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Abstract

Coherent lower probabilities are one of the most general tools within Imprecise Probability Theory, and can be used to model 
the available information about an unknown or partially known precise probability. In spite of their generality, coherent lower 
probabilities are sometimes difficult to deal with. For this reason, in previous papers we studied the problem of outer approximating 
a given coherent lower probability by a more tractable model, such as a 2- or completely monotone lower probability. Unfortunately, 
such an outer approximation is not unique in general, even if we restrict our attention to those that are undominated by other models 
from the same family. In this paper, we investigate whether a number of approaches may help in selecting a unique undominated 
outer approximation. These are based on minimising a distance with respect to the initial model, maximising the specificity, 
or preserving the same preferences as the original model. We apply them to 2- and completely monotone approximating lower 
probabilities, and also to the particular cases of possibility measures and p-boxes.
© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

Probability measures are the standard mathematical tools used to model uncertainty in an experiment. However, 
due to a number of factors such as lack of information, unreliable sources or conflicting or noisy data, there are 
situations where it is arguably unreasonable to model uncertainty by means of a (precise) probability measure. In such 
cases, we can turn towards the Theory of Imprecise Probabilities [48], that encompasses different models that may be 
used as an alternative to probability theory in situations of imprecise or ambiguous information. Among them, we can 
find credal sets [22], coherent lower previsions [48], belief functions [40], possibility measures [50] or p-boxes [18].

One of the most general models within this theory is that of coherent lower and upper previsions [48], or their re-
striction to events: coherent lower and upper probabilities. These have been applied in different fields such as decision 
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making [12,21,32,43], finance [38], queueing theory [24], probabilistic graphical models [2,7,36], reliability [46] or 
game theory [27], among many others. However, their generality and flexibility to capture the available information 

in the experiment are counterbalanced by the difficulties that arise at times when using them in practice. For example, 
there is no simple procedure for computing the extreme points of the associated credal set and there is no unique 
coherent extension to gambles. On the other hand, these two issues are solved when the coherent lower probability 
satisfies the additional property of 2-monotonicity [9,41], or that of complete monotonicity.

This led us [33,34] to investigate the problem of replacing a coherent lower probability by a 2 or completely mono-
tone one satisfying two reasonable properties: (i) it should not add information to the model; and (ii) it should be as 
close as possible to the initial coherent lower probability. This gave rise to the notion of undominated outer approxima-
tion, formerly introduced in [6]. In particular, in [33] we studied the properties of 2-monotone outer approximations 
as well as some approaches to compute them. Also, we considered the outer approximations in terms of particular 
2-monotone models such as probability intervals [10] or the distortion models [30,31] induced by the pari mutuel 
[29,39] and linear-vacuous [48] models. In [34], we complemented the study considering completely monotone outer 
approximations and the particular cases of necessity measures [50] and p-boxes [18].

These outer approximation results can also be viewed as rules and properties for transformations of coherent im-
precise probabilities into a less general formalism. As such, they are relevant to the operational problem of automated 
exchange of information among agents adopting different uncertainty representations, when information in terms of 
coherent imprecise probabilities has to be transformed into a more particular formalism [5].

One of the issues we encountered in [33,34] is that, in general, there is no unique undominated outer approximation 
in terms of 2- or completely monotone lower probabilities; in fact their number could be infinite, and in addition their 
computation may be quite involved. The problem becomes somewhat simpler for necessity measures and p-boxes, 
where there are a finite number of undominated outer approximations and we have a procedure for determining them 
all, and it becomes trivial for probability intervals and distortion models, where the undominated outer approximation 
is unique and can be easily computed.

Since in general there is no unique undominated outer approximation in terms of 2- or completely monotone lower 
probabilities or even in terms of necessity measures and p-boxes, in this paper we explore a number of possibilities 
that may help single out a unique undominated outer approximation, that may be considered as optimal according to 
some criterion. Our approaches can be classified into two groups: those where we compare the outer approximation 
with the initial model, in terms of the distance between them [5,23] or the preference relation they encompass; and 
those where we analyse some imprecision index of the new model, such as specificity [49]. Both approaches can be 
solved using common tools of operations research, such as linear or quadratic programming, and tools from graph 
theory.

The paper is organised as follows: after introducing some preliminary notions in Section 2, formalising the idea 
of outer approximation and summarising the main properties from [33,34], in Sections 3, 4 and 5 we introduce and 
compare a number of different procedures to select an undominated outer approximation in terms of 2- and completely 
monotone lower probabilities, p-boxes and necessity measures, respectively. We conclude the paper in Section 6
summarising the main contributions of the paper and pointing out some future lines of research. In order to streamline 
the reading, a technical discussion has been relegated to an Appendix.

2. Preliminaries

Let us introduce the main concepts that we shall use in this paper. Throughout, we consider a finite possibility 
space X = {x1, . . . , xn}, and denote by P (X ) the set of all the probability measures defined on the power set P(X ).

2.1. Imprecise probability models

Imprecise probability models can be given a variety of interpretations, such as the behavioural [26,48] or the 
epistemic [20]. Under the latter, it is assumed that the uncertainty in a given experiment can be modelled by means 
of a probability measure P0, but due to a number of reasons (conflicting or missing data, lack of resources, imprecise 
measurements, etc.) it is only possible to determine a set M of probability measures that is sure to include P0.
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2.1.1. Coherent lower probabilities
In those cases, we may also model the available information by means of a lower probability, which is a function 
P : P(X ) → [0, 1] that is monotone (A ⊆ B ⇒ P(A) ≤ P(B)) and satisfies the normalisation properties P(∅) =
0, P(X ) = 1. For every event A ⊆ X , P(A) is understood as a lower bound for the true (but unknown) value of 
P0(A). Using this interpretation, any lower probability determines the set of probability measures that are compatible 
with it:

M(P ) = {P ∈ P (X ) | P(A) ≥ P(A) ∀A ⊆ X }.
We refer to this as the credal set associated with P . It is then said that P avoids sure loss when M(P ) is non-empty, 
and that it is coherent when it can be computed as:

P (A) = min
P∈M(P )

P (A) ∀A ⊆ X ,

meaning that the bounds determined by P are tight. From now on, all the lower probabilities we shall consider in this 
paper will be coherent.

It is sometimes of interest to consider the conjugate function of a lower probability, defined as P(A) = 1 − P(Ac)

for every A ⊆ X , and usually referred to as upper probability. The value P(A) may be interpreted as an upper bound 
for the unknown value P0(A), and for a given probability measure P ∈ P (X ) it follows that

P(A) ≥ P(A) ∀A ⊆ X ⇐⇒ P(A) ≤ P(A) ∀A ⊆ X .

This means that the probabilistic information of the lower probability and that of its conjugate upper probability are 
equivalent, and so it suffices to work with one of them. It also means that, for any coherent lower probability P , its 
conjugate upper probability P satisfies

P(A) = max
P≤P

P (A) ∀A ⊆ X .

2.1.2. k-monotone lower probabilities
A coherent lower probability P is said to be k-monotone when it satisfies

P
( ∪p

i=1 Ai

) ≥
p∑

i=1

P(Ai) −
∑
i =j

P (Ai ∩ Aj) + · · · + (−1)pP
( ∩p

i=1 Ai

) =
∑

∅=I⊆{1,...,p}
(−1)|I |+1P

( ∩i∈I Ai

)

for every 1 ≤ p ≤ k and every A1, . . . , Ap ⊆ X . In a similar manner, a coherent upper probability P is k-alternating
if for every 1 ≤ p ≤ k and A1, . . . , Ap ⊆ X :

P
( ∩p

i=1 Ai

) ≤
p∑

i=1

P(Ai) −
∑
i =j

P (Ai ∪ Aj) + · · · + (−1)pP
( ∪p

i=1 Ai

) =
∑

∅=I⊆{1,...,p}
(−1)|I |+1P

( ∪i∈I Ai

)
,

meaning that a coherent lower probability P is k-monotone if and only if its conjugate P is k-alternating.
There are two particular cases of k-monotonicity of special interest. The first is 2-monotonicity, which corresponds 

to those coherent lower probabilities satisfying the inequality P(A ∪ B) + P(A ∩ B) ≥ P(A) + P(B) for every 
A, B ⊆ X ; and the second is complete monotonicity, that refers to those coherent lower probabilities that are k-
monotone for every k. Note also that any k-monotone lower probability is also k′-monotone for every k′ ≤ k.

Any lower probability can be represented in terms of a function called Möbius inverse of P , which is denoted by 
mP :P(X ) → R, and defined by:

mP (A) =
∑
B⊆A

(−1)|A\B|P(B), ∀A ⊆ X . (1)

Reciprocally, given mP , we can retrieve the initial lower probability using the following expression:

P (A) =
∑
B⊆A

mP (B).

Moreover, mP is the Möbius inverse associated with a:
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• 2-monotone lower probability P if and only if [8] mP satisfies:∑
m (A) = 1, m (∅) = 0. (2monot.1)
A⊆X
P P

∑
{xi ,xj }⊆B⊆A

mP (B) ≥ 0, ∀A ⊆ X , ∀xi, xj ∈ A, xi = xj . (2monot.2)

mP ({xi}) ≥ 0, ∀xi ∈X . (2monot.3)

• Completely monotone lower probability P if and only if [40] mP satisfies:∑
A⊆X

mP (A) = 1, mP (∅) = 0. (Cmonot.1)

mP (A) ≥ 0 ∀A ⊆ X . (Cmonot.2)

Note that conditions (2monot.1) and (Cmonot.1) correspond to the assessments P(X ) = 1, P(∅) = 0, that are satisfied 
by any lower probability by definition.

Completely monotone lower probabilities are also connected with Dempster-Shafer Theory of Evidence [40], 
where they receive the name belief functions. In that case, the Möbius inverse is usually called basic probability 
assignment, and the events with strictly positive mass are called focal events.

2.1.3. P -boxes and possibility measures
P -boxes and necessity measures are two particular cases of completely monotone lower probabilities.
For any random variable X with values in X ⊂ R, its lower and upper distribution functions F, F : R → [0, 1] are 

defined by F(x) = P({X ≤ x}) and F(x) = P({X ≤ x}). When X is finite, F, F are piece-wise constant, and may 
only be discontinuous at the points x1, . . . , xn of X . If we assume that x1 < . . . < xn, then we can shorten the notation 
and let F, F be defined in X , so that F(xi) = P({X ≤ xi}), F(xi) = P({X ≤ xi}). Then (F , F) constitutes a p-box
in the sense of [18]. It holds moreover that F(xn) = F(xn) = 1, F(xi) ≤ F(xi+1) and F(xi) ≤ F(xi+1) for every 
i = 1, . . . , n − 1. Similarly to our comments about the epistemic interpretation of a lower probability, a p-box may be 
used to model the imprecise information about a cumulative distribution function FP0 . A p-box defines a credal set 
by:

M(F ,F ) = {P ∈ P (X ) | F(x) ≤ FP (x) ≤ F(x) ∀x ∈X }. (2)

Associated with this credal set, we can define a lower (and upper) probability as its lower (and upper) envelope:

P (F,F )(A) = inf
P∈M(F ,F )

P (A) = inf{P(A) | F(x) ≤ FP (x) ≤ F(x) ∀x ∈X }. (3)

This lower probability is not only coherent, but also completely monotone [44, Sec. 5.1]. The procedure for computing 
its focal events was determined in [13, Sec. 3.3].

Conversely, given the lower probability P(F,F ), we can retrieve the p-box because:

F(xi) = P (F,F )({x1, . . . , xi}), F (xi) = 1 − P (F,F )({xi+1, . . . , xn}) ∀i = 1, . . . , n − 1.

This means that the probabilistic information gathered by (F , F) and P (F,F ) is the same. Hence we will use the term 

p-box interchangeably to speak about a p-box (F , F) or its associated lower probability P (F,F ).
When the possibility space X is not endowed with a total order, we can consider the notion of generalised p-box. 

A generalised p-box (F , F) is a pair of comonotone1 mappings such that there exists x ∈ X with F(x) = F(x) = 1
and F ≤ F .

From [13], a generalised p-box (F , F) defines an order ≤(F ,F ) and a permutation σ of {1, . . . , n} such that:

F(xσ(1)) ≤(F ,F ) . . . ≤(F ,F ) F (xσ(n)) = 1, F (xσ(1)) ≤(F ,F ) . . . ≤(F ,F ) F (xσ(n)) = 1.

1 Two functions f, g are comonotone if for every x, x′ ∈ X , f (x) < f (x′) implies g(x) ≤ g(x′).
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Clearly, any generalised p-box defines a credal set using Equation (2) and a coherent lower probability using Equa-
tion (3). In those cases, we only need to consider the total order ≤(F,F ) in the possibility space induced by the 

generalised p-box.

On the other hand, a possibility measure [16,50], usually denoted by �, is a supremum-preserving function:

�(∪i∈IAi) = sup
i∈I

�(Ai), ∀Ai ⊆ X , i ∈ I.

In our finite framework, the above condition can be equivalently expressed as

�(A ∪ B) = max{�(A),�(B)} ∀A,B ⊆ X , (4)

or also as �(A) = maxx∈A �({x}) for every A ⊆ X . It is thus clear that the values of � can be determined using the 
values in the singletons; the restriction of � to these, usually denoted by π : X → [0, 1] and defined by π(x) = �({x})
for every x ∈ X , is referred to as the possibility distribution of �.

Every possibility measure is a coherent upper probability, and its conjugate lower probability, usually denoted by 
N , is called necessity measure. A necessity measure is a completely monotone lower probability whose focal events 
are nested. Moreover, any necessity measure can be obtained as the lower probability of a generalised p-box [45].

2.2. Outer approximations of coherent lower probabilities

Even if coherent lower probabilities are more general than 2-monotone lower probabilities, the latter have some 
practical advantages. Among them, we recall for instance the simplicity of the computation of the extreme points of 
the associated credal set [41], the fact that they can be extended to gambles using the Choquet integral [9] and that 
their Shapley value belongs to the credal set and can be obtained easily using the extreme points of M(P) [27,41,42]. 
Motivated by this, in [33] we proposed to replace a given coherent lower probability by a 2-monotone one satisfying 
two properties: (i) that it does not add information to the model; and (ii) that it is as close as possible to the initial 
coherent lower probability. The first of these conditions gives rise to the notion of outer approximation, and the second 
leads to the notion of undominated outer approximation. These two concepts were first formalised by Bronevich and 
Augustin:

Definition 1. [6] Given a coherent lower probability P and a family C of coherent lower probabilities, Q ∈ C is an 
outer approximation of P if Q(A) ≤ P (A) for every A ⊆ X . Moreover, Q is undominated in C if there is no Q′ ∈ C
such that Q� Q′ ≤ P .

In terms of credal sets, Q ∈ C is an outer approximation if M(P ) ⊆ M(Q), and it is undominated in C if there is 
no Q′ ∈ C such that M(P ) ⊆ M(Q′) �M(Q).

Similarly, if we consider a coherent upper probability P and a set C of coherent upper probabilities, we say that 
Q ∈ C is an outer approximation of P if Q(A) ≥ P(A) for every A ⊆X . Moreover, Q is non-dominating in C if there 
is no Q

′ ∈ C such that Q� Q
′ ≥ P . It follows that Q is an outer approximation of P if and only if its conjugate Q is 

an outer approximation of the coherent lower probability P that is conjugate of P , and also Q is non-dominating if 
and only if its conjugate Q is undominated.

Throughout the paper, and for the sake of simplicity, we denote by C2, C∞, C� and C(F ,F ) the families of 2-

monotone lower probabilities, completely monotone lower probabilities, possibility measures2 and generalised p-
boxes.

In our previous papers [33,34], we investigated several properties of the undominated (non-dominating for C�) 
outer approximations in these families. In particular, we showed that it is not immediate to determine the set of all the 
undominated outer approximations in C2 and C∞, and that these sets are infinite in general. The problem is somewhat 
simpler when the outer approximations are assumed to belong to either C� or C(F ,F ). However, even in these cases 
there is no unique non-dominating outer approximation (in C�) or undominated (in C(F ,F )), and the problem of 

2 Since possibility measures are particular cases of coherent upper probabilities, we shall say that � is an outer approximation of a coherent 
upper probability P when its conjugate necessity measure N is an outer approximation of the conjugate lower probability P .
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choosing among them arises. In this paper, we discuss different procedures to select an outer approximation. We 
first consider in Section 3 the problem of selecting an undominated outer approximation in C2 and C∞, and later in 

Sections 4 and 5 we study the same problem in the classes C(F,F ) and C�, respectively.

3. Selection of an outer approximation in C2 and C∞

In this section, we investigate several approaches to select an undominated outer approximation in C2 and C∞. As 
we showed in [33, Ex. 1] and [34, Ex. 1], the number of undominated outer approximations in C2 and C∞ is not finite 
in general. In [33,34] we focused on those undominated outer approximations in C2 and C∞ that minimise the distance 
proposed in [5] with respect to the original coherent lower probability P , given by:

dBV (P ,Q) =
∑
A⊆X

|P(A) − Q(A)|. (5)

This distance measures the amount of imprecision added to the model when replacing the initial P by the outer 
approximation Q. Hence, it seems reasonable to select those outer approximations that minimise the imprecision 
added to the model. To see that this allows to remove some undominated outer approximations in C2 and C∞, we refer 
to [33, Ex. 3] and [34, Ex. 2].

The distance given in Equation (5) can also be regarded as a measure of the imprecision inherent to an outer ap-
proximation. Indeed, if we consider a coherent lower probability P and an outer approximation Q ≤ P with conjugate 
Q, minimising the imprecision of (Q, Q)

∑
A⊆X

(
Q(A) − Q(A)

)
(6)

is equivalent to minimising
∑
A⊆X

(
Q(A) − P(A) + P(A) − Q(A)

) =
∑
A⊆X

(Q(A) − P(A)) +
∑
A⊆X

(P (A) − Q(A))

=
∑
A⊆X

(P (A) − Q(A)) +
∑
A⊆X

(P (A) − Q(A)) = 2dBV (P ,Q), (7)

applying conjugacy and taking into account that 
∑

A⊆X (−P(A) + P(A)) acts as a constant. Hence, if we consider a 
set of outer approximations, the closest one to the original model in the sense of Equation (5) will also be the one that 
minimises the imprecision of the approximation, when the latter is measured by means of Equation (6).

Let CBV
2 (P ) and CBV∞ (P ) denote the set of undominated outer approximations of P in C2 and C∞, respectively, 

that minimise the BV-distance with respect to P . One extra advantage of restricting our selection to the sets CBV
2 (P )

and CBV∞ (P ) is that they can be more easily determined than the general set of undominated outer approximations. To 
see this, note that dBV can be equivalently expressed by:

dBV (P ,Q) =
∑
A⊆X

⎛
⎝P(A) −

∑
B⊆A

mQ(B)

⎞
⎠ ,

where mQ denotes the Möbius inverse associated with Q by means of Equation (1).
Using this alternative expression, we can set up the linear programming problem of minimising dBV (P , Q) subject 

to (2monot.1)–(2monot.3), and also to:
∑
B⊆A

mQ(B) ≤ P(A) ∀A = ∅,X . (OA)

As we have already argued in Section 2.1.2, from [8] we know that conditions (2monot.1)–(2monot.3) characterise 
the 2-monotonicity of Q, while condition (OA) assures that Q is an outer approximation of P . It directly follows (see 
[33, Prop. 1]) that the set of optimal solutions of this linear programming problem coincides with CBV

2 (P ).

6
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In a similar manner, the set CBV∞ (P ) can also be obtained solving a linear programming problem that minimises 
dBV (P , Q) subject to (Cmonot.1)–(Cmonot.2) and also to (OA). Again, the set of optimal solutions of this minimisa-

tion problem coincides with the set CBV∞ (P ) [34, Prop. 3].

From the fact that the sets CBV
2 (P ) and CBV∞ (P ) can be obtained solving a linear programming problem we deduce 

that: (i) both sets are non-empty and convex; (ii) the optimal solutions are infinitely many in general. In the rest of the 
section we discuss different approaches to select an undominated outer approximation within CBV

2 (P ) and CBV∞ (P ).

3.1. Approach based on the quadratic distance

One possibility for obtaining a unique solution to our problem could be to use the quadratic distance. As we 
discussed in [33], this leads to consider the outer approximation minimising

dq(P ,Q) =
∑
A⊆X

(
P (A) − Q(A)

)2
. (8)

If we set up the quadratic program based on minimising the quadratic distance in Equation (8) subject to conditions 
(2monot.1)–(2monot.3) and (OA), it returns a unique undominated outer approximation in C2 (see [33, Sec. 5.1]). 
However, in spite of this advantage, the interpretation of this distance is in our opinion less intuitive than that of the 
BV-distance in Equation (5).

Our proposal is then to put together both approaches: within the sets CBV
2 (P ) or CBV∞ (P ) we choose the outer 

approximation that minimises the quadratic distance. This can be formalised as follows. Consider the following nota-
tion:

δBV
2 = min

Q∈C2,Q≤P
dBV (P ,Q), δBV∞ = min

Q∈C∞,Q≤P
dBV (P ,Q).

Then, we set up the quadratic problem of minimising the quadratic distance in Equation (8) subject to (2monot.1)–
(2monot.3), (OA) and:

∑
A⊆X

⎛
⎝P (A) −

∑
B⊆A

mQ(B)

⎞
⎠ = δBV

2 . (2monot-δ)

Analogously, we can minimise the quadratic distance in Equation (8) subject to (Cmonot.1)–(Cmonot.2), (OA) and:

∑
A⊆X

⎛
⎝P (A) −

∑
B⊆A

mQ(B)

⎞
⎠ = δBV∞ . (Cmonot-δ)

Proposition 1. Let P be a coherent lower probability, and consider the quadratic program of minimising Equation (8). 
The following properties hold:

(1) The minimisation problem subject to (2monot.1)–(2monot.3), (OA) and (2monot-δ) has a unique solution, which 
is an undominated outer approximation of P in C2.

(2) The minimisation problem subject to (Cmonot.1)–(Cmonot.2), (OA) and (Cmonot-δ) has a unique solution, which 
is an undominated outer approximation of P in C∞.

Proof. Let us consider the first case. Conditions (2monot.1)–(2monot.3) assure that Q is a 2-monotone lower proba-
bility, while condition (OA) assures that Q is an outer approximation of P in C2. Finally, condition (2monot-δ) assures 
that Q minimises the BV-distance dBV (P , Q). Hence, the feasible region of the minimisation problem coincides with 
CBV

2 (P ). From [33, Prop. 1], this set is non-empty and convex. Since the associated matrix is semidefinite and positive 
[33, Sec. 5.1], there is an optimal solution to the quadratic problem, which is unique.

The same reasoning, using [34, Prop. 3] instead of [33, Prop. 1], proves the second item. �
The following example illustrates this result.

7



E. Miranda, I. Montes and P. Vicig Fuzzy Sets and Systems 424 (2021) 1–36

Example 1. Consider the coherent lower probability given on X = {x1, x2, x3, x4} [33, Ex. 1] by:⎧⎪0 if |A| = 1 or A = {x1, x2}, {x3, x4}.

P (A) =

⎨
⎪⎩1 if A = X .

0.5 otherwise.

For this coherent lower probability, δBV
2 = δBV∞ = 1, and the outer approximations in CBV

2 (P ) and CBV∞ (P ) coincide 
and are given by:

CBV
2 (P ) = CBV∞ (P ) =

{
Q

α
: α ∈ [0,0.5]

}
,

where:

Q
α
(A) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if |A| = 1 or A = {x1, x2}, {x3, x4}.
α if A = {x1, x4}, {x2, x3}.
0.5 − α if A = {x1, x3}, {x2, x4}.
0.5 if |A| = 3.

1 if A = X .

For a given Q
α

, its Möbius inverse is:

mQ
α
({x1, x4}) = mQ

α
({x2, x3}) = α, mQ

α
({x1, x3}) = mQ

α
({x2, x4}) = 0.5 − α,

and zero elsewhere. Therefore, if among these Q
α

we minimise the quadratic distance with respect to P , we obtain 
that the optimal solution is Q

0.25
, both in C2 and C∞. �

The use of the quadratic distance has the advantage that usually algorithms solving a linear programming problem 
only return one of the possible solutions, so it may not be immediate to determine if this solution is unique or not. 
By considering its distance with the original model and solving the associated quadratic problem, we end up with a 
unique outer approximation, and if it differs from the previous one, we are able to tell that the linear programming 
problem has an infinite number of solutions.

It is also interesting to stress that the solution we are obtaining here is not the outer approximation that minimises 
the quadratic distance, but the one that minimises this distance between the solutions to the linear programming 
problem; for a counterexample, we refer to [33, Ex. 3].

From our point of view, this is the preferable approach to select an undominated outer approximation in C2 and 
C∞. In the rest of the section we explore other approaches to the problem.

3.2. Approach based on the total variation distance

Instead of selecting the outer approximation that minimises the quadratic distance, we may consider any other 
distance between lower probabilities. One interesting possibility is to use extensions of the total variation distance
[23, Ch. 4.1]: given two probability measures P1, P2 ∈ P (X ), their total variation distance is given by

dT V (P1,P2) = max
A⊆X

|P1(A) − P2(A)| = 1

2

∑
x∈X

|P1({x}) − P2({x})|.

This distance may be extended in several non-equivalent ways to imprecise probabilities. Here we consider the exten-
sions proposed in [33]:

d1(P 1,P 2) = max
A⊆X

|P 1(A) − P 2(A)|, (9)

d2(P 1,P 2) = 1

2

∑
x∈X

∣∣P 1({x}) − P 2({x})∣∣ , (10)

d3(P 1,P 2) = sup
P1≥P 1,P2≥P 2

(
max
A⊆X

|P1(A) − P2(A)|
)

. (11)

8
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The second one is somewhat related to the distance of Baroni and Vicig given by Equation (5), but aggregating only 
the imprecision added on the singletons. On the other hand, the last one is the most compatible with the epistemic 

interpretation of lower probabilities mentioned at the beginning of the paper, as it considers the maximum distance 
between the probability measures that are compatible with P 1 and P 2, respectively.

In [33], we established that d3(P 1, P 2) ≥ d1(P 1, P 2) for every pair of coherent lower probabilities P 1 and P 2 [33, 
Prop. 9] and that no other dominance relationship between d1, d2 and d3 holds in general [33, Ex. 4].

An alternative to the procedure in the previous section may be to consider the outer approximations in CBV
2 (P ) or 

CBV∞ (P ) that minimise one of di(P , Q), for i = 1, 2, 3.3

Since by [33, Prop. 2] any undominated outer approximation Q in C2 satisfies Q({x}) = P({x}) for every x ∈ X , 
we always have d2(P , Q) = 0 and therefore d2 is not useful in this respect. Let us see in the following example that 
none of these extensions of the total variation allows to select a single undominated outer approximation in CBV

2 (P )

and CBV∞ (P ).

Example 2. Consider now the coherent lower probability P that is the lower envelope of the following probability 
mass functions:

(0,0.3,0.3,0.4), (0.3,0,0.3,0.4), (0.3,0.3,0.4,0), (0.4,0.2,0.2,0.2)

(0.3,0.3,0.1,0.3), (0.1,0.4,0.35,0.15), (1/6,1/6,1/6,0.5).

It is given by:

A P(A) Q
0
(A) Q

1
(A)

{x1} 0 0 0
{x2} 0 0 0
{x3} 0.1 0.1 0.1
{x4} 0 0 0

{x1, x2} 0.3 0.2 0.2
{x1, x3} 0.3 0.3 0.3
{x1, x4} 0.25 0.25 0.25

A P(A) Q
0
(A) Q

1
(A)

{x2, x3} 0.3 0.3 0.3
{x2, x4} 0.3 0.25 0.3
{x3, x4} 0.4 0.35 0.3

{x1, x2, x3} 0.5 0.5 0.5
{x1, x2, x4} 0.6 0.6 0.6
{x1, x3, x4} 0.6 0.6 0.6
{x2, x3, x4} 0.6 0.6 0.6

X 1 1 1

The undominated outer approximations of P in C2 minimising the BV-distance are Q
0
, Q

1
and their convex combi-

nations: Q
α

= αQ
0
+ (1 − α)Q

1
for every α ∈ (0, 1).

We obtain that:

d1
(
P ,Q

0

) = d1
(
P ,Q

1

) = d1
(
P ,Q

α

) = 0.1

and

d3(P ,Q
0
) = d3(P ,Q

1
) = d3(P ,Q

α
) = 0.5 = max

A⊆X
|P(A) − Q

α
(A)| ∀α ∈ [0,1].

Thus, neither d1 nor d3 determines a unique undominated outer approximation among those in CBV
2 (P ).

With respect to the outer approximations in C∞, it can be seen that δBV∞ = 0.85, and two belief functions Bel1 and 
Bel2 attaining this value are defined using the following Möbius inverses:

A {x3} {x1, x2} {x1, x3} {x1, x4} {x2, x3} {x2, x4} {x3, x4}
mB1 0.1 0.2 0.1 0.25 − 0.35

3 0.1 0.3 − 0.35
3 0.3 − 0.35

3

mB2 0.1 0.19 0.1 0.25 − 0.35
3 0.11 0.3 − 0.35

3 0.3 − 0.35
3

3 Note that if we consider instead the outer approximations in C2 or C∞ that minimise one of the distances d1, d2 or d3, we may end up with outer 
approximations that are dominated, as shown in [33]. This is why in this section we apply these distances to the outer approximations minimising 
the BV-distance, that are necessarily undominated.

9
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It can be checked that both Bel1, Bel2 ∈ CBV∞ (P ) and that
d1(Bel1,P ) = d1(Bel2,P ) = 0.35

3
= min

Bel∈CBV∞ (P )

d1(Bel,P ).

d2(Bel1,P ) = d2(Bel2,P ) = 0 = min
Bel∈CBV∞ (P )

d2(Bel,P ).

d3(Bel1,P ) = d3(Bel2,P ) = 0.5 = min
Bel∈CBV∞ (P )

d3(Bel,P ).

Therefore, none of d1, d2, d3 determines a unique approximation in CBV∞ either. �

While in the previous examples there is not a unique undominated outer approximation minimizing the extensions 
of the total variation distance, this is not always the case, as we show in our next example. It also tells us that d1, d2, d3

may produce different optimal outer approximations:

Example 3. Consider X = {x1, x2, x3, x4} and the lower probability P that is the lower envelope of

(0,0.2,0.6,0.2), (0,0.6,0.3,0.1), (0.8,0,0.1,0.1), (0.35,0.65,0,0), (0.2,0.2,0.2,0.4).

It is given by:

A P(A)

{x1} 0
{x2} 0
{x3} 0
{x4} 0

{x1, x2} 0.2
{x1, x3} 0.3
{x1, x4} 0.1

A P(A)

{x2, x3} 0.1
{x2, x4} 0.1
{x3, x4} 0

{x1, x2, x3} 0.6
{x1, x2, x4} 0.4
{x1, x3, x4} 0.35
{x2, x3, x4} 0.2

X 1

Since P({x1, x3, x4}) + P ({x1}) = 0.35 < 0.4 = P({x1, x3}) + P({x1, x4}), we deduce that P is not 2-monotone, 
and as a consequence it is not completely monotone either. It can be checked that CBV

2 (P ) = CBV∞ (P ) = {Q
α

| α ∈
[0, 0.05]}, where

Q
α
(A) =

⎧⎪⎨
⎪⎩

0.3 − α if A = {x1, x3}
0.05 + α if A = {x1, x4}
P(A) otherwise.

From here it follows that

d1(P ,Q
α
) = max{α,0.05 − α},

whence the optimal outer approximation if we use d1 is Q
0.025

. On the other hand,

d3(P ,Q
α
) = max{0.8,0.85 − α} = 0.85 − α,

whence the optimal outer approximation if we use d3 is Q
0.05

. Thus, in this case both d1 and d3 determine a unique 
outer approximation, but they do not coincide. Note also that d2 does not rule out any element from CBV

2 (P ) because 
all of them satisfy Q

α
({xi}) = P({xi}) for i = 1, 2, 3, 4. �

10
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C2 C1
C3 C4

C6 C5

Fig. 1. Relationship between the conditions.

3.3. Approach based on preference preservation

An interesting procedure to select an undominated outer approximation in CBV
2 (P ) or CBV∞ (P ) is to require some 

kind of preservation of the preferences given by P . If Q denotes an undominated outer approximation in CBV
2 (P ) or 

CBV∞ (P ), we consider the following conditions4on preference preservation (on P(X ) the first four, on X the last two):

C1: P(A) < P(B) ⇒ Q(A) < Q(B).
C2: P(A) ≤ P(B) ⇒ Q(A) ≤ Q(B).
C3: P(A) = P(B) ⇒ Q(A) = Q(B).
C4: P(A) < P(B) ⇒ Q(A) ≤ Q(B).
C5: P({x}) < P({x′}) ⇒ Q({x}) ≤ Q({x′}).
C6: P({x}) = P({x′}) ⇒ Q({x}) = Q({x′}).

Fig. 1 summarises the relationships between these conditions.
The idea here is that the lower probability P induces a strict preference (A ≺ B ⇔ P(A) < P(B)), a weak pref-

erence (A � B ⇔ P (A) ≤ P(B)) and an indifference relation (A ∼ B ⇔ P(A) = P (B)). When comparing P and Q
we may consider a strong preservation, in the sense that if an event A is strictly preferred (resp. weakly preferred, 
indifferent) to B in P , then it is also strictly preferred (resp. weakly preferred, indifferent) in Q; this is the idea be-
hind conditions C1–C3. Or we may consider a weak preservation, in the sense that the strict preference between two 
events in P implies the weak preference in Q (condition C4). Finally, if we focus our attention on the preferences 
on singletons, this leads to conditions C5 and C6. For earlier works using these or similar conditions, we refer to 
[5,17,47].

We may thus consider the possibility of choosing, among those outer approximations that minimise the BV-
distance, the one that satisfies Ci, for some i ∈ {1, . . . , 6}; in this respect, we may argue that it does not make much 
sense to consider an outer approximation that satisfies C3 only, but this condition may be of interest if it is required 
together with C4 or C1.

However, this criterion is not valid because, as the next example shows, it could happen that either none of them 
satisfies Ci or more than one satisfies it.

Example 4. Consider again the coherent lower probability in Example 1. There, we have seen that CBV
2 (P ) =

CBV∞ (P ) =
{
Q

α
| α ∈ [0,0.5]

}
. Let us see which Q

α
satisfy each of the conditions Ci:

C1: Neither Q0 nor Q0.5 satisfies C1, since

P({x1, x2}) < P ({x1, x3}) = P({x1, x4})

4 We may consider other possibilities based on notions such as interval dominance, meaning that P (A) < P(B) ⇒ Q(A) < Q(B). However, we 
think that this condition will be in general too strong, as can be verified with the example in Remark 1.

11
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but

Q ({x , x }) = Q ({x , x }) = Q ({x , x }) = Q ({x , x }) = 0.

0 1 4 0 1 2 0.5 1 2 0.5 1 3

However, every Q
α

, for α ∈ (0, 0.5), does satisfy C1.
C2,C3: None of the Q

α
satisfies C3, because:

P({x1, x3}) = P({x1, x4}) = P({x1, x2, x3}),
but there is no α ∈ [0, 0.5] satisfying

Q
α
({x1, x3}) = Q

α
({x1, x4}) = Q

α
({x1, x2, x3}).

Since C2 implies C3, we conclude that no Q
α

satisfies C2.
C4,C5,C6: All the outer approximations Q

α
satisfy C4, C5 and C6.

We conclude from this example that none of the Ci helps us selecting a unique undominated outer approximation in 
CBV

2 (P ) or CBV∞ (P ). �

Remark 1. One alternative to the approach considered in this paper would be to select the preference preservation as 
the primary criterion for selecting an outer approximation, and, if needed, compare the possible solutions in terms of 
the BV distance.

While interesting, we believe that the first criterion to compare the outer approximation to the initial model should 
be a measure of their distance, since we consider that: (a) if we want to compare the inferences made by the initial 
and the transformed model, it is useful to have a measure of their distance; (b) the preference preservation conditions 
are in our view more suited in a qualitative context.

Another issue is that it may be impossible, in general, to require that an outer approximation is both undominated 
and preference preserving. To see an example, let X = {x1, x2, x3, x4}, and consider the lower probability P that is 
the lower envelope of the following probability measures:

(0,0.05,0.05,0.9), (0.03,0.02,0.02,0.93), (0.95,0,0,0.05),

(0.06,0,0.94,0), (0.09,0.875,0,0.035), (0.04,0.02,0.94,0).

It is given by:

A P(A) Q
α{x1} 0 0

{x2} 0 0
{x3} 0 0
{x4} 0 0

{x1, x2} 0.05 0.05 − α

{x1, x3} 0.05 0.02 + α

{x1, x4} 0.04 0.01 + α

A P(A) Q
α{x2, x3} 0 0

{x2, x4} 0 0
{x3, x4} 0.035 0.035

{x1, x2, x3} 0.07 0.07
{x1, x2, x4} 0.06 0.06
{x1, x3, x4} 0.125 0.125
{x2, x3, x4} 0.05 0.05

X 1 1

P is not 2-monotone because the condition is not satisfied in the following two instances:

0.07 = P({x1, x2, x3}) + P ({x1})� P({x1, x2}) + P({x1, x3}) = 0.10,

0.06 = P({x1, x2, x4}) + P ({x1})� P({x1, x2}) + P({x1, x4}) = 0.09.

We know from our results in [33] that any undominated outer approximation in C2 coincides with P in the singletons 
and in the events of cardinality n − 1 = 3. In fact, it can be seen that the set of undominated outer approximations in 

C2 is 
{
Q

α
| α ∈ [0,0.03]

}
, and among them, the only one minimising the BV-distance is Q

0.03
. It holds that none of 

the Q
α

satisfies Ci for i = 1, 2, 4:

12
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P ({x1, x2}) ≥ P({x1, x4}) ⇒ Q({x1, x2}) ≥ Q({x1, x4}) ⇒ 0.05 − α ≥ 0.01 + α ⇒ α ≤ 0.02.

P ({x1, x4}) ≥ P({x3, x4}) ⇒ Q({x1, x4}) ≥ Q({x3, x4}) ⇒ 0.01 + α ≥ 0.035 ⇒ α ≥ 0.025.
These two conditions are incompatible, whence no undominated outer approximation in C2 satisfies C1, C2 or C4. In 
addition, C3 is not satisfied by any Q

α
either. The reason is that if Q satisfies C3, then:

0.05 = P({x2, x3, x4}) = Q({x2, x3, x4}) = Q({x1, x2}) = Q({x1, x3}),
a contradiction. We therefore conclude that the outer approximations in C2 preserving preferences are not undomi-
nated. Since all the Q

α
above are belief functions, a similar comment applies to the outer approximations in C∞.

Note also that if we keep the condition of being undominated in order for an outer approximation to be considered 
acceptable, imposing some preference preservation condition is in general computationally heavier than minimising 
some distance. In fact, this can be done operationally by means of a linear programming problem, where the objective 
function mindBV (P , Q) is replaced by some trivial condition of the type min 0, and where, in addition to the con-
straints that guarantee that Q is undominated, we have additional constraints derived from the preference relations on 
the events. As our example above shows, the resulting problem may have no feasible solution even in a low dimension 
space, while this is not the case with the approach based on minimising the distance to the original model. �

3.4. Approach based on specificity measures

In our last approach we consider a popular procedure for comparing two completely monotone lower probabilities: 
their specificity. A specificity measure is used to determine how imprecise a belief function is, in the sense that the 
greater the specificity, the smaller the imprecision. Among the many different proposals of specificity measure in the 
literature (see for example [11,15]), we follow here the suggestion of Moral and de Campos [37] and consider the 
specificity measure defined by Yager [49]:

Definition 2. Let Q be a completely monotone lower probability on P(X ) with Möbius inverse mQ. Its specificity is 
given by

S(Q) =
∑

∅=A⊆X

mQ(A)

|A| . (12)

This function splits the mass of any focal event among its elements. Equation (12) can also be computed as follows:

S(Q) =
n∑

i=1

1

i

∑
A:|A|=i

mQ(A). (13)

Yager established that for any belief function Q its specificity S(Q) belongs to [ 1
n
, 1], and that the specificity measure 

is monotone: Q ≤ Q′ implies S(Q) ≤ S(Q′). Although Yager applied Equation (12) to belief functions only, we next 
show that similar properties hold when applying it on coherent lower probabilities.

Proposition 2. Let Q be a coherent lower probability with Möbius inverse mQ, and let S(Q) be given by Equa-
tion (12). Then:

(1) S is monotone: Q ≤ Q′ implies S(Q) ≤ S(Q′).
(2) S(Q) ∈ [ 1

n
, 1].

Proof. First of all, note that S(Q) can be expressed in terms of Q instead of mQ:

S(Q) =
∑

∅=A⊆X

mQ(A)

|A| =
∑

∅=A⊆X

∑
B⊆A

(−1)|A\B| Q(B)

|A|

=
∑
B⊆X

Q(B)
∑

∅=A⊇B

(−1)|A\B| 1

|A| =
∑
B⊆X

Q(B)

n∑
k=|B|

(−1)k−|B|

k

(
n − |B|
k − |B|

)
.

13
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For every j = 1, . . . , n, let us denote
n∑ (−1)k−j

(
n − j

)

f (j) =

k=j
k k − j

.

f (j) can be rewritten as:

f (j) =
n−j∑
l=0

(−1)l

l + j

(
n − j

l

)
= 1

j
(
n−j+j
n−j

) = 1

j
(

n
n−j

) ≥ 0,

where the second equality follows from Melzak’s formula (see, for instance, [25]). Let us proceed to establish the two 
statements.

(1) Given Q ≤ Q′, the non-negativity of f (j) implies that:

S(Q) =
∑
B⊆X

Q(B)f (|B|) ≤
∑
B⊆X

Q′(B)f (|B|) = S(Q′),

hence S is monotone.
(2) If Q is a precise probability measure, mQ(A) > 0 only if |A| = 1, whence

S(Q) =
∑

|A|=1

mQ(A) = 1.

Since any coherent lower probability is dominated by a precise probability measure, we deduce from the first item 
that S(Q) ≤ 1. Consider now the lower probability Q

v
given by Q

v
(X ) = 1 and Q(A) = 0 for any A = X . It is 

a belief function whose only focal event X has mass 1, and it is dominated by any coherent lower probability on 
P(X ). It satisfies:

S(Q
v
) = mQ

v
(X )

|X | = 1

n
.

Applying the first statement, we conclude that S(Q) ∈ [ 1
n
, 1] for any coherent lower probability Q. �

Therefore, we can choose an undominated outer approximation in CBV
2 (P ) or CBV∞ (P ) with the greatest specificity. 

Our next example shows that, as was the case with preference preservation, this criterion does not give rise to a unique 
undominated outer approximation.

Example 5. Consider again Example 1. We have seen that the undominated outer approximations in C2 and C∞ are {
Q

α
| α ∈ [0,0.5]

}
in both cases, and that the Möbius inverse of each Q

α
is given by:

mQ
α
({x1, x4}) = mQ

α
({x2, x3}) = α, mQ

α
({x1, x3}) = mQ

α
({x2, x4}) = 0.5 − α,

and zero elsewhere. Hence, the specificity of Q
α

is given by:

S(Q
α
) = 1

2
(α + α + 0.5 − α + 0.5 − α) = 0.5,

regardless of the value of α ∈ [0, 0.5]. We conclude that all the undominated outer approximations in C2 and C∞
minimising the BV-distance have the same specificity. Thus, this criterion is not helpful in the selection process. �

While in this section we have considered the specificity measure given by Equation (12), it is not the only pos-
sibility. We may for instance consider the notion of non-specificity proposed by Dubois and Prade in [15], given 
by ∑

∅=A⊆X
m(A) log(|A|),

that was shown in [3] to be also applicable to 2-monotone lower probabilities. It can be verified using Example 5
above that this other definition does not help either to choose one among the undominated outer approximations.

14
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3.5. Discussion
We have seen in this section several approaches for selecting one undominated outer approximation in C2 and C∞. 
We have focused on the undominated outer approximations minimising the BV-distance, i.e., on the sets CBV

2 (P ) and 
CBV∞ (P ). In these two sets, we have proposed to minimise the quadratic distance, a total variation distance, to preserve 
the preferences encompassed by the initial model and an approach based on maximising the specificity. Among all 
these approaches, we have seen that the only approach that selects one single undominated outer approximation is the 
one based on minimising the quadratic distance among the outer approximations minimising the BV-distance. The 
other approaches, albeit interesting, are not useful in general for the purposes of this paper, since either they produce 
more than one or no optimal solutions.

4. Selection of an outer approximation in C(F,F)

We consider now the case of undominated outer approximations in the set of generalised p-boxes, C(F,F ). As we 
shall see, the number of undominated outer approximations in C(F,F ) is finite, and there is a simple procedure for 
determining them.

In order to see this, let us remark that the lower probability in Equation (3) can be computed using the values 
of the lower and upper distribution functions F and F [44, Prop. 4]. To see how this comes about, note that any 
A ⊆ {x1, . . . , xn} can be expressed as a finite union of events of consecutive elements, where these events are as large 
as possible: for instance if n = 4 the event A = {x1, x2, x4} would be expressed as A = {x1, x2} ∪ {x4}.

Since without loss of generality we can add an element y∗
0 to X to denote the impossible event, with F(y∗

0 ) = 0
and y∗

0 < x1, we can express A = (y∗
0 , y∗

1 ] ∪ (y∗
2 , y∗

3 ] ∪ · · · ∪ (y∗
2m, y∗

2m+1] for some m ≥ 0, with y∗
0 ≤ y∗

1 < y∗
2 < · · · <

y∗
2m < y∗

2m+1 ∈X . For instance, under this notation, and again when n = 4,

{x2, x3} = (x1, x3] and {x1, x3, x4} = (y∗
0 , x1] ∪ (x2, x4].

It then holds that [44, Prop. 4] that:

P (F,F )(A) =
m∑

l=0

max
{
0,F (y∗

2l+1) − F(y∗
2l )

}
. (14)

Let us denote by Sn the set of permutations of {1, . . . , n}. For each σ ∈ Sn, consider the total order ≤σ given by 
xσ(1) ≤σ xσ(2) ≤σ . . . ≤σ xσ(n), and define the p-box (Fσ , Fσ ) by:

Fσ (xσ(i)) = P ({xσ(1), . . . , xσ(i)}), F σ (xσ(i)) = P({xσ(1), . . . , xσ(i)}) (15)

for every i = 1, . . . , n. From [34, Thm. 17], C(F ,F ) = ((F σ , Fσ ))σ∈Sn . This means that the number of undominated 
outer approximations is bounded above by n!. Our next result lowers this bound and shows that the number of different 
undominated outer approximations is at most n!

2 . For this aim, given a permutation σ ∈ Sn, we denote by σ the 
permutation given by σ(i) = σ(n − i + 1) for every i = 1, . . . , n.

Proposition 3. Let P be a coherent lower probability with conjugate upper probability P , and let ((F σ , Fσ ))σ∈Sn be 
the family of undominated outer approximations in C(F,F ). If we denote by P (Fσ ,Fσ ) the coherent lower probability 

associated with (F σ , Fσ ), then P (Fσ ,Fσ ) = P (F σ̄ ,F σ̄ ).

Proof. Given xσ(i) and applying Equation (14):

P (Fσ ,Fσ )({xσ(i)}) = max
{
0,F σ (xσ(i)) − Fσ (xσ(i−1))

}
= max

{
0,P ({xσ(1), . . . , xσ(i)}) − P({xσ(1), . . . , xσ(i−1)})

}
.

On the other hand:
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P (F σ̄ ,F σ̄ )({xσ(i)}) = max
{
0,F σ̄ (xσ(i)) − F σ̄ (xσ(i+1))

}
= max

{
0,P ({xσ(i), . . . , xσ(n)}) − P({xσ(i+1), . . . , xσ(n)})

}

= max

{
0,1 − P({xσ(1), . . . , xσ(i−1)}) − 1 + P({xσ(1), . . . , xσ(i)})

}
= max

{
0,P ({xσ(1), . . . , xσ(i)}) − P({xσ(1), . . . , xσ(i−1)})

}
= max

{
0,F σ (xσ(i)) − Fσ (xσ(i−1))

} = P (Fσ ,Fσ )({xσ(i)}).
Next, if we consider a set of consecutive elements A = {xσ(i), . . . , xσ(i+l)}, for some l ≥ 1 and some i = 1, . . . , n − 1, 
we deduce from Equation (14) that

P (Fσ ,Fσ )(A) = max{0,F σ (xσ(i+l)) − Fσ (xσ(i−1))}
= max{0,P ({xσ(1), . . . , xσ(i+l)}) − P({xσ(1), . . . , xσ(i−1)})}
= max{0,1 − P({xσ(i+l+1), . . . , xσ(n)}) − 1 + P ({xσ(i), . . . , xσ(n)})}
= max{0,P ({xσ(i), . . . , xσ(n)}) − P({xσ(i+l+1), . . . , xσ(n)})}
= max{0,P ({xσ̄ (n−i+1), . . . , xσ̄ (1)}) − P({xσ̄ (n−i−l), . . . , xσ̄ (1)})}
= max{0,F σ̄ (xσ̄ (n−i+1)) − F σ̄ (xσ̄ (n−i−l))}
= P (F σ̄ ,F σ̄ )({xσ̄ (n−i−l+1), . . . , xσ̄ (n−i+1)}) = P (F σ̄ ,F σ̄ )(A).

If we now apply Equation (14) we conclude that P (Fσ ,Fσ ) = P (F σ̄ ,F σ̄ ). �
Thus, each permutation and its opposite induce a p-box with the same associated coherent lower probability. As 

a consequence, there are at most n!
2 different undominated outer approximations in C(F,F ). In the remainder of this 

section we explore different approaches for selecting one of them.

4.1. Approach based on minimising imprecision

In the case of p-boxes, we can propose a different approach than the ones considered so far, based on minimising 
the associated imprecision. Since any p-box is an ordered pair of distribution functions that are determined by their 
values on X , we may measure their inherent imprecision by computing the distance between the lower and the upper 
distribution functions on X . This produces the following measure of imprecision Imp:

Imp(Fσ ,F σ ) =
∑
x∈X

(
Fσ (x) − Fσ (x)

)
. (16)

Thus, our goal will be to determine the p-box minimising the imprecision in this equation.
Taking into account the definition of the p-box (Fσ , Fσ ) once the permutation σ has been fixed (Equation (15)), 

we can also express Equation (16) in terms of the lower and upper probabilities P, P . Indeed, given a permutation σ
inducing the order xσ(1) ≤σ . . . ≤σ xσ(n) and its associated p-box (Fσ , Fσ ), Equation (16) becomes:

∑
x∈X

(F σ (x) − Fσ (x)) =
n∑

i=1

(
P({xσ(1), . . . , xσ(i)}) − P({xσ(1), . . . , xσ(i)})

)

In other words, we consider a chain of events from a singleton to X and compute the differences between P and P for 
those events.5 Note however that, because of Equation (15), this chain of events will vary with the p-box considered, 
because it depends on the order associated with the permutation σ ; in other words, the key events taken into account 
when measuring the imprecision of the p-box (Fσ , Fσ ) are not always the same.

The above correspondence means that we can find the p-box(es) minimising Equation (16) by solving a shortest 
path problem. For this aim, consider the Hasse diagram of P(X ), and we assign the following weights: for every 

5 The idea of comparing two non-additive measures in terms of their distance on some class of events that may be strictly included in P(X ) is 
already present in the paper by Baroni and Vicig in [5].
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X

0 0 0
∅

{x1} {x2} {x3}

{x1, x2} {x1, x3} {x2, x3}

0.15 0.3 0.3

0.3

0.3 0.3 0.15 0.3

0.15

Fig. 2. Hasse diagram with the weights in Example 6.

A = X and xi /∈ A, we assign the weight P(A ∪ {xi}) − P(A ∪ {xi}) to the edge A → A ∪ {xi}. In this way for 
every permutation σ , the sum of absolute differences between Fσ and Fσ corresponds to the sum of the values of 
the arcs that move from the event {xσ(1), . . . , xσ(i)} to the event {xσ(1), . . . , xσ(i), xσ(i+1)}, for every i = 0, . . . , n − 1. 
Therefore, minimising the total distance corresponds to calculating the shortest path from ∅ to X . Proposition 3
assures that the optimal solution to this shortest path problem will never be unique, because if the optimal solution is 
attained in the permutation σ , it will also be attained in the reverse permutation σ . Nevertheless, if the only optimal 
solutions to the shortest path problem are determined by a permutation σ and its reverse σ , then the undominated 
outer approximation minimising the imprecision is unique.

We illustrate this procedure in the following example:

Example 6. Consider the coherent conjugate lower and upper probabilities given by:

A P(A) P (A)

{x1} 0.25 0.4
{x2} 0.2 0.5
{x3} 0.2 0.5

{x1, x2} 0.5 0.8
{x1, x3} 0.5 0.8
{x2, x3} 0.6 0.75

X 1 1

These lower and upper probabilities are coherent because they are the lower and upper envelope of the following 
probability mass functions:

(0.4,0.4,0.2), (0.25,0.5,0.25), (0.3,0.2,0.5)

The Hasse diagram with the weights defined above is represented in Fig. 2.
Solving the shortest path problem, we obtain four different optimal solutions, those associated with the paths:

∅ → {x1} → {x1, x2} →X , ∅ → {x1} → {x1, x3} → X ,

∅ → {x2} → {x2, x3} →X , ∅ → {x3} → {x2, x3} → X .

They correspond to the permutations (1, 2, 3), (1, 3, 2), (2, 3, 1) and (3, 2, 1), and have an imprecision of 0.45. From 
Proposition 3 we know that the permutations (1, 2, 3) and (3, 2, 1) give rise to the same p-box, and the same applies 
to (1, 3, 2) and (2, 3, 1), so we have two different optimal solutions. Although this allows to discard the other two 
permutations, which have an imprecision of 0.6, it does not single out a unique p-box. �
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4.2. Approach based on specificity measures
As we have already said, p-boxes are connected with completely monotone lower probabilities ([44, Sec. 5.1]). 
Indeed, a p-box is equivalent to a completely monotone lower probability whose focal events are ordered intervals (see 
[13, Sec. 3.3]). Hence, we could also use the approach based on maximising the specificity. For each p-box (Fσ , Fσ )

we can consider its associated completely monotone lower probability, given by Equation (14), and compute its 
specificity, as we did in Section 3.4. However, the same drawback as in Section 3.4 appears: this procedure does not 
produce a unique solution, as we show in the next example.

Example 7. Consider again Example 6. From Proposition 3 we know that the six different permutations give rise to 
only three different p-boxes. Hence, we can restrict ourselves to the permutations σ1 = (1, 2, 3), σ2 = (1, 3, 2) and 
σ3 = (2, 1, 3). In the next table, we show the values of the completely monotone lower probabilities induced by those 
p-boxes, computed using Equation (14).6

σ1 = (1,2,3) σ2 = (1,3,2) σ3 = (2,1,3)

A P (A) P (A) P σ1
(A) mσ1(A) P σ2

(A) mσ2(A) P σ3
(A) mσ3(A)

{x1} 0.25 0.4 0.25 0.25 0.25 0.25 0 0

{x2} 0.2 0.5 0.1 0.1 0.2 0.2 0.2 0.2

{x3} 0.2 0.5 0.2 0.2 0.1 0.1 0.2 0.2

{x1, x2} 0.5 0.8 0.5 0.15 0.45 0 0.5 0.3

{x1, x3} 0.5 0.8 0.45 0 0.5 0.15 0.5 0.3

{x2, x3} 0.6 0.75 0.6 0.3 0.6 0.3 0.4 0

X 1 1 1 0 1 0 1 0

Using Equation (13) we obtain the following specificities:

S(P σ1
) = S(P σ2

) = 0.775, S(P σ3
) = 0.7.

From these values, we can discard the p-box induced by the permutation σ3, but we are not able to choose between 
σ1 and σ2. Note that this is the same result as in Example 6, where we minimised the imprecision. �

This example may lead us to think that the approach based on minimising the imprecision and the one based on 
maximising the specificity always give rise to the same solutions. However, we shall see in Example 8 later on that 
this is not the case.

4.3. Approach based on the BV-distance

Since the lower probability associated with a p-box is completely monotone, we could also apply the criterion 
based on minimising the BV-distance between each of the coherent lower probabilities associated with the p-boxes 
((F σ , Fσ ))σ∈Sn and P .

Our next example shows that this criterion does not give rise to a unique solution, and in fact that it does not 
produce the same solution as the criteria based on minimising the imprecision or maximising the specificity.

Example 8. Let P , P be the lower and upper envelope of the following probability mass functions:

(ε,0.45 − ε,0.55), (0.4,0.1,0.5), (0.3,0.5,0.2),

for some fixed ε ∈ (0, 0.03). Their values, as well as the values of the completely monotone lower probabilities 
associated with the p-boxes ((Fσ , Fσ ))σ∈Sn are given by:

6 In the examples of this section, and for the sake of simplicity, we use the short notation P σi
for P

(Fσi
,Fσi

)
and mσi

for its associated Möbius 
inverse.
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σ1 = (1,2,3) σ2 = (1,3,2) σ3 = (2,1,3)

A P (A) P (A) P σ1
(A) P σ2

(A) P σ3
(A)
{x1} ε 0.4 ε ε 0

{x2} 0.1 0.5 0.05 0.1 0.1

{x3} 0.2 0.55 0.2 0.1 0.2

{x1, x2} 0.45 0.8 0.45 0.1 + ε 0.45

{x1, x3} 0.5 0.9 0.2 + ε 0.5 0.5

{x2, x3} 0.6 1 − ε 0.6 0.6 0.3

X 1 1 1 1 1

It can be easily seen that:

Imp S(P σi
) dBV (P ,P σi

)

P σ1
0.75 − ε 0.625 + ε/2 0.35 − ε

P σ2
0.8 − ε 0.6 + ε/2 0.45 − ε

P σ3
0.75 0.6416̄ 0.3 + ε

We see first of all that for ε = 0.025 the criterion based on minimising the BV-distance does not give a unique 
solution, because both σ1 and σ3 minimise the distance. Moreover the three approaches do not agree, because the 
criterion based on minimising the imprecision chooses the p-box induced by the permutation (1, 2, 3), the criterion 
based on maximising the specificity selects the p-box induced by the permutation (2, 1, 3), while the criterion based 
on minimising the BV-distance selects the p-box induced by the permutation (2, 1, 3), if ε ∈ (0, 0.025), and the p-box 
induced by the permutation (1, 2, 3), if ε ∈ (0.025, 0.03). �

4.4. Approach based on the quadratic distance

We consider again the approach based on minimising the quadratic distance. Unfortunately, in the case of p-
boxes this approach is not very useful for several reasons: first of all, the set of undominated outer approximations in 
C(F ,F ) is not convex, hence we cannot use the good properties of the quadratic programming problems; secondly, the 
interpretation of the quadratic distance is not clear; and thirdly, the solution in this case is not unique, as we show in 
the next example.

Example 9. Let us continue with Example 7. There, we have seen that there are three different outer approximations 
in C(F ,F ), those associated with the permutations σ1 = (1, 2, 3), σ2 = (1, 3, 2) and σ3 = (2, 1, 3). If we compute their 
quadratic distance with respect to P , we obtain the following values:

P σ1
P σ2

P σ3

dq(P ,P σi
) 0.0125 0.0125 0.1025

We see that both Pσ1
and P σ2

minimise the quadratic distance, and as a consequence the optimal solution is not 
unique. �

4.5. Approach based on preference preservation

In Section 3.3 we considered several properties about preference preservation. For selecting a p-box among those in 
((F σ , Fσ ))σ∈Sn , we may choose the p-box satisfying one of those conditions. However, as we show in the following 
example, for each condition it may be that none of the p-boxes or more than one satisfies it.

Example 10. Let P , P be the coherent lower and upper probability obtained as the lower and upper envelopes of

(0.2,0.3,0.5), (0.5,0.2,0.3), (0.3,0.5,0.2).
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Their values, as well as those of the completely monotone lower probabilities associated with the p-boxes 
((F σ , Fσ ))σ∈Sn , are given by:
σ1 = (1,2,3) σ2 = (1,3,2) σ3 = (2,1,3)

A P (A) P (A) P σ1
(A) P σ2

(A) P σ3
(A)

{x1} 0.2 0.5 0.2 0.2 0

{x2} 0.2 0.5 0 0.2 0.2

{x3} 0.2 0.5 0.2 0 0.2

{x1, x2} 0.5 0.8 0.5 0.4 0.5

{x1, x3} 0.5 0.8 0.4 0.5 0.5

{x2, x3} 0.5 0.8 0.5 0.5 0.4

X 1 1 1 1 1

Next table shows which conditions Ci are satisfied by these p-boxes:

P σ1
P σ2

P σ3

C1 Yes Yes Yes

C2 No No No

C3 No No No

C4 Yes Yes Yes

C5 Yes Yes Yes

C6 No No No

Therefore, none of the conditions allows us to distinguish between these p-boxes. �

4.6. Approach based on the total variation distance

As we did in Section 3.2, one possibility to choose among the p-boxes in ((Fσ , Fσ ))σ∈Sn is to consider those 
p-boxes minimising one of the extensions of the total variation distance in Equations (9)–(11). Unfortunately, none 
of d1, d2 and d3 allows to select a single p-box, as we show in the following example.

Example 11. Let us continue with Example 6. Example 7 gives the completely monotone lower probabilities associ-
ated with the p-boxes in ((Fσ , Fσ ))σ∈Sn . For them, it holds that:

σ1 = (1,2,3) σ2 = (1,3,2) σ3 = (2,1,3)

P σ1
P σ2

P σ3

d1(P ,P σi
) 0.1 0.1 0.25

d2(P ,P σi
) 0.05 0.05 0.125

d3(P ,P σi
) 0.4 0.4 0.4

We see that none of the extensions of the total variation distance allows to select a single p-box. �

4.7. Discussion

There are at most n!
2 undominated outer approximations in the class C(F ,F ). There exist several procedures we can 

use to discard some of them, being the most reasonable, in our view (i) minimising imprecision; (ii) minimising the 
BV-distance; and (iii) maximising specificity. Two important drawbacks of these three approaches are that in general 
they do not select a unique p-box, and that when they do so, there does not seem to be a relationship between the 
options selected by each of them. Hence, we cannot use all three approaches simultaneously. Using the approach based 
on minimising the imprecision has the advantage of having a simple procedure for finding the optimal p-box(es), while 
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for the other two approaches we would need to compute the lower probability associated with the p-box by means of 
Equation (14).
Taking these comments into account, it seems reasonable to (i) consider the p-box(es) minimising the imprecision, 
albeit with the reservations mentioned in Section 4.1 about Equation (16); if there is more than one, we could (ii) 
select among them the ones minimising the BV-distance; if there are still more than one p-box, we (iii) select the one 
maximising the specificity; if necessary, we could (iv) compute their quadratic distance, and if all these methods do 
not select a single p-box, all of the remaining ones would be equally preferred.

5. Selection of an outer approximation in C�

In Section 3 we explained that the sets of undominated outer approximations in C2 and C∞ are not finite in general, 
and indeed we do not have a procedure for determining all of them. In contrast, the set of non-dominating outer 
approximations in C� is finite and can be easily determined (see [34, Sec. 6]), as in the case of p-boxes.

Throughout this section, we shall assume that all non-impossible events have strictly positive upper probability, 
so that P({x}) > 0 for every x ∈ X . This assumption shall be useful in some of the proofs later on. Moreover, as we 
shall detail in Appendix A, in the general case we can always restrict our attention to X ∗ = {x ∈ X | P({x}) > 0}, 
determine the outer approximations �∗ ∈ C� of the restriction of P to P(X ∗), and then extend these to P(X ) by 
�(A) = �∗(A ∩X ∗), or equivalently taking π(x) = 0 for every x satisfying P({x}) = 0. We refer to Appendix A for 
detailed explanations and proofs.

Given the conjugate coherent lower and upper probabilities P and P , each permutation σ ∈ Sn defines the following 
possibility measure7:

�σ ({xσ(1)}) = P({xσ(1)}), and (17)

�σ ({xσ(i)}) = max
A∈Aσ(i)

P (A ∪ {xσ(i)}), where for every i > 1 : (18)

Aσ(i) =
{
A ⊆ {xσ(1), . . . , xσ(i−1)}

∣∣ P(A ∪ {xσ(i)}) > max
x∈A

�σ ({x})
}

, (19)

and �σ (B) = maxx∈B �σ ({x}) for every B ⊆ X . Then, the family of non-dominating outer approximations of P is 
(�σ )σ∈Sn (see [34, Prop. 11, Cor. 13]).

Note that the procedure above is well-defined because, as we have mentioned before, we are assuming that 
P({x}) > 0 for every x ∈X . Hence ∅ ∈Aσ(i), which guarantees that Aσ(i) is non-empty.

In this section we propose a number of approaches to select a unique outer approximation of P among those 
determined by Equations (17)–(19). The procedure above may determine the same possibility measure more than 
once, using different permutations σ ∈ Sn. The next result is concerned with such cases, and will be helpful later on 
for reducing the candidate possibilities.

Proposition 4. Let (�σ )σ∈Sn be the family of non-dominating outer approximations of P in C�. Consider a per-
mutation σ ∈ Sn and its associated possibility measure �σ . Assume that there exists i ∈ {2, . . . , n} such that 
�σ ({xσ(i)}) = P({xσ(1), . . . , xσ(i)}). Then, there exists σ ′ ∈ Sn such that

�σ (A) = �σ ′(A) ∀A ∈P(X ) and �σ ′({xσ ′(j)}) = P({xσ ′(1), . . . , xσ ′(j)}) ∀j.

Proof. In order to ease the notation, assume that σ = (1, 2, . . . , n), and denote its associated possibility measure by 
�.

Take the smallest i such that �({xi}) = P({x1, . . . , xi}). This means that �({x1}) = P({x1}) and, for any k =
2, . . . , i − 1:

�({xk}) = max

{
P(A ∪ {xk}) | P(A ∪ {xk}) > max

xj ∈A
�({xj }), A ⊆ {x1, . . . , xk−1}

}
= P({x1, . . . , xk}).

7 Here we are assuming that maxx∈∅ �σ ({x}) := 0.
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Moreover, applying monotonicity we deduce that �({xk}) = P({x1, . . . , xk}) ≥ P({x1, . . . , xk−1}) = �({xk−1}) for 
k = 2, . . . , i − 1.
Equations (17)–(19) also imply that �({xj }) ≤ P({x1, . . . , xj }) for every j = 1, . . . , n. Thus, if

�({xi}) = max

{
P(A ∪ {xi}) | P(A ∪ {xi}) > max

x∈A
�({x}), A ⊆ {x1, . . . , xi−1}

}
= P({x1, . . . , xi}),

then it must be �({xi}) < P({x1, . . . , xi}). We deduce that {x1, . . . , xi−1} /∈Ai , and as a consequence

P({x1, . . . , xi}) ≤ max
j=1,...,i−1

�({xj }) = �({xi−1}) = P({x1, . . . , xi−1}), (20)

so by monotonicity the inequality in (20) becomes an equality. For every A ⊆ {x1, . . . , xi−1} such that xi−1 ∈ A, it 
holds that:

P(A ∪ {xi}) ≤ P({x1, . . . , xi}) = P({x1, . . . , xi−1}) = �({xi−1}) = max
x∈A

�({x}),
where the first equality follows from Equation (20). Thus, such an A does not belong to Ai , and as a consequence it is 
not valid for defining �({xi}). If we denote Aj = {x1, . . . , xj } for j = 1, . . . , n, this means that Ai−1 /∈ Ai . Consider 
now Ai−2 = {x1, . . . , xi−2}:

P(Ai−2 ∪ {xi}) ≥ P({x1, . . . , xi−2}) = �({xi−2}) = max
x∈Ai−2

�({x}).

Here, we have two options, either P(Ai−2 ∪ {xi}) = P({x1, . . . , xi−2}) or P(Ai−2 ∪ {xi}) > P({x1, . . . , xi−2}). If the 
former condition holds, we iterate the procedure. At the end we have two cases:

(1) For every j ∈ {1, . . . , i − 1}, P(Aj ∪ {xi}) = P(Aj ) = �({xj }). In that case, the maximum in Equation (18) is 
attained for A = ∅ because it is the only event in Ai , whence �({xi}) = P({xi}) and also �({xi}) ≤ �({x1}) ≤
. . . ≤ �({xi−1}). In this case we consider the permutation σ ′ = (i, 1, . . . , i − 1, i + 1, . . . , n), i.e., the permutation 
that moves i to the first position. It holds that:

�σ ′({xi}) = P({xi}) = �({xi}).
�σ ′({x1}) = max

{
P(A ∪ {x1}) | P(A ∪ {x1}) > max

x∈A
�σ ′({x}), A ⊆ {xi}

}
= P({x1}) = �({x1});

to see the second equality note that either Aσ ′(i) = {∅} or Aσ ′(i) = {∅, {xi}}. By assumption, P({x1, xi}) =
P({x1}). Hence, applying the procedure in Equations (17)–(19) with A = {xi} or A = ∅ we obtain the same 
value P({x1}) as candidate assignment for �({x1}).

Suppose now that �σ ′({xk}) = �({xk}) for every k ≤ j − 1 < j < i, and let us prove that also �σ ′({xj }) =
�({xj }). Since �({xj }) = P({x1, . . . , xj }), there exists some event B ∈ Aj such that �({xj }) = P(B ∪ {xj }) =
P({x1, . . . , xj }). By Equation (19), B ⊆ {x1, . . . , xj−1} and P(B ∪ {xj }) > maxx∈B �({x}) = maxx∈B �σ ′({x}). 
This implies that B ∈Aσ ′(j) and as a consequence that

�σ ′({xj }) ≥ P(B ∪ {xj }) = P({x1, . . . , xj }).
On the other hand, for every A ∈Aσ ′(j), it holds that

P(A ∪ {xj }) ≤ P(Aj ∪ {xi}) = P({x1, . . . , xj }),
whence

�σ ′({xj }) = max
A∈Aσ ′(j)

P (A ∪ {xj }) ≤ P({x1, . . . , xj }),

and therefore that

�σ ′({xj }) = P({x1, . . . , xj }) = �({xj }).
Finally, for every j > i, Aσ ′(j) = Aj , which implies that �σ ′({xj }) = �({xj }) for j = i + 1, . . . , n.
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(2) There exists j ∈ {1, . . . , i − 1} such that
P(Aj ∪ {xi}) > P ({x1, . . . , xj }) = �({xj }).
In that case, we consider:

k = max
{
j ∈ {1, . . . , i − 1} | �({xj }) < P (Aj ∪ {xi}) ≤ �({xi})

}
. (21)

In this case, the maximum in Equation (18) is attained in the event Ak = {x1, . . . , xk}, which belongs to Ai by 
definition of k. Then, it holds that

�({xi}) = P(Ak ∪ {xi}) = P({x1, . . . , xk, xi}).
Now, consider the permutation σ ′ = (1, . . . , k, i, k + 1, . . . , i − 1, i + 1, . . . , n), i.e., the permutation that moves i
just after element k. It holds that:

�σ ′({x1}) = P({x1}) = �({x1}).
. . .

�σ ′({xk}) = P({x1, . . . , xk}) = �({xk}).

�σ ′({xi}) = max

{
P(A ∪ {xi}) | P(A ∪ {xi}) > max

x∈A
�σ ′({x}), A ⊆ {x1, . . . , xk}

}

= max

{
P(A ∪ {xi}) | P(A ∪ {xi}) > max

x∈A
�({x}), A ⊆ {x1, . . . , xk}

}

= P({x1, . . . , xk, xi}) = �({xi}),
where the last two equalities hold taking A = Ak = {x1, . . . , xk}, because from Equation (21) we have that

�({xi}) = P(Ak ∪ {xi}) > P (Ak) = �({xk}).
For the element xk+1, it holds that:
• �σ ′({xk+1}) ≥ �({xk+1}), as a consequence of the inclusion Ak+1 ⊆ Aσ ′(k+1);
• Conversely,

�σ ′({xk+1}) = max{P(A ∪ {xk+1}) | P(A ∪ {xk+1}) > max
xj ∈A

�σ ′({xj }),A ⊆ {x1, . . . , xk, xi}}

≤ P({x1, . . . , xk+1, xi}) = �({xk+1}),
where the equality follows from Equation (21).

Therefore, �σ ′({xk+1}) = �({xk+1}).
With an analogous reasoning, we obtain that:

�σ ′({xk+2}) = �({xk+2}), . . . , �σ ′({xi−1}) = �({xi−1}).
Finally, it trivially holds that for any j = i + 1, . . . , n, �σ ′({xj }) = �({xk}), so we conclude that �σ ′ = �.

In both cases, �σ ′ satisfies:

�σ ′({xσ ′(j)}) = P({xσ ′(1), . . . , xσ ′(j)}) ∀j = 1, . . . , i.

Now, if for �σ ′ there exists j > i such that �σ ′({xσ ′(j)}) = P({xσ ′(1), . . . , xσ ′(j)}), we just need to iterate the proce-
dure. �
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Table 1
Possibility measures (�σ )σ∈Sn for the coherent lower and upper probabilities in Exam-
ple 12, as well as their associated vectors ( �β ) .
σ σ∈Sn

σ �σ ({x1}) �σ ({x2}) �σ ({x3}) �βσ

σ1 = (1,2,3) 0.4 0.8 1 (0.4,0.8,1)

σ2 = (1,3,2) 0.4 1 0.8 (0.4,0.8,1)

σ3 = (2,1,3) 0.8 0.5 1 (0.5,0.8,1)

σ4 = (2,3,1) 1 0.5 0.75 (0.5,0.75,1)

σ5 = (3,1,2) 0.8 1 0.5 (0.5,0.8,1)

σ6 = (3,2,1) 1 0.75 0.5 (0.5,0.75,1)

5.1. Approach based on the BV-distance

Our first approach consists in looking for a possibility measure, among (�σ )σ∈Sn , that minimises the BV-distance 
with respect to the original model. If we denote by Nσ the conjugate necessity measure of �σ , the BV-distance can 
be expressed by:

dBV (P ,Nσ ) =
∑
A⊆X

(P (A) − Nσ (A)) =
∑
A⊆X

(�σ (A) − P(A)) =
∑
A⊆X

�σ (A) −
∑
A⊆X

P(A).

To ease the notation, from now on for each permutation σ ∈ Sn, we denote by �βσ the ordered vector determined by 
the values �σ ({xσ(i)}), i = 1, . . . , n, so that βσ,1 ≤ . . . ≤ βσ,n = 1. Using this notation:

∑
A⊆X

�σ (A) = βσ,1 + 2βσ,2 + . . . + 2n−1βσ,n =
n∑

i=1

2i−1βσ,i . (22)

This means that, in order to minimise dBV (P , Nσ ), we must minimise Equation (22), or, equivalently, given that the 
last term is 2n−1 for any �βσ ,

n−1∑
i=1

2i−1βσ,i . (23)

It is easy to show that if a dominance relation exists between �βσ and �βσ ′ , this induces an order between the values in 
Equation (22).

Lemma 5. Let �βσ and �βσ ′ be the vectors associated with the possibility measures �σ and �σ ′ . If βσ,i ≤ βσ ′,i
for every i = 1, . . . , n, then dBV (P , Nσ ) ≤ dBV (P , Nσ ′). Furthermore, if βσ,j < βσ ′,j for some j = 1, . . . , n, then 
dBV (P , Nσ ) < dBV (P , Nσ ′).

Proof. The proof follows easily from Equation (22):∑
A⊆X

�σ (A) = βσ,1 + 2βσ,2 + . . . + 2n−1βσ,n ≤ βσ ′,1 + 2βσ ′,2 + . . . + 2n−1βσ ′,n =
∑
A⊆X

�σ ′(A). (24)

Then, we conclude that dBV (P , Nσ ) ≤ dBV (P , Nσ ′). If in addition βσ,j < βσ ′,j for some j = 1, . . . , n, the inequality 
in Equation (24) is strict. �

This result may contribute to rule out some of the permutations in Sn, as illustrated in the next example.

Example 12. Consider the coherent conjugate lower and upper probabilities from Example 6. The possibility measures 
�σ and their associated vectors �βσ for every σ ∈ Sn are given in Table 1.

Taking σ1 = (1, 2, 3) and σ3 = (2, 1, 3), we can see that

�βσ1 = (0.4,0.8,1), �βσ3 = (0.5,0.8,1).

Since βσ1 � βσ3 , Lemma 5 implies dBV (P , Nσ1) < dBV (P , Nσ3). Hence, we can discard �σ3 . The same happens with 
the vectors �βσ1 and �βσ5 , so we deduce that dBV (P , Nσ1) < dBV (P , Nσ5). �
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In the general case, the family ( �βσ )σ∈Sn is not totally ordered. Then, the problem of minimising the BV-distance 
is solved by casting it into a shortest path problem, similarly as we did in Section 4.1, as we shall now illustrate.
As we said before, the possibility measure(s) in (�σ )σ∈Sn that minimise the BV-distance to the original model 
will be the one(s) for which the sum 

∑
A⊆X �σ (A) is minimised. In turn, this sum can be computed by means of 

Equation (22), once we order the values �σ({xσ(i)}), for i = 1, . . . , n. As a consequence, if �σ satisfies

�σ ({xσ(i)}) = P({xσ(1), . . . , xσ(i)}) ∀i = 1, . . . , n, (25)

then the monotonicity of P will imply that �σ({xσ(1)}) ≤ �σ ({xσ(2)}) ≤ · · · ≤ �σ ({xσ(n)}), and then by Equa-
tion (22), that

∑
A⊆X

�σ (A) =
n∑

i=1

2i−1P({xσ(1), . . . , xσ(i)}).

On the other hand, if �σ does not satisfy Equation (25), then by construction (see Equations (17)–(19)) we have that 
�σ ({xσ(i)}) ≤ P({xσ(1), . . . , xσ(i)}) for every i = 1, . . . , n, with strict inequality on some i. This means that

∑
A⊆X

�σ (A) <

n∑
i=1

2i−1P({xσ(1), . . . , xσ(i)}).

Further, from Proposition 4 we know that if �σ does not satisfy Equation (25) then it is possible to find another 
permutation σ ′ that does so and such that �σ(A) = �σ ′(A) for every A ⊆X .

This means that we can find a �σ minimising the BV-distance by solving a shortest path problem. For this aim, 
we consider the Hasse diagram of P(X ), and we assign the following weights: if xi /∈ A, we assign the weight 
2|A|P(A ∪ {xi}) to the edge A → A ∪ {xi}, and the fictitious weight 0 to X \ {xi} → X . Since these weights are 
non-negative, we can find the shortest path efficiently by means of Dijkstra’s algorithm [14,19].

In this diagram, there are two types of paths:

(a) Paths whose associated possibility measure �σ satisfies Equation (25); then the value of Equation (23) for �σ

coincides with the value of the path, with the weights established above.
(b) Paths whose associated possibility measure �σ does not satisfy the equality in Equation (25); then the value of 

Equation (23) for �σ shall be strictly smaller than the value of the path, and shall moreover coincide with the 
value of the path determined by some other permutation σ ′, as established in Proposition 4. This means that the 
shortest path can never be found among these ones.

As a consequence, if we find the shortest path we shall determine a permutation σ whose associated possibility 
measure �σ satisfies Equation (25), i.e., it coincides with the upper probability that we are outer approximating in 
the chain of events determined by the path. Moreover, this possibility measure shall minimise the BV-distance with 
respect to the original model among all the non-dominating outer approximations in C∞. In this manner we shall 
obtain all such possibility measures; although we may not be able to identify the set of all permutations that generate 
them, this allows us to skip the procedure in Equations (17)–(19).

Example 13. Consider the coherent conjugate lower and upper probabilities from Example 12. Fig. 3 pictures the 
Hasse diagram with the weights on the edges we discussed before.

Solving the shortest path problem from ∅ to X using Dijkstra’s algorithm, we obtain an optimal value of 2 that is 
attained with the following paths:

∅ → {x1} → {x1, x2} →X , ∅ → {x1} → {x1, x3} → X .

∅ → {x2} → {x2, x3} →X , ∅ → {x3} → {x2, x3} → X .

These four paths correspond to the permutations σ1 = (1, 2, 3), σ2 = (1, 3, 2), σ4 = (2, 3, 1) and σ6 = (3, 2, 1). Even 
if they induce four different possibility measures, all of them are at the same distance (with respect to dBV ) from P . 
The other two possibility measures are those that were discarded in Example 12 using Lemma 5. �
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X

∅

{x1} {x2} {x3}

{x1, x2} {x1, x3} {x2, x3}

0.4 0.5 0.5

1.6

1.6 1.6 1.5 1.6

1.5

0 0 0

Fig. 3. Hasse diagram with the associated weights for Example 13.

This example shows that with this approach we obtain the possibility measure �σ at a minimum BV-distance. It 
also shows that the solution is not unique, and that the vectors �βσ and �βσ ′ that are not pointwisely ordered may be 
associated with two different possibility measures �σ and �σ ′ minimising the BV-distance (such as σ1 and σ6 in 
the example). Nevertheless, we can determine situations in which the BV-distance selects one single �σ , using the 
following result.

Proposition 6. Let P and P be coherent conjugate lower and upper probabilities. If there is a permutation σ ∈ Sn

satisfying

P
({

xσ(1), . . . , xσ(j)

}) = min|A|=j
P (A) ∀j = 1, . . . , n, (26)

then �σ minimises the BV-distance.

Proof. A possibility measure �σ minimises the BV-distance with respect to P when it minimises Equation (22). 
Moreover, naming σ ∈ Sn a permutation satisfying Equation (26), we obtain its associated vector �βσ given by:

�βσ =
(

min|A|=1
P(A), min|A|=2

P(A), . . . , min|A|=n−1
P(A),1

)
.

Since any permutation σ ′ that is not discarded in Proposition 4 will satisfy

�σ ′({xσ ′(1), . . . , xσ ′(i)}) ≥ min|A|=i
P (A) = �σ ({xσ(1), . . . , xσ(i)}),

we deduce that �βσ is pointwisely dominated by any other �βσ ′ , hence using Lemma 5 we obtain that dBV (P , Nσ ) ≤
dBV (P , Nσ ′). �

As a consequence of this result, if there is only one permutation satisfying Equation (26), this approach allows to 
select a unique undominated outer approximation. The next example illustrates this:

Example 14. Consider again the conjugate coherent lower and upper probabilities P and P in Example 3. It holds 
that:

P({x4}) = 0.4 = min|A|=1
P (A).

P ({x2, x4}) = 0.7 = min|A|=2
P(A).
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P({x1, x2, x3}) = 1 = P({x1, x2, x4}) = P({x1, x3, x4}) = P({x2, x3, x4}).
There are two chains of events satisfying Equation (26), namely {x4} ⊆ {x2, x4} ⊆ {x1, x2, x4} ⊆ X and {x4} ⊆
{x2, x4} ⊆ {x2, x3, x4} ⊆ X . They are associated with the permutations σ = (4, 2, 1, 3) and σ ′ = (4, 2, 3, 1). From 
Proposition 6, the possibility measure �σ = �σ ′ they determine, that is given by the possibility distribution 
π = (1, 0.7, 1, 0.4), is the unique undominated outer approximation in C� minimising the BV-distance. �

The verification of Equation (26) can be done quite simply using tools from graph theory. For any k ∈ {0, . . . , n}, 
let Ak = {A ⊆ X such that |A| = k, P(A) = min|B|=k P (B)}. We obtain in particular that A0 = {∅} and An = {X }. 
Consider now a graph where the nodes are the sets in Ak for k = 0, . . . , n, and where we add an arrow from A ∈ Ak

to B ∈ Ak+1 if and only if A ⊂ B . It follows that Equation (26) holds if and only if in the resulting graph there exists 
a path from ∅ to X .

Applying this on Example 14, we obtain the following graph:

∅ {x4} {x2, x4}
{x1, x2, x4}

{x1, x2, x3}

{x2, x3, x4}

{x1, x3, x4}

X

Trivially, there is a path from ∅ to X . This path determines a chain of events satisfying Equation (26).
Nevertheless, the condition in Proposition 6 is only sufficient, but not necessary. See for instance Examples 12

and 13: there, neither σ1 = (1, 2, 3) nor σ2 = (1, 3, 2) satisfy Equation (26) because the sequence of events with 
minimal upper probability does not form a chain, but both �σ1 and �σ2 minimise the BV-distance. To see that in 
those examples Equation (26) does not hold, note that

min|A|=1
P (A) = 0.4 = P({x1}), min|A|=2

P(A) = 0.75 = P({x2, x3}).

We obtain thus a graph with only two arrows: ∅ → {x1} and {x2, x3} → X , and where it is therefore impossible to 
build a path from ∅ to X .

5.2. Approach based on the quadratic distance

We consider now the approach based on minimising the quadratic distance dq considered in Equation (8). In this 
case, since we are dealing with possibility measures instead of their conjugate necessity measures, we can rewrite the 
quadratic distance as:

dq(P ,�) =
∑
A⊆X

(
�(A) − P(A)

)2
. (27)

Unfortunately, selecting the possibility measures among those in (�σ )σ∈Sn by this approach fails for several reasons. 
Firstly, as we have already mentioned, the interpretation of this distance is not clear; secondly, the main advantage of 
using the quadratic distance in Section 3.1 is that the feasible region of the minimisation problem is convex, but this 
is not the case with our family (�σ )σ∈Sn ; and thirdly, since the feasible region is not convex, we cannot guarantee the 
uniqueness of a solution, as we show in the next example.
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Example 15. Consider the same conjugate coherent lower and upper probabilities of Example 12. In Table 1 we 
have specified the possibility measures (�σ )σ∈Sn ; their quadratic distances with respect to P are given by next ta-

ble:

�σ1 �σ2 �σ3 �σ4 �σ5 �σ6

dq

(
P ,�σi

)
0.4425 0.4425 0.5125 0.5025 0.5125 0.5025

We can see that there are two possibility measures minimising the quadratic distance, those associated with the 
permutations σ1 = (1, 2, 3) and σ2 = (1, 3, 2). �

5.3. Approach based on measuring specificity

Since any possibility measure is in particular a plausibility measure (that is, the conjugate of a belief function), 
it makes sense to compare them by means of specificity measures. In this section, we investigate which possibility 
measure(s) among (�σ )σ∈Sn are the most specific.

With each possibility measure in (�σ )σ∈Sn , we consider again its associated vector �βσ . In the case of possibility 
measures, we know that the focal events are nested: they are given by Ai := {xσ(n−i+1), . . . , xσ(n)}, with m(Ai) =
βσ,n−i+1 − βσ,n−i . Hence the specificity measure in Equation (13) simplifies to:

S(�σ ) = βσ,n − βσ,n−1

1
+ βσ,n−1 − βσ,n−2

2
+ . . . + βσ,2 − βσ,1

n − 1
+ βσ,1

n

= βσ,n − βσ,n−1

(
1 − 1

2

)
− βσ,n−2

(
1

2
− 1

3

)
− . . . − βσ,1

(
1

n − 1
− 1

n

)

= 1 − βσ,n−1

2
− βσ,n−2

2 · 3
− . . . − βσ,1

n(n − 1)
.

Thus, a most specific possibility measure will minimise

βσ,1

n(n − 1)
+ βσ,2

(n − 1)(n − 2)
+ . . . + βσ,n−1

2
. (28)

Our first result is similar to Lemma 5, and allows to discard some of the possibility measures �σ . For this aim we use 
again the vectors �βσ .

Lemma 7. Let �βσ and �βσ ′ be the vectors associated with the possibility measures �σ and �σ ′ . If βσ,i ≤ βσ ′,i for 
every i = 1, . . . , n, then S(�σ ) ≥ S(�σ ′). Furthermore, if βσ,j < βσ ′,j for some j = 1, . . . , n, then S(�σ ) > S(�σ ′).

Proof. For the permutations σ and σ ′, the specificities of �σ and �σ ′ are related as follows:

S(�σ ) = 1 − βσ,n−1

2
− βσ,n−2

2 · 3
− . . . − βσ,1

n(n − 1)
≥ 1 − βσ ′,n−1

2
− βσ ′,n−2

2 · 3
− . . . − βσ ′,1

n(n − 1)
= S(�σ ′). (29)

Then, S(�σ ) ≥ S(�σ ). If in addition βσ,j < βσ,j for some j = 1, . . . , n, the inequality in Equation (29) is strict. �
Example 16. Consider again Examples 12 and 13. In Table 1 we can see the possibility measures (�σ )σ∈Sn and their 
associated vectors ( �βσ )σ∈Sn . As we argued in Example 12, �βσ1 � �βσ3 , where σ1 = (1, 2, 3) and σ3 = (2, 1, 3). Hence 
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according to Lemma 7, S(�σ1) > S(�σ3). This means that we can discard �σ3 . A similar reasoning allows us to 
discard �σ5 . �
If we want to find those possibility measures maximising the specificity, we have to minimise Equation (28). Here 
we can make the same considerations as in the previous section: if the possibility measure �σ associated with a 
permutation σ satisfies Equation (25) then the monotonicity of P implies that �σ ({xσ(1)}) ≤ �σ ({xσ(2)}) ≤ · · · ≤
�σ ({xσ(n)}), and then Equation (28) becomes

n−1∑
i=1

P({xσ(1), . . . , xσ(i)})
(n − i)(n − i + 1)

.

On the other hand, if �σ does not satisfy Equation (25), then by construction �σ ({xσ(i)}) ≤ P({xσ(1), . . . , xσ(i)}) for 
every i = 1, . . . , n, with strict inequality on some i. This means that

S(�σ ) > 1 −
n−1∑
i=1

P({xσ(1), . . . , xσ(i)})
(n − i)(n − i + 1)

,

or, equivalently, that the value of Equation (28) for �σ is strictly smaller than

n−1∑
i=1

P({xσ(1), . . . , xσ(i)})
(n − i)(n − i + 1)

.

Moreover, from Proposition 4 we know that if �σ does not satisfy Equation (25) then it is possible to find another 
permutation σ ′ that does so and such that �σ = �σ ′ .

This means that we can find a �σ maximising the specificity by solving a shortest path problem, similarly to what 
we did in the case of the BV-distance. For this aim, we consider the Hasse diagram of P(X ), and for every A = X
and xi /∈ A we assign the weight

P({A ∪ {xi}})
(n − |A| − 1)(n − |A|) (30)

to the edge A → A ∪ {xi}, and we give the weight 0 to X \ {xi} → X .
In this diagram, there are two types of paths:

(a) Paths whose associated possibility measure �σ satisfies Equation (25); then the value of Equation (28) for �σ

coincides with the value of the path.
(b) Paths whose associated possibility measure �σ does not satisfy the equality in Equation (25); then the value of 

Equation (28) for �σ shall be strictly smaller than the value of the path, and shall moreover coincide with the 
value of the path determined by some other permutation σ ′, as established in Proposition 4. This means that the 
shortest path can never be found among these ones.

As a consequence, if we find the shortest path we shall determine a permutation σ whose associated possibility 
measure �σ satisfies Equation (25), and therefore that maximises the specificity. In this manner we shall obtain all 
such possibility measures; although we may not be able to identify the set of all permutations that generate them, this 
allows us to skip the computations in Equations (17)–(19).

Example 17. Consider again the running Examples 12, 13 and 16. In the next figure we can see the Hasse diagram of 
P(X ) with the weights from Equation (30).
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X

∅

{x1} {x2} {x3}

{x1, x2} {x1, x3} {x2, x3}

0.06̄ 0.083̄ 0.083̄

0.4

0.4 0.4 0.375 0.4

0.375

0 0 0

Solving the shortest path problem from ∅ to X , we obtain two optimal solutions:

∅ → {x2} → {x2, x3} →X , ∅ → {x3} → {x2, x3} → X .

They correspond to the permutations σ4 = (2, 3, 1) and σ6 = (3, 2, 1). �

These examples also illustrate that the approach based on minimising the BV-distance and the approach based on 
maximising the specificity are not equivalent: in Example 12 we have seen that the possibility measures minimis-
ing the BV-distance are the ones associated with the permutations (3, 1, 2) and (3, 2, 1), while those maximising 
the specificity are the ones associated with (2, 3, 1) and (3, 2, 1). Then, the possibility measure associated with the 
permutation (2, 3, 1) maximises the specificity but does not minimise the BV-distance with respect to P , while the 
possibility measure associated with the permutation (3, 1, 2) minimises the BV-distance but does not maximise the 
specificity. Hence, it seems that the best solution in this case is the possibility measure associated with the permutation 
(3, 2, 1), which is the only one minimising the BV-distance and maximising the specificity at the same time.

To conclude this subsection, we prove that in the same conditions of Proposition 6, the specificity measure may 
allow to select a unique possibility measure �σ .

Proposition 8. Let P and P be coherent conjugate lower and upper probabilities. If there is a permutation σ ∈ Sn

satisfying Equation (26), then �σ maximises the specificity.

Proof. For maximising the specificity, a possibility measure must minimise Equation (13). If σ ∈ Sn is a permutation 
satisfying Equation (26), its associated vector �βσ is given by:

�βσ =
(

min|A|=1
P(A), min|A|=2

P(A), . . . , min|A|=n−1
P(A),1

)
.

By definition, �βσ is pointwisely dominated by any other �βσ ′ , hence using Lemma 7 we obtain that S(�σ ) ≥ S(�σ ′)
for every σ ′ ∈ Sn. �

We arrive at the same conclusion of Proposition 6: if there is a unique permutation satisfying Equation (26), then 
there is a unique possibility measure maximising the specificity; and in that case the chosen possibility measure 
maximises the specificity and at the same time minimises the BV-distance.

5.4. Approach based on preference preservation

In order to choose among the possibility measures (�σ )σ∈Sn , we could try again the approach in Section 3.3 based 
on different conditions about preference preservation. In this case we shall consider the versions of C1–C6 in terms 
of upper probabilities: for instance, C1 now becomes
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P(A) < P(B) ⇒ Q(A) < Q(B).

Note that this is no loss of generality with respect to conditions C1–C4: for instance, it can easily be shown using 

conjugacy that

P(A) < P(B) ⇒ Q(A) < Q(B) ∀A,B ⊆ X
⇔ P (A) < P(B) ⇒ Q(A) < Q(B) ∀A,B ⊆ X ,

meaning that it does not matter if we formulate condition C1 in terms of lower or in terms of upper probabilities. A 
similar reasoning can be made for C2, C3 and C4. It does make a difference, however, in the case of conditions C5
and C6. For instance, in the case of C6 the conditions

P ({x}) = P ({x′}) ⇒ Q({x}) = Q({x′}) ∀x, x′ ∈ X
and

P({x}) = P({x′}) ⇒ Q({x}) = Q({x′}) ∀x, x′ ∈ X
will not be equivalent in general. Since in this section our uncertainty is expressed in terms of coherent upper proba-
bilities and possibility measures, we shall consider the versions of C5 and C6 in terms of upper probabilities. To avoid 
misunderstandings, we will denote the conditions in terms of upper probabilities as Ci instead of Ci.

Nevertheless, the properties of preference preservation are not really helpful in the selection problem, as we show 
in the next example.

Example 18. Let P be the upper envelope of the probability mass functions:

(0.1,0.2,0.7), (0.1,0.6,0.3), (0.5,0.5,0), (0.4,0.1,0.5).

This upper probability, as well as the possibility measures in (�σ)σ∈Sn , are given by:

σ (1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,1,2) (3,2,1)

A P �σ1 �σ2 �σ3 �σ4 �σ5 �σ6

{x1} 0.5 0.5 0.5 1 1 0.9 1
{x2} 0.6 1 1 0.6 0.6 1 0.9
{x3} 0.7 0.9 0.9 0.9 0.9 0.7 0.7

{x1, x2} 1 1 1 1 1 1 1
{x1, x3} 0.9 0.9 0.9 1 1 0.9 1
{x2, x3} 0.9 1 1 0.9 0.9 1 0.9

X 1 1 1 1 1 1 1

It can be easily seen that none of the �σi
, for i = 1, . . . , n, satisfies C5, and as a consequence they do not satisfy 

the stronger conditions C1, C2 and C4. Also, property C3 is neither satisfied by the �σi
, for i = 1, . . . , n. Finally, 

condition C6 holds trivially in this example because all the values of P in the singletons are different.
This means that the none of the conditions Ci is useful in this example. �

5.5. Approach based on the total variation distance

Our last approach is based on selecting the possibility measure among (�σ )σ∈Sn by minimising one of the 
extensions of the total variation distance with respect to P . In that case, the distances d1, d2 and d3 given in Equa-
tions (9)–(11) must be rewritten in terms of the upper probabilities, giving rise to the distances d1, d2 and d3 given 
by:

d1(P 1,P 2) = max
A⊆X

|P 1(A) − P 2(A)|,

d2(P 1,P 2) = 1

2

∑
x∈X

|P 1({x}) − P 2({x})|,
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d3(P 1,P 2) = sup
P1≤P 1,P2≤P 2

(
max
A⊆X

|P1(A) − P2(A)|
)

.

As in the case of C2 and C∞, this approach is not fruitful:

Example 19. Consider again Example 12. If we compute di(P , �j), for i = 1, 2, 3 and j = 1, . . . , 6, we obtain the 
following values:

�σ1 �σ2 �σ3 �σ4 �σ5 �σ6

d1(P ,�σi
) 0.5 0.5 0.5 0.6 0.5 0.6

d2(P ,�σi
) 0.4 0.4 0.45 0.425 0.45 0.425

d3(P ,�σi
) 0.8 0.8 0.8 0.75 0.8 0.75

Thus, none of d1, d2 or d3 allows to select a single possibility measure. On the other hand, the intersection of the sets 
of optimal outer approximations with respect to d1, d2 and d3 is empty: in other words, there is no possibility measure 
among (�σ )σ∈Sn minimising the three distances simultaneously. �

5.6. Discussion

In this section we have explored five different approaches for selecting a non-dominating outer approximation 
in C�, i.e., among the possibility measures (�σ )σ∈Sn , where �σ is defined following Equations (17)–(19). These 
approaches are based on minimising the quadratic or the BV-distance, maximising the specificity, some preference 
preservation and minimising the total variation distance.

With respect to the idea of minimising the quadratic distance, it has the drawback in this case of not producing a 
unique solution, while being also less intuitive than the other approaches, in our opinion.

Concerning the BV-distance and specificity measures, we have seen a simple procedure for finding the possibility 
measures minimising the BV-distance or maximising the specificity; we have also showed that these two approaches 
yield the same solution in the cases depicted in Propositions 6 and 8. The procedure is based on solving a shortest path 
problem. The drawback in both cases is again that there could be more than one optimal solution. In that situation, and 
using the same ideas as in Section 3, we propose: (i) to look for the possibility measures minimising the BV-distance; 
if this procedure does not give a unique solution, (ii) choose among them the possibility measure(s) with greatest 
specificity; if again there is no unique possibility measure, (iii) compute their quadratic distance (see Equation (27)) 
with respect to the initial model and select the one minimising it; if again there is no single solution, (iv) all of them 
are equally preferred, hence we can select any of them.

6. Conclusions

In our previous work [33,34], we have considered the problem of approximating a coherent lower probability by 
a more tractable model that satisfies some interesting additional property, such as 2-monotonicity. In determining 
an optimal outer approximation, we considered two criteria in [33,34]: first of all, that the outer approximation is 
undominated, meaning that it is not possible to find another outer approximation of the original model that is more 
precise; since the set of such outer approximations is difficult to determine, and nonetheless infinite, we have reduced 
it by focusing on those that are closest to the original model, in terms of the distance between imprecise probability 
models proposed by Baroni and Vicig. This has the advantage that the set can be determined by means of linear 
programming, and that the distance has a clear interpretation as a measure of imprecision. However, in most cases the 
set of solutions to this problem will have more than one element and for this reason we have considered in this paper 
a number of comparison criteria between its elements.

The criteria we have considered can be grouped into two categories: on the one hand, we can analyse how similar 
are the initial model and its outer approximation. Here, we have considered other distances, such as the quadratic one 
or generalisations of the total variation distance, and we have also compared the two models in terms of the preferences 
they encompass. In the first line of work, we should remark that the quadratic distance allows us to single out a unique 
outer approximation, while this is not the case for the total variation distance. With respect to the second criterion, 
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we have explored a number of possibilities, but all of them can be shown to be too weak or too restrictive for our 
purposes. In this respect, it may be interesting to consider the preference modelling in terms of the sets of desirable 

gambles associated with the coherent lower probabilities [48,51], and to define comparison measures between them.

Our second approach has been to consider how tight is the outer approximation. Here, we have measured this in 
terms of the specificity measure, but this is not the only possible approach; we may instead consider other measures 
of imprecision or non-specificity, such as those proposed in [3,4]. Note also that our two approaches are somewhat 
related, as we have discussed in Section 3 (see Equations (6) and (7)).

As future work, we would like to point out (i) the study of the selection of outer approximations within some 
distortion models, complementing the work in [33] and extending it to the imprecise case; (ii) a deeper study on the 
preservation of preferences from the point of view of optimality criteria in decision making with imprecise probabil-
ities [43], or by characterising the set of outer approximations that encompass the same preferences as the original 
model; (iii) to see if some additional properties can be established when the original model is 2-monotone and we want 
its outer approximation to satisfy a stronger condition, such as complete monotonicity; (iv) to deepen the analysis of 
the computational complexity of the different approaches, to see the extent to which they can be employed in large 
possibility spaces; and (v) finally, while we believe that minimising the BV-distance is the best approach for obtain-
ing undominated outer approximations, it would be interesting to compare our outer approximations with those that 
minimise the Kullback-Leibler divergence, considering that the latter is a widespread tool within probability theory 
and that it has already been used in the framework of imprecise probabilities (see for example [1,35]).
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Appendix A. On the strict positivity assumption for upper probabilities

Throughout Section 5, we have assumed that all (non-impossible) events have strictly positive upper probability. 
To see that we can assume this without loss of generality, we establish first a property of coherent upper probabilities.

Lemma 9. Let P : P(X ) → [0, 1] be a coherent upper probability. If P(A0) = 0 for a given A0 ⊂ X , then P(A ∪
A0) = P(A) for every A ⊆X .

Proof. Since any coherent upper probability is subadditive [48, Sec. 2.7.4(d)], we have that

P(A ∪ A0) ≤ P(A) + P(A0) = P(A) ≤ P(A ∪ A0),

where last inequality follows by monotonicity [48, Sec. 2.7.4(c)]. Thus, P(A ∪ A0) = P(A). �
This property allows us to establish the following:

Proposition 10. Let P , Q : P(X ) → [0, 1] be two coherent upper probabilities such that P ≤ Q. Assume that 
P(A0) = 0 < Q(A0) for a given A0 ⊂ X , and let us define Q

′ :P(X ) → [0, 1] by

Q
′
(A) = Q(A \ A0) ∀A ⊆ X . (31)

Then,
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(1) P ≤ Q
′
� Q.

(2) If Q is k-alternating, so is Q
′
.

′

(3) If Q is a possibility measure, so is Q .

Proof. To see that Q
′

is normalised, i.e., that Q
′
(X ) = 1, note that

Q
′
(X ) = Q(X \ A0) ≥ P(X \ A0) = P(X ) = 1,

where the one-but last equality follows from Lemma 9.

(1) By definition and coherence of Q, it holds that Q
′ ≤ Q. The inequality is strict because Q

′
(A0) = Q(∅) = 0 <

Q(A0).
To see that P ≤ Q

′
, note that for any event A it holds that Q

′
(A) = Q(A \ A0) ≥ P(A \ A0) = P(A), where 

last equality follows applying Lemma 9.
(2) Consider events A1, . . . , Ap , with p ≤ k and let us establish that

Q
′( ∩p

i=1 Ai

) ≤
∑

∅=I⊆{1,...,p}
(−1)|I |+1Q

′( ∪i∈I Ai

)
. (32)

Since Q
′
(A) = Q(A \ A0) for every A ⊆X , it follows that∑

∅=I⊆{1,...,p}
(−1)|I |+1Q

′( ∪i∈I Ai

) =
∑

∅=I⊆{1,...,p}
(−1)|I |+1Q

(
(∪i∈IAi) \ A0

)

=
∑

∅=I⊆{1,...,p}
(−1)|I |+1Q

( ∪i∈I (Ai \ A0)
)

≥ Q
( ∩p

i=1 (Ai \ A0)
) = Q

(
(∩p

i=1Ai) \ A0
)

= Q
′( ∩p

i=1 Ai

)
,

where the inequality holds because Q is k-alternating. Thus, Equation (32) follows.
(3) Let us prove that Q

′
satisfies Equation (4). Consider two events A, B .

Q
′
(A ∪ B) = Q

(
(A ∪ B) \ A0

) = Q
(
(A \ A0) ∪ (B \ A0)

)
= max

{
Q(A \ A0),Q(B \ A0)

} = max
{
Q

′
(A),Q

′
(B)

}
.

As a consequence Q
′

is a possibility measure. �
Note that the coherence of Q does not imply in general that of Q

′
:

Example 20. Let X = {x1, x2, x3, x4}, P ∈ P (X ) the probability measure associated with the mass function 
(0.5, 0.5, 0, 0) and Q the upper envelope of the probability mass functions (0.5, 0.5, 0, 0) and (0.25, 0.25, 0.25, 0.25). 
Then, taking into account that a probability measure is in particular a coherent upper probability, P ≤ Q and 
P({x4}) = 0 < 0.25 = Q({x4}). If we consider the upper probability Q

′
determined by Q and A0 = {x4} in Equa-

tion (31), we obtain

Q
′
({x1, x3}) = Q

′
({x2, x3}) = 0.5, Q

′
({x3}) = 0.25, Q

′
({x4}) = 0.

This implies that Q
′

is not coherent, since any probability Q ∈ P (X ) satisfying Q ≤ Q
′

and Q({x3}) = 0.25 should 
satisfy Q({x1}) ≤ 0.25, Q({x2}) ≤ 0.25, Q({x4}) = 0, and as a consequence it would not be normalised. �

Proposition 10 allows us to deduce the following:

Corollary 11. Let P : P(X ) → [0, 1] be a coherent upper probability and let Q be a non-dominating outer approxi-
mation of P in C2, C∞ or C�. If P({x}) = 0, then also Q({x}) = 0.
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Proof. Ex-absurdo, if Q({x}) > 0 then we can define the coherent upper probability Q
′

from Equation (31) and it 
will be an outer approximation of P that is dominated by Q, a contradiction. �
As a consequence, we may assume without loss of generality that P({x}) > 0 for every x ∈ X ; otherwise, we 
consider the event X0 := {x ∈ X | P({x}) = 0}. Note that by subadditivity of the coherent P , also P(X0) = 0. Thus, 
we work with the restriction of P to P(X \ X0) and its outer approximations, and then extend each Q

∗
of these to 

P(X ) simply by making Q(A) = Q
∗
(A \X0) for every A ⊆ X . In the particular case of possibility measures, taking 

�(A) = �∗(A \X0) is equivalent to assign the value π(x) = 0 to any element x in X0.
If we restrict to the non-dominating outer approximations of P in P(X \X0) and apply the extension above to each 

of them, we obtain that Q is non-dominating also on P(X ). In fact, for any other outer approximation Q1 on P(X )

there must be some A such that Q1(A) ≥ Q1(A \X0) � Q
∗
(A \X0) = Q(A) by monotonicity.
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