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1 Introduction and discussion

In this note we consider N = 2 supersymmetric quantum field theories of class S and
construct a discrete dynamical system which acts on their set of line operators. The
purpose is to introduce techniques from dynamical systems to study the topology of such
a set and discuss their physical implications.

Theories of class S can be engineered by compactifying the N = (2, 0) superconformal
theory in six dimensions on a curve C. As a consequence their properties can be studied
using geometrical tools associated with C, such as spectral networks [24, 26], or algebraic
tools, such as quivers [2].

These theories admit supersymmetric line defects which are associated to the spectral
problem of computing framed BPS states [25]. In many cases such a problem can be
approached by localization on quiver moduli spaces [9, 12–15], or on the moduli spaces of
semiclassical configurations [5, 32], by using cluster algebras [3, 10, 11, 41], or via BPS
graphs or spectral networks [21, 22, 27, 34].
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In this note we revisit and extend the approach of [10, 11] taking inspiration from the
perspective advocated in [17]. In quiver language the BPS spectral problem can be solved
by looking for sequences of quiver mutations which scan over all the physical BPS states.
Such sequences are associated with chambers with finite number of BPS particles and have
the property that they take the BPS quiver back to itself, eventually up to a relabelling
of the nodes. To such a sequence one can associate a rational transformation, sometimes
called the spectrum generator [24], the (quantum) half-monodromy [6], or the Kontsevich-
Soibelman transformation [29], up to a certain freedom in the conventions. Different ways of
decomposing this transformation encode the BPS spectrum in every chamber of the theory.

A line operator can be described in terms of a framed BPS quiver. Such sequences
of mutations also act on framed BPS quivers, in general mapping a framing to another
framing (not necessarily different). The above rational transformations, and the invariance
of the line operator under wall-crossing, induce an action on the set of line operators [10].
This action has the form of a rational transformation which applied to the vev of the
line operator, viewed as a sum of monomials in the cluster variables whose coefficients are
the framed BPS degeneracies, produces the vev of a different line operator. The iteration
of this operation produces a family of line operators, of which all the vevs can be com-
puted explicitly [10]. Under certain conditions this iteration is related to certain integrable
systems [11], although in this note we will be more general.

In this note we shift slightly the perspective: we use this operation to define an abstract
dynamical system R which acts on the set of line operators Line. Abstract (discrete)
dynamical systems are iterated maps acting on a space and can be used to study the
properties of such a space, for example in the topological or geometrical sense. The idea is
then to use the properties of R to study the set Line: for example R will have fixed points,
closed cycles or infinite orbits, and from this information we might hope to gain knowledge
about the structure of Line as a topological space.

This approach is partly inspired by the relation between supersymmetric quantum me-
chanics and Morse theory [42], where one studies a supersymmetric particle propagating
in a compact Riemannian manifold. In that case the central role is played by a contin-
uous dynamical system, the instanton equations. Enumerative invariants constructed by
counting solutions which connect fixed points determine the cohomology of the Morse-
Smale-Witten complex and therefore contain geometric information about the underlying
manifold. While our construction is quite different, this is a useful analogy to keep in mind.

After collecting some results about theories of class S and line defects in section 2,
we discuss our dynamical systems in section 3. In particular in this note we discuss three
applications:

• In the UV the labels of line operators can be used to distinguish different quantum
field theories [1]. In section 4 we show with an explicit example that in the IR this
labelling is encoded in the orbits of the dynamical system R.

• The condition that certain line operators are fixed points of the discrete dynamical
system is sometimes strong enough to compute the spectrum generator as a rational
transformation. We show this in section 5 in the cases of pure SU(2) and SU(2)
N = 2∗ theories.
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• The quantum dynamical system can be used to study the algebraic relations between
line operators. As an example in section 6 we show that certain fixed points give a
presentation of the spherical Double Affine Hecke Algebra in the cases of A1 e C∨C1.

Since the details are somewhat technical, as they involve repeated iterations of complicated
rational transformations, a supporting Mathematica file which includes the computations
of sections 4–6 is made available as supplementay material attached to this paper and at
https://cirafici.dmg.units.it/DDSlines.nb.

This perspective naturally leads to a series of questions. The most natural is if other
tools taken from the theory of dynamical systems, such as invariant sets or Conley theory,
have natural applications in the framework of theories of class S. Furthermore, while in
this paper we present our results in purely algebraic terms, using quivers, there should
be a geometrical counterpart in terms of data on the curve C. In particular it would be
interesting to understand more clearly how the action on representation theory objects is
induced by geometrical quantities, possibly at the categorical level along the lines of [23].
Another interesting problem is the relation between our approach here and certain alge-
braic structures which appear in the UV description [39]. Other approaches using discrete
dynamical system in the framework of quivers in supersymmetric theories include [4, 8, 33].

2 Theories of class S and their line defects

In this section we will briefly introduce certain aspects of theories of class S which we
will need in the rest of the note: the geometry of the Hitchin moduli spaces, the rational
trasformations associated with quivers and certain properties of line operators.

2.1 Theories of class S and Hitchin systems

Theories of class S are four dimensional quantum field theories which can be obtained by
compactifying the six dimensional N = (2, 0) theory on a curve C, with punctures and
additional data specified at the punctures. Such theories have extended supersymmetry
and moduli spaces of quantum vacua. When the theory is defined on R4 at a generic point
of the Coulomb branch B the gauge symmetry is broken down to the maximal torus of the
gauge group G. When the theory is further compactified down to R3×S1

R the moduli space
of vacua MH is identified with the Hitchin moduli space associated with C. The Hitchin
moduli space MH is hyperKähler: it carries a family of complex structures Jζ parametrized
by ζ ∈ P1, with holomorphic symplectic forms ωζ . In complex structure J0 it can be locally
seen as a fibration over B, whose fibers are compact tori.

From this perspective the Seiberg-Witten curve Σu arises as the spectral curve asso-
ciated with the Hitchin fibration. The Seiberg-Witten solution determines the low energy
Wilsonian action on the Coulomb branch B in terms of (Σu, λu). In particular the lattice
of electric and magnetic charges of the theory is identified as Γ = H1(Σ,Z) and the central
charge operator becomes a function Z(u) : Γ −→ C which depends holomorphically on
u ∈ B and is completely determined by the periods of the Seiberg-Witten differential λu.
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The geometry of the moduli space MH can be expressed in terms of a set of Darboux
coordinates {Xγ(u, ζ)} [24]. Such coordinates are associated with stable BPS particles of
charge γ ∈ Γ. They obey the Poisson bracket

{Xγ , Xγ′} = 〈γ, γ′〉Xγ+γ′ , (2.1)

and satisfy the twisted group algebra

Xγ Xγ′ = (−1)〈γ,γ′〉 Xγ+γ′ . (2.2)

The coordinates {Xγ(u, ζ)} jump at real codimension one walls in B×C∗ associated with
BPS particles, precisely at the loci where

Z(γ′)/ζ ∈ R− , (2.3)

which are called BPS rays. The discontinuity is given by the rational transformation

Xγ −→ K
Ω(γ′,u)
γ′ (Xγ) (2.4)

expressed in terms of the Kontsevich-Soibelman symplectomorphism [29]

Kγ′(Xγ) = Xγ
(
1−Xγ′

)〈γ,γ′〉
, (2.5)

and of the degeneracy of BPS states Ω(γ′, u).
It will be useful in the following to introduce untwisted coordinates Yγ , so that

Yγ Yγ′ = Yγ+γ′ . (2.6)

These coordinates describe locally a space M̃H and up to a quadratic refinement can be
identified with the Darboux coordinates X on MH , establishing an isomorphism between
MH and M̃H [25]. The isomorphism between the two sets of coordinates is given by a
quadratic refinement, a map σ : Γ −→ {±1} such that

σ(γ)σ(γ′) = (−1)〈γ,γ′〉 σ(γ + γ′) . (2.7)

In the following we will identify Yγ with σ(γ)Xγ with the choice σ(γ) = (−1)J3+I3 [25].
With these choices, the transformation law for the coordinates Yγ upon crossing the BPS
wall for a single hypermultiplet with charge γ′ becomes a cluster transformation

Yγ −→ Yγ(1 + Yγ′)〈γ,γ
′〉 . (2.8)

Such a transformation endows MH locally with the structure of a cluster variety. In this
note we will mostly use the coordinates Yγ .

Conjecturally such coordinates can be quantized [6, 25] in terms of noncommuting
operators Xγ(u, ζ) which obey the quantum torus algebra TΓ associated with the lattice of
charges Γ

Xγ Xγ′ q−〈γ,γ
′〉 = Xγ+γ′ . (2.9)

This way of writing the operators Xγ is also known as normal ordering [6]. The coordinates
Xγ(u, ζ) jump across BPS walls as their classical limit. The transformation is given by a
quantum version of the Kontsevich-Soibelman diffeomorphism, as we will see momentarily.
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2.2 Quivers and quantum monodromies

In this paper we will only consider theories of quiver type [2, 6], where the BPS spectrum can
be understood via representation theory methods. Concretely this means that we can find
a positive basis {ei} of Γ such that all basis elements correspond to stable hypermultiplets
and such that the central charges Zei(p) take values in hθ ≡ e−iθh where θ ∈ S1 and h

is the upper half plane. In particular the charge of any BPS state can be expressed as
γ = ∑

i di ei where all the di’s are positive integers.
To such a basis we associate a quiver Q where the set of nodes Q0 is in bijection

with the basis elements {ei}, and there are Bij = 〈ei, ej〉 arrows directed from the node
i ∈ Q0 to the node j ∈ Q0 whenever 〈ei, ej〉 > 0. When a theory is of quiver type, the
low energy dynamics of a particle is described by an effective quantum mechanics with
four supercharges based on the quiver, interacting via a superpotential W. Stable BPS
particles correspond to supersymmetric ground states. Mathematically a BPS state with
charge γ = ∑

i di ei, with di ∈ Z+, corresponds to a stable representation, where the di
are the dimensions of the representation spaces. The stability condition is induced by the
central charge function Zγ(u).

Two quivers obtained from a change of basis describe the same physics. If we require
the two basis to obey the conditions stated before, the corresponding quivers are related by
a quiver mutation [2, 6](up to trivial transformations, such as permutations of the nodes).
Physically an elementary quiver mutation correspond to the situation where the central
charge of a basis element ek gets rotated out of the upper half plane hθ, for example by
tuning the physical parameters. This happens precisely at the BPS rays (2.3). As the
vector corresponding to ek exits hθ, the vector corresponding −ek enters hθ. The mutation
operators µ±ek act as [18, 20]

êi ≡ µ±ek(ei) ≡

−ei if i = k

ei + max(0,±〈ek, ei〉)ek otherwise.
(2.10)

The ± sign above is chosen according to the fact that ê exits the upper half plane hθ along
e−iθR∓. One can see that µ+

ê µ
−
ê = id = µ−ê µ

+
ê . From the definition of the adjacency matrix

of the quiver Bij , that both transformations µ± in (2.10) correspond to

B′ij =

−Bij if i = k or j = k

Bij + sgn(Bik)[Bik Bkj ]+ otherwise
. (2.11)

Of particular importance are the sequence of mutations corresponding to a chamber
with a finite BPS spectrum. Since we have a finite spectrum we can rotate hθ clockwise
until we reach hθ+π. Every time hθ crosses a BPS ray, the positive basis changes by an
elementary quiver mutation. After crossing all the BPS rays, the basis of charges associated
with the half-plane hθ+π is the cpt conjugate of the basis we started with. Therefore any
chamber with a finite spectrum is associated to a finite sequence m+ of N of elementary
mutations at nodes i1, i2, i3, . . . , iN ∈ Q0. In particular after such a sequence of mutation
the quiver is back to itself, eventually up to a permutation: m+(Q) = π(Q) with π a
permutation of the labels of the nodes of Q.
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This construction can be refined whenever the spectrum has a Z2s discrete symmetry,
induced by the action of a discrete R-symmetry which acts on the central charge operator
as Z → eiπ/sZ. This implies that the BPS rays are distributed in a Z2s symmetric manner
in the hθ half-plane. In this case the mutation operator m+ can be written as the iteration
of a smaller sequence of mutations r+ corresponding to a single Z2s sector.

It will be important for our construction that quiver mutations, defined algebraically
on a basis of charges {ei}, lift to cluster transformations on a set of coordinates {Yei}
associated with the same basis, and to quantum cluster transformations on the coordinates
{Xei}. We define the quantum mutation Qi at a node i ∈ Q0 to be the composition of a
quiver mutation at the level of the charges and the automorphism given by conjugation [19]

Qk ◦ Yγi = Ad′ (Ψ(−Yγk ; q)) ◦ µ+
k (Yγi) ≡ Ψ(−Yγk ; q)−1 Yµ+

k
(γi)Ψ(−Yγk ; q) . (2.12)

Similarly one can define an operator Q̃k using µ−k .
Consider now a sequence of mutations m+ associated with the stable BPS spectrum

in a certain chamber. Then the corresponding sequence of quantum mutations

Qm+ = Ad′ (Iπ−1 ◦Hq) (2.13)

gives the adjoint action of the half-monodromy operator Hq, up to the change of basis in Γ
corresponding to a permutation. The operator Iπ−1 encodes the lift of this permutation to
the quantum torus TΓ. These ideas extend to the case where the theory admits a smaller
fractional monodromy. Assume that the 1/m fractional monodromy corresponds to the
sequence of mutations r+ and denote by σ the associated permutation. Then the analog
statement to (2.13) holds: the sequence of quantum monodromies

Qr+ = Ad′ (Iσ−1 ◦ Yq) (2.14)

computes the adjoint action of the 1/m quantum fractional monodromy, up to a permuta-
tion of the basis of TΓ. The full quantum monodromy Mq = Y m

q is a wall-crossing invariant
and contains the full information about the spectrum of BPS states in every chamber of
the theory. The equivalence of different decompositions of Mq in different chambers is the
KS wall-crossing formula.

We will be particularly interested in the action of the quantum monodromy operators
on the cluster-like coordinates on the Hitchin moduli space MH . In the q −→ +1 limit,
the quantum mutation Qk reduces to a cluster transformation [18–20]

Qk · Yi
∣∣∣∣
q→+1

≡ R(k)
i [{Y1, . . . , Yn}] =

 Y −1
i if i = k

Yi
(
1 + Y

−sgn〈γk,γi〉
k

)−〈γk,γi〉 if i 6= k
, (2.15)

and similarly

Q̃k · Yi
∣∣∣∣
q→+1

≡ R̃(k)
i [{Y1, . . . , Yn}] =

 Y −1
i if i = k

Yi
(
1 + Y

sgn〈γk,γi〉
k

)〈γk,γi〉 if i 6= k
. (2.16)
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Here we have introduced the notation Yi = Yei . Note that the rational transformation R̃(k)
i

in (2.16) coincides with the transformation R(k)
i in (2.15) for the opposite quiver.

In particular we can consider rational transformations arising from the q −→ +1 limit
of the half monodromy or of any fractional monodromy. Let r+ = i1, i2, · · · ik be a sequence
of quiver mutations corresponding to the finest fractional monodromy (eventually including
the half-monodromy), within a finite chamber in a N = 2 model. Let σ be the associated
permutation. Then we define the rational transformations

Rj [{Y1, . . . , Yn}] = σ−1R
(ik)
j R

(ik−1)
j · · ·R(i1)

j [{Y1, · · · , Yn}] , (2.17)

R̃j [{Y1, . . . , Yn}] = σ−1R̃
(ik)
j R̃

(ik−1)
j · · · R̃(i1)

j [{Y1, · · · , Yn}] . (2.18)

The recursive relation
Yj,s+1 = Rj [{Y1,s, . . . , Yn,s}] (2.19)

(and similarly for R̃), defines a discrete dynamical system associated to the finite chamber
C which in certain cases can be shown to be integrable [11]. Such a dynamical system
acts on the cluster coordinates associated to the BPS quiver. After an evolution given by
one unit of time, the underlying quiver is back to itself (as a graph), since we are taking
into account the permutation σ, while all the cluster variables have evolved by a sequence
of mutations. The transformation Rj expresses the result of the action of the sequence of
cluster transformations on the j-th cluster variable Yj . We will denote by Rr+ or Rm+

the operation which computes the action of the rational transformations associated with
sequences of mutations r+ and m+ on all the cluster variables. Similarly we introduce the
transformations R̃m+ and R̃r+ .

In this note we will consider a different dynamical system, given by the lift of the R
and R̃ transformations to the space of line operators.

2.3 Line defects and framed BPS quivers

Theories of class S admit BPS line defects, described by straight lines in R1,3 extended in
the time direction. When a theory has a lagrangian description based on a Lie algebra g

such line defects admit a UV labelling by pairs of weights α = (λe, λm) ∈ Λw × Λmw/w,
which lie in the weight lattice of g and the weight lattice of the Langlands dual algebra g∗

respectively, and are considered modulo the action of the Weyl group w. They are further
constrained by the quantization condition

〈(λe, λm), (λ′e, λ′m)〉 ∈ Z . (2.20)

The full set of mutually consisted labels form a certain lattice LUV of UV labels [1, 25].
In the IR the study of line operators can be understood as a BPS spectral problem.

This information is encoded in the quantum line operator

L℘ =
∑
γ

Ω(L, u, γ; q) Xγ , (2.21)

where the refined BPS degeneracies (Protected Spin Characters) are defined as traces over
the BPS Hilbert space of states bounded to the line defect

Ω(L, γ, u, ζ; q) := TrHL,γ,u,ζq
2J3(−q)2I3 . (2.22)

– 7 –
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Consequently we have the two specializations of (2.21)

〈Lζ,α〉q=+1,u =
∑
γ∈ΓL

Ω(u, L, γ; q = +1) Yγ , (2.23)

〈Lζ,α〉q=−1,u =
∑
γ∈ΓL

Ω(u, L, γ; q = −1) Xγ . (2.24)

We will often omit the q, u labels and let the use of the coordinates X or Y identify the
specialization we are talking about. The set of consistent line defects of a given theory
forms an algebra, where the product and multiplication are defined via the insertion of the
defects in the path integral.

As in the case of BPS quivers, also the line defect spectral problem can be often
reformulated in an algebraic language. In the IR a line defect is characterized by an
effective quantum mechanical model which describes the low energy dynamics of a cloud
of BPS particles bound to an infinitely massive dyonic particle, called the core [15, 25].
This low energy quantum mechanics is associated to the representation theory of a framed
BPS quiver Q[f ]. The latter is obtained by adding to the BPS quiver which describes the
ordinary BPS spectrum an extra node f which corresponds to the core charge ef of the
defect, connected to the unframed quiver using the symplectic pairing. The central charge
function is extended to Q[f ] by linearity. If the addition of the framing node produces new
closed cycles, the superpotential of Q can be modified by the addiction of new terms WL.

Framed BPS states are now associated to framed representations. There are two
natural choices of stability conditions, which select cyclic or co-cyclic representations. In
both cases the problem has a combinatorial solution for a large class of quivers. One of the
main results of [14] is the identification of the protected spin character (2.22) with refined
Donaldson-Thomas invariants of the moduli space of framed quiver representations

Moving along the Coulomb branch B it will generically happen that the core charge
will change and the framed BPS quiver mutate accordingly. This process can occur at
anti-walls, loci where Z(γ)/ξ ∈ − iR+, with γ the charge of an ordinary BPS state. These
quiver mutations correspond to physical processes, in which the core charge ef changes due
to the fusion/fission with a BPS particle γ at the corresponding anti-wall [15, 25]. Note
that anti-walls are in one to one correspondence with the BPS walls.

Line operators are order parameters and since no phase transition occurs in the
Coulomb branch the vevs 〈Lζ,α〉q=±1 are continuous Jζ-holomorphic functions. Concretely
this means that the framed BPS degeneracies undergo wall-crossings in order to compensate
the discontinuities in the Xγ or Yγ functions, such that the vev remains invariant.

In particular we can imagine rotating the phase ζ along the whole upper half plane,
crossing all the BPS walls and all the anti-walls. Note that these two operations are phys-
ically distinct, but since we are crossing all the walls they are operationally the same.
Therefore the sequence of mutations of the framed quiver is precisely induced by the se-
quence of mutations of the unframed BPS quiver. In the following, since we will only be
concerned with sequence of mutations which cover all the BPS spectrum (or in case there
is an R-symmetry finer sequences which however contain the same information) we will

– 8 –
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loosely talk about quiver mutations and cluster transformations without distinguishing the
case of framed vs. unframed quivers. A more detailed discussion is in [11].

3 Dynamical systems from theories of class S

In this section we introduce certain discrete dynamical systems defined via the composition
of cluster transformations. Such dynamical systems act on the space of line operators. They
have the form of iterated rational maps which take the vev of a line defect into the vev
of another, in general distinct, line defect. The main idea is that we can use this iterated
maps to produce new line defects and therefore explore the space of line defects.1

3.1 Framed quivers and cluster transformations

The main idea behind this paper, as well as [10, 11] is this: sequences of quiver mutations
which transform a BPS quiver back to itself, in general will not do so when the same
quiver is framed. Therefore the sequences of quiver mutations m+ or r+ act non-trivially
on framed quivers. This induces an action of cluster transformations on the set of line
operators. This action follows from the fact while mutations change the form of the quiver,
a line operator is actually wall-crossing invariant. This is enough to constrain the form of
other line operators corresponding to mutations of the quiver [10, 11], as we will review
momentarily.

Having fixed a positive basis {ei}ni=1 at a point of B, any stable framed BPS state has
charge of the form γ = ef + ∑

i∈Q0 di ei, where ef is the core charge and di ∈ Z≥0. We
identify the BPS degeneracies with (eventually refined) Donaldson-Thomas invariants of
framed quivers, assuming cyclic stability conditions, as in [9, 12, 14]. Therefore for a line
defect labelled by α in the UV, we can write

〈Lζ,α〉q=+1 =
∑

d∈Z|Q0|
≥0

DT(Q[f ],W) Yef+di ei(ζ) . (3.1)

We stress that from this formula it is clear that the degeneracies only depend on the framed
quiver and its superpotential (having fixed stability conditions).

Consider now a different line defect Lβ , described by the new framed quiver Q[f ′] with
superpotential W′, at the same point in the moduli space. As before

〈Lζ,β〉q=+1 =
∑

d∈Z|Q0|
≥0

DT(Q[f ′],W′) Yef ′+di ei(ζ) . (3.2)

Assume now that the sequence of mutations m+ which scans over all the vanilla BPS
spectrum, acts on the framed quiver by taking (Q[f ],W) in (Q[f ′],W′). As we cross the full
set of BPS walls (and therefore the anti-walls), the framed BPS quiver undergoes quiver
mutations and the cluster coordinates jump according to (2.15). After scanning all of the

1Some readers might be more familiar with the analog statement in Morse theory, where by studying
a certain continuous dynamical system associated with a Morse function one can hope to gain topological
information about the ambient space.
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vanilla BPS spectrum, the BPS quiver will be back to itself, eventually up to a permutation
of the nodes. To simplify the formulae let us assume for the moment that this permutation
is the identity. The corresponding transformation on the Yγ coordinates is the action of the
rational transformation Rm+ associated with the half-monodromy. By the wall-crossing
invariance of Lα the vevs have no discontinuities and we have

〈Lζ,α〉q=+1 =
∑

d∈Z|Q0|
≥0

DT(Q[f ],W) Yef+di ei (3.3)

=
∑

d∈Z|Q0|
≥0

DT(Q[f ′],W′) Rm+ [Yef+di ei ] = 〈L−ζ,α〉q=+1 (3.4)

Note that for the equality to hold, we have to express the mutated cluster variables in
terms of the original seed; otherwise we simply have two different functions of two different
seeds {Yi} and {Y ′i }.

The crucial observation is that the framed BPS degeneracies, since they are DT in-
variants of the framed quiver, do not depend on the cluster coordinates. In particular
DT(Q[f ′],W′) are associated with the quiver Q[f ′] regardless whether we see this quiver as
obtained from wall crossings from Q[f ] or as representing a physically distinct operator.

We can regard (3.3) as a condition which determines DT(Q[f ′],W′) whenever the de-
generacies DT(Q[f ],W) and the rational transformation Rm+ are known. Having found
the degeneracies DT(Q[f ′],W′) we simply plug then in (3.2) and obtain the vev 〈Lζ,β〉q=+1
of a physically distinct line operator at the same point of the moduli space where we
knew 〈Lζ,α〉q=+1.

Equivalently this condition can be recast as [10]

〈Lζ,β〉q=+1 =
∑

d∈Z|Q0|
≥0

DT(Q[f ′],W′) Yef ′+di ei , (3.5)

=
∑

d∈Z|Q0|
≥0

DT(Q[f ],W) R−1
m+ [Yef ′+di ei ] , (3.6)

which is more practical for computations.
Let us rephrase the argument in a more compact way. Let us denote by

F [Q[f ]; {Y1, . . . , Yn}] the function expressing the vev of a line operator associated with
the quiver Q[f ] in terms of the seed {Y1, . . . Yn}. Then the invariance under framed wall-
crossing of the line operators vev’s is described by the identity

F [Q[f ]; {Y1, . . . , Yn}] = F
[
m+Q[f ];Rm+{Y1, . . . , Yn}

]
. (3.7)

By relabelling the seed this is mathematically equivalent to

F
[
m+Q[f ]; {Y1, . . . , Yn}

]
= F

[
Q[f ];R−1

m+{Y1, . . . , Yn}
]
, (3.8)

which however physically expresses the framed degeneracies of a line operator described
by Q[f ′] = m+Q[f ] in terms of those of a different line operator associated to Q[f ],
at the same point in the moduli space. The line defect vev 〈Lζ,β〉q=+1 is obtained from
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〈Lζ,α〉q=+1 by applying the opposite sequence of cluster transformations R−1
m+ on the initial

seed {Y1, . . . , Yn}. This arguments generalize to the case where the quiver Q goes back to
itself after the sequence of mutations m only when composed with a non-trivial permutation
σ. In this case the same arguments hold word by word and (3.8) is replaced by

F
[
m+Q[f ]; {Y1, . . . , Yn}

]
= F

[
Q[f ]; (σ ◦Rm+)−1{Y1, . . . , Yn}

]
. (3.9)

These arguments extend also to the case where a chamber has a Z2s discrete symmetry
induced by a residual R-symmetry which acts on the central charges as Z −→ e iπ/sZ and
the sequence r+ is a fractional monodromy.

The same arguments can be rephrased in terms of the R̃ operations, which indeed
coincide with the R transformations for the opposite quiver. Furthermore in many cases,
for example when the elementary rational transformations in a fractional monodromy com-
mute (as is the case when the sequence of mutations involves only non adjacent nodes) the
elementary transformations R̃ikj and Rikj are inverse to each other and one can reformu-
late (3.9) using only R̃ikj , as in [10, 11].

3.2 Discrete dynamical systems from cluster transformations

The action of quiver mutations and cluster transformations on the set of line operators
defines naturally a discrete dynamical system, as the iteration of the above defined rational
transformations R.

Discrete dynamical systems. Consider a set S and let f : S −→ S a map. In general
one can think of f as a process which takes an initial state x0 ∈ S in a new state x1 = f(x0)
after one iteration of the map. One can iterate the map an arbitrary number of times, and
we denote by fn := f ◦ · · · ◦ f its n-th iteration. We say that xn is the n-th image of
the initial condition xo under f if xn = fn(x0). We define the forward orbit of f as
O+(x0) := {xn}n∈N. If the map is invertible, we can similarly iterate its inverse f−1 and
define xn := f−n(x0). Then we define the full orbit of x0 as the set O(x0) = {xn}n∈Z.

The simplest example of an orbit for f is a fixed point x0, for which f(x0) = x0. If
f is an invertible map, we have that O(x0) = {x0}. If fk(x0) = x0 we say that x0 is a
periodic point of period k ≥ 1. In particular a fixed point is also a periodic point of every
period. If x0 is a periodic point of period k, it is also a periodic point of period nk for any
integer n ≥ 1. Therefore it is useful to introduce the concept of minimal period k ≥ 1, the
minimal value so that fk(x0) = x0.

The action on line operators. Finally we can put everything together. Denote by Line
the abstract set of line operators (this is actually an algebra, but we will not really need the
algebraic structure). Similarly we denote by Lineq the set of quantum line operators, whose
elements are in one to one correspondence with the elements of Line. All such operators can
be understood as sums over the charge lattice of monomials in the (quantum) cluster vari-
ables, whose coefficients are the (refined) framed BPS states degeneracies, assuming no BPS
particle transforms in a non trivial representation of the su(2)R R-symmetry group [25].
Having fixed a basis {ei}, we regard Line as a subset of the ring of Laurent polynomials
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R[{Yi}, {Y −1
i }]. Analog considerations hold for quantum line operators, where now we

consider a q-deformation of R[{Yi}, {Y −1
i }].

Consider first the classical case, in terms of the twisted variables {Yi}. As we have
discussed the rational transformations corresponding to the quantum monodromies act on
these variables. However we have just shown that this action induces an action on line
operators. Therefore we have implicitly constructed a rational map, which acts on Line by
repeated iterations, that is a discrete dynamical system. We write this implicitly as

R : Line −→ Line , (3.10)

where now R is the map induced by the rational transformations (2.17) and (2.18) according
to the rules (3.9). This map has to be understood as taking as input an IR line operator,
written as an expansion in cluster variables at a point u ∈ B where this expansion is valid,
and giving a different line operator at the same point in the Coulomb branch and in the
same cluster coordinates.2

Note that the technical operations to define this dynamical system are not different
from the rational operations we have discussed in section 2. However the conceptual
perspective is different, and richer. We can now use all the tools at our disposal in the
theory of dynamical systems to study the topology and geometry of the set Line. The first
step in doing so is to characterise orbits and fixed points of R.

Similarly we can define a quantum dynamical system

Rq : Lineq −→ Lineq , (3.11)

which now acts by conjugation by the quantum monodromy. This object is significantly
more difficult to study since rational transformations now depend on noncommutative
variables. To the best of our knowledge there is no discussion in the literature on dynamical
systems of an iterated map based on coordinates with non-trivial noncommutative relations.
We leave this problem for the future.

Remark. Note that the above definition of the dynamical system implicitly contains
the information about a BPS chamber on the Coulomb branch. Specifying a chamber
is equivalent to the specification of a stability condition, which can be thought of as an
ordering of the phases of the central charges of all the BPS states corresponding to the
nodes of the quiver, including the framed node. In this paper we always take the phase
of the core BPS state in the defect to be much bigger than that of all the other particles,
while keeping the mass of the defect much bigger than all the other masses. Mathematically
this correspond to selecting cyclic framed quiver representations, as discussed in section 2.
What remain to be fixed is the ordering of the arguments of the central charge computed
on the BPS particles corresponding to the nodes of the unframed quiver. This is implicitly
chosen when defining the dynamical system via a sequence of quiver mutations which take
the framed quiver to another framed quiver while taking the unframed quiver back to itself.

2Note that this dynamical system is different from the one obtained by considering the iterated cluster
transformations on the cluster variables, studied for example in [33]. Our R acts on the set of line defects.
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The sequence of mutations corresponds to an ordering of such phases and therefore to a
BPS chamber in the Coulomb branch. Note that while the full rational transformation
is independent on the position on the Coulomb branch, the specific sequence of mutation
provides the information about which framed quivers, and therefore which core charges of
line operators, one can obtain.

An example. We will begin with a simple example in the framework of A2 Argyres-
Douglas theory. The framed BPS spectrum is well known [25] and simple enough to
illustrate our points without too much algebra. The BPS quiver is

◦ // • . (3.12)

We choose a point in the Coulomb branch with a Z4 symmetric spectrum, consisting of
particles with charges e• and e◦ and their anti-particles. This point lies within a certain
chamber, where our results hold. In this case the r+ sequence is given by •, with permuta-
tion σ = (•, ◦). Equivalently the half-monodromy is constructed out of the sequence {•, ◦}.
We have the rational transformations associated with r+:

R ≡

 Y• → 1/Y•
Y◦ → (1 + Y•)Y◦

, R̃ ≡

 Y• → 1/Y•
Y◦ → Y• Y◦/(1 + Y•)

. (3.13)

Note that the composition R̃ ◦R = id, and therefore R−1 = R̃.
In this example we can give a graphical representation of our discrete dynamical system

in terms of the framed BPS quiver. Recall that a defining property of our dynamical system
is that it sends the BPS quiver back to itself, eventually by relabelling the nodes, but a
framed BPS quiver representing a line operator into a different framed BPS quiver.

In this case the sequence of mutations is simply σ ◦ µ• and by applying it repeatedly
we find the following orbit of framed BPS quivers

fe•

◦

OO

// •

σ◦µ•
=⇒

f−e◦

◦ // •

OO σ◦µ•
=⇒

f−e•−e◦

��
◦ // •

cc σ◦µ•
=⇒

f−e•

��
◦ // •

σ◦µ•
=⇒

fe◦

��
◦ // •

(3.14)
The orbit has period five, (σ ◦ µ•)5Q[fe• ] = Q[fe• ]. The framed quivers listed above
correspond to the line defects [6, 25]

F [Q[fe• ]; {Y◦, Y•}] = Y• , (3.15)

F [Q[f−e◦ ]; {Y◦, Y•}] = 1
Y◦
, (3.16)

F [Q[f−e•−e◦ ]; {Y◦, Y•}] = 1
Y•

+ 1
Y•Y◦

, (3.17)

F [Q[f−e• ]; {Y◦, Y•}] = 1
Y•

+ Y◦
Y•

+ Y◦ , (3.18)

F [Q[fe◦ ]; {Y◦, Y•}] = Y◦ + Y•Y◦ . (3.19)
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We have temporarily adopted the notation of (3.9) to make the argument clearer. Now,
according to (3.9), acting repeatedly with (σ◦R)−1 on all the cluster variables in the above
sums of monomials defines the action of our dynamical system map R on the set of line
operators. Since the inverse of R is R̃ in (3.13), we find

· · · R // Y•
R // 1/Y◦ R // 1/Y•+1/Y•Y◦ R // 1/Y•+Y◦/Y•+Y◦ R // Y◦+Y•Y◦ R // · · · .

(3.20)
This is a concrete example of a finite orbit for the dynamical system R.

Dynamical systems from theories of class S. In the rest of the paper will discuss a
few physical applications of the iterated map R, with several examples. In abstract terms,
we can draw the following consequences

• Line operators in theories of class S are organized in orbits under the action of R.
If a vev of a representative of the orbit is known, it is possible, even if technically
challenging, to compute all the other operators in the same orbit by iterating the
map R.

• Such orbits can be finite, that is periodic orbits containing a finite set of elements,
or infinite. Finite orbit occur every time the quantum monodromy has finite order,
that is we can find an integer ` such that M `

q = 1. Indeed since by definition the
dynamical system is determined by its iteration, ` determines the period (and analog
statements if there are fractional monodromies). Finite order orbits appear for exam-
ple in superconformal theories of Argyres-Douglas type [10], as we have seen above.

• Let us take a Lie algebra g. Then we can construct several quantum field theories
from g which are distinguished by the set of UV admissible labels for the line op-
erators [1]. The IR counterpart of this statement is that we can distinguish all the
possibilities by studying the orbits of R. We do this in an example in section 4.

• Fixed points of R are somewhat singled out. For example in the case of pure asymp-
totically free gauge theories they correspond to purely electric Wilson lines; whenever
the adjacency matrix is invertible they can be identified with the conserved charges of
an associated Q-system [11] (see [8] for a review). In a sense our results generalize [11]
to the case where the adjacency matrix is not invertible and no associated Q-system
is available. The condition that a line operator is a fixed point of R has the form of
a difference equation in the discrete dynamical system. Sometimes this equation can
be solved explicitly to compute the line operator vev. In section 6 we show explicitly
some fixed points in the case of superconformal SU(2) Yang-Mills with four flavours.
In the quantum version we prove by direct computation that they are generators of
the spherical subalgebra of a Double Affine Hecke Algebra.

• On the other hand sometimes we know indirectly that some operators are fixed points
and we can use this fact to compute explicitly R as a rational transformation. We do
so in the case of SU(2) N = 2∗, where the spectrum generator is unknown in closed
form, in section 5.
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4 Global structures from orbits

In this section we will explain how our dynamical system can be used to “read between the
lines”, in the sense of [1] in the IR limit of gauge theories with a lagrangian description. The
dynamical system is defined via the local theory but acting on mutually non compatible
line operators produce distinct orbits. We will show this with a detailed example.

4.1 Line defects, quantum monodromies and R-symmetries

The existence of a fractional monodromy is a consequence of an unbroken R-symmetry
which acts on the central charge by multiplication by a phase. In this case the spectrum
has a Z2s discrete symmetry, induced by the action of a discrete R-symmetry on the central
charge operator Z −→ e iπ/sZ. Such an R-symmetry is related to the periodicity of the θ-
angle. Recall that if we consider a theory in an instanton background of instanton number
k, then by the index theorem the net number of fermionic zero modes for a fermion in the
representation r is expressed in terms of the quadratic Casimir of the representation as
2C2(r) k. As a consequence under a phase rotation ψ −→ e i δψ the measure of the path
integral changes by a phase e 2C2(r)k i δ. Therefore if we now consider an R-symmetry, it will
be an actual quantum symmetry of the path integral if we can remove the extra phase factor
with a θ-angle rotation. As a consequence different periodicities of the θ-angle, for example
as in an SU(2) vs an SO(3) theory, determine the existence or not of a fractional quantum
monodromy. Note that the rational transformation corresponding to the half-monodromy
is the same in the SU(2) and SO(3) theories, and in purely mathematical terms can always
be decomposed in a 1/4-monodromy. However this decomposition is unphysical for SO(3)
and physical only for SU(2).

More generally if we have a theory based on the gauge group G with Lie algebra g,
we can always write G = G̃/H where H ⊂ C, with G̃ the universal covering group, and
C its center. If the group G is not simply connected then the instanton number can be
fractional in the presence of a line operator. This fact, as well as the possible presence of
other characteristic classes, specify the periodicity of the θ-angle [1]. Having established
what is the smallest physical fractional monodromy we can use it to define our dynamical
system R.

Now to construct the full set of allowed line operators we start from a chamber with
a basis {ei} of Γ and construct core charges in an extension of Γ, with the condition that
they have integral pairing with the element of the basis and between each other. From
each of this core charges, assuming we can compute its line operator (for example with
localization techniques [12, 14]) we iterate the map R to generate a full orbit. The relation
between R and wall-crossing (or equivalently the rules of quiver mutations) ensures that
each element of the orbit is an allowed line operator, whose core charge obeys the Dirac
quantization condition. Therefore we can talk of compatible orbits, if the core charge
of any two representatives have integral pairing. In other words what in the UV is the
classification of allowed Lie algebra weights (λe, λm), in the IR becomes the classification
of the allowed orbits of R.
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4.2 The case of SU(3)/Z3

As an example of these considerations we will now consider SU(3)/Z3. This case admits
three different theories (SU(3)/Z3)n, n = 0, 1, 2 [1]. All these theories inherit the set of line
defects of the pure SU(3) gauge theory which survive the Z3 projection. For example their
Wilson lines have charges of the form −m1(e•1 + e◦1) −m2(e•2 + e◦2), with m1,m2 ∈ Z.
We want to study the additional line operators which distinguish these three theories from
the point of view of the orbits of the associated dynamical system R.

The pure SU(3) gauge theory has an Z6 R-symmetry associated with the θ −→ θ+ 2π
periodicity of the theta angle. This is not anymore the case for SU(3)/Z3 theories. Indeed
in this case we can have bundles with 1

3Z-valued instanton numbers. On a generic four
manifold M , SU(N)/ZN bundles are classified by their instanton number k and by their
Stiefel-Whitney class v ∈ H2(M,ZN ) which measures the obstruction to the lift from an
SU(N) bundle (and which is ZN -valued since π1(SU(N)/ZN ) = ZN ). The two are however
related as k = v^v

2N −
v^v

2 mod 1. In particular if M is spin, then the cup product v ^ v

is even and k ∈ 1
NZ. As a result the periodicity of the theta angle is extended and the

shift θ −→ θ + 2π is not anymore a symmetry of the theory, but will map the set of line
operators of a theory to the set of line operators of another theory [1].

The SU(3) theory has BPS quiver

•1

%%

•2

yy
◦1

OOOO

◦2

OOOO (4.1)

and the BPS spectrum is generated by the sequence of mutations m+ =µ+
•2µ

+
•1µ

+
◦2µ

+
◦1µ

+
•2µ

+
•1 .

This sequence of mutations implicitly selects a chamber in the moduli space with finite
spectrum, given by {γ•1 , γ•2 , γ•2 + γ◦1 , γ•1 + γ◦2 , γ◦2 , γ◦1}, plus anti-particles. Our results
will hold in this chamber.

The pure SU(3) theory admits a 1/6-monodromy, generated by the sequence r+ =
µ+
•2 µ

+
•1 , with permutation σ = {(•1, ◦1), (•2, ◦2)}. The existence of such a monodromy is

a consequence of an unbroken Z6 R-symmetry, which is however broken in SU(3)/Z3. To
such a monodromy we can associate a rational transformation R as in section 3 and then
take its inverse, taking into account the permutation:

Y•1 → 1/Y◦1

Y•2 → 1/Y◦2

Y◦1 →
Y 2
◦1 (Y◦2+1)Y•1

(Y◦1+1)2

Y◦2 →
(Y◦1+1)Y 2

◦2Y•2
(Y◦2+1)2

. (4.2)

This is the physical transformation for the SU(3) gauge theory. However in the case of
SU(3)/Z3 the R-symmetry is broken and this transformation becomes unphysical: the
physical half-monodromy transformation is given by iterating three times the map (4.2).
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This defines our dynamical system R. We will now show explicitly that this dynamical
system generates mutation orbits which are not mutually consistent when starting from
non mutually consistent defects; and can therefore be used to detect the three different
quantum field theories labelled (SU(3)/Z3)n. At the end we will comment on the action of
the unphysical 1/6 monodromy on this set of line defects.

(SU(3)/Z3)0. We take this theory to be the one with line defects corresponding to the
core charges 1

3e•1 + 2
3e•2 and 2

3e•1 + 1
3e•2 . Their vevs can be computed immediately by

localization since there are no cyclic modules and the only non-trivial framed BPS state
is given by the core charge. This charges are mutually consistent and are consistent with
the basis of charges associated with the nodes of the BPS quiver. They in general violate
the Dirac quantization condition with an arbitrary Wilson line of SU(3). As a result the
set of allowed Wilson lines in this theory is reduced3 and corresponds precisely to the
representations of SU(3) which are invariant under the center Z3. On the other hand the
set of dyonic line defects of the pure SU(3) theory constructed in [11] is still present. The
charges of such operators have all integral coefficients in the BPS quiver basis {ei}i∈Q0 ,
and therefore the new core charges have integral pairing with this set.

Out of these charges we can construct whole families of line operators by iterating the
map R. For example the line defect with core charge 1

3e•1 + 2
3e•2 has vev Y 1

3 e•1
Y 2

3 e•2
. By

iterating the discrete map R we can construct the forward orbit O+
(
〈L 1

3 e•1+ 2
3 e•2
〉
)
and the

backward orbit O−
(
〈L 1

3 e•1+ 2
3 e•2
〉
)
. We show a sample of the full orbit:

...

〈L− 2
3 e•1−

1
3 e•2
〉 = 1

Y
2/3
e•1 Y

1/3
e•2

(
1 + Ye◦1 + 2Ye•1Ye◦1 + Y 2

e•1
Ye◦1 + 2Ye•1Ye◦1Ye◦2

+ 2Y 2
e•1
Ye◦1Ye◦2 + 2Ye•1Ye•2Ye◦1Ye◦2 + 2Y 2

e•1
Ye•2Ye◦1Ye◦2

+ Y 2
e•1
Ye◦1Y

2
e◦2

+ 3Y 2
e•1
Ye•2Ye◦1Y

2
e◦2

+ 3Y 2
e•1
Y 2
e•2
Ye◦1Y

2
e◦2

+ Y 2
e•1
Y 3
e•2
Ye◦1Y

2
e◦2

)
, (4.3)

〈L 1
3 e•1+ 2

3 e•2
〉 = Y 1/3

e•1
Y 2/3
e•2

, (4.4)

〈L− 2
3 e•1−

4
3 e•2−e◦1−2e◦2

〉 =
1 + 2Ye◦2 + Y 2

e◦2
+ Ye•2Y

2
e◦2

+ Ye•2Ye◦1Y
2
e◦2

Y
2/3
e•1 Y

4/3
e•2 Ye◦1Y

2
e◦2

, (4.5)

... (4.6)

3The center of SU(N) is ZN . Since ZN has only a finite number of representations, the representations
of SU(N) are divided into N − 1 classes which correspond to the representations of ZN . These classes can
be labelled by their N -ality, given by the number of boxes in the corresponding Young tableau mod N .
Taking the quotient by ZN means that we keep only those representations of SU(N) which have 0 mod N

N -ality. In the case of SU(3)/Z3 these are the 8, the 10 and so on.
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Overall elements of this family have core charges
(
−2

3(3n+ 1)e•1 −
3n+ 1

3 e•2 − 2ne◦1 − ne◦
)
n≥0(

−3n− 1
3 e•1 −

2
3(3n− 1)e•2 − ne◦1 − 2ne◦2

)
n≥0

. (4.7)

Similarly from the defects with core charge 2
3e•1 + 1

3e•2 we generate the families of defects
with core charges 

(
−3n+ 1

3 e•1 −
2
3(3n+ 1)e•2 − ne◦1 − 2ne◦2

)
n≥0(

−2
3(3n− 1)e•1 −

3n− 1
3 e•2 − 2ne◦1 − ne◦2

)
n≥0

. (4.8)

Of course this is not the full set of line defects, but just a few very simple orbits. The explicit
form of the vevs for these defects, and other elements of the orbits, may contain hundred
of terms; therefore we don’t write down here and refer the reader to the accompanying
Mathematica file provided as supplementary material.

(SU(3)/Z3)1. Now we consider the theory which contains line defects with core charge
−1

3e◦1− 2
3e◦2 and −2

3e◦1− 1
3e◦2 . Again these charges are a consistent set within themselves

and with the basis of charges of the BPS quiver. The set of dyonic line defects of the
original SU(3) theory is still present, and the set of Wilson lines is reduced to those in
representations of SU(3) which are invariant under Z3. However now if we begin from the
core charge −1

3e◦1 − 2
3e◦2 , by iterating the rational transformation corresponding to the

half-monodromy, we get the line defects
...

〈L 2
3 e◦1+ 1

3 e◦2
〉=Y 2/3

e◦1
Y 1/3
e◦2

(
1+Ye•1 +Ye•1Ye◦2 +2Ye•1Ye•2Ye◦2 +Ye•1Y

2
e•2
Ye◦2

)
,

〈L 1
3 e◦1+ 2

3 e◦2
〉= 1

Y
1/3
e◦1 Y

2/3
e◦2

,

〈L−e•1−2e•2−
4
3 e◦1−

8
3 e◦2
〉= 1

Ye•1Y
2
e•2
Y

4/3
e◦1 Y

8/3
e◦2

(
1+3Ye◦2 +3Y 2

e◦2
+2Ye•2Y

2
e◦2

+2Ye•2Ye◦1Y
2
e◦2

+Y 3
e◦2

+2Ye•2Y
3
e◦2

+Y 2
e•2
Y 3
e◦2

+2Ye•2Ye◦1Y
3
e◦2

+2Y 2
e•2
Ye◦1Y

3
e◦2

+Y 2
e•2
Y 2
e◦1
Y 3
e◦2

+Ye•1Y
2
e•2
Y 2
e◦1
Y 3
e◦2

)
,

... (4.9)

In general we generate the whole family with core charges
(
−2ne•1 − ne•2 −

6n− 2
3 e◦1 −

3n− 1
3 e◦2

)
n≥0(

−ne•1 − 2ne•2 −
1
3(3n+ 1)e◦1 −

6n+ 2
3 e◦2

)
n≥0

. (4.10)
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Similarly starting from −2
3e◦1 − 1

3e◦2 we generate line defects with charges


(
−ne•1 − 2ne•2 −

3n− 1
3 e◦1 −

6n− 2
3 e◦2

)
n≥0(

−2ne•1 − ne•2 −
2
3(3n+ 1)e◦1 −

3n+ 1
3 e◦2

)
n≥0

. (4.11)

The explicit form of the vevs for these operators is provided as supplementary material.

(SU(3)/Z3)2. This time we add line defecs whose core charges are 1
3e•1+2

3e•2−1
3e◦1−2

3e◦2

and 2
3e•1 + 1

3e•2− 2
3e◦1− 1

3e◦2 . As before the set of dyonic line defects of SU(3) is unchanged
and the Wilson lines which are not invariant under Z3 are projected out.

From 1
3e•1 + 2

3e•2 − 1
3e◦1 − 2

3e◦2 we generate line defects with core charges


(
−2

3(6n+ 1)e•1 −
6n+ 1

3 e•2 −
2
3(6n− 1)e◦1 −

6n− 1
3 e◦2

)
n≥0(

−6n− 1
3 e•1 −

2
3(6n− 1)e•2 −

6n+ 1
3 e◦1 −

2
3(6n+ 1)e◦2

)
n≥0

, (4.12)

while from 2
3e•1 + 1

3e•2 − 2
3e◦1 − 1

3e◦2 we obtain


(
−6n+ 1

3 e•1 −
2
3(6n+ 1)e•2 −

6n− 1
3 e◦1 −

2
3(6n− 1)e◦2

)
n≥0(

−2
3(6n− 1)e•1 −

6n− 1
3 e•2 −

2
3(6n+ 1)e◦1 −

6n+ 1
3 e◦2

)
n≥0

. (4.13)

Again the explicit form of the vevs for these operators is provided as supplementary
material.

Overall the discrete dynamical system give us a glimpse of the structure of the set of
line operators for these three theories, (SU(3)/Z3)n, with n = 0, 1, 2. We find three distinct
set which have a non empty intersection, for example on the Wilson lines of SU(3) which
are Z3-invariant. Each set can be constructed explicitly as the union of the orbits of the
dynamical system, each orbit generated starting from a line defect compatible with the
rest of the set.

Remark. We know that the correct operation to generate defects in (SU(3)/Z3)n the-
ories is the half-monodromy of SU(3). But what happens if we insist on using the 1/6
monodromy (4.2)? This is the IR counterpart of doing a θ-angle rotation with the wrong
periodicity. What we expect from the UV analysis of [1] is that such operation should map
one theory into another. We will show this explicitly with one example, where the action
of the 1/6 monodromy maps a defect of one theory into a defect of another theory.
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Consider the following sequence of line operators, both their vevs and the associated
framed quivers, obtained by iterating the (now unphysical) operation R derived from (4.2):

f− 1
3 e◦1−

2
3 e◦2

•1

""

•2

||

rr
〈L〉(SU(3)/Z3)0 = 1

Y
1/3
e◦1 Y

2/3
e◦2

◦1

OOOO

◦2

OOOO

f 1
3 e•1+ 2

3 e•2

r+

LL

•1

##

•2

{{

〈L〉(SU(3)/Z3)1 = Y 1/3
e•1

Y 2/3
e•2

◦1

OOOO

◦2

OOOOff

f 2
3 e•1+ 1

3 e•2+ 1
3 e◦1+ 2

3 e◦2

r+

LL

•1

##

•2

{{

** 〈L〉(SU(3)/Z3)2 = Y 2/3
e•1

Y 1/3
e•2

(1 + Ye•2 )Y 1/3
e◦1

Y 2/3
e◦2

◦1

gg OOOO

◦2

OOOO

f 2
3 e◦1+ 1

3 e◦2

m+

GG

r+

LL

// •1

""

•2

||

〈L〉(SU(3)/Z3)0 = Y 2/3
e◦1

Y 1/3
e◦2

(
1 + Ye•1 + Ye•1Ye◦2

◦1

OOOO

◦2

OOOO

+2Ye•1Ye•2Ye◦2 + Ye•1Y
2
e•2
Ye◦2

)
(4.14)

Where the arrows labelled by r+ and m+ are not part of the quivers but describe maps
between the quivers. Here we have used the 1

6 -fractional monodromy r+ to connect line
defects in different (SU(3)/Z3)n theories. Only the half-monodromy m+, which corresponds
to cpt and is given by iterating r+ three times, maps a theory into itself, (SU(3)/Z3)0 in
the example above. The 1

6 -fractional monodromy has its origin in the Z6 R-symmetry
of SU(3) which is now broken. It corresponds to a shift in the θ-angle of θ −→ θ + 2π
which is not anymore a physical shift in (SU(3)/Z3)n theories due to the presence of 1

3Z-
charged instantons.

What we have just described is an IR manifestation of an UV phenomenon noted
in [1]. In the lagrangian definition of the theory one can imagine shifting the θ-angle by
an unphysical quantity. What was noted in [1] is that the unphysical shifts map a theory
characterized by a set of line operators into a different theory characterized by another set.
In the case at hand this can be written as

(SU(3)/Z3)θ+2π
n = (SU(3)/Z3)θ(n+1) mod 3 (4.15)

Remarkable the discrete dynamical systems that we can associate to gauge theories know
about the physical and unphysical shifts of the θ-angle in the UV definition of the theory.
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Note that the line operator 〈L〉(SU(3)/Z3)2 = Y
2/3
e•1 Y

1/3
e•2 (1 + Ye•2 )Y 1/3

e◦1 Y
2/3
e◦2 is not part

of the families (4.12) or (4.13), although it obeys the Dirac quantization condition only
with the operators of (SU(3)/Z3)2. Indeed these two sequences are only part of the full
set of line defects, singled out by the fact that they are particularly simple to obtain.
Here we have found another method to compute vevs of families of operators! Indeed they
can be inherited from a closely related theory using the unphysical shifts of the θ-angle.
Remarkably the relation (4.15) between UV labels, translate in the IR in a prescription to
compute the vev of new line operators.

5 The spectrum generator from fixed points

In this section we take an opposite perspective. Assume that by some means we know the
functional form of the fixed points of the dynamical system: can we recover the rational
transformation? Indeed a point stressed in [25] is that the presence of line defects poses
strong constraints on the BPS spectrum. In this section we will show an explicit realization
of this idea, where the knowledge of certain line operators is enough to determine the full
spectrum generator. We will begin with an illustrative example in the case of SU(2) Yang-
Mills and then derive explicitly the spectrum generator for the SU(2) N = 2∗ theory.

5.1 A simple example: SU(2) Yang-Mills

We will explain our ideas with a simple example, the case of pure SU(2) super Yang-Mills.
In this case both the spectrum generator and the set of line operators are already known
explicitly [25]. We choose this example only for illustrative purposes, as the computations
can be outlined almost explicitly without too much algebra.

The theory has a basis of charges given by {e1, e2} with 〈e1, e2〉 = −2. We know that
the fundamental Wilson line is invariant under the action of the half-monodromy [11] as
its core charge −1

2(e1 + e2) is purely electrical and the quantum monodromy acts on the
charge via the Witten effect. Such operator was computed in [25] and can be written as

W2 [x, y] = 1
√
x y

+
√
y

x
+√x y , (5.1)

with x = Ye1 and y = Ye2 .
Suppose now that the explicit form of the spectrum generator were unknown. We

will show how it can be recovered assuming the invariance of the Wilson line (5.1). To
simplify the technicalities, let us assume that we know that the model has a fractional
monodromy whose permutation exchanges the two nodes. To determine the form of the
fractional monodromy we are then led to the ansatz

R : (x, y) −→
(
y

(c00 + c10x+ c01y)2

(d00 + d10x+ d01y)2 , x
(a00 + a10x+ a01y)2

(b00 + b10x+ b01y)2

)
. (5.2)

In words our ansatz assumes that the action of the fractional monodromy exchanges
the two cluster coordinates up to a rational function. This function is squared because
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〈e1, e2〉 = −2. The condition that the Wilson line operator (5.1) is invariant under the
fractional monodromy transformation is then

W2 [x, y]−W2 [R(x, y)] = 0 . (5.3)

Of course this equation does not have a uniques solution; assuming we can find such an
R, any of its iterations will leave the function W invariant. Indeed this is precisely the
definition of a fixed point.

Because of the squares, condition (5.3) is actually polynomial. We write it as

P6[x, y]
√
yx ((a00 + a10x+ a01y) (b00 + b10x+ b01y) (c00 + c10x+ c01y) (d00 + d10x+ d01y)) = 0

(5.4)
where

P6[x, y] =
6∑

i,j=1
mijx

iyj (5.5)

is a polynomial of degree 6. The coefficients mij are complicated algebraic functions of
the parameters (the interested reader can find them in the supporting Mathematica
file provided as supplementary material and must all vanish independently. By direct
inspection we see that we can set to zero the coefficients {a10, b00, b01, c01, d10, d01}. The
system is still overdetermined, so we pick a sample of the conditions and solve them, hoping
that the solution will solve also the remaining equations:

−a00 b10 c00 d00 + a2
00 d

2
00 = 0 ,

a2
01 c

2
00 = 0 ,

−a00 b10 c10 d00 + b210 d
2
00 = 0 ,

a2
00 c

2
10 − a00 b10 c10 d00 = 0 ,

2a00 a01 c
2
10 − a01 b10 c10 d00 = 0 . (5.6)

This system is not particularly illuminating, but it serve our purposes to illustrate a trick.
By experience with cluster transformations we expect all the coefficients to be small natural
numbers. We can therefore simply use Mathematica to solve this system over the natural
numbers (or even a finite field), which in general will make the computation rather fast.
This system still does not have a unique solution, but one can easily check that all the
solutions obtained as above give rise to the same rational transformation, and also solve
the remaining equations. A particularly simple solution sets a01 = 0 and all the remaining
parameters equal to one, which gives

R : (x, y) −→
(
y(1 + x)2 ,

1
x

)
, (5.7)

which agrees with the known results. Indeed iterating this transformation precisely repro-
duces the half monodromy

R1,2 : (x, y) −→
((

(x+ 1)2y + 1
)2

x
,

1
(x+ 1)2y

)
. (5.8)
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Remark. Technically this is an existence result: we have found a particular rational
transformation which has the fundamental Wilson line as a fixed point. This transformation
is not unique. For example one can check that also the transformation

R : (x, y) −→
(

1
y
,

xy2

(y + 1)2

)
(5.9)

fixes the fundamental Wilson line. This is indeed the transformation R̃ which arises from
the other set of cluster transformations. The two are related by opposing the quiver, and
since the BPS quiver for SU(2) is very symmetric, it is expected that the two transforma-
tions enjoy similar properties.

We expect that the transformation which we find with this method is “unique” up
to symmetry transformations of the quiver and up to iterations of smaller monodromies.
Furthermore, in case we are in doubt, we can always check that our transformation has
the expected properties on the infinite set of all line operators. It would be nice to have a
more conclusive argument, but we will leave it for future work.

5.2 The spectrum generator for SU(2) N = 2∗

Now we apply our arguments to the case of the SU(2) N = 2∗ theory. In this case the
quiver formalism gives partial results on the spectrum, available at certain points in the
moduli space [7]. On the other hand using the formalism of spectral networks one is able to
write down a rational transformation by associating certain rational functions to the com-
binatorial objects which make up the network [30, 31]. This transformation coincides with
the Kontsevich-Soibelman transformation. We will now show that it is possible to recover
this transformation also from the perspective of quivers, by purely algebraic computations,
within our formalism.

The BPS quiver is constructed from three nodes {•1, •2, •3} corresponding to the basis
{ei}3i=1 with pairing 〈ei, ei+1〉 = +2 cyclically:

•2

����•1

FF FF

•3oooo

(5.10)

and is also called Markov quiver. In this case we have three fundamental line operators,
which all have the same form [25]. They are a Wilson line, a ‘t Hooft line and a dyonic line.
Their core charge is given by −1

2 (ei + ei+1), cyclically. The framed quiver for each of these
operators is obtained by adding a closed loop to each one of the Kronecker subquivers of
the BPS quiver. Their explicit form of the operators was computed in [25] and is given by

W2[x1, x2] = 1
√
x1 x2

+
√
x1
x2

+√x1 x2 , (5.11)

– 23 –



J
H
E
P
0
5
(
2
0
2
1
)
2
2
4

where (x1, x2) are cyclic permutations of (x, y, z) in this order, and we have set Y•1 = x,
Y•2 = y and Y•3 = z. By partial abuse of notation we use the same symbols as for the
SU(2) case.

We will assume that these operators are invariant under the action of the (unknown)
half-monodromy, eventually up to a relabelling of the nodes. We can argue for this by
considering the Wilson line, which corresponds to the A-cycle of the once-punctured torus
in the class S description. At the level of the charges the quantum monodromy acts as the
Witten effect [11], shifting the electric charge of a dyon by its magnetic charge. Wilson
lines are precisely the objects which are left invariant, and indeed this argument was used
in [11] to identify them with conserved charges of an integrable system. In our case, due
to the symmetry of the Markov quiver, we can argue that the same is true for all the
aforementioned operators. This is a consequence of the S-duality inherited by the N = 2∗
theory from N = 4 super Yang-Mills.

From the cyclic symmetry of the quiver, it is natural to propose an ansatz for the
rational transformation of the form

R : (x, y, z) −→
(
x
Pn(x, y, z)2

Pd(x, y, z)2 , y
Pn(y, z, x)2

Pd(y, z, x)2 , z
Pn(z, y, x)2

Pd(z, y, x)2

)
. (5.12)

We have introduced the two polynomials

Pn(x, y, z) =
2∑

i,j,k

aijkx
i yj zk , Pd(x, y, z) =

2∑
i,j,k

bijkx
i yj zk . (5.13)

Now we have to impose that this transformation leaves invariant the aforementioned
operators, up to permutations. We therefore postulate

W2

[
y
Pn(y, z, x)2

Pd(y, z, x)2 , x
Pn(x, y, z)2

Pd(x, y, z)2

]
= W2[x, y] (5.14)

and cyclic permutations of the l.h.s. and of the r.h.s. More precisely such a transformation
does not leave the Wilson lines invariant, but also requires a non-cyclic permutation of
the charges.

This can be justified heuristically as follows. Consider for example the Wilson line,
attached to the nodes •1 and •2. Then one can take a decoupling limit in which we
decouple •3 and recover pure SU(2) Yang-Mills (recall that the Markov quiver can be
thought of as arising from the quiver of pure Yang-Mills with Nf = 2 by joining the
two nodes representing the hypermultiplets; these are the states we are decoupling). Our
condition (5.14) assumes that the rational transformation (5.12) has the same properties
as the fractional monodromy of pure SU(2), although here we incorporate the permutation
in the action on the line operators and not on the definition of (5.12). Note that if this
assumption is wrong, the correct transformation will differ from ours by a relabelling of
the charges.
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Similarly as in the pure SU(2) case, the conditions (5.14) can be rewritten as(
−P 2

d (x,y,z)P 2
d (y,z,x)+Pd(x,y,z)Pn(x,y,z)Pd(y,z,x)Pn(y,z,x)

+xPd(x,y,z)Pn(x,y,z)Pd(y,z,x)Pn(y,z,x)+xPd(x,y,z)Pn(x,y,z)yPd(y,z,x)Pn(y,z,x)

−P 2
d (x,y,z)yP 2

n(y,z,x)−xP 2
n(x,y,z)yP 2

n(y,z,x)
)

= 0 (5.15)

and cyclic permutations, provided the quantity (which appears in the denominator
of (5.14)) √

xPd(x, y, z)Pn(x, y, z)√y Pd(y, z, x)Pn(y, z, x) (5.16)

and cyclic permutations thereof, is non-vanishing.
The condition (5.15) and its permutations have to hold for any value of the variables

(x, y, z). In other words the coefficients of the monomials in xi yj zk have to vanish sep-
arately. This implies a rather large collection of algebraic equations which can be solved
using Mathematica file provided as supplementary material. The result is

Pn(x, y, z) = 1 + y + 2yz + yz2 + 2xyz2 + x2yz2 + x2y2z2 ,

Pd(x, y, z) = 1 + z + 2xz + x2z + 2x2yz + x2y2z + x2y2z2 . (5.17)

While the computation to obtain (5.17) are somewhat involved, it is not difficult to check
that the resulting rational transformation (5.12) satisfy the conditions (5.14).

The transformation (5.12) corresponds to the spectrum generator for SU(2) N = 2∗.
The expression (5.12) is at this stage conjectural, since its explicit form depends on certain
assumptions, such as the specific action in (5.14). However it agrees with the results
of [30, 31].

6 Line operators and spherical DAHA

In this section we will show that certain line operators form a presentation of a spherical
double affine Hecke algebra (DAHA) by generators and relations. This result is expected
from the work of Oblomkov [35] who showed that the deformation quantization of the
Hitchin moduli space, in complex structure J , gives rise to the sperical DAHA for gl(n) in
the case of N = 2∗ supersymmetric theory. In this case the Hitchin moduli space can be
understood as the moduli space of flat GL(n,C) connections on the once punctured torus.
From the point of view of class S theories, Oblomkov’s result is therefore an UV result. In
this section we establish the IR counterpart, in the case of the once punctured torus and
of the sphere with four punctures. From the IR perspective the spherical DAHA arises as
the algebra of IR quantum line operators and is therefore determined by the framed BPS
spectrum. We will only consider the rank 2 case but our results are expected to extend
to higher rank general field theories. Recent works discussing the relation between line
operators and DAHA are [28, 37]. Furthermore, it was noted in [38] that certain generators
of the DAHA act non trivially on the lens space index. For the algebraic definitions we
follow [16].
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6.1 The SU(2) N = 2∗ theory and A1 spherical DAHA

In this case the results of [35] imply a UV relation between field theory and the spherical
DAHA. Here we provide the IR counterpart of this result by giving an explicit construction
of the spherical DAHA using framed BPS states, in terms of quantum cluster variables.
We show by a direct computation that certain IR line operators give a presentation by
generators and relations of the A1 spherical DAHA.

The double affine Hecke algebra HH[A1] is generated by variables T , X and Y

with relations

(T − t)
(
T + t−1

)
= 0 ,

TXT = X−1 ,

TY −1T = Y ,

Y −1X−1Y X = q−1T−2 , (6.1)

and depends on the two parameters t and q.
The spherical subalgebra is defined as SHH[A1] := eHH[A1]e in term of the idempotent

e = T + t−1

t+ t−1 . (6.2)

We can give a more explicit description of the spherical subalgebra as follows. Introduce
generators

x =
(
X +X−1

)
e ,

y =
(
Y + Y −1

)
e ,

z = q−1/2
(
X Y T−2 +X−1 Y −1

)
e . (6.3)

Then SHH[A1] is the algebra generated by x, y and z with relations [16]

[x, y]q =
(
q − 1

q

)
z ,

[y, z]q =
(
q − 1

q

)
x ,

[z, x]q =
(
q − 1

q

)
y ,

qx2 + 1
q
y2 + qz2 − q

1
2xyz =

(
q

1
2 + q−

1
2
)2

+
(
tq−

1
2 − t−1q

1
2
)2

, (6.4)

where
[a, b]q = q

1
2a b− q−

1
2 ba . (6.5)

Note that in the limit q −→ 1 the last relation becomes

x2 + y2 + z2 − xyx = 4 +
(
t− t−1

)2
, (6.6)

which defines the character variety associated to the torus with one puncture.
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In the original formulation by Oblomkov the three generators x, y and z are associated
with certain holonomies of flat connections on the once punctured torus. In physical
language they correspond to the Wilson line operator, the t’ Hooft line operators and the
Wilson-t’ Hooft dyonic operator with charge (1, 1). We will now show that we can provide
an alternative description of the spherical DAHA by using the IR description of these
operators, computed by summing over framed BPS states.

The vacuum expectation value of these operators was computed already in [25] from
the study of laminations. In order to describe a noncommutative algebra in the IR we
need the quantum version of these operators. However, since in [25] it was shown that
all the framed BPS states involved are hypermultiplets, it is immediate to write down the
quantum line operators since for hypermultipets the refined Donaldson-Thomas invariant
is simply 1.

The three operators have the form

W1 = X 1
2 (−e1−e2) + X 1

2 (e1−e2) + X 1
2 (e1+e2) , (6.7)

W2 = X 1
2 (−e2−e3) + X 1

2 (e2−e3) + X 1
2 (e2+e3) , (6.8)

W3 = X 1
2 (−e1−e3) + X 1

2 (e3−e1) + X 1
2 (e1+e3) , (6.9)

where {e1, e2, e3} is the basis of charges corresponding to the Markov quiver.
We now claim the identification

W1 ←→ x , W2 ←→ y , W3 ←→ z , (6.10)

while the role of the parameter is played by t = − i q− 1
2 X 1

2 (e1+e2+e3). We will now show that
these line operators indeed form a presentation of SHH[A1]. Once the relevant generators
and parameters are identified, this is done by a direct computation.

To begin with, we discuss the commutation relations. Let us start by evaluating

q
1
2W1W2 = q

1
2
(
X 1

2 (−e1−e2) + X 1
2 (e1−e2) + X 1

2 (e1+e2)

) (
X 1

2 (−e2−e3) + X 1
2 (e2−e3) + X 1

2 (e2+e3)

)
= X− e1

2 −e2−
e3
2

+ X e1
2 −e2−

e3
2

+ X e1
2 +e2−

e3
2

+ X e1
2 +e2+ e3

2
+ q X− e1

2 −
e3
2

+ q X e1
2 −

e3
2

+ 1
q
X e1

2 −
e3
2

+ q X e3
2 −

e1
2

+ qX e1
2 + e3

2
. (6.11)

Similarly

−q−
1
2W2W1 =−X− e1

2 −e2−
e3
2
−X e1

2 −e2−
e3
2
−X e1

2 +e2−
e3
2
−X e1

2 +e2+ e3
2
− 1
q
X− e1

2 −
e3
2
−qX e1

2 −
e3
2

− 1
q

X e1
2 −

e3
2
− 1
q

X e3
2 −

e1
2
− 1
q

X e1
2 + e3

2
. (6.12)

From which we see
[W1,W2]q =

(
q − 1

q

)
W3 (6.13)

The other commutation relations can be checked similarly, since the line operators differ
by a relabeling of the charges. Now we turn to the last relation of (6.4). The right hand
side is relatively simple to compute(

q
1
2 + q−

1
2
)2

+
(
tq−

1
2 − t−1q

1
2
)2

= −X−e1−e2−e3 − Xe1+e2+e3 + q + 1
q

(6.14)
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The left hand side is slightly more involved. We begin with the quadratic terms. First one
can see that

qW 2
1 = qX−e1−e2 + qXe1−e2 + qXe1+e2 + q2Xe1 + Xe1 + q2X−e2 + X−e2 + 2q (6.15)

The other quadratic terms only differ by a relabeling of the charges. Finally the cubic
term is

−q
1
2W1W2W3 =−X−e1−e2−e3−Xe1+e2+e3−qX−e1−e2−qXe1−e2−qXe1+e2−qX−e1−e3−qXe3−e1

−qXe1+e3−q2X−e1−q2Xe1−X−e1−Xe1−
1
q

X−e2−e3−
1
q

Xe2−e3−
1
q

Xe2+e3

−q2X−e2−
1
q2 Xe2−X−e2−Xe2−q2Xe3−

1
q2 X−e3−X−e3−Xe3−3q− 1

q
(6.16)

Now it is easy to see that putting everything together the last relation of (6.4) is satisfied.

Remark. It should be stressed that the algebra of line operators is a wall-crossing in-
variant. In particular, if we have found a presentation by generators and relations which
holds in one chamber, we are now able to generate many other presentation by framed
wall-crossing, that is mutating the quiver.

6.2 The SU(2) Nf = 4 theory and C∨C1 spherical DAHA

In this case the moduli space of vacua of the theory on R3×S1, the Hitchin moduli space,
can be identified with the character variety of a sphere with four punctures. As in the
previous case, such a character variety is related to a DAHA, namely the C∨C1 spherical
subalgebra [36, 40]. The character variety is the space of homomorphisms between the
fundamental group and GL(2,C), modulo gauge transformations. Of the generators of the
fundamental group, those comprising two punctures become generators of the spherical
DAHA, upon deformation quantization of the character variety [36, 40].

In the classification of line operators of [25], such loops correspond precisely to the
Wilson loop, the ‘t Hooft loop and a dyonic loop operators, as in the N = 2∗ case. In
the following we will exhibit explicitly these operators in terms of framed quivers. Such
framed quivers are invariant under the action of the dynamical system on the quiver.
Therefore the associated IR line operator vacuum expectation value is a fixed point of the
dynamical system. It is therefore natural to conjecture that the generators of the spherical
DAHA should be among the fixed points of the dynamical system. We will now prove this
statement by a direct computation. We will use our dynamical system to determine the
form of these operators.

The C∨C1 double affine Hecke algebra HH[C∨C1] is generated by the elements Ti,
i = 1, . . . , 4 subject to the relations

(Ti − ti)
(
Ti + t−1

i

)
= 0, i = 1, 2, 3, 4 , T4 T3 T2 T1 = q . (6.17)

and depends explicitly on the parameters q ∈ C∗ and ti ∈ C, i = 1, . . . , 4.
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The spherical subalgebra is defined as SHH[C∨C1] := eHH[C∨C1]e where

e = T3 + t−1
3

t3 + t−1
3

(6.18)

is an idempotent. A presentation of this spherical subalgebra by generators and relations
is as follows. Define the three generators

x1 =
(
T4 T3 + (T4 T3)−1

)
e , (6.19)

x2 =
(
T3 T2 + (T3 T2)−1

)
e , (6.20)

x3 =
(
T3 T1 + (T3 T1)−1

)
e . (6.21)

Then SHH[C∨C1] is generated by x1, x2 and x3 with the relations (note the different power
of q from the A1 case discussed previously; we use the same letter to avoid unnecessary
notation, hoping that this will not cause confusion)

[x1, x2]q2 =
(
q2 − q−2

)
x3 −

(
q − q−1

)
α3 , (6.22)

[x2, x3]q2 =
(
q2 − q−2

)
x1 −

(
q − q−1

)
α1 , (6.23)

[x3, x1]q2 =
(
q2 − q−2

)
x2 −

(
q − q−1

)
α2 , (6.24)

q2x2
1 + q−2 x2

2 + q2 x2
3 − q x1 x2 x3 − q α1 x1 − q−1 α2 x2 − q α3 x3 (6.25)

= t
2
1 + t

2
2 + (q t3)2 + t4

2 − t1t2 (q t3) t4 +
(
q + q−1

)2
,

in terms of the parameters

ti = ti − t−1
i , i = 1, 2, 4 , q t3 = q t3 − (q t3)−1 , (6.26)

α1 = t1 t2 + (q t3)t4 , α2 = t1 t4 + (q t3)t2 , α3 = t2 t4 + (q t3)t1 . (6.27)

Now we will show by direct computation that this algebra is realized in terms of the
physical quantities of the superconformal SU(2) theory with four flavours.

The theory can be described by the BPS quiver:

•6

��

•2oo // •4

��
•3

??

•1oo // •5

__

(6.28)

We can choose a chamber with a 1/4 monodromy, corresponding to a sequence of mutation
on the nodes {3, 4, 5, 6, 1, 2}. The full 1/2 monodromy takes the basis {ei} into minus itself,
up to the permutations e3 ↔ e5 and e4 ↔ e6.

Consider now the three core charges γ1 = 1
2(−e1−e2−e4−e6), γ2 = 1

2(−e1−e2−e3−e5)
and γ3 = 1

2(−2e2−e3−e4−e5−e6). One can verify directly that the corresponding framed
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quivers are left invariant by the sequence of quiver mutations corresponding to the 1/4-
monodromy, up to the permutation of the nodes (1, 3, 5)↔ (2, 4, 6).

According to our formalism it is natural to conjecture that the line operators we seek
are among the fixed points of the associated quantum dynamical system. Indeed, as in the
previous case, one of these operators should correspond in the UV to the holonomy of a
purely electrical quantum state, and the others related to it by symmetries. We will now
confirm this expectation by a direct computation.

We claim that the fixed point conditions are solved by the three operators

W1 = X 1
2 (−e1−e2−e4−e6) + X 1

2 (−e1+e2−e4−e6) + X 1
2 (−e1+e2+e4−e6)

+ X 1
2 (−e1+e2−e4+e6) + X 1

2 (−e1+e2+e4+e6) + X 1
2 (e1+e2+e4+e6) (6.29)

W2 = X 1
2 (−e1−e2−e3−e5) + X 1

2 (e1−e2−e3−e5) + X 1
2 (e1−e2+e3−e5)

+ X 1
2 (e1−e2−e3+e5) + X 1

2 (e1−e2+e3+e5) + X 1
2 (e1+e2+e3+e5) (6.30)

W3 = X 1
2 (−2e2−e3−e4−e5−e6) + X 1

2 (−2e2+e3−e4−e5−e6) + X 1
2 (−2e2−e3−e4+e5−e6)

+ X 1
2 (−2e2+e3−e4+e5−e6) + X 1

2 (2e2+e3−e4+e5−e6) + X 1
2 (2e2+e3+e4+e5−e6)

+ X 1
2 (2e2+e3−e4+e5+e6) + X 1

2 (2e2+e3+e4+e5+e6) +
(
q + 1

q

)
X 1

2 (e3−e4+e5−e6)

+ X 1
2 (e3−e4−e5−e6) + X 1

2 (−e3−e4+e5−e6) + X 1
2 (e3+e4+e5−e6) + X 1

2 (e3−e4+e5+e6)

(6.31)

The computation to derive such operators are again somewhat involved. However once
they are found it is easier to check that they satisfy the requested properties. Consider the
first operator. Since all the framed BPS states have framed degeneracy equal to one, it is
equivalent to check the invariance of such operator in the classical q −→ 1 limit. In this limit
we denote the coordinates by Y•i = yi. Then the rational transformation corresponding to
the fractional monodromy is obtained by the sequence of mutations {3, 4, 5, 6, 1, 2} and is
given by

y1 −→
(y4 + 1)(y6 + 1)

y1(y3 + 1)y4(y5 + 1)y6
, (6.32)

y3 −→
y2y5(y4(y6(y1(y3 + 1)(y5 + 1) + 1) + 1) + y6 + 1)

y3(y5(y2(y4 + 1)(y6 + 1) + 1) + 1) + y5 + 1 , (6.33)

y5 −→
y2y3(y4(y6(y1(y3 + 1)(y5 + 1) + 1) + 1) + y6 + 1)

y3(y5(y2(y4 + 1)(y6 + 1) + 1) + 1) + y5 + 1 , (6.34)

and the transformation laws for y2,y4 and y6 are the same as for y1,y3 and y5 respectively
with the permutation of the labels (1, 3, 5) ↔ (2, 4, 6). It is now only a matter of brute
force to check that W1[R{y1, y2, y3, y4, y5, y6}] = W1[{y2, y1, y4, y3, y6, y5}] (recall that the
fractional monodromy leaves invariant the framed quiver up to the permutation of the
nodes (1, 3, 5) ↔ (2, 4, 6)). Once we have shown that the classical operator is invariant,
since all the framed BPS states correspond to hypermultiplets, we derive immediately the
form of the quantum operator since the refined BPS degeneracy of an hypermultiplet is
one as well.
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Similar arguments hold for W2. The situation for W3 is slightly more complicated,
because there is a framed BPS state with nontrivial spin. However we can still check the
invariance of the operator in the commutative limit, where the q + 1/q factor is replaced
by a two. Once the classical operator is checked to be invariant, one could rightly object
that a coefficient equal to 2 could represent a vector multiplet but also two hypermultiplets
and the lift to the quantum operator is ambiguous. To solve this ambiguity and show that
indeed there is a factor q + 1/q one can for example do a direct localization computation
using the formalism of [14], which indeed confirms the presence of a vector multiplet.
Equivalently one could check the invariance of the operator using the quantum fractional
monodromy, but this is more involved.

We now claim the identification

W1 ←→ x1 , W2 ←→ x2 , W3 ←→ x3 , (6.35)

between the physical quantum line operators and the generators of SHH[C∨C1]. To show
this, we begin by introducing the parameters, as in (6.26)

t1 = − i
(
X− 1

2 (e1+e2+e3+e6) + X 1
2 (e1+e2+e3+e6)

)
, (6.36)

t2 = − i
(
X− 1

2 (e3+e4) + X 1
2 (e3+e4)

)
, (6.37)

q t3 = − i
(
X− 1

2 (e5+e6) + X 1
2 (e5+e6)

)
, (6.38)

t4 = − i
(
X− 1

2 (e1+e2+e4+e5) + X 1
2 (e1+e2+e4+e5)

)
. (6.39)

Note that all the relevant expressions are quadratic in these quantities. The charges in-
volved are the simplest linear combinations which have vanishing pairing with each element
of the basis {ei}. Because of this the quantum coordinates commute and it is immediate
to see that the remaining parameters in (6.26) are given by

α1 = −X− e1
2 −

e2
2 −e3−

e4
2 −

e6
2
− X e1

2 + e2
2 +e3+ e4

2 + e6
2
− X− e1

2 −
e2
2 −

e4
2 −e5−

e6
2
− X e1

2 + e2
2 + e4

2 +e5+ e6
2

− X− e1
2 −

e2
2 + e4

2 −
e6
2
− X e1

2 + e2
2 + e4

2 −
e6
2
− X− e1

2 −
e2
2 −

e4
2 + e6

2
− X e1

2 + e2
2 −

e4
2 + e6

2
, (6.40)

α2 = −X− e1
2 −

e2
2 −

e3
2 −e4−

e5
2
− X e1

2 + e2
2 + e3

2 +e4+ e5
2
− X− e1

2 −
e2
2 −

e3
2 −

e5
2 −e6

− X e1
2 + e2

2 + e3
2 + e5

2 +e6

− X− e1
2 −

e2
2 + e3

2 −
e5
2
− X e1

2 + e2
2 + e3

2 −
e5
2
− X− e1

2 −
e2
2 −

e3
2 + e5

2
− X e1

2 + e2
2 −

e3
2 + e5

2
, (6.41)

α3 = −X−e1−e2−
e3
2 −

e4
2 −

e5
2 −

e6
2
− Xe1+e2+ e3

2 + e4
2 + e5

2 + e6
2
− X− e3

2 −
e4
2 −

e5
2 −

e6
2
− X e3

2 + e4
2 −

e5
2 −

e6
2

− X− e3
2 + e4

2 + e5
2 −

e6
2
− X e3

2 −
e4
2 −

e5
2 + e6

2
− X− e3

2 −
e4
2 + e5

2 + e6
2
− X e3

2 + e4
2 + e5

2 + e6
2
. (6.42)
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Consider the first relation (6.22). Then we see that

[W1,W2]q =
(
q3− 1

q3

)
X 1

2 (e3−e4+e5−e6)

+
(
q2− 1

q2

)[
X 1

2 (−2e2−e3−e4−e5−e6)

+X 1
2 (−2e2+e3−e4−e5−e6)+X 1

2 (−2e2−e3−e4+e5−e6)+X 1
2 (−2e2+e3−e4+e5−e6)

+X 1
2 (2e2+e3−e4+e5−e6)+X 1

2 (2e2+e3+e4+e5−e6)+X 1
2 (2e2+e3−e4+e5+e6)

+X 1
2 (2e2+e3+e4+e5+e6)+X 1

2 (e3−e4−e5−e6)+X 1
2 (−e3−e4+e5−e6)

+X 1
2 (e3+e4+e5−e6)+X 1

2 (e3−e4+e5+e6)

]
+
(
q− 1

q

)[
X 1

2 (−2e1−2e2−e3−e4−e5−e6)

+X 1
2 (2e1+2e2+e3+e4+e5+e6)+X 1

2 (−e3−e4−e5−e6)+X 1
2 (e3+e4−e5−e6)

+X 1
2 (e3−e4+e5−e6)+X 1

2 (−e3+e4+e5−e6)+X 1
2 (e3−e4−e5+e6)+X 1

2 (−e3−e4+e5+e6)

+X 1
2 (e3+e4+e5+e6)

]
= (q2−q−2)W3−(q−q−1)α3 (6.43)

Note that the
(
q3 − 1

q3

)
descends directly from the appearance of a vector multiplet in

W3. Such a state is crucial to close the algebra. The other commutation relations can be
checked similarly.

It is somewhat more involved to check (6.25). To begin with, the left hand side of (6.25)
can be rewritten as

t1
2 + t2

2 + (q t3)2 + t4
2 − t1t2 (q t3) t4 + (q + q−1)2

= −X−e1−e2−e3−e4−e5−e6 − Xe1+e2+e3+e4+e5+e6 − X−e1−e2−e3−e4 − Xe1+e2+e3+e4

− X−e1−e2−e3−e6 − Xe1+e2+e3+e6 − X−e1−e2−e4−e5 − Xe1+e2+e4+e5 − X−e1−e2−e5−e6

− Xe1+e2+e5+e6 − X−e1−e2 − Xe1+e2 − X−e3−e4 − Xe3+e4 − Xe3−e5 − Xe5−e3

− X−e3−e6 − Xe3+e6 − X−e4−e5 − Xe4+e5 − Xe4−e6 − Xe6−e4 − X−e5−e6 − Xe5+e6

+
(
q + 1

q

)2
− 8 . (6.44)

The right hand side of (6.25) is however much more involved, containing tens of terms
with delicate cancellations. Still a computation with Mathematica which can be found
in the supplementary material shows that (6.25) is satisfied. Therefore these three line op-
erators of the SU(2) Nf = 4 superconformal field theory form a presentation of SHH[C∨C1]
by generators and relations.
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