.5142,0.5355) 3.228E-3 (0.8021,0.0720) 1.456E-3 (0.0722,0.1380)
P = 5 -0.1262 (0.5121,0.5340) 3.320E-3 (0.8012,0.0716) 1.501E-3 (0.0718,0.1388)

N ≈ 40, 000
P = 2 -0.1209 (0.5228,0.5275) 3.075E-3 (0.8053,0.0730) 1.393E-3 (0.0728,0.1374)
P = 3 -0.1175 (0.5230,0.5275) 3.008E-3 (0.8054,0.0731) 1.358E-3 (0.0731,0.1366)
P = 4 -0.1186 (0.5230,0.5275) 3.045E-3 (0.8050,0.0728) 1.372E-3 (0.0729,0.1369)
P = 5 -0.1180 (0.5230,0.5275) 3.059E-3 (0.8048,0.0728) 1.384E-3 (0.0728,0.1370)

N ≈ 80, 000
P = 2 -0.1224 (0.5193,0.5291) 3.104E-3 (0.8052,0.0731) 1.393E-3 (0.0726,0.1376)
P = 3 -0.1225 (0.5193,0.5291) 3.099E-3 (0.8047,0.0729) 1.390E-3 (0.0728,0.1371)
P = 4 -0.1237 (0.5193,0.5291) 3.134E-3 (0.8038,0.0725) 1.404E-3 (0.0726,0.1374)
P = 5 -0.1256 (0.5193,0.5291) 3.189E-3 (0.8029,0.0721) 1.430E-3 (0.0723,0.1380)

Reference [4] -0.1223 (0.5151,0.5352) 3.077E-3 (0.8046,0.0727) 1.379E-3 (0.0728,0.1371)
Reference [1] -0.1221 (0.5155,0.5355) 3.078E-3 (0.8052,0.0729) 1.375E-3 (0.0729,0.1369)

BR = bottom right; BL = bottom left.

walls are isothermal. The temperature of the left wall (hot wall) is T = TH
while the temperature of the right wall (cold wall) is TC < TH . The reference
temperature for the buoyancy linearization is chosen to be the mean temperature
T0 = (TH + TC)/2 while the reference temperature scale is chosen to be ∆T =
TH − TC .

The boundary conditions in terms of nondimensional variables are the follow-
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Figure 5.5: Normalized velocity profiles along centerlines: N ≈ 2 × 104 nodes (top),
N ≈ 8× 104 nodes (top), P = 3, n = 25.

ing: 
u = 0 at x, y = 0, 1
T = 1/2 at x = 0
T = −1/2 at x = 1

∂T

∂y
= 0 at y = 0, 1

(5.22)
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Figure 5.6: Streamfunction contours for Re = 1000 (a), Re = 5000 (b) with enlarged
view of the bottom left (c) and bottom right (d) corners at Re = 5000. N ≈ 8 × 104

nodes, P = 3, n = 25.

Node distributions

The spacing function employed for the differentially heated cavity problem at
Ra = 106, Ra = 107 and Ra = 108 is the following:

s(x, y)

sM
=

1

τ
+
τ − 1

4.2τ

[
1 + cos

(
π(2x− 1)8

)][
1.1 + cos

(
π(2y − 1)8

)]
(5.23)
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Figure 5.7: Time history of the x-component of the velocity at the cavity center for
Re = 10000. N ≈ 4× 104 nodes, P = 3, n = 25.
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Figure 5.8: Streamfunction contours for Re = 10000 for four equally spaced times
along the main period 1/f = 1.75 (left to right, top to bottom). N ≈ 4 × 104 nodes,
P = 3, n = 25.

for which the maximum spacing at the cavity center is sM and τ = 40. The
minimum spacing at the vertical walls is sm = sM/τ = sM/40, while the spacing
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Figure 5.9: Geometry (a), spacing function (b) and enlarged view of the node distribu-
tion for the bottom left corner (c) with N ≈ 100, 000 nodes for the differentially heated
cavity problem.

at the horizontal walls is larger than sm. This choice is motivated by the necessity
of an accurate resolution of the thin boundary layers occurring at the isothermal
vertical walls, especially for high Ra numbers. A graphical representation of the
spacing function is given in Figure 5.9b, while 5.9c shows an enlarged view of the
node distribution for the bottom left corner.

The solutions of the differentially heated cavity at Ra = 2 × 108 and Ra =
4×108, which are expected to be time-dependent, are obtained on highly stretched,
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non-uniform cartesian node arrangements. This choice is due to the strong influ-
ence of the accurate resolution of the thin boundary layer on the time-dependent
flow.

The employed cartesian coordinates of the nodes for both directions are:

xi
L

=
i

iMAX

− 1

2π
sin
( 2πi

iMAX

)
, i = 0, . . . , iMAX (5.24)

as suggested in [50]. The spacing defined by Eq. (5.24) is extremely small at the
walls: 2Lπ2/(3i3MAX) orthogonally to the wall. Two cartesian arrangements with
iMAX = 200 (N ≈ 40, 000 nodes) and iMAX = 320 (N ≈ 100, 000 nodes) have
been employed, for which the distance of the first node from the wall is 8.2× 10−7

and 2.0× 10−7 when L = 1.

Results

The differentially heated cavity problem has been solved for Rayleigh numbers
Ra = 106, Ra = 107 and Ra = 108 on an isotropic node distribution with N ≈
100, 000 nodes, and for Ra = 2× 108 and Ra = 4× 108 on the stretched cartesian
node distributions with 200 × 200 and 320 × 320 nodes. A transition between a
steady solution at Ra = 108 and a time-dependent, periodic solution for Ra =
2 × 108 is expected, while the solution at Ra = 4 × 108 is expected to be weakly
turbulent (chaotic), as suggested by different authors [50, 83].

In the cases Ra = 106, Ra = 107 and Ra = 108, a linear polynomial P = 1 and
n = 7 interpolation nodes are employed with s · ε = 0.1. The employed amount of
explicit hyperviscosity is δ̄3 = 1 · 10−4.

Starting from rest, a steady-state solution is found for Ra = 106 after an
appropriate long time integration for 300 time units using a time step ∆t = 0.1.
Steady solutions are also found for the cases Ra = 107 and Ra = 108 using a time
step ∆t = 0.05, starting from the steady solution at the Ra value immediately
below and integrating for more than 500 time units. These steady solutions are in
perfect agreement with the findings of Janssen and Henkes [50] and Paolucci and
Chenoweth [83], which predicted a critical Rayleigh number Racr ≈ 1.93 × 108.
Characteristic values such as mean, maximum and minimum Nusselt number at
the cold wall are reported in Table 5.4 for each of these cases, where the reference
results of Contrino et al. [17] are also reported. Such reference results are obtained
using a thermal lattice Boltzmann approach with fine meshes up to 20432. Very
good agreement is found in each case, with slightly larger deviations from reference
values only for Ra = 108. These deviations are probably due to the employed
isotropic node distribution which is not refined enough to accurately solve the
very thin boundary layers at the isothermal walls at such high Ra numbers.
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Table 5.4: Comparison of characteristic values for the differentially heated cavity.

Nu Numax y Numin y
Ra = 106

Contrino et al. [17] 8.8252 17.5360 0.9608 0.9795 0.0006
Present results 8.8280 17.5611 0.9614 0.9793 0.0030

Ra = 107

Contrino et al. [17] 16.5231 39.3950 0.9820 1.3659 0.0006
Present results 16.5159 39.3889 0.9818 1.3755 0.0022

Ra = 108

Contrino et al. [17] 30.2251 87.2454 0.9917 1.9195 0.0010
Present results 30.0887 86.7845 0.9914 1.9694 0.0014

Figure 5.11a depicts the local Nusselt number Nuy at steady-state along the
cold wall for the Ra numbers previously considered. The comparison with reference
values from Contrino et al. [17] shows excellent agreement along the whole wall.
The contour plots for streamfunction and temperature at steady state are reported
in Figure 5.10, showing a very good agreement, to graphical accuracy, to the ones
reported in [17, 63].

In the cases Ra = 2 × 108 and Ra = 4 × 108, a linear polynomial P = 1 and
n = 5 interpolation nodes (the classic five points stencil for cartesian arrangements)
are employed with s · ε = 0.1. The employed amount of explicit hyperviscosity
is δ̄3 = 2.5 · 10−4 and kSUB = 3 subiterations are employed. Since the node
distribution is not isotropic, the value of the spacing s employed for the scaling
of the RBF and for the scaling of the hyperviscosity is the geometric mean of the
spacing along the x and y axes: s =

√
sx · sy.

The case Ra = 2× 108, which is a slightly larger Ra number than the critical
value Racr ≈ 1.93×108, is started from the computed steady solution at Ra = 108

which is interpolated onto the 200 × 200 cartesian node distribution. After an
integration over 300 time units using a time step ∆t = 0.03, an apparently peri-
odic solution is found, albeit not completely developed. The periodic behaviour
is deduced from the analysis of the time trace of the temperature for the node
which is closest to the point (0.1032, 0.8036), suggested in [83], and is reported in
Figure 5.12a. In order to investigate the influence of the node distribution on the
time dependent solution at this Ra number, the calculated solution is interpolated
onto the fine 3202 cartesian node distribution for a successive integration over 300
additional time units with the same time step ∆t = 0.03. The analysis of time
trace of the temperature at the same point (0.1032, 0.8036) is reported in Figure



rbf-fd solution of cfd problems 139

Ra = 106

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

y

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

y

Ra = 107

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

y

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

y

Ra = 108

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

y

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

y

Figure 5.10: Streamfunction contours (left) and temperature contours (right) for Ra =
106, Ra = 107 and Ra = 108.

5.12b and confirms the periodic behaviour calculated with the coarse distribution.
The frequency f = 0.0532 of the strongest component is in close agreement with
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Figure 5.11: Local Nusselt number Nuy along the cold wall for (a) steady-state solu-
tions and (b) time dependent solutions (time averaged).
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Figure 5.12: Time traces of the temperature at point (0.1032,0.8036) for Ra = 2× 108

using (a) 200× 200 and (b) 320× 320 highly stretched cartesian grids.

the value f = 0.0527 obtained by Janssen and Henkes [50] with a fourth order
finite volume scheme and a 3602 grid. The time trace also reveals a small har-
monic component with frequency 2f = 0.1064 and the presence of a low-frequency
component whose frequency is estimated to be f ′ ≈ 0.008, which is also in good
agreement with the value f ′ = 0.0078 obtained by Janssen and Henkes. They also
showed that this low-frequency component is damped and has a very slow decay,
requiring long integration periods to be eliminated, e.g., 3000 time units.

The solution at Ra = 4×108 is calculated on the fine distribution only, starting
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Figure 5.13: Time trace of the temperature at point (0.1032,0.8036) for Ra = 4× 108.

from the last available solution at Ra = 2× 108 and integrating for 300 time units
with ∆t = 0.02. The time trace of the temperature at the point (0.1032, 0.8036)
is reported in Figure 5.13, from which it can be observed that the solution can
not be described by a limited number of harmonic components and the flow is
described as chaotic or weakly turbulent [83]. This chaotic behaviour agrees with
the findings of Paolucci and Chenoweth [83] which performed calculations for the
same Ra number using a finite difference scheme on a 1212 grid.

Figure 5.11b shows the time averaged local Nusselt number Nuy along the cold
wall for Ra = 2× 108 and Ra = 4× 108. The envelopes for the highest Ra value
are also shown, highlighting the activity at the bottom of the cold wall.

5.3.4. Flow past a circular cylinder between parallel
walls

Geometry and boundary conditions

The problem of the flow past a circular cylinder between parallel walls, Figure
5.14, is defined by a rectangular channel with height L and length 11L with a
circular obstacle with diameter dcyl = L/5 placed at half of the channel height and
3L = 15dcyl downstream from the left inlet. The inlet velocity profile is parabolic
with u0 as mean value, while completely developed flow conditions are imposed at
the outlet. The outlet is placed at 8L = 40dcyl downstream from the cylinder in
order to avoid any spurious influence of the outlet boundary conditions on the flow
near the cylinder. The boundary conditions in terms of nondimensional variables
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Figure 5.14: Geometry (top), spacing function (middle) and enlarged view of the node
distribution around the cylinder with N ≈ 100, 000 nodes (bottom) for the flow past a
circular cylinder between parallel walls.

are the following:


u = 0 at y = −1/2, 1/2; on the cylinder
u = {3/2− 6y2, 0}T at x = −3

∂u

∂x
= 0 at x = 8

(5.25)
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Spacing function

The spacing function employed for the node generation is the following:

s(x, y)

sM
=

[
1 + kW

(2y

H

)2eW
+ kC

dcyl
2r

+ kW e
−8(x+3)2

+ kW e
−8(x−8)2

]−1

(5.26)

where kW = 3, eW = 1.75, kC = 24, r =
√
x2 + y2 is the distance from the

center of the cylinder and sM is the maximum spacing. The ratio between the
spacing at the channel walls and the maximum spacing sM , encountered towards
the outlet, is approximately 1/(kW +1) = 1/4, while the ratio between the spacing
at the cylinder wall and the maximum spacing is approximately 1/(kC + 1) =
1/25. Again, a very small nodal spacing is employed near the cylinder in order
to accurately resolve the boundary layers, while the inlet and the outlet are also
refined in order to prevent the arising of instabilities. Instabilities at the inlet
are due to the downstream orientation of the stencils near the boundary, while
possible instabilities at the outlet may arise because of the imposed condition of
completely developed flow. A graphical representation of the spacing function is
given in Figure 5.14 together with an enlarged view of the node distribution around
the cylinder for N ≈ 100, 000 nodes.

Results

The case of the flow past a circular cylinder between parallel walls has been solved
for Reynolds numbers Re = 200, Re = 300, Re = 500 and Re = 1000, expecting
a time-dependent flow for the cases Re ≥300, as suggested by different authors
[13, 111]. A linear polynomial augmentation P = 1 and n = 7 interpolation
nodes are employed, while the employed amount of explicit viscosity (laplacian)
is δ̄1 = 4 for each Re number. kSUB = 2 subiterations are employed. The results
for this case are obtained with the coarse distribution strategy for the pressure
stabilization reported in Subsection 5.2.3. N ≈ 100, 000 nodes are employed.

The calculation at Re = 200 is started from rest using a time step ∆t = 0.025,
reaching an asymptotic steady solution after an appropriate time integration for
over 100 time units. Periodic solutions are found in the remaining cases, using the
time steps reported in Table 5.5, starting from the solution at the Re value imme-
diately below and integrating for over 200 time units for each case. These periodic
solutions are in perfect agreement with the findings of Zovatto and Pedrizzetti [111]
and Chen et al. [13], which predicted a critical Reynolds number Recr ≈ 231. The
periodic flow is due to the onset of an unsteady periodic shedding regime in the
cylinder wake. The values of the nondimensional shedding period t̄ and drag co-
efficient CD are reported in Table 5.6, where the reference results of Zovatto and



144 3d case

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

x

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

y

Figure 5.15: Streamlines for the steady flow at Re = 200.

Table 5.5: Time steps ∆t at different Re numbers for the flow past a cylinder.

Re 200 300 500 1000

∆t 0.025 0.020 0.015 0.015

Pedrizzetti [111] are also reported. Good agreement for both t̄ and CD is found
for low Re numbers, while larger deviations of CD are found for higher Re and
are due to the use of the simple laplacian smoothing k = 1 which introduces large
numerical diffusion errors.

A streamline plot for the steady solution at Re = 200 is reported in Figure
5.15, which shows the typical recirculating zones with perfect symmetry behind
the cylinder.

5.4. 3D case

For all the 2D cases, the k = 3 explicit hyperviscosity smoothing (∇6) with nH =
40 interpolation nodes is employed, except for the case of the flow past a circular
cylinder between parallel walls where a laplacian smoothing with nH = n = 7 is
employed.
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Table 5.6: Comparison of nondimensional period t̄ and time-averaged drag coefficient
CD.

Re 200 300 500 1000
Present t̄ − 0.80 0.72 0.65
results CD 3.41 2.99 2.77 2.74
Zovatto and t̄ − 0.81 0.73 0.67
Pedrizzetti [111] CD 3.40 2.94 2.68 2.62

5.4.1. Lid-driven cavity

Geometry and boundary conditions

The domain is a cube with side length L. No-slip conditions are imposed at all
faces and the face x = 0 moves in the +z direction with velocity u0.

Spacing function

The spacing function employed for the node generation is:

s(x, y, z)

sM
=

1

1 + d(x, y, z)
(5.27)

where d(x, y, z) is:

d(x, y, z) = 7−
3∑
i=1

Li
atan(2lixi)

atan(li)
+

atan
(
2g(1− xi)

)
atan(g)

(5.28)

where x1 = x, x2 = y, x3 = z, g = 5, li = 5 except for l1 = 10, Li = 1 except for
L1 = 2.

The maximum spacing function sM is encountered at the cavity center, while
the spacing at the walls is s ≈ sM/2 except for the moving face x = 0 where the
spacing is s ≈ sM/3. Three node distributions with N = 40, 000, N = 80, 000
and N = 140, 000 nodes are depicted in Figure 5.16 where the yellow face is the
moving face.

Results

The 3D lid-driven cavity problem has been solved for Reynolds numbers Re =
100, Re = 400 and Re = 1000 using three node distributions with N ≈ 40, 000,
N ≈ 80, 000 and N ≈ 140, 000 nodes. The finer distribution is employed for
the case Re = 1000 only. The employed polynomial order is P = 3 and n = 40
interpolation nodes are used with s ·ε = 0.4. The k = 3 hyperviscosity is employed



146 3d case

N ≈ 40, 000 N ≈ 80, 000

N ≈ 140, 000

Figure 5.16: Three node distributions employed for the 3D lid-driven cavity problem.
The yellow face moves in the +z direction with velocity w = 1.

using nH = 55 interpolation nodes and the amount of explicit hyperviscosity is
δ̄3 = 2 · 10−5 for Re = 100 and Re = 400, while δ̄3 = 1 · 10−4 for Re = 1000.

The calculation at Re = 100 is started from rest using a time step ∆t = 0.1,
reaching an asymptotic steady solution after an appropriate long time integration,
i.e., over 300 time units. Steady solutions are also found for Re = 400 using the
same time step ∆t = 0.1, starting from the steady solution at the Re = 100 and
integrating for additional 300 time units. The velocity profiles along the centerlines
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Figure 5.17: Normalized velocity profiles w(x, 0.5, 0.5) (left) and u(0.5, 0.5, z) (right)
along centerlines. P = 3, n = 40.

at steady-state are depicted in Figure 5.17 where the results of Albensoeder and
Kuhlmann [3] are also reported as reference. Such reference results are obtained
using an accurate spectral method with 32 × 24 × 32 polynomial modes. A good
agreement with reference results is obtained in the Re = 100 case, while for Re =
400 the deviations are larger. Nonetheless, there is a significant improvement when
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Figure 5.18: Normalized velocity profiles w(x, 0.5, 0.5) (left) and u(0.5, 0.5, z) (right)
along centerlines, Re = 1000. P = 3, n = 40.
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Figure 5.19: Pressure profiles p(x, 0.5, 0.5) (left) and p(0.5, 0.5, z) (right) along center-
lines, Re = 1000. P = 3, n = 40.

increasing the number of nodes from N ≈ 40, 000 to N ≈ 80, 000.

The case Re = 1000 is calculated using the three distributions with N ≈
40, 000, N ≈ 80, 000 and N ≈ 140, 000 nodes. Steady state solutions have been
found after an appropriate time integration over 400 time units in each case, start-
ing from the steady solution at Re = 400 using N ≈ 40, 000 and N ≈ 80, 000
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Figure 5.20: Velocity vector plot for (u, v) (left) and (v, w) (right) on midplanes z = 0.5
and x = 0.5, respectively. Re = 1000, P = 3, n = 40.

nodes, while for N ≈ 140, 000 nodes the calculation is started from rest. A time
step ∆t = 0.075 is employed in each case. The pressure (shifted to 0 at the cavity
center) and the velocity profiles along the centerlines at steady-state are depicted
in Figure 5.19 and Figure 5.18, respectively, where the results of Albensoeder and
Kuhlmann [3] are again reported as reference. In the case Re = 1000 the refer-
ence results are obtained using 96 × 64 × 96 polynomial modes. The results for
N ≈ 40, 000 nodes show poor agreement with the reference values, while the in-
crease in the number of nodes from N ≈ 40, 000 to N ≈ 80, 000 to N ≈ 140, 000
leads again to a significant improvement of the results. Significant deviations from
the reference values are still visible even using the fine distribution, especially
for the pressure near the walls, suggesting that N � 140, 000 nodes are proba-
bly required for the accurate solution of this problem using this RBF-FD scheme
(P = 3, n = 40).

Figure 5.20 shows the velocity vector plot on midplanes z = 0.5 and x = 0.5 for
the case Re = 1000 using N ≈ 140, 000 nodes. These vector plots reveal the 3D
nature of the lid-driven cavity flow at Re = 1000 with the presence of secondary
flows. These observations are in perfect accordance to the findings of Albensoeder
and Kuhlmann [3].
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5.5. Conclusions

In this chapter the RBF-FD approach previously presented has been successfully
employed for the discretization of the incompressible Navier-Stokes equations with
possible heat transfer using primitive variables and a projection technique for the
decoupling of mass and momentum equations. A second order backward Euler
scheme for the time integration has been employed, resulting in an accurate and
efficient procedure for the numerical simulation of time-dependent fluid-flow prob-
lems on 2D and 3D domains. The hyperviscosity technique for the stabilization
of transport equations is extended to the set of Navier-Stokes equations where
there is no transport equation for the pressure. The stabilization of such velocity-
pressure coupling is obtained through an explicit hyperviscosity stabilization which
is applied to both velocity and pressure at each time step, allowing the use of an
“equal-order” RBF-FD discretization scheme for each variable. Such stabilization
technique has proven to be particularly effective when using high order RBF ex-
pansions, i.e., large stencils and polynomial order P > 2, and for moderately high
Reynolds or Rayleigh numbers occurring in engineering relevant problems. Dif-
ferent 2D/3D benchmark test cases have been successfully carried out in order to
highlight the properties of the RBF-FD method when it is applied to the full set of
Navier-Stokes equations with possible heat transfer using primitive variables; the
comparison with reference results showed very good agreement in each case. In
the case of the laminar flow inside a circular domain, where the analytical solution
is available, it is shown that the computational efficiency of the RBF-FD method
is increased when using high order RBF expansions, e.g., P =4-5 and n =30-40
nodes; this is in perfect accordance with similar results obtained for the simple
test cases of Chapter 3. Even though simple geometries have been considered, the
presented approach can be applied to arbitrary 2D/3D domains since the RBF-FD
discretization does not rely upon any polygonization and no connectivity informa-
tion is required. Alongside the favourable numerical properties highlighted in this
chapter, these features confirm that the presented RBF-FD meshless approach is
an excellent candidate for the efficient and accurate numerical simulation of 2D
and 3D CFD problems over complex-shaped domains with engineering relevance.



Chapter 6

Summary and conclusions

6.1. Summary of the presented work

The objective of this dissertation was to investigate the numerical properties of
the RBF-FD meshless approach when it is employed for the solution of CFD
problems, with particular reference to fluid-flow problems defined over complex-
shaped domains. This objective has been accomplished by developing a MATLAB
code which is composed by several elements characterizing the meshless approach
to a CFD problem: node generation, RBF-FD discretization of the Navier-Stokes
equations with possible heat transfer and solution of the systems of equations.
The work presented in this thesis has focused on the analysis and development
of these characterizing elements which are essential in developing an innovative,
robust, accurate and flexible numerical method.

The node generation is the first problem that has been tackled and a signifi-
cant portion of this work is dedicated to this element since it is the foundation of
every meshless approach. Different algorithms have been successfully proposed for
the generation of high quality node distributions on 2D and 3D complex-shaped
domains. Such node distributions then proved to be very suitable for the use with
RBF-FD discretizations. The proposed approaches are characterized by an ini-
tial node positioning phase followed by a refinement phase based on the mutual
repulsion of neighbouring nodes. The developed node generation algorithms are
extremely efficient, i.e., 0.5− 1.0 · 105 nodes/second, and are based on very simple
principles: this is an important insight since the possibility to easily deal with
complex geometries represents the main theoretical advantage of meshless meth-
ods over mesh-based methods. This advantage is particularly valuable in the 3D
case where no boundary discretization is needed thanks to a boundary projection
technique.

The RBF interpolation, which is the key element of the RBF-FD method, is
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then thoroughly studied by exploring all the variables which influence the con-
struction of an accurate and robust interpolant over scattered nodes: number of
interpolation nodes, polynomial degree, shape factor, type of rescaling, influence of
boundary nodes. The multiquadric RBF has been chosen and extensive numerical
tests are conducted for 2D and 3D cases. On the base of these analysis, a RBF-FD
code has been developed for the local approximation of the partial derivatives of
an unknown function which is defined only at scattered nodes distributed over
the 2D/3D domain. The coupling of a node generation algorithm to a RBF-FD
scheme leads to a truly meshless approach which can be used to discretize a given
PDE on a domain with possible arbitrary shape. Such meshless approach has been
employed to perform several test cases for different 2D/3D model problems which
have fundamental importance in CFD applications. These model problems include
a Poisson equation, which is representative of steady-state diffusive phenomena,
and an advection equation, which is representative of convection-dominated trans-
port phenomena.

The solution phase then follows the RBF-FD discretization, and its role in the
simulation chain is just as important as the previous aspects, since an efficient
solver is essential for any numerical approach. For this purpose, novel multicloud
techniques based on the multigrid principles have been proposed for the acceler-
ation of the convergence in the solution of the system of equations arising from
RBF-FD discretizations, in the case of a 2D Poisson equation. Such multicloud
techniques have proven to bring substantial improvements in terms of reduction
of computational effort over the traditional solvers employed with the RBF-FD
discretizations, e.g., BiCGSTAB with incomplete LU (ILU) preconditioning.

Finally, the RBF-FD approach is employed to solve actual 2D/3D fluid-flow
problems in the case of the time-dependent, incompressible Navier-Stokes equa-
tions with possible heat transfer using a projection approach. These problems
include a laminar flow inside a circular domain, a lid-driven cavity, a differentially
heated cavity and a flow past a circular cylinder between parallel walls in the 2D,
while a 3D lid driven cavity is also considered. Very good results have been ob-
tained in each case when comparing the computed results to the reference ones.
Important problems are addressed, e.g., the development of stable discretizations
when dealing with the pressure-velocity coupling using primitive variables with
moderately high Reynolds or Rayleigh numbers. This important result has been
obtained employing an explicit stabilization through the hyperviscosity technique
for all the involved fields, i.e., velocities, pressure and temperature, leading to an
efficient and stable RBF-FD approach which can be used for the accurate solution
of time-dependent fluid-flow problems over arbitrarily shaped domains in 2D and
in 3D.
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6.2. Conclusions and further developments

The main conclusions resulting from the conducted work can be summarized as
follows:

• 2D/3D node generation for RBF-FD meshless approaches can be more effec-
tive and easier than the meshing process required by mesh-based methods:
the proposed algorithms are very simple and efficient and are able to auto-
matically generate high-quality node distributions over arbitrary geometries.
Nonetheless, since a limited number of cases have been faced only, especially
in 3D, stronger statements can not be made;

• a proper choice of the RBF-FD parameters, i.e., polynomial order P , number
of interpolation nodes n and shape factor ε, results in very accurate and
efficient discretizations and is therefore essential for the practical success of
RBF-FD methods;

• if proper RBF-FD parameters are chosen, the sensitivity of the discretization
upon the nodal arrangement is small. This is another significant advantage
over mesh-based methods;

• when high order RBF-FD discretizations are employed, i.e., P > 3, the accu-
racy and the stability of the discretization are affected by the nonsymmetric
nodal arrangement in the neighbourhood of the boundary (no ghost nodes
are employed in this work);

• for problems with no time dependence, e.g., Poisson equation, the employ-
ment of small shape factors ε→ 0 increases the accuracy of the discretization
in the limit of the appearance of ill-conditioned interpolants. This is in per-
fect accordance with the theoretical predictions stating that the polynomial
interpolant with minimal degree is recovered in the limit ε→ 0;

• for time-dependent problems, e.g., advection-diffusion equation, the stability
of the discretization is heavily compromised by the use of small shape fac-
tors, probably because of boundary effects/boundary conditions due to the
unsymmetrical boundary stencils;

• hyperviscosity is a powerful smoother which can be employed for an effec-
tive stabilization of RBF-FD discretizations, especially with high order RBF
expansions. The introduced artificial numerical diffusion can be very small
or even negligible if proper hyperviscosity parameters are employed, i.e., hy-
perviscosity exponent and amount;
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• the explicit hyperviscosity for the pressure allows the use of “equal-order”
discretization schemes for both pressure and velocity. Theoretically, the
pressure field could even be discretized with higher order RBF schemes than
velocities;

• the RBF-FD approach can be employed for the accurate, robust and flexible
simulation of fluid-flow problems over 2D and 3D complex-shaped domains.
The order of accuracy of the discretization can be increased by simply con-
sidering large stencils with more nodes and a polynomial with high degree.
For the considered problems, a polynomial degree P = 4 with n ≈ 30 local
nodes allowed the best results in terms of computational efficiency.

Considering both the theoretical and the heuristic motivations acquired during
the present work, the ranges and the recommended values for the main parameters
defining the entire RBF-FD meshless approach presented here, including the node
generation phase, are reported in Table 6.1.

Further developments of the RBF-FD method include a very large variety of
aspects. If we limit to the basic aspects, the following elements are believed to be
important:

• robust treatment and enforcement of boundary conditions at the boundary
stencils (without ghost nodes) for steady-state problems, especially for high
orders P . Such aspect should also be developed for time-dependent problems
by considering stability issues;

• automatic and robust choice of the stabilization parameter for the explicit
hyperviscosity;

• development of specific and efficient solvers for different equation types and
regimes, i.e., convection dominated vs. diffusion dominated, especially for
high orders P ;

• handling of geometrical anisotropy for the efficient treatment of boundary
layers at the walls. This aspect includes the development of anisotropic node
generation techniques and, consequently, the employment of anisotropic RBF
expansions;

• employment of turbulence models for the simulation of practical fluid-flow
problems of industrial relevance.
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Table 6.1: Ranges for the main RBF-FD parameters (recommended values).

Node-repel refinement
kR: number of refinement iterations
nR: number of neighbouring nodes
α, β: repel parameters

kR β nR 1/α
20-100 0.20 (2D) 12 (2D) maximize until insatabilities appear
(50) 0.15 (3D) 36 (3D) (0.1)

RBF-FD
P : polynomial degree
n: number of local nodes (stencil size)
s · ε: spacing function · shape factor
D: number of dimensions

P n s · ε = constant
> 1 ≥ 2 · (P+D

P ) as small as possible (steady-state problems)
(3-4) 0.4 (time-dependent problems)

Explicit hyperviscosity stabilization (p,u, T )
k: hyperviscosity exponent (∇2k)
δ̄k: amount of hyperviscosity
PH : polynomial degree
nH : number of local nodes (stencil size)
s · εH : spacing function · shape factor

k δ̄k > 0 PH nH s · εH = constant
≥ P/2 minimum value ≥ 2 > (PH+D

PH
) s · ε

(3-4) guaranteeing ≤ 2k ≥ n
stability (4-6)
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cloud Techniques for Convergence Acceleration in the Solution of Systems of
Equations Arising from RBF-FD Meshless Discretizations.

8 Accepted (2019), R. Zamolo, E. Nobile, Solution of Incompressible Fluid
Flow Problems with Heat Transfer by Means of an Efficient RBF-FD Mesh-
less Approach, Numerical Heat Transfer, Part B: Fundamentals.



Appendix A

Nearest neighbour search

In the context of meshless methods, the task of efficient nearest neighbour search
(NNS) for a given node distribution is of utmost importance. The specific problem
of efficient NNS arising in meshless methods consists in finding the n nodes (local
nodes) from a set of N nodes (the meshless node distribution) which are closest
to a given node, where n � N . This search is required to be performed in an
efficient way, i.e., its cost should be O(1) or O(logN) at most.

With particular reference to the meshless approach developed in this thesis,
NNS is required in two different phases: node generation and RBF-FD discretiza-
tion. NNS is required in node generation because a node-repel algorithm is em-
ployed, therefore it is required to find the nearest neighbours for each node in order
to efficiently compute the corresponding nodal displacement due to repulsion. NNS
is also required in RBF-FD discretization because the RBF approximation is cho-
sen to be built using a local support, therefore nearest neighbouring nodes have
to be found.

There exist many common techniques developed in the field of computer science
that can be employed for the efficient NNS. These techniques include 2D quadtrees
and 3D octrees [29, 87], k-d trees [5] and R-trees [42]. These techniques can be used
with arbitrary node distributions where node clustering and/or large zones with no
nodes can be encountered. However, since the node distributions employed in this
work are characterized by a complete filling of the domain and a moderate node
clustering, typically near the walls, two simpler techniques have been successfully
employed. These techniques, which have a straightforward implementation, are
both based on spatial binning and are described as follows.
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A.1. NNS with cartesian binning

This is the most straightforward and fast technique for NNS in the case of nearly
uniform distributions of nodes. Given a domain Ω in D dimensions where nodes
are scattered, the smallest box B bounding Ω is considered. The box has the
faces aligned with the cartesian axes and its dimensions are Lx, Ly (and Lz in
3D). For the sake of simplicity we assume that B is completely contained in the
first quadrant/octant and has one vertex at the origin of the axes, without loss of
generality.

The bounding box B is then spatially subdivided using a cartesian partition
with Nx, Ny, Nz bins along each axis. Therefore each bin has dimensions hx =
Lx/Nx, hy = Ly/Ny, hz = Lz/Nz. The number of bins along each axis is chosen to
have a total number of bins Nx × Ny (×Nz) ≈ N and hx ≈ hy(≈ hz) in order to
have nearly square (cubic in 3D) bins.

For each bin, which is identified by a spatial indexing Bi,j,k, i = 1, . . . , Nx,
j = 1, . . . , Ny, k = 1, . . . , Nz, a list Li,j,k of the nodes which are contained in Bi,j,k
is created. The NNS for a generic point x = (x, y, z) is then performed as follows:

1. Evaluation of the spacing function at point x: s̄ = s(x);

2. Evaluation of the radius of the circle (or sphere in 3D) centered in x in which
approximately n nodes are contained: r̄ = χs̄ D

√
n, where χ = D

√
ζ/(2πυ) is

a constant which depends upon the dimensionality D: ζ =
√

3, υ = 1 in 2D
and ζ =

√
2, υ = 4/3 in 3D;

3. Determination of the bins Bi,j,k, i = i1, . . . , i2, j = j1, . . . , j2, k = k1, . . . , k2,
which are likely to contain the nodes inside the circle (sphere) of radius r̄:

i1 = b(x− r̄)/hxc, i2 = d(x+ r̄)/hxe
j1 = b(y − r̄)/hyc, j2 = d(y + r̄)/hye
k1 = b(z − r̄)/hzc, k2 = d(z + r̄)/hze

(A.1)

4. Determination of n̄ ≤ n nodes closest to x and contained in the circle (sphere)
of radius r̄ from the list of nodes Li,j,k of each of the previous bins Bi,j,k;

5. If the number of nodes provided by point 4 is not enough, i.e., n̄ < n, the
radius r̄ is properly increased till n nodes are found.

The computational expensive part of the previous NNS procedure is given by
point 4 where coordinates are compared and squared distances from x are actually
computed. Since a nearly uniform node distribution is assumed, each bin contains
O(1) nodes and the total number of distance evaluations is proportional to n.
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Figure A.1: 2D examples of the employed NNS algorithms: (a) cartesian binning, (b)
cartesian binning with ordering along y.

Considering a small and constant number n� N , the cost of this NNS algorithm
is therefore O(n) = O(1). In the case of strong node clustering, the cost of this
algorithm grows to O(N).

An example of the application of the NNS with cartesian binning is given in
Figure A.1(a) for a 2D case where Γ is the domain boundary. In this example
the algorithm is searching for n = 4 neighboring nodes from point x, while the
bins which are likely to contain the nodes inside the dashed circle of radius r̄ are
coloured in grey. These are the only bins queried by the NNS algorithm.

It is clear that this NNS algorithm can not be applied in the case of irregular
node distributions characterized by areas where nodes are densely clustered. In
such cases the list of nodes Li,j,k of the corresponding bins may contain a very
high number of nodes, requiring a lot of unnecessary coordinates comparisons
and distance calculations and therefore reducing the efficiency of this algorithm.
However, if the node clustering is not excessive the performances of this algorithm
are satisfactory. Most of the node distributions considered in this thesis fall in the
previous case and this NNS technique can be successfully employed. Furthermore,
its implementation is incredibly straightforward and efficient.
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A.2. NNS with cartesian binning and ordering

If node clustering is excessive, e.g., very small nodal spacing near a wall to ac-
curately resolve thin boundary layers, the previous NNS technique can not be
employed. A simple way to alleviate the clustering problem is to couple the bin-
ning technique along one (or two in 3D) dimensions to a sorting technique along
the remaining dimension. This strategy alleviates the clustering problem along
the dimension of the sorting since this dimension is not partitioned into equally
spaced bins, while the clustering problem along the other dimensions remains.

Let us consider a 2D domain Ω for clarity of exposition. The smallest rectangle
B bounding Ω is then considered, whose dimensions are Lx, Ly and having axis-
aligned sides. For the sake of simplicity we assume that B is completely contained
in the first quadrant and has one vertex at the origin of the axes, without loss of
generality.

The rectangle B is then spatially subdivided into Nx bins along one dimension,
which is assumed to be x. Therefore each bin is elongated along y and has dimen-
sions hx = Lx/Nx, hy = Ly. The number of bins along each axis is chosen to be
Nx ∝

√
N in order to have N/Nx ∝

√
N nodes for each bin in the case of a nearly

uniform node distribution.
For each bin, which is identified by a spatial indexing Bi along x only, a list Li

of the nodes which are contained in Bi is created and the nodes are sorted along
y. A cumulative function Yi(j) is then built using the y coordinates of the sorted
nodes, allowing a fast identification of the nodes of each bin by means of their y
coordinate. The NNS for a generic point x = (x, y) is then performed as follows:

1. Evaluation of the spacing function at point x: s̄ = s(x);

2. Evaluation of the radius of the circle centered in x in which approximately
n nodes are contained: r̄ = χs̄

√
n, where χ = 4

√
3/
√

2π = 0.525;

3. Determination of the bins Bi, i = i1, . . . , i2, which are likely to contain the
nodes inside the circle of radius r̄:

i1 = b(x− r̄)/hxc, i2 = d(x+ r̄)/hxe (A.2)

4. For each of the previous bins Bi, nodes (xl, yl) with y − r̄ < yl < y + r̄ are
efficiently selected from the corresponding bin list Li using the cumulative
function Yi(j). From this reduced node set, n̄ ≤ n nodes closest to x and
contained in the circle of radius r̄ are determined;

5. If the number of nodes provided by point 4 is not enough, i.e., n̄ < n, the
radius r̄ is properly increased till n nodes are found.
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The selection of the nodes contained in the horizontal strip y ± r̄, performed
in point 4, is efficiently carried out by applying the bisection method on Yi(j),
therefore its total cost is O(

√
n log(%Nx)), where % = sM/sm is the ratio between

maximum and minimum node spacing. The total number of operations, i.e., co-
ordinates comparisons, is O(%

√
n), regardless of the direction of node clustering.

However, the constant hidden by the asymptotic notation is bigger when the node
clustering does not occurs along the sorting direction.

Considering a small and constant number n� N and a constant spacing ratio
%, the cost of the NNS algorithm with cartesian binning and ordering is therefore
O(
√
n log(%Nx)) + O(%

√
n) = O(logN). The use of the sorting process can thus

yield a great reduction of computational costs in the case of strong node clustering,
while its implementation is slightly more complicated than the NNS algorithm with
simple cartesian binning.

The presented NNS technique can also be extended to 3D domains considering
a 2D cartesian binning along one plane coupled with the sorting technique along
the remaining dimension, preferably the dimension along which the node clustering
occurs.

An example of the application of the NNS with cartesian binning with ordering
is given in Figure A.1(b) for a 2D case where Γ is the domain boundary and a
node distribution with a node clustering along y is employed. In this example the
algorithm is searching for n = 6 neighboring nodes from point x, while the vertical
portion of the bin which is likely to contain the nodes inside the dashed circle of
radius r̄ is coloured in grey. The nodes contained in such portion are the only
nodes queried by the NNS algorithm, avoiding unnecessary calculations.

The NNS with cartesian binning and ordering has been used in this thesis in
the cases where strong node clustering was required.
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Appendix B

Solution of the RBF
interpolation system

The square interpolation matrix M defined by the RBF interpolation system of
Eq. (3.13) in the generic case of nB boundary nodes is:

M =



ϕ(‖x1 − x1‖) · · · ϕ(‖x1 − xn‖) p1(x1) · · · pm(x1)
...

. . .
...

...
. . .

...
ϕ(‖xnI

− x1‖) · · · ϕ(‖xnI
− xn‖) p1(xnI

) · · · pm(xnI
)

Ψ1(x̂1) · · · Ψn(x̂1) Π1(x̂1) · · · Πm(x̂1)
...

. . .
...

...
. . .

...
Ψ1(x̂nB

) · · · Ψn(x̂nB
) Π1(x̂nB

) · · · Πm(x̂nB
)

p1(x1) · · · p1(xn) 0 · · · 0
...

. . .
...

...
. . .

...
pm(x1) · · · pm(xn) 0 · · · 0


(B.1)

In the case of the multiquadric RBF ϕ(r) =
√

1 + (εr)2 with small shape
factors ε, the RBF entries of M, i.e., the top left submatrix in Eq. (B.1), are very
close to 1 and it is convenient to store these entries as mij = 1 + bij, where the
entries bij are evaluated from the Maclaurin expansion of ϕ(r) around r = 0:

bij =
K∑
k=1

ak
(εrij)

2k

k!
(B.2)

where ak =
(

1
2

)(
1
2
− 1
)(

1
2
− 2
)
· · ·
(

1
2
− k + 1

)
and rij = ‖xi − xj‖. The number

of terms K to consider must satisfy (εrij)
2K/(K + 1) < err where err = 10−16 in

double precision.
Lastly, in the evaluation of the polynomial entries in M, i.e., the top right and

the bottom left submatrices in Eq. (B.1), it is convenient to perform a shift to
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the mean point x̄ =
∑n

i=1 xi/n followed by a scaling with respect to the spacing
function at the mean point s̄ = s(x̄) in order not to have unnecessary large entries
which affect the conditioning of the matrix:

pk(xi)← pk

(xi − x̄

s̄

)
(B.3)

The approximation of the RBF derivatives, Eq. (3.17), requires the solution of
the linear system:

MTd = χχχ (B.4)

where d is the unknown vector of the shape functions for the sought derivatives
and χχχ is the known vector of the derivatives of the basis functions, as expressed
by Eq. (3.17).

For the sake of simplicity, it is convenient to perform some row/column permu-
tations in M in order to have the largest top left submatrix which is symmetric.
This is accomplished by shifting the rows corresponding to the boundary condi-
tions towards the bottom, followed by a shift of the columns associated to the
boundary nodes towards the right:

M′ =



ϕ(r1,1) · · · ϕ(r1,nI
) p1(x1) · · · pm(x1) ϕ(r1,nI+1) · · · ϕ(r1,n)

...
. . .

...
...

. . .
...

...
. . .

...
ϕ(rnI ,1) · · · ϕ(rnI ,nI

) p1(xnI
) · · · pm(xnI

) ϕ(rnI ,nI+1) · · · ϕ(rnI ,n)
p1(x1) · · · p1(xnI

) 0 · · · 0 p1(xnI+1) · · · p1(xn)
...

. . .
...

...
. . .

...
...

. . .
...

pm(x1) · · · pm(xnI
) 0 · · · 0 pm(xnI+1) · · · pm(xn)

Ψ1(x̂1) · · · ΨnI
(x̂1) Π1(x̂1) · · · Πm(x̂1) ΨnI+1(x̂1) · · · Ψn(x̂1)

...
. . .

...
...

. . .
...

...
. . .

...
Ψ1(x̂NB

) · · · ΨnI
(x̂NB

) Π1(x̂NB
) · · · Πm(x̂NB

) ΨnI+1(x̂NB
) · · · Ψn(x̂NB

)


(B.5)

which can be written as:

M′ =

[
S QT

IB

QT
BI QT

BB

]
(B.6)

where S is the symmetric top left matrix of dimension nI +m and the remaining
matrices follow.

The linear system of Eq. (B.4) with the previous row/column permutations
becomes:

M′Td′ = χχχ′ (B.7)

which can be written as: [
S QBI

QIB QBB

]{
d′I
d′B

}
=

{
χχχ′I
χχχ′B

}
(B.8)
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In order to provide an accurate solution of the linear system of Eq. (B.8), the
symmetry of S is exploited by calculating its Schur complement [48], i.e., matrix
elimination. The first matrix row is multiplied by QIBS−1 and subtracted from
the second row, obtaining the following square system:(

QBB −QIBS−1QBI

)
d′B = χχχ′B −QIBS−1χχχ′I (B.9)

which is solved for d′B by Gaussian elimination with pivoting. d′I is then obtained
from the first row of Eq. (B.8):

d′I = S−1χχχ′I − S−1QBId
′
B (B.10)

In the case of no boundary nodes (nB = 0), the previous procedure reduces to
the solution of the symmetric system of Eq. (B.4) where M = S.

The whole procedure relies on the accurate solution of linear systems where
the coefficient matrix is S which is symmetric but not (positive) definite. In fact,
in the case of the polynomial augmentation of the MQ RBF interpolant, it can
be shown that S has m strictly positive eigenvalues and nI −m strictly negative
eigenvalues. Gaussian elimination is avoided because S can be very ill-conditioned
for small shape factors ε and large stencil sizes n, therefore a LDLT factorization
of S is required. Such factorization is defined by:

S = LDLT (B.11)

where D is a diagonal matrix and L is a lower triangular matrix with unitary
diagonal. Once S is factorized, the accurate solution of any linear system is carried
out by the usual forward-backward substitution.
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Appendix C

Powers of the laplacian for
the MQ RBF

The multiquadric (MQ) RBF defined by Eq. (3.22) is:

φj(x) = ϕ(r) =
√

1 + (εr)2 (C.1)

where r = ‖x− xj‖.

C.1. 2D case

The laplacian (del) operator ∇2 = ∆ for a generic RBF in 2D (cylindrical coordi-
nates) is:

∇2 =
1

r

∂

∂r

(
r
∂

∂r

)
(C.2)

The laplacian of the MQ RBF ϕ(r) is a polynomial in ϕ−1 itself, therefore the
powers of the laplacian ∇2k = ∆k, i.e., k repeated applications of the laplacian,
are again polynomials in ϕ−1. It is therefore convenient to obtain a formula for
the laplacian of a generic power p of ϕ:

∇2ϕp(r) = pε2
[
(2− p)ϕp−4(r) + pϕp−2(r)

]
(C.3)

which allows the recursive calculation of the powers of the laplacian ∇2k = ∆k
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starting from the simple laplacian for k = 1 and p = 1:

∇2ϕ(r) = ε2
[
ϕ−3(r) + ϕ−1(r)

]
∇4ϕ(r) = ε4

[
− 15ϕ−7(r) + 6ϕ−5(r) + ϕ−3(r)

]
∇6ϕ(r) = ε6

[
945ϕ−11(r)− 945ϕ−9(r) + 135ϕ−7(r) + 9ϕ−5(r)

]
∇8ϕ(r) = ε8

[
− 135135ϕ−15(r) + 207900ϕ−13(r)+

− 85050ϕ−11(r) + 6300ϕ−9(r) + 225ϕ−7(r)
] (C.4)

C.2. 3D case

The laplacian (del) operator ∇2 = ∆ for a generic RBF in 3D (spherical coordi-
nates) is:

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
(C.5)

The laplacian of the MQ RBF ϕ(r) is a polynomial in ϕ−1 itself, therefore the
powers of the laplacian ∇2k = ∆k, i.e., k repeated applications of the laplacian,
are again polynomials in ϕ−1. It is therefore convenient to obtain a formula for
the laplacian of a generic power p of ϕ:

∇2ϕp(r) = pε2
[
(2− p)ϕp−4(r) + (p+ 1)ϕp−2(r)

]
(C.6)

which allows the recursive calculation of the powers of the laplacian ∇2k = ∆k

starting from the simple laplacian for k = 1 and p = 1:

∇2ϕ(r) = ε2
[
ϕ−3(r) + 2ϕ−1(r)

]
∇4ϕ(r) = ε4

[
− 15ϕ−7(r)

]
∇6ϕ(r) = ε6

[
945ϕ−11(r)− 630ϕ−9(r)

]
∇8ϕ(r) = ε8

[
− 135135ϕ−15(r) + 166320ϕ−13(r)− 45360ϕ−11(r)

] (C.7)



Appendix D

ACMC, SRMC and linear
Multicloud

This Appendix is intended to give some analytical insight about the MC ap-
proaches and to show the different effectiveness between ACMC, SRMC and linear
MC (not employed in this work) within a two-level MC approach for a Poisson
problem.

Let us consider a continuous-space approximation of the restriction operator
IHh , i.e., a weighted integral where the weight wR is the restriction shape function.
The application of such weighted integral to Eq. (4.5) in terms of the sought error
e = f − fk, i.e., −∇2e = r where r = q +∇2fk is the residual, gives:

−
∫
W

wR∇2e dW =

∫
W

[
∇wR ·∇e dW −∇ · (wR∇e)

]
dW

=

∫
W

∇wR ·∇e dW −
∫
∂W

wR∇e·n d∂W︸ ︷︷ ︸
C=0

=

∫
W

wRr dW
(D.1)

where W is the restriction support, i.e., where wR > 0, and the divergence theorem
has been applied to C, which always vanishes because wR = 0 on ∂W by definition.
Let us consider the node distributions of Figure D.1a, where h is the fine-level
nodal spacing, the ratio between the fine-level nodes and coarse-level nodes is 4
and therefore the coarse-level nodal spacing is H = 2h; the coarse-level nodes have
been moved in order not to have coincident fine/level nodes. Let us also consider
the radial functions wc and wl defined by the radial profiles of Figure D.1b where ξ
is the radial coordinate of Figure D.1a. wc and wl are, respectively, the restriction
shape functions for constant and linear MC, considered here as radial functions
for sake of simplicity, while Jc is defined as:

Jc(ξ) =
1

2πh

∫
C̄(ξ)

wc dC̄ (D.2)
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Figure D.1: Fine and coarse-level node distributions for continuous-space approxima-
tion (a), continuous-space approximation weight functions (b).

where C̄(ξ) is a circle of radius h centered at radial coordinate ξ. The (radial)
restriction shape function for SRMC is then given by wsr = (1 − ωS)wc + ωSJc,
since this is the continuous-space approximation of one ωS-Jacobi iteration on the
restriction shape function wc in the case of a Poisson problem.

Finally, let us consider a constant residual r = 1 and an error of the form
e = ēwI , where ē ∈ R is the sought coarse-level correction and wI is the continuous-
space approximation of the interpolation operator IhH , i.e., the interpolation shape
function which is also radial. Therefore wI = wc for ACMC and SRMC, while
wI = wl for the linear MC.

In the end, the coarse-level correction ē is obtained from Eq. D.1 as follows:

ē =

∫
W

wR dW∫
W

∇wR ·∇wI dW
(D.3)

Therefore the coarse-level correction ē depends upon the choices for wR and wI , i.e.,
the choices for interpolation and restriction operators. The coarse-level corrections
for ACMC and SRMC are reported in Table D.1, where ēlin is the linear MC coarse-
level correction, d̄ = 3/4+(h/H)2/4 ≈ 0.41 and ∆Jc = Jc(h/2)−Jc(3h/2) ≈ 0.21.

These results indicate that ACMC without overcorrection leads to an incom-
plete reduction of the smooth error components [7, 94] since ē� ēlin and therefore
a rough estimate for the overcorrection factor is t = 1/d̄ ≈ 2.5, which is slightly
larger than the optimal overcorrection factor t = 1.7 − 2.0 suggested by the nu-
merical results of Chapter 4. The compensation for the incomplete reduction of
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Table D.1: ACMC and SRMC coarse corrections ratios.

ACMC SRMC

ē/ēlin d̄ d̄/[1− ωS(1−∆Jc)]

the smooth error components in the SRMC case is obtained by using an under-
relaxation smoothing factor 0 < ωS < 1, for which the results of Table D.1 provide
a rough estimate ωS ≈ 0.75 which is again slightly larger than the optimal relax-
ation parameter ωS = 0.55− 0.60 suggested by the numerical results.
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Appendix E

An analytical solution in
cylindrical coordinates

Let us consider the set of incompressible Navier-Stokes equations expressed by
Eqs. (5.5)-(5.6) in the 2D isothermal case using cylindrical coordinates (r, ϑ). If we
suppose a laminar flow with tangential velocity uϑ(r, t), radial velocity ur = 0 and
pressure p(r, t), the continuity Eq. (5.5) is always satisfied while the momentum
Eq. (5.6) reduces to the following scalar equations:

∂uϑ
∂t

=
1

Re

[
1

r

∂

∂r

(
r
∂uϑ
∂r

)
− uϑ
r2

]
(E.1a)

∂p

∂r
=
u2
ϑ

r
(E.1b)

Since Eqs. (E.1a)-(E.1b) are decoupled, i.e., the pressure p does not appear in
the first equation, it is possible to solve Eq. (E.1a) for uϑ while the pressure is
then obtained by integrating Eq. (E.1b) along the radius r:

p =

∫
u2
ϑ

r
dr = u2

ϑ log r − 2

∫
uϑ
∂uϑ
∂r

log r dr + c (E.2)

where c is an additive constant.
The solution for Eq. (E.1a) is sought in the form uϑ(r, t) = e−λtR(r) for which

Eq. (E.1a) becomes:

λR =
1

Re

(
R′′ +

R′

r
− R

r2

)
(E.3)

which can be recast in the following form:

r2R′′ + rR′ + (r2λRe− 1)R = 0 (E.4)
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Figure E.1: Approximation of the discontinuous function ūϑ(r < 1) = r, ūϑ(r = 1) = 0:
(a) minimization on [0, 1]; (b) minimization on [0, 0.95].

Defining a new variable r̄ = r
√
λRe and a new function J(r̄) = R(r), Eq. (E.4)

becomes:
r̄2J ′′ + r̄J ′ + (r̄2 − 1)J = 0 (E.5)

whose solutions for this problem are given by the first order Bessel functions of
the first kind J(r̄) = J1(r̄) (first order because of the constant term −12 in the
coefficient (r̄2 − 1), while first kind Bessel functions are finite in r̄ = 0, contrary
to second kind Bessel functions which can not therefore be considered [2]).

Let us consider a circular domain with radius r = 1 and a Dirichlet boundary
condition uϑ(r = 1, t) = 0, i.e., no-slip conditions at the circular boundary. This
condition corresponds to R(r = 1) = J1(r̄ =

√
λRe) = 0 which can be satisfied

if and only if
√
λRe = zi where zi > 0 are the roots of J1, from which we obtain

λ = z2
i /Re. Since the number of roots is infinite, the solution to the problem is

therefore given by an infinite series:

uϑ(r, t) =
∞∑
i=1

Aie
−z2

i t/ReJ1(zir) (E.6)

where the expansion coefficients Ai must be determined in order to satisfy the
following initial condition:

uϑ(r, t = 0) =
∞∑
i=1

AiJ1(zir) = ūϑ(r) (E.7)
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where ūϑ(r) is the initial profile for the velocity.
Since the analytical solution is employed for numerical comparisons, it is there-

fore useful to consider a limited number M of terms in the expansion defined by
(E.6) as follows:

uϑ(r, t) =
M∑
i=1

Aie
−z2

i t/ReJ1(zir) (E.8)

and the expansion coefficients Ai are determined by a numerical minimization of
the error between the initial profile ūϑ(r) and the sought solution.

The discontinuous case ūϑ(r) = r is considered, which corresponds to an initial
velocity profile with rigid rotation subjected to an instantaneous no-slip condition
at r = 1 and t ≥ 0 with a zero tangential velocity uϑ = 0. The approximation of
this initial profile is depicted in Figure E.1a for the minimization of the error over
the whole interval r ∈ [0, 1], while Figure E.1b shows the approximation when
the minimization is performed on the interval r ∈ [0, 0.95] which excludes the
singularity at r = 1 and avoids the appearance of the typical oscillations due to a
discontinuity.
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Appendix F

Code

In order to appreciate the ease of coding with a meshless data structure, some of
the main sections of the developed code for the node generation process will be
listed in the following.

F.1. Cartesian binning for nearest neighbour

search

The following C code performs the 2D cartesian binning needed for the nearest
neighbour search presented in Section A.1; nodes are limited to be contained in
the unit square [0, 1]2.

• N cell: vector containing the indices of the nodes, ordered by cartesian
binning

• N ix: vector containing the starting indices in N cell for each cartesian cell

• x, y: nodal coordinates

• N: number of nodes

• Ngrid xy: number of cartesian bins for each direction

void SpaceInversion( int *N_cell , int *N_ix ,

int N , float *x , float *y , int Ngrid_xy ) {

int i , j , ix ;

int Ngrid = Ngrid_xy * Ngrid_xy ;

// 0 initialization

for ( i = 0 ; i <= Ngrid ; i++ ) {

N_ix[i] = 0 ;

}
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// Number of nodes for each cell (N_ix)

int *kij = (int *) malloc( N * sizeof(int) ) ;

for ( ix = 0 ; ix < N ; ix++ ) {

i = (int) ( x[ix] * ( Ngrid_xy - 1.0f ) + 0.5f ) ;

j = (int) ( y[ix] * ( Ngrid_xy - 1.0f ) + 0.5f ) ;

k_ij[ix] = i + Ngrid_xy * j ;

N_ix[k_ij[ix ]+1]++ ;

}

// Starting indices for each cell in N_cell (cumulative sum , N_ix)

N_ix [0] = 0 ;

for ( i = 0 ; i < Ngrid ; i++ ) {

N_ix[i+1] += N_ix[i] ;

}

// Copy from N_ix to N_ix_temp

int *N_ix_temp = (int *) malloc( (Ngrid +1) * sizeof(int) ) ;

memcpy( N_ix_temp , N_ix , (Ngrid +1) * sizeof(int) ) ;

// Node number assignment (N_cell)

for ( ix = 0 ; ix < N ; ix++ ) {

N_cell[N_ix_temp[k_ij[ix ]]++] = ix ;

}

free( N_ix_temp ) ;

free( k_ij ) ;

return ;

}

F.2. Node-repel refinement

The following C code performs the 2D node-repel refinement presented in Section
2.3; nodes are limited to be contained in the unit square [0, 1]2.

• N cell: vector containing the indices of the nodes, ordered by cartesian
binning

• N ix: vector containing the starting indices in N cell for each cartesian cell

• x, y: nodal coordinates

• N: number of nodes

• Ngrid xy: number of cartesian bins for each direction

• P type: vector defining boundary nodes

• beta: β repel parameter

• n nb: number of neigbouring nodes for repulsion calculation
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• fct: 1/α repel parameter

#include <math.h>

float minf( float a , float b ) {

a = b<a ? b : a ;

return a ;

}

int limits( int i , int max ){

if( i<0 ) { i = 0 ; }

if( i>max ) { i = max ; }

return i ;

}

float limits_f( float x , float max ){

if( x<0.0f ) { x = 0.0f ; }

if( x>max ) { x = max ; }

return x ;

}

// Spacing function

float s( float x , float y ) {

float d ;

d = // add spacing function

return d ;

}

void NodeRefinement( int *N_cell , int *N_ix ,

int N , int Ngrid_xy ,

float *x , float *y , char *P_type ,

int steps , float beta , int n_nb , float fct

) {

float fct_s = 1.155f ; // = 2 / sqrt (3)

float pig = 3.141f ;

int i , j , k ,

int step , node , node2 , ix , i0 , i1 , j0 , j1 , ix0 , ix1 ;

float temp_x , temp_y , f_x , f_y , xp , yp , ri , dc , x2 , y2 ;

float dx , dy , d , isqd , s_loc ;

float h = 1.0f / ( Ngrid_xy - 1.0f ) ;

float lbd = sqrtf( n_nb / ( pig * fct_s ) ) , sq ;

int ix_max = Ngrid_xy * Ngrid_xy ;

int Ngridxy_max = Ngrid_xy -1 ;

// Loop over steps refinement iterations

for( step = 0 ; step < steps ; step++ ) {

// Cartesian binning for nearest neighbour search

SpaceInversion( N_cell , N_ix , N , x , y , Ngrid_xy ) {

// Loop over each free node

for( node = 0 ; node < N ; node++ ) {

if ( P_type[node] == 0 ) {

// Node coordinates

xp = x[node] ;

yp = y[node] ;

// Cartesian indices for nearest cells

temp_x = xp * ( Ngrid_xy - 1.0f ) + 0.5f ;
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temp_y = yp * ( Ngrid_xy - 1.0f ) + 0.5f ;

dc = lbd * s( xp , yp ) ;

ri = dc / h ;

i0 = (int) ( temp_x - ri ) ; i0 = limits( i0 , Ngridxy_max ) ;

i1 = (int) ( temp_x + ri ) ; i1 = limits( i1 , Ngridxy_max ) ;

j0 = (int) ( temp_y - ri ) ; j0 = limits( j0 , Ngridxy_max ) ;

j1 = (int) ( temp_y + ri ) ; j1 = limits( j1 , Ngridxy_max ) ;

// Computation of forces through nearest neighbour search

f_x = 0.0f ;

f_y = 0.0f ;

// Starting indices for nearest cells

for ( j = j0 ; j <= j1 ; j++ ) {

ix0 = Ngrid_x * j + i0 ;

ix1 = Ngrid_x * j + i1 + 1 ;

ix0 = N_ix[ix0] ;

ix1 = N_ix[ix1] ;

// Indices for nearest neighbour nodes

for ( ix = ix0 ; ix < ix1 ; ix++ ) {

node2 = N_cell[ix] ;

if ( node2 != node ) {

x2 = x[node2] ;

y2 = y[node2] ;

dx = x2 - xp ;

dy = y2 - yp ;

d = hypotf( dx , dy ) ;

if ( d < dc ) {

// Repulsive force calculation

s_loc = s( x2 , y2 ) ;

isqd = d / s_loc ;

isqd *= isqd ;

isqd = isqd + beta ;

isqd *= isqd ;

isqd = 1.0f / (d * isqd) ;

f_x += isqd * dx ;

f_y += isqd * dy ;

}

}

}

}

sq = fct_iter * s( xp , yp ) ;

// Coordinates update

x[node] -= sq * f_x ; x[node] = limits_f( x[node] , 1.0f ) ;

y[node] -= sq * f_y ; y[node] = limits_f( y[node] , 1.0f ) ;

}

}

}

return ;

}
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[60] G. Kosec and B. Šarler, Solution of a Low Prandtl Number Natural
Convection Benchmark by a Local Meshless Method, International Journal
Of Numerical Methods For Heat & Fluid Flow, 23 (2013), pp. 189–204.

[61] K. Y. Lam, Q. X. Wang, and H. Li, A novel meshless approach -local
kriging (lokriging) method with two-dimensional structural analysis, Compu-
tational Mechanincs, 33 (2004), pp. 235–244.

[62] E. Larsson and B. Fornberg, Theoretical and Computational Aspects
of Multivariate Interpolation with Increasingly Flat Radial Basis Functions,
Computers & Mathematics with Applications, 49 (2005), pp. 103–130.
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