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CONSENSUS CLUSTERING VIA PIVOTAL METHODS

Leonardo Egidi1, Roberta Pappadà1, Francesco Pauli1 and Nicola Torelli1

1 Dipartimento di Scienze Economiche, Aziendali, Matematiche e Statistiche ‘Bruno de 
Finetti’, Università degli Studi di Trieste, (e-mail: legidi@units.it, 
rpappada@units.it, francesco.pauli@deams.units.it,
nicola.torelli@deams.units.it)

ABSTRACT: We propose an approach to the cluster ensemble problem based on piv-
otal units extracted from a co-association matrix. It can be seen as a modified ver-
sion of K-means method, which utilizes pivots for careful seeding. Different criteria
for identifying the pivots are discussed, as well as preliminary results concerning the
comparison with alternative ensemble methods.

KEYWORDS: cluster ensemble, pivot, K-means.

1 Introduction

Ensembles methods have recently emerged as a valid alternative to conven-
tional clustering techniques and have shown to effectively improve the quality
of clustering results and achieve robustness (see, e.g., Strehl & Ghosh, 2002,
Jain, 2010). Such methods require a strategy to generate multiple clusterings
of the same data set (the ensemble) and then combine them into a consensus
partition (presumably superior), by following the idea of evidence accumu-
lation, i.e., by viewing each clustering result as an independent evidence of
data structure. A common way to do this is to obtain a new pairwise simi-
larity matrix, or co-association matrix, by taking the co-occurrences of pairs
of points in the same group across all partitions (Fred & Jain, 2005). Then, a
similarity-based clustering algorithm can be applied to this matrix to yield the
final partition.

We propose to use the co-association matrix to find some specific units
(hereafter, pivots) which are representative of the group they belong to (be-
cause they never or very rarely co-occur with members of other groups). Vari-
ous criteria for detecting the pivots are proposed in Section 2. Section 3 illus-
trates the use of pivotal methods for data clustering, and compare the proposed
approach with classical K-means and other common ensemble methods.

Pivotal methods and related clustering procedures are implemented via the
R package pivmet, available from the Comprehensive R Archive Network at
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http://CRAN.R-project.org/package=pivmet.

2 Pivotal methods based on co-association

Let Y = (y1, . . . ,yn) be a set of n observations, where yi ∈ Rd . Consider a set
P = {P1,P2, . . . ,PH} of H partitions of the data points into K disjoint clusters,
derived from an arbitrary clustering algorithm. Note that the number of groups
is pre-specified and equal for all Ph. P can be summarized via the n× n co-
association matrix C with generic element

ci, j =
1
H

H

∑
h=1
|Ph(yi) = Ph(y j)|, (1)

where | · | denotes the indicator function, and Ph(yi), Ph(y j), represent the clus-
ters of the objects yi and y j in Ph, respectively. Clearly, units which are very
dissimilar from each other are likely to have zero co-occurrences; as a conse-
quence, C is expected to contain a non-negligible number of zeros. Given a
large and sparse 0-1 matrix, the Maxima Units Search (MUS) algorithm seeks
those elements, among a pre-specified number of candidate pivots, whose cor-
responding rows contain more zeros compared to all other units (Egidi et al.,
2018c). Define a reference partition, G1, . . . ,GK of y1, . . . ,yn obtained by ap-
plying, for instance, an agglomerative hierarchical algorithm into K groups.
The MUS procedure takes C as input and outputs a set of K units–one for each
group of the reference partition–that exhibit the highest degree of separation
(Egidi et al., 2018b). As an alternative approach, the pivot yik for group Gk
can be chosen so that it is as far as possible from units that might belong to
other groups and/or as close as possible to units that belong to the same group,
according to one of the following objective functions

(a) max
ik

∑
j∈Gk

cik, j (b) min
ik

∑
j 6∈Gk

cik, j (c) max
ik

∑
j∈Gk

cik, j− ∑
j 6∈Gk

cik, j, (2)

where ci, j is defined as in (1). Ideally, the K×K submatrix of C with only the
rows and columns corresponding to i1, . . . , iK will be the identity matrix. In
practice, it may contain few nonzero elements off the diagonal.

3 A simulation experiment

In order to illustrate the proposed algorithm, we simulate bivariate data from
a mixture of three Gaussian distributions with mean vectors µµµ1 = (1,5), µµµ2 =
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Figure 1. Mixture of three Gaussian distributions (sample size n=620). Cluster cen-
ters and/or pivots for each method are marked via asterisks and triangles, respectively.

(4,0), µµµ3 = (6,6), and the 2× 2 identity matrix as covariance matrix. The
components have sample size 20, 100 and 500, respectively (see Figure 1, top-
left panel). The K-means algorithm with random seeds is used to generate a
cluster ensemble of H = 1000 partitions, and obtain the co-association matrix
C. For each simulated dataset, we proceed as follows:

1. For a given number of clusters K, obtain a partition of the data G1, . . . ,GK
(reference partition);

2. Apply the MUS algorithm or one alternative criterion in (2) to the matrix
C to find K (distinct) pivots yi1 , . . . ,yiK ;

3. Run the K-means algorithm using the pivots as initial cluster centers.

The proposed modification of the standard K-means technique introduces a
pivot-based initialization step with the aim of reducing the effect of random
seeding (see also Egidi et al., 2018a). An alternative approach to careful seed-
ing can be found in Arthur & Vassilvitskii, 2007. Figure 1 shows the solu-
tion from K-means, using K = 3, and by pivotal methods MUS and criterion
(b) in Eq. (2), where Average-Linkage (AL) agglomerative clustering is used
to obtain the reference partition. The results of consensus clustering using
PAM (Partitioning Around Medoids) method and AL-agglomerative hierar-
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chical clustering (agnes) are also shown (Single Linkage (SL) and Complete
Linkage (CL) give similar results). Table 1 reports the comparison between
the different methods in terms of Adjusted Rand Index (ARI), used to quantify
the agreement between two partitions. The mean value is considered for 1000
simulations. Preliminary results suggest that the pivot-based approach out-
performs the competing similarity-based ensemble methods and the standard
K-means, which gives a mean ARI of 0.659.

Table 1. 2D Gaussian data: mean ARI (1000 simulations) between the final clustering
and the true data partition. Ensemble methods use dissimilarities 1− ci, j.

Pivotal MUS (a) (b) (c)
methods 0.857 0.865 0.883 0.779
Ensemble agnes (AL) agnes (SL) agnes (CL) PAM
methods 0.512 0.535 0.514 0.506
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EGIDI, L., PAPPADÀ, R., PAULI, F., & TORELLI, N. 2018b. Maxima Units
Search (MUS) algorithm: methodology and applications. Pages 71–81
of: Studies in Theoretical and Applied Statistics.
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