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ABSTRACT
In many natural environments, there are different forms of living
creatures that successfully accomplish the same task while being
diverse in shape and behavior. This biodiversity is what made life
capable of adapting to disrupting changes. Being able to reproduce
biodiversity in non-biological agents, while still optimizing them
for a particular task, might increase their applicability to scenarios
where human response to unexpected changes is not possible.

In this work, we focus on Voxel-based Soft Robots (VSRs), a form
of robots that grants great freedom in the design of both body and
controller and is hence promising in terms of biodiversity. We use
evolutionary computation for optimizing, at the same time, body
and controller of VSRs for the task of locomotion. We investigate
experimentally whether two key factors—evolutionary algorithm
(EA) and representation—impact the emergence of biodiversity and
if this occurs at the expense of effectiveness. We devise a way for
measuring biodiversity, systematically characterizing the robots
shape and behavior, and apply it to the VSRs evolved with three
EAs and two representations.

The experimental results suggest that the representation matters
more than the EA and that there is not a clear trade-off between
diversity and effectiveness.

CCS CONCEPTS
• Computing methodologies → Mobile agents; Continuous space
search; Evolutionary robotics; • Computer systems organiza-
tion → Evolutionary robotics; • Theory of computation →
Evolutionary algorithms;
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1 INTRODUCTION AND RELATEDWORK
One long-term goal for robotics is to build robots that are able to
operate in hazardous and dynamic environments, without the need
for human supervision [4]. Several challenges have to be tackled in
order to achieve that goal, ranging from scalability in the design and
building phases [16, 25], possibly with auto-fabrication, to effective
mechanisms for robot adaptation to changes in the environment [7].
Adaptation can occur at different time-scales as, e.g., learning [11,
15] and development [35]; moreover, it can involve individual robots
or an entire robotic ecosystem. One way to foster adaptation of
a robotic ecosystem is to promote diversity: if there are multiple
robots that are able to perform the same task while being different,
those robots can, as a whole, adapt to dynamic environments more
easily. Indeed, diversity of living creatures—biodiversity—is the way
in which nature made life robust to disruptive changes and it is so
valuable that it has to be preserved in order to protect life itself [49].

Beside producing diversity, nature also proved to be capable of
improving life, i.e., to make living creatures more efficient, through
evolution. Therefore, it is not surprising that researchers resorted
to the paradigm of evolution also for optimizing robots, igniting
the field of evolutionary robotics [36].

In spite of the good premises, actually obtaining diversity while
evolving robots is not easy. First, the comprehension, measurement,
and promotion of diversity are themselves challenges in the broader
field of Evolutionary Computation (EC) [43], from which evolu-
tionary robotics borrows the optimization techniques. The pursuit
for diversity is indeed pushing the EC community toward novel
paradigms that attribute greater and greater importance to diver-
sity [8], possibly even greater than quality of evolved solutions [26].

Second, the complexity of robot-environment interplay makes it
even harder to obtain useful diversity, i.e., diversity that does not
affect effectiveness. Very recent works confirmed that evolution
tends to end up with similar solutions for a given problem, e.g.,
locomotion; when diverse solution are stimulated by changing the
environment, often they are less effective [33]. Somehow surpris-
ingly, when the size of the search space is increased by allowing
the concurrent optimization of morphology and controller of the
robots, diversity seems to vanish even more easily, in particular for
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the morphology [37]. Indeed, the recurrent convergence to some
specific forms for the body occurs also in nature: for example, the
crab is known to be a powerful attractor [23].

All to all, the characterization of biodiversity and a deep under-
standing of which factors favor or impede it are still open issues in
evolutionary robotics [41].

In this work, we study the impact on biodiversity of evolved
robots of two key components of EC: the evolutionary algorithm
(EA) and the solution representation. We consider the scenario of
Voxel-based Soft Robots (VSRs), a kind of robots composed of many
soft blocks capable of basic sensing and actuation and arranged
together in a structure forming the robot [20]. VSRs fit particularly
well our research objective for two reasons. First, their intrinsic
modularity [51] and the fact they are a form of soft robots [24] make
VSRs a promising path toward autonomous robotics ecosystems.
Second, they allow great freedom in their design: the shape [5],
the controller [48], and even the sensory apparatus [12] can be
optimized. Such a great freedom should, in principle, enable biodi-
versity.

We consider three EAs that differ in how they are supposed to
deal with diversity, and two representations that, while allowing
the concurrent evolution of VSRs morphology and controller, differ
in their expressiveness and hence exhibit different potential for
diversity.

We analyze diversity systematically for a very large number of
VSRs (tens of millions), while still looking at diversity with the
human eye, like we do when associating animals and plants with a
specific species. For doing that, we rely on Machine Learning (ML)
for automatically assigning species to VSRs. We learn a ML model
for species classification that operates on descriptors extracted from
simulations of VSRs that perform the task of locomotion. Then, we
use the variability of predicted species as a measure of diversity of a
population of VSRs, using the well established Simpson index [42].

A few other works exist that examined diversity in evolutionary
robotics [1, 9, 15, 33, 40]. Our work shares with them the general
methodology—we all vary some factors regarding the evolution
and observe how some descriptors are affected—but differs in either
the kind of robots that is considered or the factors that are varied.
Most of the cited works focus mainly on the impact of the environ-
ment [1, 15, 33]. The study that is the most similar to ours is [9],
that investigates whether a mechanism of artificial speciation can
favor morphological diversity. We also devise an EA that employs
speciation and, in this respect, both [9] and us were inspired by
NEAT [45]. However, differently than the cited work, we (i) also
consider diversity of behavior, (ii) work with a more expressive kind
of robots, VSRs, and (iii) analyze the joint impact of representation
and EA.

Our work is significant also because we show that it is possible
to evolve both the morphology and the controller of robots, a task
that is considered hard [27]. There are other works that tackled the
same [21, 22, 37] or similar challenges [15], but on different robots.
Interestingly, our results confirm some of the previous findings, as,
e.g., that vibration is a frequently evolved behavior for achieving
effective locomotion [22].

2 BACKGROUND: VOXEL-BASED SOFT
ROBOTS

Voxel-based Soft Robots (VSRs) are a form of robots composed of
several deformable cubes (called voxels) that perform actions by
varying the volume of the voxels. VSRs have been first introduced
in [20], along with a procedure for physically realizing them. In
this study, we consider a 2-D variant of simulated VSRs, proposed
in [31], that is particularly suitable for investigating optimization
by means of evolutionary computation. In this section, we briefly
describe the salient characteristics of VSRs that are relevant to our
study: we refer the reader to [31, 32] for more details.

A VSR is defined by itsmorphology and its controller. The former
describes how the voxels are arranged and, for each voxel, the sen-
sors it is equipped with. The controller determines how the area
of each voxel varies over the time, possibly based on the readings
of the sensors of that voxel and other voxels. The ability of sens-
ing both itself and the environment makes VSRs potentially more
effective in performing a task as, e.g., locomotion [48].

2.1 Morphology
Voxels of a VSR are arranged in a 2-D grid: adjacent voxels are
rigidly connected at their vertices. In the simulation, the voxel is
modeled as an assembly of spring-dampers systems, masses, and
distance constraints [31]; we set, for each voxel, the same values
for the parameters of those components, which results in all the
voxels having the same mechanical properties.

The area of a voxel changes based on the corresponding control
signal imposed by the controller and on the external forces acting
on the voxel. The control signal is a value in [−1, 1], where −1
corresponds to maximum requested expansion and 1 corresponds
to maximum requested contraction. Expansion and contraction are
modeled in the simulation as instantaneous changes of the resting
length of the springs in the spring-damper systems of the voxel.

Voxels can be equipped with zero or more sensors. Each sensor
produces, at each time step, a sensor reading 𝒔 ∈ R𝑝 . We use three
kinds of sensors and equip every voxel with one sensor of each
kind. Area sensors (for which 𝑝 = 1) perceive the ratio between the
current area of the voxel and its rest area. Touch sensors (𝑝 = 1)
perceive whether the voxel is touching the ground (𝒔 = 1) or not
(𝒔 = 0). Velocity sensors (𝑝 = 2) perceive the velocity of the center
of mass of the voxel along the 𝑥- and 𝑦- axes of the voxel itself (i.e.,
the axes rotate with the voxel).

2.2 Controller
The controller determines the value of the control signals for each
voxel at each time step. We use the distributed neural controller pro-
posed in [30]. It consists of a number of fully connected feedforward
neural network (NNs), one for each voxel.

At each time step, each NN takes as input the local sensor read-
ings and the 4𝑛signal values generated by the adjacent NNs (i.e.,
those of the adjacent voxels) at the previous time step. A zero-
vector of the proper size is used as input for the NN of voxels at
the boundaries of the VSR. Then, it outputs the local control signal
and 4𝑛signal values that will be used by adjacent NNs at the next
time step.
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After some exploratory experiments and by taking into account
the findings of [30], we set 𝑛signal = 1 and use NNs with no inner
layers and with tanh as activation function. Considering that the
overall dimension of the sensor readings is 4, this results in each NN
having 4+4+1 input neurons (the +1 being the bias) and 4+1 output
neurons; hence, each network is described by 9 × 5 = 45 = 𝑛NN
numerical parameters (the weights of the edges connecting the
neurons of the two layers).

Despite its simplicity, this form of controller may result in inter-
esting and variegate behaviors, since the interconnections between
voxel NNs make the overall NN recurrent [30]: therefore, there is
a further dynamics introduced by the recurrent NN that interacts
with the dynamics induced by the mechanical model of the voxels.

3 MEASURING BIODIVERSITY
Biodiversity plays a crucial role in natural evolution and the suste-
nance of life on Earth. In this work, we take the inspiration from
natural sciences and build our definition of biodiversity of VSRs
on the concept of species. We define a way for determining the
species of a VSR, based on its shape and behavior (in the task of
locomotion, see Section 5), and then measure biodiversity as the
variety of species in a population.

In order to have species that can be discerned by humans, as it
happens for living creatures, we define species by human inspec-
tion. It is then necessary to associate any given VSR obtained in
our experiments with one of those species. Performing such an
association for every evolved VSR is essential in order to analyze
and characterize biodiversity systematically. Since we evolve a large
number of VSRs (in the order of several millions), species classifica-
tion by human inspection is not feasible. For this reason, we use
machine learning (ML) for automatically determining the species
of a VSR, an approach that is used also for determining the species
of plants [14] and animals [47].

In the following sections we describe all the steps for determining
the species of a VSR and measuring the resulting biodiversity in
populations.

3.1 Species based on human-inspection
Since in this study we deal with VSRs that can evolve both the
morphology and the controller, we use shape and behavior for
defining species. That is, given a VSR, we associate its shape with
one of a few predefined classes, its behavior with one of a few
predefined classes and define the species of the VSR as the pair of
those classes.

For deciding howmany classes to use for those classifications, we
inspected a large number of videos of VSRs performing locomotion
by randomly selecting individuals during the evolutions that we
performed for this study (see Section 5).

Concerning the shape, we define three classes. Blob VSRs exhibit
high eccentricity and few irregularities in their shape. Legged VSRs
have a body with protrusions extruding as if they were limbs (and
can, ideally, be used as “legs” to promote locomotion). Other robots
are grouped together in a third class and do not fit any of the two
descriptions above. Figure 1 shows a few samples of shapes of the
three classes.

(a) Blob (b) Legged (c) Other

Figure 1: Frames extracted from the simulations of VSRs
manually labeled to the three shape classes. The color of
each voxel encodes the ratio between its current area and its
rest area: red for < 1, yellow ≈ 1, green > 1; the circular sec-
tors drawn at the center of each voxel indicates the current
sensor readings.

Table 1: Distribution of the manually assigned labels for the
shape and behavior classes on inspected simulations.

Blob Legged Other Total

Idle 732 465 747 1944
Galloping 331 252 476 1049
Crawling 170 469 576 1215
Vibrating 534 210 248 992

Total 1757 1396 2047 5200

Concerning the behavior, we define four classes. Galloping VSRs
jump or hop, alternating between moments in which their body
is in contact with the ground and moments in which it is not.
Crawling VSRs always keep contact with the ground, contracting
and expanding their body tomove forward.Vibrating VSRsmanifest
a behavior similar to that of crawl, but move their body at a higher
frequency that makes it hard to discern which parts of the body
are touching the ground and which ones are not. Finally, idle VSRs
do not show any movement useful for moving forward, i.e., either
they stay steady or shake their limbs in such a disjointed manner
that no clear behavior is discernible. We provide the video of a
few VSRs exhibiting the behaviors of the four classes at https:
//youtu.be/my6c4L-b0eM.

3.2 Species classification
Having defined classes for shape and behavior as illustrated in
the previous section, we need to synthesize two classifiers able to
associate a previously unseen VSR with the corresponding classes
automatically. To this end, we constructed a set of labeled examples,
i.e., of VSRs associated with their corresponding species by a human
operator. We inspected several simulation videos and assigned VSRs
to shape and behavior classes until collecting 5200 labeled VSRs,
distributed among classes as summarized in Table 1. We remark that
the simulations are deterministic [31]: we hence need to simulate
each VSR just once.

As in any ML application, two key design choices concern the
features to extract for describing the observations (here, simulations
of VSRs) and the learning technique. Since we aim at classifying
the shape and the behavior separately, we define different features

https://youtu.be/my6c4L-b0eM
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for the two classification tasks. We describe our choices in the next
sections.

3.2.1 Shape features. Since the VSR body is an arrangement of
voxels in a 2-D grid, we could extract the features concerning the
shape directly from the grid. However, the grid is a static description
of the VSRs and does not capture the robot as seen during its life.
For this reason, we define the shape features based on the idea of
the dynamic pose of the VSR. Intuitively, the dynamic pose can be
regarded as a “long-exposure photograph” of the VSR during the
simulation and we construct such a pose as follows.

Let 𝑆 be a sequence of snapshots of a simulation of a VSR, where a
snapshot is the description of every object in the simulation (namely,
the ground and every voxel of the VSR) at a given time step. For each
snapshot we determine the minimal bounding square (𝑥0, 𝑦0, 𝑥0 +
𝑙, 𝑦0 + 𝑙) around the VSR, that is, the smallest square parallel to
the 𝑥-axis that completely contains the VSR. Then, we partition
the minimal bounding square in 16 × 16 inner squares with side
length 𝑙

16 and build a matrix 𝒅 ∈ {0, 1}16×16 where the element
𝑑𝑖, 𝑗 is 1 if and only if the corresponding inner square (𝑥0 + (𝑖 −
1) 𝑙16 , 𝑦0 + ( 𝑗 − 1)

𝑙
16 , 𝑥0 + 𝑖

𝑙
16 , 𝑦0 + 𝑗

𝑙
16 ) is covered by the VSR for at

least half of the area. Finally, we compute the dynamic pose as the
element-wise mode of the matrices computed for the snapshots in
𝑆 . Figure 2 shows a graphical representation of the dynamic pose
of a few VSRs.

We use the 256 values of the dynamic pose as feature vector for
the shape, obtaining 𝒇 shape ∈ {0, 1}256.

3.2.2 Behavior features. Since we deal with robots performing
the task of locomotion, we define two groups of features that should
capture the robot behavior while in locomotion, i.e., the gait, from
two different points of view: the movement of the center of the
VSR over the time and the way the VSR touches the ground while
moving. We denote by 𝒇 center and 𝒇 footprints the two corresponding
feature vectors, and by 𝒇 behavior their concatenation.

Center movement. Given a sequence 𝑆 of snapshots, we extract
the signals 𝑥𝑐 (𝑘), 𝑦𝑐 (𝑘) of the center of mass of the VSR from 𝑆 .
Then, we consider the signals 𝑥 ′𝑐 (𝑘), 𝑦′𝑐 (𝑘) of the first differences
(i.e., 𝑥 ′𝑐 (𝑘) = 𝑥𝑐 (𝑘) − 𝑥𝑐 (𝑘 − 1)) and compute their Fast Fourier
Transform (FFT). Subsequently, we take the magnitude of the two
FFTs, filter out the components corresponding to frequencies lower
than 𝑓min or greater than 𝑓max (by taking into account the simu-
lation time step Δ𝑡 ), and re-sample the remaining components in
order to have 𝑛freq components for each one of the two axes.

We use as feature vector the concatenation of the two resulting
vector of magnitudes 𝒇 center =

[
𝒇 center,𝑥 𝒇 center,𝑦

]
∈ R+2𝑛freq , with

R+ = [0, +∞[. After preliminary experiments and exploiting our
expertise, we set 𝑓min = 0Hz, 𝑓max = 10Hz, and 𝑛freq = 100.

Footprints. Concerning the features describing how the VSR
touches the ground, we build a definition based on the concept of
footprint. Given a snapshot, we consider the projection [𝑥0, 𝑥0 + 𝑙]
of the minimal bounding square on the 𝑥-axis and we partition it in
8 equally sized segments. Then we build the footprint of the VSR in
that snapshot as a binary sequence 𝒎 ∈ {0, 1}8 where the element
𝑚𝑖 is 1 if and only if the VSR is touching the ground for at least
half of the corresponding segment [𝑥0 + (𝑖 − 1) 𝑙8 , 𝑥0 + 𝑖

𝑙
8 ].

(a) Blob (b) Legged (c) Other

Figure 2: Examples of prediction of the shape classifier,
given as graphical representations of the dynamic pose
𝒇 shape. For each class, poses of three VSRs are shown, from
left to right: one withmanually assigned label, one with cor-
rectly predicted label (a true positive), two with a wrongly
predicted label (a false negative and a false positive).

Given a sequence 𝑆 of snapshots, we extract some features from
themost representative sequence of footprints, that we determine as
follows. (1) We split 𝑆 in a sequence (𝑆1, 𝑆2, . . . ) of non-overlapping
subsequences, each one corresponding to an interval of Δ𝑡footprint
simulated time (we set Δ𝑡footprints = 0.5 s after some preliminary
experiments). (2) We build the sequence𝑀 = {𝒎1,𝒎2, . . . } of foot-
prints where each 𝒎𝑖 is obtained as the element-wise mode of the
footprints computed from snapshots in 𝑆𝑖 . (3) We consider all the
𝑛-grams of footprints in𝑀 , with 2 ≤ 𝑛 ≤ 5, that occur at least twice
and compute the overall duration of each 𝑛-gram, computed as the
product between its number of occurrences and its duration. (4) We
select as themain footprint 𝑛-gram𝑀★ the 𝑛-gramwith the greatest
overall duration. (5) We compute the following descriptors for 𝑀★:
duration |𝑀★ |Δ𝑡footprint, average touch area 1

|★ |
1
8
∑
𝒎∈𝑀★

∑𝑖=8
𝑖=1𝑚𝑖 ,

number of occurrences, mode Δ𝑡𝑀 of the intervals between subse-
quent occurrences of 𝑀★, rate of intervals that are equals to the
mode.

We use as feature vector the five descriptors computed for the
main footprint 𝑛-gram𝑀★, i.e., 𝒇 footprint ∈ R+

5.

3.2.3 Learning technique. We rely on Random Forest [3] for
building the classifiers for the shape and behavior classes based on
𝒇 shape and𝒇 behavior, respectively.We chose this supervised learning
technique because it has been shown to be among the best general
purpose classification techniques [13, 50].

For having an estimate of the accuracy of Random Forest on
our two classification tasks, we performed a 5-fold cross validation
assessment using the 5200 labeled simulations and obtained an
average accuracy of 0.784 and 0.783 for shape and behavior clas-
sification, respectively. A trivial classifier (always predicting the
most frequent class) taking into account the class imbalances ob-
tained an accuracy of 0.394 and 0.374, respectively. Figure 2 shows
a few examples of prediction of the shape class in the form of the
corresponding dynamic poses.

3.3 Simpson index
Different measures of biodiversity have been used in the ecological
literature. Among them, the Simpson index is one of the most
commonly used [42]. Given a population of individuals that is
partitioned based on species, this index is defined as 𝜆 =

∑𝑖=𝑛
𝑖=1 𝑝

2
𝑖
,

where 𝑛 is the number of species and 𝑝𝑖 is the fraction of individuals
of the 𝑖-th species.

Intuitively, the Simpson index measures the probability that two
individuals picked at random with replacement belong to the same
species. Since its semantics is the opposite of the one of biodiversity
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(i.e., 𝜆 = 1 for a population composed of a single species and it is
< 1 for more diverse populations), in this study we use the inverse
Simpson index (ISI) 𝜆−1 (defined in [1, +∞[): the greater the ISI, the
more diverse the population.

4 EVOLUTION OF VSR MORPHOLOGY AND
CONTROLLER

We want to investigate whether VSRs can be optimized for a given
task, by means of EC, while maintaining biodiversity measured as
described above. For fully exploiting the potential of expressing
diverse solutions to a task that is intrinsic of VSRs, we need a way
for evolving simultaneously the morphology and the controller.

We here propose two genotypic representations that encode a
description of both the morphology and the controller of a VSR in
a single numerical vector. The resulting optimization problem is
hence a search in the numerical space R𝑝 , for which many tech-
niques exist. We experiment with three EAs that fit this scenario,
one of them being tailored to the specific goal of promoting the bio-
diversity. In the following sections, we describe the representations
and the EAs.

It is worth to note that this is, to the best of our knowledge, the
first approach to the simultaneous evolution of the morphology
and the controller of VSRs that are able to sense the environment.

4.1 Representations
We define two representations for the morphology and the con-
troller of the VSR in the form of a numerical vector 𝒗 ∈ R𝑝 . In both
of them, a portion 𝒗morph of 𝒗 directly encodes a description of
the morphology and the remaining, disjoint part 𝒗ctrl describes the
controller, i.e., 𝒗 =

[
𝒗morph 𝒗ctrl

]
. The representations differ only

in the latter.
Given a 𝒗morph ∈ R𝑛

2
size , we build a morphology, i.e., a collection

of adjacent voxels arranged in a 2-D grid, as follows. Let 𝑛size×𝑛size
be the size of a square grid enclosing the largest representable VSR
morphology. First, we build a Boolean matrix 𝒃 = {T, F}𝑛size×𝑛size

where 𝑏𝑖, 𝑗 is set to true if and only if 𝑣𝑘 > 0, with 𝑘 = 𝑖 + ( 𝑗 −
1)𝑛size. Then, we build the morphology by considering the largest
connected part of 𝒃 elements set to true and putting a voxel at each
element of such set.

Concerning the controller part, and considered that we use the
controller defined in Section 2.2, we propose two alternatives.

In the heterogeneous controller representation, that we denote
by He, we assume that the NNs composing the controller (one NN
for each voxel) can have different parameters. In order to favor
the locality of the representation [38] and to make the controller
representation agnostic with respect to the morphology represen-
tation, 𝒗ctrl is the concatenation of the weights of the NNs of all
the voxels, i.e., 𝒗ctrl =

[
𝒘1,1 . . . 𝒘𝑛size,𝑛size

]
, where 𝒘𝑖, 𝑗 is the vec-

tor of weights of the NN at (𝑖, 𝑗) position in the enclosing grid. It
follows that 𝒗ctrl ∈ R𝑛

2
size×𝑛NN . This representation is the same, for

the controller part, as the one proposed in [30].
In the homogeneous controller representation, denoted by Ho,

we assume that all the NNs have the same parameters𝒘 . It follows
that 𝒗ctrl = 𝒘 ∈ R𝑛NN .

It can be seen that the two controller representations differ in ex-
pressiveness and degeneracy [39], i.e., the degree to which different

genotypes correspond to different phenotypes. The heterogeneous
representation is the most expressive one, thus resulting in the
largest search space. The homogeneous representation is the least
expressive one: its search space is smaller and hence, in principle,
easier to explore. However, it might be harder for the evolution to
find the combination of genes that, when translated in the sameNNs
for each voxel, results in a VSR that exhibits the desired complex
behavior.

We performed the experiments that we discuss belowwith𝑛size =
5, that resulted in |𝒗 | being 25 + 1125 = 1150 and 25 + 45 = 70, re-
spectively for He and Ho representations. In an initial exploratory
phase, we also experimented with 𝑛size = 10, that resulted in find-
ings similar to the one we found for 𝑛size = 5, and with a radically
different representation for the morphology. In the latter case, based
on the observations of [5], we used the generative representation
based on a mixture of bi-variate Gaussian distributions described
in [32]: we observed unclear experimental findings that we plan to
further investigate in the future.

4.2 Evolutionary algorithms
We use three EAs suitable for optimizing in the numerical space R𝑝 .
Two of them are general purpose EAs, one is an EA that employs
a form of speciation based on the concept of species defined in
Section 3.1.

4.2.1 CMA-ES. The first EA is Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) [18, 19], a state-of-the-art numeri-
cal optimizer that has recently shown to be effective also for the
optimization of VSRs [12, 29]. CMA-ES iteratively optimizes the
solution in the form of a multivariate normal distribution. At each
iteration, it samples the distribution obtaining a population of so-
lutions and then updates the parameters of the distribution by
recomputing them based on the best half of the population. Non
trivial heuristics are employed while updating the distribution—we
refer the reader to [18] for more details.

In our experiments, we use the default parameters suggested
in [17], namely the initial step size 𝜎 = 0.5 and the population
size 𝜆 = 4 + ⌊3 log𝑝⌋, 𝑝 being the dimension of the search space,
i.e., 1150 or 70 depending on the representation. We set the initial
vector of means by sampling uniformly the interval [−1.0, 1.0] for
each vector element. We let CMA-ES iterate until 𝑛evals = 30 000
fitness evaluations have been done.

CMA-ES is commonly considered a form of population-based
optimization, since it is an improved form of evolutionary strat-
egy. We remark, however, that the population in CMA-ES is indeed
a realization of a multivariate normal distribution, i.e., all the in-
dividuals are “variations” of a single individual, the mean of the
distribution. This observation is relevant in our settings, where we
study the biodiversity of the evolved solutions.

4.2.2 Genetic algorithm. As second EA, we use a standard form
of Genetic algorithm (GA). GA iteratively evolves a fixed-size popu-
lation of𝑛pop individuals according to a 𝜇+𝜆 generationalmodel [10],
i.e., with overlapping: at each generation, the offspring and the par-
ents are merged and the worst individuals are discarded. For build-
ing the offspring, we select individuals with tournament selection
of size 5 and then we apply Gaussian mutation with 𝜎mut = 0.35,
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with probability 𝑝mut = 0.2, or extended geometric crossover with
probability 1− 𝑝mut. With the latter, given two parents 𝒗1, 𝒗2 ∈ R𝑝 ,
the new individual is obtained as 𝒗 = 𝒗1 + 𝜶 (𝒗2 − 𝒗1), where each
element 𝛼𝑖 of 𝜶 is chosen randomly with uniform probability in
[−1, 2].

As for CMA-ES, we build the initial population by sampling
uniformly [−1.0, 1.0] and iterate until 𝑛evals = 30 000 fitness evalua-
tions have been done. Moreover, we set 𝑛pop = 100 and 𝑝mut = 0.2.

4.2.3 Speciated evolver. We designed this EA, that we denote
by SE, specifically for this study. SE employs a form of speciation
inspired by NEAT [45], the popular EA for evolving the topology
and the weights of NNs. In NEAT, speciation was introduced with
the purpose of protecting innovations introduced by modifications
in the topology. In SE, we do not optimize the topology of the
NNs composing the controller of the VSR; notwithstanding, specia-
tion is, more broadly, a mechanism for promoting diversity in the
population [43].

1 function evolve():
2 𝑃 ← initialize(𝑛pop)
3 while ¬shoulStop() do
4 𝑃 ′ ← ∅
5 (𝑃1, . . . , 𝑃𝑘 ) ← kmeans(𝑃)
6 𝑃 ′ ← 𝑃 ′ ∪ {best(P)}
7 foreach 𝑖 ∈ {1, . . . , 𝑛} do
8 if |𝑃𝑖 | ≥ 𝑛elite then
9 𝑃 ′ ← 𝑃 ′ ∪ {best(𝑃𝑖 )}

10 end
11 end
12 𝑛′pop ← 𝑛pop − |𝑃 ′ |
13 𝒓 ← ranks(repr(𝑃1), . . . , repr(𝑃𝑘 ))
14 foreach 𝑖 ∈ {1, . . . , 𝑘} do
15 𝑐 ← 0
16 while 𝑐 < 𝑛′pop𝛼

𝑟𝑖 1∑𝑖=𝑘
𝑖=1 𝛼

𝑟𝑖
do

17 if 𝑈 (0, 1) ≤ 𝑝mut then
18 𝒗 = nth(𝑃𝑖 , 𝑐 mod |𝑃𝑖 |)
19 𝑃 ′ ← 𝑃 ′ ∪ {mutate(𝒗)}
20 𝑐 ← 𝑐 + 1
21 else
22 𝒗1 = nth(𝑃𝑖 , 𝑐 mod |𝑃𝑖 |)
23 𝒗2 = nth(𝑃𝑖 , (𝑐 + 1) mod |𝑃𝑖 |)
24 𝑃 ′ ← 𝑃 ′ ∪ {crossover(𝒗1, 𝒗2)}
25 𝑐 ← 𝑐 + 2
26 end
27 end
28 end
29 𝑃 ← 𝑃 ′

30 end
31 end

Algorithm 1: The algorithm of SE.

Similarly to GA, SE iteratively evolves a fixed-size population
of 𝑛pop individuals, as shown in Algorithm 1. At each iteration,
individuals are partitioned in species according to a given criterion
(described below) that also determines a single representative in-
dividual of each species. Then, the current best individual in the
population and the best individual of every species larger than
𝑛elite are moved in the offspring. The remaining individuals in the
offspring are generated as follows. First, an offspring slot of size

𝑛′pop𝛼
𝑟𝑖 1∑𝑖=𝑛

𝑖=1 𝛼
𝑟𝑖

is reserved to each species 𝑃𝑖 depending on the
rank 𝑟𝑖 of the corresponding representative individual repr(𝑃𝑖 );
𝛼 ∈ ]0, 1] is a parameter of the algorithm—the closer to 1, the less
the preference to fittest species. Then, the offspring slot is filled by
applying Gaussian mutation or expanded geometric crossover (as
in GA) to individuals of the corresponding species 𝑃𝑖 .

As partitioning criterion, we explore three variants. All are based
on the application of the k-means clustering technique [28] and
select as representative individual the one closest to the centroid of
the cluster. They differ in what we use for computing the distance
among individuals.

In the first variant, that we denote by SE-g, we use the genotype
𝒗, whose dimension is 1150 or 70 depending on the representation.
In the second variant, denoted by SE-s, we use the vector 𝒇 shape ∈
R256 of the shape features (see Section 3.2.1). Finally, in the third
variant, denoted by SE-b, we use the vector 𝒇 behavior ∈ R205 of the
behavior features (see Section 3.2.2). In all cases, we compute the
Euclidean distance after having properly normalized the vectors of
the individuals of the current population.

In the experiments, we set 𝑛pop = 100, 𝑝mut = 0.2, as for GA, and
𝑛evals = 30 000, as for GA and CMA-ES. Moreover, we set 𝛼 = 0.75,
𝑛elite = 5, and 𝑘 = 10 (for k-means).

5 EXPERIMENTAL EVALUATION
We performed several experiments aimed at answering experimen-
tally the following research questions:

RQ1 How do the representation and the EA impact the emergence
of biodiversity?

RQ2 Is there a trade-off between effectiveness and biodiversity?

Moreover, since this is the first approach to the concurrent evo-
lution of the morphology and controller of VSRs, we were also
generally interested in understanding if effective solutions can be
found in such a large design space.

For all the experiments, we considered the task of locomotion.
The goal of the VSR is to travel as far as possible, in the positive 𝑥
direction, along a flat surface and within a time interval of 𝑡final =
30 s (simulated time). The fitness of the individual is the traveled
distance, measured as Δ𝑥𝑐 = 𝑥𝑐 (𝑡final) − 𝑥𝑐 (0), where 𝑥𝑐 (𝑡) is the
𝑥-position of the center of mass of the VSR at time 𝑡 .

We used 2D-VSR-Sim [31] for the simulation of the VSRs, with a
time step of Δ𝑡 = 1

60 s and all the other parameters set to default
values. The code of the experiments is publicly available at https:
//github.com/pigozzif/VSRBiodiversity.

For each combination of EA and representation, we performed
10 evolutionary runs by varying the random seed of the EA—we
remark that the simulations are instead deterministic. Overall, 10 ×
5 × 2 × 30 000 = 3 × 107 VSRs were generated in our experiments:
for each one of them we applied the two models for predicting
the shape and behavior classes learned on the small subset of 5200
manually labeled VSRs, as described in Section 3.

5.1 Results
Table 2 summarizes the results of all our experiments. For each
combination of EA and representation, the table shows the median
and standard deviation, across the 10 evolutionary runs, of the key

https://github.com/pigozzif/VSRBiodiversity
https://github.com/pigozzif/VSRBiodiversity
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Table 2: Median and standard deviation, across the 10 runs,
of salient indexes computed on the population at the last
iteration.

EA Repr. Δ𝑥★𝑐 ISIshape ISIbehav. ISI

CMA-ES He 89± 43 1.0±0.5 1.6±0.8 2.0±1.3
Ho 119± 58 1.0±0.1 1.5±0.6 1.5±0.8

GA He 139± 80 1.0±0.0 1.0±0.2 1.0±0.2
Ho 117±120 1.0±0.0 1.0±0.0 1.0±0.0

SE-g He 144± 62 2.3±0.4 2.4±0.6 4.6±1.1
Ho 181± 64 2.1±0.5 2.4±0.6 4.7±1.1

SE-s He 160± 60 2.0±0.5 2.3±0.3 4.1±1.0
Ho 280± 50 2.0±0.3 2.3±0.6 4.6±1.1

SE-b He 252± 85 1.9±0.5 2.5±0.7 3.9±1.5
Ho 237± 98 2.0±0.4 2.2±0.4 3.7±1.6

He Ho

CMA-ES
GA
SE-g
SE-s
SE-b100

150
200
250

He Ho
1
2
3
4

Figure 3: Heatmap of the median Δ𝑥★𝑐 (left) and ISI (right)
computed on the population at the last iteration.
indexes measuring effectiveness in locomotion and biodiversity.
The indexes are computed on the population at the last iteration of
the EA. Concerning effectiveness, Table 2 shows the fitness Δ𝑥★𝑐
of the best individual measured in m—as a reference, a voxel side
is 3m long. Concerning biodiversity, the table shows the biodiver-
sity ISI as defined in Section 3.3, and the biodiversity ISIshape and
ISIbehav. computed considering only the shape and behavior class,
respectively.

For easing the comparison, we report in Figure 3 the values of
the two most important indexes (Δ𝑥★𝑐 and ISI). We performed the
Mann-Whitney U test (after having verified the relevant hypotheses)
between pairs of combinations for both Δ𝑥★𝑐 and ISI and found that
the differences are statistically significant in the vast majority of
cases.

It can be seen that all combinations of EA and representation
are able to evolve effective VSRs, i.e., they score well in Δ𝑥★𝑐 . In
terms of Δ𝑥★𝑐 , SE variants achieve the best results among the EAs,
and Ho outperforms He with 3 on 5 EAs. The latter finding means
that, despite the lower expressiveness of the Ho representation with
respect to He, a “single NN” is capable of driving cooperatively an
entire robot, when proper parameters are found. As it turns out
from our experiments, finding these parameters is feasible with all
the EAs, maybe because of the much lower dimension of the search
space.

Figure 4 provides an overview of the distribution, across shape
and behavior classes, of the evolved VSRs (considering the popu-
lations at the last iteration). Besides the number of VSRs for each
class, the figure also shows the median Δ𝑥★𝑐 of individuals in the
class. It can be seen that the relative majority of the evolved individ-
uals belong to class Other/Idle. The most effective, i.e., fastest, VSRs

Blob Leg. Oth.

Idle
Gallop.
Crawl.
Vibr.500

1,000
1,500
2,000
2,500

Blob Leg. Oth.

50
100
150

Figure 4: Heatmap of the number of VSRs (left) and their
median Δ𝑥★𝑐 (right) computed on the population at the last
iteration for each combination shape and behavior classes.

(a) Caterpillar (b) Centipede (c) Hermit crab (d) Horse

(e) Monkey (f) Tortoise (g) Turkey (h) Xenomorph

Figure 5: A subset of outperforming individuals, in terms
of effectiveness and variety of shapes and behavior. A video
can be found at https://youtu.be/P_fcCaTWC0o.
are those of class Legged/Crawling, followed by Blob/Vibrating.
The Crawling behavior is, in general, the most effective. Not sur-
prisingly, Idle VSRs are not effective.

The results concerning Vibrating behavior call for some further
remarks. If we attempted to physically realize those Vibrating VSRs,
maybe using the approaches of [25, 46], they would likely not be
as fast as in simulation—i.e., there would likely be a reality gap
problem [34]. We think that Vibrating VSRs are evolved frequently
for two reasons. First, energy consumption is not considered in
our simulations, and hence inefficient behaviors are not discour-
aged [22]. Second, the recurrent nature of our neural controller,
and in particular the voxel-to-voxel signal passing, likely favors the
emergence of high frequency dynamics [30].

Beyond the overview given by the aggregate indexes, that we
discuss more in detail below, we manually inspected a subset of
the most effective VSRs and found that looked quite different. We
showcase some of those VSRs in Figure 5; the corresponding video
that can be found at https://youtu.be/P_fcCaTWC0o.

Those hand-picked VSRs strikingly mirror emergent patterns
found in nature. For example, we named one individual “monkey”
after running forward by alternating between its fore limb and
its rear limb, while using an extrusion from its back as a sort of
tail to balance. Another individual, “caterpillar”, crawled ahead
by pulsing its body. Others slithered like centipedes or trotted
like equines, to name a few traits. In general, both primitive and
complex morphologies emerged. Interestingly, evolution succeeded
in adaptation also with bizarre and unusual solutions. In fact, some
individuals covered long distances while possessing a shape that
might have turned out an handicap. As a proof of concept, one
individual (nicknamed the “tortoise”) propelled forward using a pair
of leg-like protrusions despite carrying on its back an uncomfortable
hump (resembling a shell indeed) that might have hindered motion.

https://youtu.be/P_fcCaTWC0o
https://youtu.be/P_fcCaTWC0o
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Figure 6: Median Δ𝑥★𝑐 (top) and ISI (bottom) during the evo-
lution.
5.2 RQ1: impact of EA and representation on

biodiversity
Figure 3 and Table 2 provide a clear view on the differences in
biodiversity among EAs and representations. Among the EAs, the
SE variants, that are designed to promote diversity, obtain much
larger ISI than CMA-ES and GA. The differences are much less sharp
for representations: interestingly, the much smaller search space
induced by Ho does not result in a lower diversity with respect to
He.

For deeper insights, we show in Figure 6 how effectiveness in
locomotion and diversity vary during the evolution. Concerning the
former, the top plot of the figure confirms the findings of Table 2 and
also suggests that SE-s and SE-b, i.e., SE variants where speciation
takes into account shape and behavior classes, might still improve
Δ𝑥★𝑐 with a longer evolution.

Concerning diversity, the ISI plot of Figure 6 highlights the great
differences among the EAs. While SE variants generally maintain a
great diversity in the population, CMA-ES and GA do not. For CMA-
ES, the finding is not surprising: as discussed in Section 4.2.1, this
EA does not evolve a population of actually different individuals,
but rather evolves one prototype individual by sampling its variants.
We looked at the raw results of GA and found that the drastic drop
in diversity is the result of the joint action of the crossover and
the generational model (that employs overlapping): a good indi-
vidual often mates with itself generating a duplicate, that rapidly
fills the population. All to all, our GA turned out to operate with
the wrong exploration-exploitation trade-off, a long-standing issue
in EC [6]. We believe that this limitation might be addressed by
employing some diversity promotion mechanism [44], maybe act-
ing at different levels of the representation (genotype, phenotype,
fitness) [2].

5.3 RQ2: effectiveness vs. diversity
Figure 7 shows the relation between effectiveness (Δ𝑥★𝑐 ) and bio-
diversity (ISI) in the form of a scatter plot with one point for each
one of our evolutionary runs. The figure clearly shows that there is
not, in our results, a trade-off between effectiveness and diversity:
it is not true that greater effectiveness is obtained at the expense of
diversity.

We dug in the results and found that when an evolution struggles
in finding effective solutions, those solutions are often classified as
Idle. On the contrary, effective solutions are associated with a more
diverse combination of classes. It could be argued that this finding
is a bias induced by the way we define biodiversity, i.e., based on

2 4 6
1

2

3

Δ𝑥★𝑐

IS
I

CMA-ES
GA
SE-g
SE-s
SE-b
He
Ho

Figure 7: Scatter plot of ISI vs. Δ𝑥★𝑐 , one point for each evolu-
tionary run.
perception of the shape and behavior from the human point of
view—we are likely more able to spot differences in creatures that
move in a somehow familiar way, rather than in creatures that fidget
without an apparent purpose. However, the good effectiveness
achieved by SE-s and SE-b EAs, whose working principle depends
right on our definition of biodiversity, suggests that our choice is
sound.

6 CONCLUDING REMARKS
We considered a subfield of evolutionary robotics that aims at opti-
mizing Voxel-based Soft Robots (VSRs), a kind of modular soft
robots composed by many simple soft blocks. We investigated
whether evolutionary computation (EC) can be used for optimizing
the morphology and the controller of VSRs in such a way that they
effectively solve the task of locomotion in many different ways, i.e.,
if EC can achieve biodiversity of VSRs.

In particular, we focused on the impact of biodiversity of two
key components of every EC approach, the evolutionary algorithm
(EA) and the representation of the solutions. We experimented with
three EAs, one of which designed purposely by us for favoring the
emergence of biodiversity based on a speciation mechanism, and
two representations.

We devised a way for measuring systematically the diversity of
a population of evolved VSRs: we manually inspected a subset of
VSRs and assigned them to a few classes for shape and behavior,
defined based on human perception. Then, we learned a machine
learning model for automatically classifying many millions of VSRs
observed during the evolutions.

Our experimental results showed that the EA plays a more impor-
tant role than representation in determining biodiversity. Moreover,
they suggest that employing a diversity promotion mechanism
that is based on a human-like notion of species can result in better
effectiveness, as well as in larger biodiversity.

We believe that our work contributes to address one of the long-
standing issues in evolutionary robotics, preservation of diversity,
and provides further confirmations that bio-inspired methods can
be effective also when dealing with artificial agents.
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