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Abstract
The basic problem of a theory of truth approximation is defining when a theory is
“close to the truth” about some relevant domain. Existing accounts of truthlikeness or
verisimilitude address this problem, but are usually limited to the problemof approach-
ing a “deterministic” truth bymeans of deterministic theories. A general theory of truth
approximation, however, should arguably cover also cases where either the relevant
theories, or “the truth”, or both, are “probabilistic” in nature. As a step forward in
this direction, we first present a general characterization of both deterministic and
probabilistic truth approximation; then, we introduce a new account of verisimilitude
which provides a simple formal framework to deal with such issue in a unified way.
The connections of our account with some other proposals in the literature are also
briefly discussed.
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1 Introduction

Popper introduced the notion of the truthlikeness (or verisimilitude) of a scientific
theory or hypothesis in order to make sense of the idea that the goal of inquiry is an
increasing approximation to “the whole truth” about the relevant domain. Explicating
this intuition is the shared problem of all post-Popperian accounts of verisimilitude,
which not only differ from each other on the way to solve it, but also disagree on
some crucial features of the notion of truthlikeness. Despite their disagreements, these
accounts share an important assumption, i.e., that both the theories and the truth are
“deterministic” or “categorical”. This means that both the theory and the truth are
commonly construed as descriptions, in some suitable language, of the relevant facts in
the domain (or of the relevant “nomic” possibilities characterizing it), and truthlikeness
is a matter of closeness or similarity between the corresponding propositions in that
language. With few exceptions, no mention is made of other relevant cases, where
either the theory or the truth, or both, are instead “probabilistic”: for instance, when
theories are construed as probabilistic doxastic states, or the truth is the objective,
statistical, or probabilistic distribution of relevant features in the domain.

In this paper, we address this issue and put forward a unified account of both deter-
ministic and probabilistic truth approximation. More precisely, we define a measure
of the truthlikeness of both deterministic and probabilistic theories in terms of the
probability they assign to the “basic features” of the relevant domain. As we argue,
this measure (actually, a continuum of measures) fits well within the so called basic
feature (BF) approach to verisimilitude, and shares interesting connections with other
accounts proposed in the literature. Moreover, it can be applied quite naturally to all
four different possible cases of truth approximation, construed as increasing closeness
of a deterministic or probabilistic theory to a deterministic or probabilistic truth.

We proceed as follows. Section 2 outlines the main problem and motivation for the
paper, and describes the four cases of truth approximation, mentioning some possible
applications and some relevant references for each of them. In Sect. 3, we introduce
a new, probability-based measure of truthlikeness, following the idea that a theory is
the closer to the truth the more it “agrees” with it on the basic features of the domain;
as we argue, this account provides a common, abstract framework for studying both
deterministic and probabilistic truth approximation. Section 4 shows how our measure
generalizes other existing accounts in the literature, and how deterministic truthlike-
ness can be construed as a special case of probabilistic truthlikeness. In Sect. 5, we
show how the proposed measure provides a common foundation for both determinis-
tic and probabilistic truthlikeness, and hence a unified treatment of deterministic and
probabilistic truth approximation; we also discuss its relations with two standard mea-

123



Synthese (2021) 199:11465–11489 11467

sures of the distance between probability distributions. Finally, Sect. 6 contains some
concluding remarks and directions for future work. The proofs of the main claims in
the paper appear in the final appendix.

2 Deterministic and probabilistic truth approximation

From an abstract point of view, one can think of the issue of truth approximation
in science as follows. A researcher (or a community of researchers) is interested in
investigating some domain of natural or social phenomena (states, situations, facts,
systems, and so on). To this purpose, the researcher adopts some conceptual frame-
work, and, in particular, some (more or less formal) language L. Within L, one can
formulate a number of “theories”; but once L and the conceptual frame are fixed, one
of such theories, denoted t , will represent “the whole truth”, i.e., the most complete
and correct characterization of the relevant domain given the expressive resources of
L.

At the beginning of the investigation, t is usually unknown, and often remains so:
it represents, so to speak, the final, possibly ideal, target of inquiry. At this point,
the issue of truth approximation arises: it makes sense, from both a theoretical and a
practical point of view, to ask whether some given theory h “approximates” the target
t , i.e., whether it is sufficiently close or similar to it; or, whether h is closer or more
similar to t than some alternative theory g. (Fig. 1 schematizes what said so far.) This
raises in turn two different issues. The first is the “logical” or “semantic” problem
of truth approximation: assuming that t is known, specify when h is actually a good
approximation of t , i.e., define a suitable notion of “closeness” or “similarity” between
theories and the truth. The second is the “epistemic” or “methodological” problem of
truth approximation: given the available evidence (data, observations, experimental
results, etc.), specify how one can rationally estimate how well h approximates t , or
whether h approximates t better than g.

So far, we have left the notion of “theory” undefined. Depending on the specific
scientific discipline or domain, a theory h could be a proper axiomatic system, a
(statistical) model, a scientific hypothesis, a numerical interval, a plain proposition or
even a “belief state” of some (more or less rational) agent, including artificial ones (like,
say, a neural network). However, an account of truth approximation developed at a

theory h truth t

approximation
closeness
similarity

proposition, hypothesis,
model, belief state, . . .

correct and complete theory
in the relevant language

Fig. 1 A schematic representation of the problem of truth approximation
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sufficient level of generality should be able to dealwithmanyof themost relevant cases,
by uncovering the underlying “logic of truth approximation”. In the philosophy of
science, this project was started by Popper (1963), and has been systematically pursued
within the post-Popperian research program on “verisimilitude” or “truthlikeness” (for
surveys, see Niiniluoto 1998; Oddie 2016). The results of this ongoing exploration
are mixed: on the one hand, we have now different accounts of truth approximation
available, and have learned much about many crucial aspects of this notion; on the
other hand, no such account has gained widespread acceptance in the community, nor
has proved able to establish a common ground for further research (see, e.g., Cevolani
2017).

While the multiplicity of truthlikeness theories remains an open problem, here we
are concerned with a different issue. As diverse from each other as they are, most of
the existing accounts of truth approximation agree on the “deterministic” nature of the
truth to be approached. In order words, one usually assumes that the truth t is either
the descriptive or factual truth about the relevant domain or the “nomic” truth about
what is, e.g., physically or biologically possible in that domain. Most often, also the
theories considered as candidate approximations of the truth are thought of in such
deterministic terms. This is a relevant limitation, since it excludes the important cases
where either the truth, or the theory, or both, are probabilistic in nature.

To illustrate, consider the following toy examples. Suppose that the (unknown) truth
about tomorrow’s weather in some location is that it will be hot, rainy, and windy. If
Adam says that it is hot and rainy, and Eve says that it is hot and dry, it seems clear
that Adam’s “theory” should be judged to be closer to the truth than Eve’s, since she
is incorrect on one aspect of the truth (i.e., whether it will rain or not), while he is not.
All available accounts of truthlikeness can provide this kind of assessments. However,
they are not well equipped to deal with cases like the following.

Suppose that Adam thinks that the probability of rain tomorrow is 80%, while Eve
assesses such probability at 30%. If it turns out that the actual weather is rainy, it seems
clear that Adam’s estimatewasmore accurate than Eve’s, in the sense of being closer to
the truth. Or, suppose again that Adam believes that it will rain tomorrow, whereas Eve
thinks it will not. Moreover, assume that the meteorological record tells that the actual
frequency of rainy days in the relevant location is 90%. Now, one would be inclined
to say that Adam’s beliefs are closer to the (objective, probabilistic) truth than Eve’s,
since it is much more probable than not that it will rain tomorrow. In order to make
sense of these intuitive judgments, however, one needs a notion of truthlikeness or
verisimilitude which is applicable to both deterministic and probabilistic contexts, a
notion that most accounts on the market do no provide.

In connection with the last two examples above, note that the former deals with a
case of probabilistic “theories” (beliefs, estimates) approaching a deterministic truth;
the latter case, vice versa, is one of deterministic theories approaching a probabilistic
(statistical) truth. In general, one can think of four relevant possibilities, as shown in
Table 1, that we can briefly describe as follows.

DD: Deterministic theories approaching a deterministic truth. Both theory h and the
truth t are construed as deterministic, i.e., as either qualitative or quantitative
propositions (or sets of propositions, possibly logically closed). The weather
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example used above is a case in point: the truth is a description like “hot, rainy,
and windy”, and theories are propositions like “hot and rainy”, “hot and dry”,
and so on. Another relevant case, ubiquitous in the sciences, is the estimation of
the numerical value of some quantity or parameter: here the truth is a point in
some relevant space, and theories are represented by (closed) intervals.

DP: Deterministic theories approaching a probabilistic truth. Theory h is deter-
ministic, while the truth t about the domain is probabilistic. This happens, for
instance, when h is a “tendency hypothesis”—like “Italians tend to be Catholic”
or “Italians love pizza”, or “Birds fly” — and t specifies the precise probability
distributions of the relevant traits in the relevant populations (like the proportion
of pizza-loving Italians, and so on). Arguably, this kind of hypotheses, and the
corresponding notion of truth approximation, play an important role in many
social sciences, for instance in sociology or political science.

PD: Probabilistic theories approaching a deterministic truth. Theory h is a proba-
bilistic or statistical theory (model, distribution),while the truth t is deterministic.
The standard casemaybe assessing the truthlikeness of “doxastic” or belief states
expressed as probabilistic credences, given an objective but unknown state of the
matter. A typical example is medical diagnosis, where the physician estimates
the likelihood the patient is ill or not. This is relevant to Bayesian epistemology
and other approaches to uncertain reasoning in different fields.

PP: Probabilistic theories approaching a probabilistic truth. Finally, both theory h
and the truth t may be construed as either probabilistic or statistical distributions
or models. This case includes again assessing the truthlikeness of belief states
when the truth is not deterministic, as well as many scientific applications where
one needs to estimate the accuracy of different probabilistic predictions with
respect to some underlying objective distribution.

In the philosophical literature, the four cases above have attracted very different
amounts of attention. As already mentioned, all main approaches within the post-
Popperian research program on verisimilitude or truthlikeness deal with DD as their
most relevant application: these include so-called consequence approaches by Popper
himself, Schurz and Weingartner (2010) and others (cf. Cevolani and Festa 2020),
the content approaches of Kuipers (2000, 2019) and Miller (1978), and the similarity
approaches defended by Oddie (1986, 2013) and Niiniluoto (1987, 2003). In all such
accounts, deterministic truth approximation is straightforwardly construed as a “game
of excluding falsity and preserving truth” (Niiniluoto 1999, p. 73), either in terms of
balancing the true and false information provided by h (as in content- and consequence-
based approaches, includingPopper’s original one) or in assessing the overall closeness
of h to the truth (as in similarity-based accounts). Such ideas have been applied to
a number of relevant scientific issues, including for instance statistical estimation
problems (Niiniluoto 1987; Festa 1993) and problems relative to machine learning in
AI (Niiniluoto 2005).

As for case DP, it has been virtually ignored, even if Festa (2012, 2007a, b) has
emphasized its relevance for a methodological analysis of interesting issues in the
social sciences, pointing to so-called prediction logic developed by Hildebrand et al.
(1977) as an important case-study in econometric analysis.
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Table 1 Deterministic and
probabilistic truth
approximation: four cases

Truth
Deterministic Probabilistic

Theory Deterministic DD DP

Probabilistic PD PP

Finally, cases PD and PP are often discussed together, with the implicit under-
standing that the former may be considered as a special case of the latter (a point
also emphasized in the present paper). Here, one can elaborate on a wealth of formal
measures studied by mathematicians, statisticians, and scientists working in a variety
of fields, from economics to biology and artificial intelligence (cf., e.g., Crupi et al.
2018). A canonical example is the so called Brier score (Brier 1950), which measures
the accuracy of (meteorological) probabilistic forecasts of mutually exclusive possi-
ble outcomes (like “rain” vs. “no rain”) against the final outcome actually observed
(and hence can be construed as an instance of case PD above). Another is the so
called Kullback-Leibler divergence (Kullback and Leibler 1951), used for instance by
Rosenkrantz (1980) and Niiniluoto (1987) in their analysis of “legisimilitude” (nomic
verisimilitude) in terms of the distance of a probabilistic law from a probabilistic truth
(case PP above). On the other hand, philosophers like Pettigrew (2016) working on
so called accuracy-first epistemology (i.e., on accuracy-based justifications of prob-
abilism as a norm for credence in the line of Bruno de Finetti and others) study the
closeness of probabilistic beliefs to deterministic or probabilistic states, thus exploring
our cases PD and PP (see Pettigrew (2019) for a survey). Perhaps surprisingly, this
latter line of research has developed quite in parallel to that on truthlikeness, even
if interesting connections exist and start being explored (Oddie 2017; Schoenfield
2019).

In this paper, we take a step back and propose to look at the issue of truth approxi-
mation from a more abstract and unified perspective. In particular, we start again from
the basic ideas underlying truthlikeness theories and propose a simple framework for
reasoning about both deterministic and probabilistic truth approximation.

3 A probability-basedmeasure of truthlikeness

Intuitively, a theory (proposition, hypothesis, etc.) h is verisimilar when it is, in some
suitably defined sense, “close” or “similar to the truth”. To spell out this intuition in
detail, we introduce here a simple formal framework, borrowed from the so called
basic feature (BF) approach to truthlikeness (Cevolani and Festa 2020), to be fur-
ther discussed in the next section. In this and the next section, we focus on the formal
properties of the resulting truthlikenessmeasures, assuming as customary both a deter-
ministic theory and a deterministic truth (case DD from Table 1). In Sect. 5, we shall
argue that the proposed measures apply equally well to the remaining cases of truth
approximation.
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3.1 Truthlikeness and (logical) probability

We work within a finite propositional language Ln with n atomic propositions. Such
atomic propositions, togetherwith their negations, form the 2n “basic” or “elementary”
propositions of Ln , also called its “literals”. Intuitively, a basic proposition describes
a possible elementary fact in the relevant domain (like “it’s hot” and “it doesn’t rain”);
in particular, the n true basic propositions of Ln , denoted t1, . . . , tn , describe the
“basic features” of the world. For the moment, we can avoid specifying what these
basic features amount to; as we shall see in the following, different interpretations are
possible.

Within Ln , one can express 22
n
non-logically-equivalent propositions, including

the tautological and the contradictory ones, denoted � and ⊥ respectively. A so
called constituent (or “state description”) of Ln is a consistent conjunction of n basic
propositions; intuitively, it completely describes a possible state of affairs of the rel-
evant domain (a “possible world”). There are 2n constituents, which are the logically
strongest factual propositions of Ln . The set R(h) of constituents entailing h (or,
equivalently, the class of possible worlds in which h is true) is called the range of
h. By definition, each constituent is logically incompatible with any other, and only
one of them is true; this is denoted t and is the strongest true statement expressible in
Ln . Thus, t can be construed as “the (whole) truth” in Ln , i.e., as the complete, true
description of the actual world; of course, t entails all true basic statements of Ln ,
t1, . . . , tn , thus offering a complete and true description of the basic features of the
world.

A probability distribution on Ln assigns a degree of probability to all constituents,
and hence to all propositions of Ln . The “logical” probability measure m assigns the
same degree of probability to each constituent; since there are 2n constituents, each of
them has probability 1/2n (Kemeny 1953). Moreover, the probability of h is simply
the proportion of constituents entailing h out of the total number of constituents:
m(h) = |R(h)|/2n . It follows that if b is a basic proposition, m(b) = 2n−1/2n =
1/2. Assuming that h is consistent (as we shall always assume in the following), the
conditional logical probability of g given h is defined as usual, i.e., m(g|h) = m(h ∧
g)/m(h). This means that m(g|h) is the proportion of the cases (i.e., constituents) in
which g is true out of the total number of cases in which h is true.

Here, we shall define the truthlikeness of h in terms of the (logical) probability
that h assigns to each of the basic features of the world, as follows. Let us consider
a consistent set of n basic propositions b1, . . . , bn of Ln . (The set of the atomic
propositions of Ln and the set of the true literals t1, . . . , tn entailed by t are two
examples of such a set).Given a generic propositionh,we consider its associated “basic
vector” m(b1|h), . . . ,m(bn|h), i.e., the vector of the conditional logical probabilities
of each basic proposition bi given h. Intuitively, the basic vector of h specifies how
probable each bi is, assuming h is true; in other words, it specifies the probability
distribution on the chosen basic propositions “from the standpoint” of h. In particular,
if h is tautological the corresponding basic vector is “flat”, in the sense that all bi
are assigned probability m(bi |�) = 1

2 . At the other extreme, the basic vector of a
constituent w is “opinionated”, in the sense that, for any bi , m(bi |w) is either 1 or 0.
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In general, different statements h and g will have different basic vectors associated
with them; i.e., they will assign to each bi different probabilities. Intuitively, the more
different these probabilities are, i.e., the farther from each other are the basic vectors
of h and g, the less similar or close will h and g be. This suggests to define similarity
(or closeness) between propositions in terms of the “basic distance” between the
conditional probabilities they assign to each bi . Given a single basic proposition bi ,
the simplest measure d of the distance between h and g, as evaluated with respect to
bi , is arguably:

di (h, g)
d f= |m(bi |h) − m(bi |g)|, (1)

which varies between 0 and 1. Accordingly, the basic closeness (or similarity) between
h and g, again as evaluated with respect to bi , can be defined as:

si (h, g)
d f= 1 − di (h, g)
= 1 − |m(bi |h) − m(bi |g)|.

(2)

It is then natural to define the closeness (or similarity) between h and g as the normal-
ized sum of their basic similarities:

sim(h, g)
d f=

n∑

1

si (h, g)

n
, (3)

Note that sim(h, g) also varies between 0 and 1; it is maximal when h and g exactly
agree on the probability value of each basic proposition (i.e., when di (h, g) = 0 for
each bi ) and it is minimal when h and g “maximally disagree” on such values (i.e.,
when di (h, g) = 1 for each bi ). For example, one can easily check that the distance
between a tautology and a constituent is always 1

2 ; or that the maximal closeness
between two constituents (disagreeing on just one basic proposition) is n−1

n ; or that
the distance between two (different) basic propositions is always 1/n.

Finally, we can apply Eq. (3) above to define a measure of the truthlikeness of h in
terms of its similarity to the truth t :

vs(h) = sim(h, t) =
n∑

1

si (h, t)

n
(4)

The truthlikeness of h is thus construed as the sum of the basic similarities between h
and t , i.e., in terms of the distance between their associated basic vectors.

As anticipated, the above definition of truthlikeness is limited to deterministic the-
ories (represented by their logical probability vectors) approaching a deterministic
truth. However, nothing prevents to apply it to the case of genuinely probabilistic the-
ories, as far as they can be associated to a vector of “basic probabilities”. This amounts
to consider, instead of the logical probabilitym(bi |h), a statistical or epistemic proba-
bility ph(bi ) as given by the relevant distribution associated to the probabilistic theory
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Table 2 Cases of “qualitative”
agreement and disagreement
between (the basic logical
probability vectors associated
to) two propositions h and g

g
m (b|g) > 1

2 m (b|g) ≤ 1
2

h m (b|h) > 1
2 Agreement Disagreement

m (b|h) ≤ 1
2 Disagreement Agreement

h under examination. The above definitions can be then applied to define the truth-
likeness of probabilistic theories, as we shall better see in Sect. 5. For the moment, we
discuss an extension of the truthlikeness measure vs introduced above, which allows
for richer assessments of similarity between theories.

3.2 Truthlikeness as agreement with the truth

Equation (3) defines the similarity between two arbitrary propositions h and g of Ln

in terms of how much h and g agree (or, conversely, disagree) on the (logical) proba-
bilities assigned to each of the basic feature of the world. The closer the probabilities
they assign to each basic proposition are, the closer the two propositions are overall.
However, quantitative agreement of this kind is not always the most important fact to
assess the distance between two probabilistic estimates: in some cognitive contexts,
“qualitative” (dis)agreement can well be more relevant.

To clarify this point, let us go back to our previous example, with Adam and Eve
trying to estimate the probability of rain tomorrow. We can contrast two different
scenarios. In the first, Adam thinks that the probability of rain tomorrow is, say,
90%, while Eve assesses such probability at 60%. In the second, their estimates for
the probability of rain are instead 65% for Adam and 35% for Eve. Now, it seems
clear that Adam and Eve disagree in their estimates in both scenarios. Moreover, the
distance between their estimates is the same in both cases, if evaluated by their plain
difference as for measure d above. However, it seems also clear that, in the second
situation, their disagreement is deeper than in the former. This is because, if asked
“Is rain more probable than not tomorrow?”, their answers would coincide in the first
scenario (“yes”) but would be opposite in the second (“yes” for Adam, “no” for Eve).
This is what we call “qualitative” disagreement, as opposed to “(merely) quantitative”
disagreement (which can be considered a sort of “qualitative agreement”). As we
argue, qualitative (dis)agreement can often be more important than mere quantitative
(dis)agreement, especially in those contexts where precise numerical predictions or
measurements are not available or impractical. 1

To deal with this issue, we introduce the following notions and terminology (see
Table 2). Given two propositions h and g and a basic proposition b, we shall say that h
and g “(qualitatively) agree” on b iffm(b|h) andm(b|g) are either both strictly higher
or both lower than 1

2 ; and that h and g “(qualitatively) disagree” on b otherwise, i.e.,
iff m(b|h) is higher than 1

2 while m(b|g) is equal to or lower than 1
2 , or the other

1 This may often happen in many “soft” sciences (cf. Festa 2012). In non-numerical contexts, the notions
of qualitative vs. quantitative (dis)agreement just introduced may be linked to the notions of strong vs. weak
disagreement as defined in Cevolani (2014).
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way round. In short, h and g agree on b if they both deem b as probable (i.e., more
probable than not) or improbable (i.e., less probable than not); they disagree if b is
probable for one of them and improbable for the other. Of course, strict, quantitative
agreement between h and g (to the effect thatm(b|h) = m(b|g)) is possible only when
h and g agree at least qualitatively; but it is possible that h and g agree qualitatively
on b while quantitatively disagreeing on its precise probability (as in the first scenario
of the example above). In other words, qualitative disagreement implies quantitative
disagreement, but not vice versa.

We can now define a measure of the closeness or similarity between h and g, which
generalizes definition (3) by taking into account the distinction between qualitative
and quantitative (dis)agreement. First, we (re)define the basic distance between h and
g, as evaluated with respect to bi , as follows:

siη(h, g)
d f=

{
si (h, g) if h and g agree on bi
η × si (h, g) if h and g disagree on bi

(5)

with parameter η (0 ≤ η ≤ 1) balancing the relative importance of qualitative
(dis)agreement in assessing similarity. Second, we replace Eq. (3) with the follow-
ing:

simη(h, g)
d f=

n∑

1

siη(h, g)

n
(6)

Note that the above definition is quite general, since it covers different (extreme)
cases. Of course, if one takes η = 1, then simη(h, g) is just the old similarity measure
sim(h, g), where similarity assessments are insensitive to qualitative (dis)agreement.
At the opposite extreme, if η = 0, then h and g are similar to some degree only
in so far they (qualitatively) agree on some basic propositions; otherwise, even close
quantitative agreement on basic propositions onwhich h and g disagree does not count
at all toward their overall similarity. (This is a rather extreme case: if for instance
Adam’s and Eve’s forecasts for rain are, respectively, 51% and 49%, according to
measure sim0(h, g) the closeness between their estimates concerning rain is zero.)
For intermediate values of η (0 < η < 1), quantitative (dis)agreement does count in
assessing the similarity between h and g, but less than their qualitative (dis)agreement.

Finally, we can apply Eq. (6) above to define a measure of the truthlikeness of h in
terms of its agreement with the truth t :

vsη(h) = simη(h, t) =
n∑

1

siη(h, t)

n
(7)

Note that vsη(h) measures the truthlikeness of h in terms of how close the prob-
ability assigned by h to each of the true basic propositions ti is to the “real” one as
given by t , independently of whether t is deterministic or probabilistic itself. (In the
former case, t assigns only extreme values to the probabilities of ti , either 1 or 0; in the
latter, intermediate values are possible.) Thus, Eq. (7) provides a simple definition of
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the truthlikeness of propositional theories as based on the amount of (dis)agreement
between a theory and the truth, measured in terms of the distance between their corre-
sponding (logico-)probability vectors. In Sect. 6, we shall better discuss the application
of this measure to the problem of deterministic and probabilistic truth approximation;
before doing this, however, we point out some interesting relations that this measure
shares with other definitions proposed in the literature.

4 Comparison with other accounts

In the foregoing section, we defined ameasure of truthlikeness in terms of the (logical)
probability that theory h assigns to the basic features of the world. In this section, we
show that, in the particular case of deterministic truth approximation, our measure
boils down to some well-known measures proposed in the literature. In such sense,
our account is sufficiently general to subsume these other accounts in a single, unified
framework.

We shall start with the BF account of verisimilitude which, as mentioned before,
provides the general background for the definition of truthlikeness as agreement with
the truth discussed in Sect. 3. Within this approach, the truthlikeness of theory h
depends on a balance of (the amount of) true and false information it provides about
the truth (Cevolani et al. 2011, 2013; Cevolani and Festa 2020). 2 To make sense
of this idea, in previous work we introduced the notion of the “partial information”
provided by h about the basic features of the world. Here, we use this notion to define
a new measure of deterministic truthlikeness, which we will later compare with out
older measure.

A proposition h (“fully”) entails another proposition g when g is true in all cases
h is, or, equivalently, when R(h) ⊆ R(g), i.e., when the range of h is included in that
of g. Instead, h “partially” entails g when g is true in most (but not necessarily all)
the cases h is; more precisely, h partially entails g when h is “positively relevant” for
g, i.e., when m(g|h) > m(g). Of course, if h (fully) entails g, then h also partially
entails g, since m(g|h) takes its maximum value 1; but not vice versa. 3

Let us now consider an arbitrary basic proposition b of Ln . Since m(b) = 1/2, h
will partially entail b, by definition, iff m(b|h) > m(b) iff m(b|h) > 1/2. Intuitively,
the amount of information provided by h on b is the greater, the higher m(b|h) raises
over m(b) = 1/2. Accordingly, we can define the amount of information provided

2 This intuition was arguably at the core of Popper’s original definition of verisimilitude (cf. Popper 1963,
p. 237), which read roughly as follows: the more true consequences and the less false consequences a theory
or proposition h has, the greater its truthlikeness. Popper hoped to show that false theories can be sometimes
closer to the truth than other theories, thus defending his realist view of cognitive and scientific progress as
a succession of likely false, but increasingly verisimilar, theories. Unfortunately, Popper’s definition failed
to accomplish this, and it is now widely regarded as untenable as a general definition of truthlikeness; see
Niiniluoto (1998) for an instructive reconstruction of the earlier history of truthlikeness, andFine (2019) for a
recent, qualified defense of Popper’s original account. Despite the failure of such definition, Popper’s central
intuition — that the truthlikeness of h balances the amount of true information and of false information
entailed by h —can be arguably retained in order to develop an adequate account of verisimilitude (Schurz
and Weingartner 2010; Cevolani and Festa 2020).
3 The theory of partial entailment employedhere comes fromsomenowclassicalwork byCarnap (1950) and
Salmon (1969); for recent developments, see for instanceCrupi andTentori (2013) andRoche (2018)[Sec. 5].
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by h on b as a simple linear transofrmation of the plain difference between these two
values:

in f m(h, b)
d f= (m(b|h) − m(b)) + 1

2
= m(b|h). (8)

Following the intuition underlying theBF approach, hwill be close to the truthwhen
h provides much information about the basic features of the world, as described by the
true literals t1, . . . , tn ofLn . As a consequence, it is natural to define its truthlikeness as
the amount of (partial) information provided by h about such true basic propositions:

vsm(h)
d f=

n∑

1

in f m(h, ti )

n
=

n∑

1

m(ti |h)

n
(9)

Note that vsm(h) varies between 1 (if h is the “whole truth” t) and 0 (if h is the
“complete falsehood” f , i.e., the conjunction of the negations of all ti ), with the
truthlikeness vsm(�) = 1/2 of a tautology as a middle point. This “partial definition”
measure vsm is interesting because it defines truthlikeness as the plain (normalized)
sum of the information provided by h on each of the basic features of the world,
measured in turn by the plain logical probability of the corresponding basic proposition
ti given h. Intuitively, this makes much sense and vindicates (at least in part) Popper’s
original intuition: h is close to the truth when it provides much information about it.

However, a point is worth noting here. According to definition (8), h provides infor-
mation about b both when h “supports” or “confirms” b (i.e., when m(b|h) > m(b))
and when h “undermines” or “disconfirms” b (i.e., when m(b|h) < m(b)), as well
as when h is “neutral” for b (i.e., when m(b|h) = m(b)). In particular, h provides
information about the basic features of the world independently of whether h sup-
ports or undermines (or it is neutral for) the true basic propositions ti . This is as it
should be, since “information” is different from “supporting” or “confirming” infor-
mation. However, one can reasonably argue that, as far as one is interested in defining
truthlikeness, supporting information about the truth counts more, toward increasing
verisimilitude, than undermining or neutral information. Following this intuition, we
define the amount of information provided by h on b as different depending onwhether
h supports or undermines (or is neutral to) b:

in f θ (h, b)
d f=

⎧
⎪⎪⎨

⎪⎪⎩

in f m(h, b) if h supports b, i .e.,
if m(b|h) > m(b)

θ × in f m(h, b) if h undermines or is neutral to b, i.e.,
if m(b|h) ≤ m(b)

with parameter θ (0 ≤ θ ≤ 1) balancing the relative importance of supporting
vs. undermining/neutral information in assessing truthlikeness. Then, we replace
Eq. (9) with the following as a (generalized) definition of the truthlikeness of h:

vsθ (h)
d f=

n∑

1

in f θ (h, ti )

n
(10)
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Note that vsθ reduces to measure vsm if θ = 1. At the opposite extreme, if θ = 0, then
only supporting information about the truth is relevantwhen assessing the truthlikeness
of h. In all other cases, when 0 < θ < 1, both supporting and undermining/neutral
information provided by h about the truth is relevant, but the former more than the
latter. In other words, the information provided by h about a true basic proposition
ti “fully” increases the truthlikeness of h when ti is supported by h, but does only
“partially” so if h undermines or is neutral to ti .

The definition just proposed offers a simple and intuitively compelling account of
deterministic truthlikeness, i.e., of the closeness of h to a deterministic truth t (“deter-
ministic” meaning, to recall, that the basic vector associated to t is “opinionated”,
i.e., all true literals ti are certainly true, given that, of course, m(ti |t) = 1 for any ti ).
As a consequence, it has strict connections with similar definitions of truthlikeness
discussed within the BF approach, as well as within other accounts of verisimilitude.
To see this, let us start with our previous proposal in Cevolani and Festa (2020).

Following the idea of defining truthlikeness as partial information about the truth,
in that paper we defined the amount of information provided by h on b as:

in f (h, b)
d f= 2 × (m(b|h) − m(b)) = 2 ×

(
m(b|h) − 1

2

)
,

which varies between−1 (if h � ¬b) and 1 (if h � b). Note that this definition above is
simply a different normalization of the plain difference between logical probabilities
than the one we used in Eq. (8) above. Following Popper, we defined PBT (h) and
PBF (h), respectively, as the class of basic truths (true basic propositions) and of basic
falsehoods (false basic propositions) partially entailed by h. Moreover, in f T (h) and
in f F (h) were defined, respectively, as follows:

in f T (h) = 1

n
×

∑

b∈PBT (h)

in f (h, b) and in f F (h) = 1

n
×

∑

b∈PBF (h)

in f (h, b)

i.e., as the normalized amount of information provided about the basic truths
(resp. falsehoods) partially entailed by h. Finally, the truthlikeness of h is defined
as the difference between the amounts of partial true and false information provided
by h about the basic features of the world:

vsin f (h) = in f T (h) − in f F (h) (11)

Note that vsin f (h) varies between 1 (if h is the “whole truth” t) and −1 (if h is the
complete falsehood), with the truthlikeness vsin f (�) = 0 of a tautology as a natural
middle point.

Measure vsin f has a number of interesting properties, detailed inCevolani and Festa
(2020). Interestingly, there we also show that it is essentially identical to another well-
known measure of truthlikeness, the so called Tichý-Oddie “average” measure (Oddie
1986, 2013). Oddie’s account (and the so called similarity approach to truthlikeness
in general) starts by defining a measure λ(w, t) of the likeness or closeness of an
arbitrary constituent to the true constituent t . In our framework, one can simply define

123



11478 Synthese (2021) 199:11465–11489

λ(w, t) as the number of atomic propositions on which w and t agree, divided by n
(i.e., in terms of the so called Clifford distance between constituents, see Niiniluoto
(1987)). In this way, one immediately obtains that λ(w, t) = 1 iff w is the truth itself,
and that the complete falsehood f is maximally distant from t , since λ(t, f ) = 0.
Then, truthlikeness is defined as the average closeness to the truth of the constituents
in the range R(h) of h:

vsav(h)
d f=

∑
w�h λ(w, t)

|R(h)| (12)

where |R(h)| is the number of constituents entailing h. This measure varies between
vsav(t) = 1 and vsav( f ) = 0; a tautology has an intermediate degree of truthlikeness
vsav(�) = 1

2 .
While being based on deeply different intuitions about truthlikeness — which is

defined by vsin f as the balance of true and false partial information provided by h and
by vsav as the average closeness to the actual world of the worlds in which h is true
— these two measures turn out to be essentially identical (i.e., ordinally equivalent),
as proved in Cevolani and Festa (2020) [see theorem 1 on p. 1637]:

Observation 1 ( Cevolani and Festa (2020)) For any h, vsin f (h) = 2 × vsav(h) − 1.

The above result is interesting in its own, and has a number of relevant implications for
ongoing debates in the truthlikeness literature, including the one on the classification of
different accounts of verisimilitude, as well the discussion of the relationships between
truthlikeness and logical strength (for discussion, see Cevolani and Festa 2020). Such
debates are relatively immaterial for our present purposes, so we won’t go into the
details.

What is interesting is instead considering the relations among the four measures
presented in this section, i.e. vsin f and vsav on the one hand, and our measures vsm
and vsθ , on the other hand. In this connection, one can prove that:

Observation 2 For any h, if θ = 1 then vsθ (h) = vsm(h) = vsav(h) = 1
2 (vsin f (h)+

1).

In words, in the special case where no difference is made between supporting and
undermining/neutral information, measure vsθ is exactly the same as Tichý-Oddie’s
average measure of truthlikeness. In view of observation 1, this also clarifies that
definition (9) is essentially a more direct and compact version than definition (11):
vsin f is just a linear transformation of vsm , and hence the two definitions boil down
to essentially the same measure.

Observation 2 shows that the “generalized” partial information measure vsθ pro-
posed in this section subsumes different other measures of deterministic truthlikeness,
including Tichý-Oddie’s average measure. More interestingly, measure vsθ is in turn
a special case of the agreement measure vsη introduced in Sect. 3 in terms of basic
distance between probability vectors. Indeed, one can prove that:

Observation 3 If the truth is deterministic, then, for any h, vsη(h) = vsθ (h) iff η = θ .
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It also immediately follows from observation 2 that, if η = θ = 1, then all the
definitions discussed so far single out exactly the same measure, since in that case
vsη(h) = vsθ (h) = vsm(h) = vsav(h) = vs(h).

The above results is interesting because it shows that, within the account proposed
here, deterministic truth approximation can be construed as a special case of proba-
bilistic truth approximation. Indeed, the agreement measure vsη provides a common
(logico-)probabilistic treatment of both deterministic and probabilistic theories and the
truth; when the latter is deterministic (opinionated), however, the proposed measure
boils down to measure vsθ (h) of deterministic truthlikeness, which in turns general-
izes other similar measures in the literature. In the next, final section, we discuss the
implications of the results obtained so far for the general theme of the paper.

5 Toward a unified account

In this paper, we introduced a new measure vsη of the truthlikeness of h (more pre-
cisely, a continuum of such measures), construed as its “agreement” with the truth,
as measured by the distance between the logical probability assigned by h to each
of the basic features of the world and their actual probability value as given by the
truth itself. We also showed how measure vsη integrates within the BF approach by
generalizing previous measures proposed in the literature, including Tichý-Oddie’s
average measure. In this final section, we go back to the general problem of analyzing
deterministic and probabilistic truth approximation in view of the proposed account.

5.1 A unified approach to deterministic and probabilistic truth approximation

Let us start by emphasizing a couple of interesting features of our proposal.
First, the generalizedBF approach as based onmeasure vsη allows for an interesting

outlook on the logical problem of truthlikeness in general. The reason is that vsη is
based on ameasure of inter-theoretic distance, i.e., a measure of the similarity between
arbitrary theories (cf. Definition 6). Accordingly, truthlikeness is defined as a special
case of theory-theory similarity, i.e., that of theory-truth similarity, where “the truth”
is conceived as the most complete, correct theory in the domain (in line with the
general idea schematized in Fig. 1). However, the proposed account allows in general
for the comparison, in terms of quantitative or qualitative (dis)agreements, of arbitrary
theories, not necessarily complete in this sense. This is arguably a welcome extension
of the BF account, and an important feature for a theory of truthlikeness in general.

Second, our account provides a dual foundation for deterministic truthlikeness,
one in terms of the agreement of a theory with the truth (vsη), one in terms of the
information provided by the theory about the truth (vsθ ). At first sight, these two
conceptualizations of truthlikeness are clearly different, but they turn out to be in
fact equivalent (in view of observation 3). This leaves open the possibility to employ
indifferently one or the other of our measures, choosing the one intuitively more
relevant for the application at hand. In particular, the idea of truthlikeness as partial
information discussed in Sect. 4 suggests interesting links between the analysis of
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verisimilitude and that of (Bayesian) confirmation: in a nutshell, a theory is the closer
to the truth the more it confirms each of the basic truths about the domain.

Third, and finally, the proposed account allows for a unified treatment of both
deterministic and probabilistic truth approximation, since it provides a common proba-
bilistic foundation for the truthlikeness of both deterministic and probabilistic theories.
Indeed, as mentioned while introducing measure vsη, assessing the similarity between
theory h and the truth t boils down to comparing the “logico-probability vectors” asso-
ciated to h and t . This means that both theories and the truth are formally represented
as probability distributions over the basic propositions of Ln , leaving open the pos-
sibility to interpret such probabilities in different ways without changing the relevant
definitions. In turn, such flexibility in the interpretation of our continuum of mea-
sures allows one to cover all four cases of truth approximation discussed in Sect. 2, as
follows.

As far as theory h is concerned, one can give both an objective and a subjective
interpretation of its claims on the probability of the basic truths t1, . . . , tn of Ln . The
former case has been already discussed in Sect. 3: it amounts to considering the basic
(logical probability) vector m(t1|h), . . . ,m(tn|h) associated to h with respect to each
ti . Then, the similarity between h and t is evaluated as the normalized sum of the
basic distances between the two basic vectors associated to h and t , as explained
there. However, the same machinery works even if theory h is given a subjective
interpretation in terms of a probabilistic credences or degrees of belief. In this case,
one models the theory h of a rational agent as an epistemic probability distribution ph
defined over the propositions of Ln , including its basic propositions. As a result, one
can consider the basic (epistemic probability) vector ph(t1), . . . , ph(tn) associated to
h with respect to each ti . Again, the same definitions of distance and similarity used
above are applied to evaluate the truthlikeness of h, here construed as a doxastic state
(see the next subsection for a toy example).

As for the truth t , it can also be interpreted in either deterministic or probabilistic
terms, even if, of course, it doesn’t make sense to give a subjective interpretation
of it. In the former case, the basic vector associated to t will be an “opinionated”
(logical) probability distribution, assigning only “extreme” values (i.e., 0 or 1) to the
probabilities of the basic propositions; in other words, the truth represents, so to speak,
the “certainty vector”, assigning to each of the basic propositions its plain truth-value
(i.e., 0 or 1). In the latter case, the basic vector associated to t will be a standard
probability distribution assigning also intermediate probability values to the basic
truths t1, . . . , tn ; such probabilities will represent the objective, statistical frequencies
of the corresponding basic propositions.

With such alternative interpretations of the basic vectors associated to h and t in
mind, one can see how the four possible cases of truth approximation are dealt with.
Case DD has been already discussed in Sect. 3: it amounts to representing both theory
h and the truth t in terms of their associated logical probability vectors. As for case
DP, the truth is instead represented as the “true” statistical probability distribution
over the basic propositions, representing for instance the relative frequency of the
different kinds of individuals in the domain. A deterministic theory like “All Italians
love pizza” (assigning logical probability 1 to the corresponding kind of individual)
will then be the closer to the truth the highest the actual frequency of pizza-loving
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Italians in the relevant population. Finally, for both cases PD and PP, h is interpreted
as a basic epistemic probability vector associated to a doxastic state of some rational
agent. The only difference is that such credences may be construed as approaching a
deterministic (opinionated) truth (as in PD) or a probabilistic (statistical) truth (as in
PP).

In any case, measure vsη provides a straightforward measure of the closeness of
both deterministic and probabilistic theories to the truth, interpreted in turn both in
a deterministic or probabilistic way. In this sense, the proposed account provides a
unified treatment of both deterministic and probabilistic truth approximation.

5.2 Truthlikeness and distance between probabilities

As far as the comparison between probabilistic theories is concerned (case PP above),
it is interesting to study the relation between the measure of truthlikeness proposed
here and some of themanymeasures of distance (and, implicitly, of closeness) between
probability distributions proposed by mathematicians in various contexts (we thank
an anonymous reviewer for prompting us doing this). As mentioned in Sect. 2, there is
a plethora of such measures, the Brier score (Brier 1950) and the directed divergence
(also known as “relative entropy”) proposed by Kullback and Leibler (1951) being
just two prominent examples. Let us focus on these two measures, in order to compare
them with our account.

We denote w1, . . . , wq (with q = 2n) the (mutually exclusive and jointly exhaus-
tive) constituents or possible worlds of Ln and ph , and pg two arbitrary probability
distributions defined on them (intuitively associated to probabilistic theories h and g,
respectively). Then we can define the Brier score as follows:

B(ph, pg)
d f=

∑

wi

(ph(wi ) − pg(wi ))
2

q
(13)

Note that B is a distance measure between probability distributions, i.e., the smaller
B(ph, pg) the closer ph and pg .

As for the Kullback-Leibler divergence, it is also a measure of the distance between
distributions, defined as follows (assuming the logarithm having base 2):

K L(ph, pg)
d f=

∑

wi

ph(wi ) × log
ph(wi )

pg(wi )
(14)

In words, K L is the expected logarithm distance between ph and pg , with respect to
ph .

One should note that both B and K L (as well as other measures of this kind) are
defined between “complete” probability distributions, relative to all the constituents
of Ln . On the contrary, our truthlikeness measure vsη is defined in terms of the “basic
distance” d (see Eq. 1) relative to the basic statements of Ln only. Of course, every
“complete” distribution also entails a “basic” distribution for the probabilities of basic
propositions (while the converse is not true). Thus, it is interesting to ask whether the
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Table 3 A toy example: three
probability distributions on the
four constituents of the hot-rainy
language, with the resulting
probabilities for the basic
propositions “hot” and “rainy”

Hot Rainy pt ph pg

1 1 Hot & rainy 0.4 0.2 0.2

1 0 Hot & not rainy 0.3 0.1 0.1

0 1 Not hot & rainy 0.2 0.5 0.4

0 0 Not hot & not rainy 0.1 0.2 0.3

Hot 0.7 0.3 0.3

Rainy 0.6 0.7 0.6

assessment of the distance between two probabilistic theories h and g, as provided by
simη(h, g), agrees with the one provided by measures like B or K L . As the following
example shows, no univocal answer can be given to this question.

Let us consider the simplest possible case, where L2 contains only two atomic
propositions, say “hot” and “rainy”; accordingly, there are only four constituents or
possible worlds (and only four basic propositions). We consider three different prob-
ability distributions on such constituents, as shown in Table 3, corresponding to two
different probabilistic theories h and g, and one “target” theory t construed as the
“true” distribution.

We can then compute, for each of the three measures B, K L , and vsη, the distance
of both h and g from the truth t . With the necessary calculations we obtain:

B(ph, pt ) = 0.045 > 0.04 = B(pg, pt )

and

K L(ph, pt ) = 0.502 < 0.516 = K L(pg, pt ).

As for vsη, focusing for simplicity on the special case η = 1, we have:

vs(h) = 0.75 < 0.8 = vs(g)

since h and g are equally (in)accurate on the probability of “hot”, but h is less accurate
than g on the probability of “rainy”.

Summing up, we have that h is closer to t than g according to the Kullback-
Leibler divergence, whereas g is closer to t than h according to both the Brier score
and our truthlikeness measure. This opposite assessment by different measures is not
surprising, in viewof the fact that suchmeasures are in general not ordinally equivalent.
This means that, given a target probabilistic theory t (or probability distribution pt ),
and two other theories or distributions h and g, assessments of relative closeness to t
of h and g can be reversed by employing different measures. This issue of “measure
sensitivity” has been repeatedly noted in different contexts, even if it remains often
implicit in discussions regarding specific applications. 4

4 For discussion, see for instance Cevolani (2017) for the measure sensitivity of truthlikeness assessments,
and Crupi et al. (2018) for a comprehensive survey and comparison of different measures of entropy and
information.
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A consequence of this fact is that the assessment of closeness between probabilistic
theories given by our truthlikeness measure vsη can both agree and disagree with the
assessments based on different measures like the Brier score and the Kullback-Leibler
divergence, depending on the specific measure considered. As for the Brier score,
however, the agreement is granted, at least for the basic case where η = 1, by the
following result (proved in the Appendix):

Observation 4 If η = 1, then, for any h and g, vs(h) > vs(g) iff B(ph, pt ) <

B(pg, pt ).

In other words, our basic measure vs and the Brier score B are ordinally equivalent,
in the sense that they deliver the same ordering of truthlikeness among probabilistic
theories. This result is interesting for at least two reasons. First, because it shows
how, by generalizing the basic feature account of truthlikeness as proposed in Sect. 3,
one arrives at defining a verisimilitude measure that is equivalent to a well-known
scoring rule originally meant to measure the accuracy of probabilistic predictions. In
doing so, this result highlights interesting connections between the foundations of two
important research programs which proceeded virtually in parallel. Similarly, given
the central role that the Brier score plays in recent work on arguments for probabilism
based on the notion of epistemic utility (Pettigrew 2019), our result also sheds new
light on recent work bridging the gap between this latter approach and the theory
of truthlikeness (Oddie 2017; Schoenfield 2019). Second, Observation 4, along with
the example considered above (see Table 3), shows that our proposed measure may
well disagree with other approaches based on the Kullback-Leibler divergence (or
on measures ordinally equivalent to it). Since one such approach, first proposed by
Rosenkrantz (1980) and further developed byNiiniluoto (1987), provides arguably the
most advanced account of the truthlikeness for probabilistic theories in the literature,
further work is needed to better understand and characterize the disagreement between
the two approaches. While we have to leave this exploration for the future, we suggest
below a possible way to tackle the issue.

6 Concluding remarks and future work

Before concluding, let us briefly discuss two issues that need to be addressed in order
to improve on our present account, and that we have to leave as prospects for future
research.

First, what we discussed in the present paper is mainly an abstract formal frame-
work, based on a simple propositional framework, for reasoning about the foundations
of deterministic and probabilistic truth approximation. In order to bring our approach
closer to potential applications, furtherwork is needed. As an example in this direction,
our account can be straightforwardly generalized to monadic predicate logic with both
qualitative and quantitative predicates, within which one can reconstruct a number of
scientific theories. Moreover, one should consider different concrete instances of our
framework, starting from specifying the precise interpretation for the basic propo-
sitions of Ln : e.g., as kinds of individuals, as nomic possibilities, as credences, as
frequencies, etc. Thiswould also allow for comparisonswith other existing approaches
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in the literature, some of which were already mentioned at the end of Sect. 2: in partic-
ular, with the analysis of the verisimilitude of tendency hypotheses (Festa 2012) and
with ongoing work on the accuracy of probabilistic belief states (Pettigrew 2019).

Second, further work is needed in order to fully understand the relations between
the approach to probabilistic truth approximation proposed here and themore standard
one based on measures of distance between probability distributions, like the Brier
score or theKullback-Leibler divergence.As a step forward in this direction,we proved
in Sect. 5 that our truthlikeness measure agrees with the Brier score on the ordering
of probabilistic theories according to their relative closeness to a target distribution,
while it may disagree with the Kullback-Leibler measure. In view of the plethora of
measures of this kind, however, a more systematic approach is needed to disentangle
their relations and their implications for the issue of truth approximation. In this
connection, one may build on some more or less recent work on so-called convex or
conjunctive propositions, i.e., conjunctions of basic propositions, each describing a
basic feature of the domain. As argued in that literature (cfr., e.g., Cevolani and Festa
2020; Cevolani 2020), assessments of the truthlikeness of conjunctive propositions
can provide a “core ordering” of truthlikeness that all possible verisimilitudemeasures
should respect. Similarly, one may suggest that respecting the intuitive assessment of
the truthlikeness of probabilistic theories provided by our ‘basic’ measure vs may be
an adequacy condition for distances between probability distributions, separating those
that (like the Brier score) agree on that ordering from those (like the Kullback-Leibler
divergence) that don’t.

Third, and finally, in this paper we only discussed the logical problem of truth
approximation, leaving aside the epistemic problem. This amounts to specify how
one can rationally estimate the truthlikeness of theory h, when the truth t is unknown
but some relevant evidence e is available. An answer to this problem can be given as
follows: assuming that an epistemic probability distribution is given, representing the
rational degrees of belief of an agent in the propositions of Ln , define a measure of
the expected truthlikeness as the average truthlikeness of h in each possible world,
weighted by the corresponding probability on e (cf. Niiniluoto 1987). Such a measure
is easily definable in the case DD of deterministic truth approximation; however, it
is not so clear how to apply it to the other three cases, where either a statistical or
epistemic probability distribution is involved in the very representation of h and t , as
explained above. In other words, it is not so clear what the implications are, for the
proposedmeasures of truthlikeness, of the interplay between the probabilities defining
the basic vectors associated to h and t , and those representing the rational degrees of
belief of the agent estimating their relative similarity. We leave the exploration of this
open problem for future research.
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Proofs

In the following, we prove the twomain claims from Sect. 4, i.e., observations 2 and 3,
as well as observation 4 in Sect. 5.

Proof of Observation 2 Observation 2 amounts to the claim that, for any h, if θ = 1
then vsθ (h) = vsm(h) = vsav(h) = 1

2 (vsin f (h) + 1). The first equality immediately
follows from the definition of vsθ in Eq. (10); and the third one is just a reformulation
of observation 1. It remains to be proved that vsm(h) = vsav(h), i.e., the partial
informationmeasure defined in Eq. (9) is equivalent to Tichý-Oddie’s averagemeasure
of truthlikeness. In fact, this follows immediately from the proof of observation 1 as
given byCevolani andFesta (2020)[see eq. 2 on p. 1644],wherewe show that (adapting
the notation to the one of the present paper):

vsav(h) =
n∑

1

m(ti |h)

n

By comparing the above equation with Eq. 9 in the present paper, one immediately
see that vsm(h) is identical, by definition, to vsav(h). �	
Proof of Observation 3 As for Observation 3, it says that, if the truth is deterministic,
then, for any h, vsη(h) = vsθ (h) iff η = θ , i.e., that, in such case, the agreement
measure defined in (7) is essentially the same as the generalized partial information
measure of truthlikeness defined in (10). To see why, let’s first note that, if the truth is
deterministic, thenm(ti |t) = 1 for any true literal ti . In then follows from definition (1)
that, since 0 ≤ m(ti |h) ≤ 1:

d(hi , ti ) = |m(ti |h) − m(ti |t)| = 1 − m(ti |h)

and hence that:

s(hi , ti ) = 1 − d(hi , ti ) = m(ti |h).

It also follows, by definition, that the basic distance between h and a true literal
reduces to:

sη(hi , ti ) =
{
m(ti |h) if h and g agree on bi
η × m(ti |h) if h and g disagree on bi
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The above equality should be compared with the following one, which is immediately
obtained by the definition of in f θ :

in f θ (h, ti ) =

⎧
⎪⎪⎨

⎪⎪⎩

m(ti |h) if h supports ti , i.e.,
if m(ti |h) > m(ti )

θ × m(ti |h) if h undermines or is neutral to ti , i.e.,
if m(ti |h) ≤ m(ti )

By recalling the definition of agreement and disagreement from Table 2, one can see
that, in the case of a deterministic truth, the notions of agreement and support, on the
one hand, and of disagreement and undermining/neutrality, on the other hand, collapse
on each other. In fact, since m(ti |t) = 1 > m(ti ):

– if m(ti |h) > m(ti ), then h supports ti and h agrees with t on ti ; moreover,
sη(hi , ti ) = in f θ (h, ti ) = m(ti |h);

– if m(ti |h) ≤ m(ti ), then h undermines or is neutral to ti and h disagrees with t on
ti ; moreover, sη(hi , ti ) = ηm(ti |h) and in f θ (h, ti ) = θm(ti |h).

Thus, sη(hi , ti ) = in f θ (h, ti ) iff η = θ . Now, it follows from definitions (7) and (10)
that:

vsη(h) =
k∑

1

m(ti |h)

n
+

n∑

k+1

ηm(ti |h)

n

and

vsθ (h) =
k∑

1

m(ti |h)

n
+

n∑

k+1

θm(ti |h)

n

where k is the number of true literals that h supports or, equivalently, agrees upon with
t ; in other words, the two measure differ only on the weights they give to the other
n − k addends. It follows that vsη(h) = vsθ (h) iff η = θ . �	

Proof of Observation 4 Observation 4 says that our basic truthlikenessmeasure defined
in Eq. 4 and the Brier score defined in Eq. 13 are ordinally equivalent, meaning that for
any two probabilistic theories h and g, with associated probability distributions ph and
pg on the constituents of Ln , one has that vs(h) > vs(g) iff B(ph, pt ) < B(pg, pt ).

This can be easily seen by noting that both vs and B are defined in terms of the
(absolute value of) the plain difference between probabilities (cfr. Eqs. 1 and 13). Now
consider two probability distributions ph and pg on the constituents wi of Ln and let
be

d(ph(w), pg(w))
d f= |ph(w) − pg(w)|
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their distance as calculated on a single arbitrary constituent w. The Brier score then
defines the distance between ph and pg as follows:

B(ph, pg) =
∑

wi

d(ph(wi ), pg(wi ))
2

2n
,

where 2n is the total number of constituents. Instead, sim (on which vs is based,
see Eqs. 4 and 3) is defined in terms of a distance measure � as follows:

sim(h, g) = 1 − �(h, g),

with

�(h, g)
d f=

∑

bi

d(ph(bi ), pg(bi ))

n

where the bi are the basic propositions of Ln and n is their total number. Now, for any
probability distribution ph :

ph(bi ) =
∑

w j�bi

ph(w j );

i.e., the probability of a basic proposition is just the sum of the probabilities of the
constituents entailing it. It follows that:

d(ph(bi ), pg(bi )) = d
(∑

w j�bi ph(w j ),
∑

w j�bi pg(w j )
)

=
∣∣∣
∑

w j�bi ph(w j ) − ∑
w j�bi pg(w j )

∣∣∣
= ∑

w j�bi |ph(w j ) − pg(w j )|
= ∑

w j�bi d(ph(w j ), pg(w j ))

and thus:

�(h, g) =
∑

bi

∑

w j�bi

d(ph(w j ), pg(w j ))

n
.

It is now clear that B and � are both increasing functions of the same quantity
d(ph(w j ), pg(w j )), and hence vary together. As a consequence, B and vs agree
on the ordering of arbitrary probabilistic theories h and g. �	
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