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Computer vision and near infrared spectroscopy are fast and non-invasive techniques

currently available for processing control in the meat industry. These techniques can be

used, either separately or combined, for on-line assessment of meat quality parameters.

This study aimed to compare a portable near-infrared (NIR) spectrometer, near infrared

hyperspectral imaging (NIR-HSI) and red, green and blue imaging (RGB-I) to differentiate

ground samples from beef, pork and chicken meat; and to quantify amounts of each in

mixtures. Chicken breast meat was adulterated with either pork leg meat or beef round

meat from 0 to 50% (w/w). Partial Least Squares regression (PLSR) models were performed

using full spectra and after selecting most important wavelengths. The best results were

obtained with NIR-HSI, with coefficient of prediction (RP
2) of 0.83 and 0.94, ratio performance

to deviation (RPD) of 1.96 and 3.56, and ratio of error range (RER) of 10.0 and 18.1, for

samples of chicken adulterated with pork and beef, respectively. In addition, the results

obtained using NIR spectroscopy and RGB-I confirm that these techniques provide an

alternative for rapid, on-line inspection of ground meat in the food industry.
1. Introduction

The poultry meat industry is increasing worldwide as poultry

meat is considered an important component in healthy diets.

The market becomes more demanding in quality, safety,

environmental legislation, ethics, and sustainable production

requirements. Therefore, quality control in the production
F. Barbin).
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supply chain of poultry meat is essential to ensure consumer

confidence. Currently, meat and meat products adulteration

with other meats or objectionable species is common inmany

countries (Ballin, Vogensen, & Karlsson, 2009). This practice

can bring health risks (for instance: allergies andmetabolomic

disorders) (Woolfe & Primrose, 2004) and religious conflicts

(Ballin, 2010).
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The meat industry is dynamic and complex, needing low-

cost and environmentally friendly fast techniques to ensure

the quality and authenticity of products. Near infrared spec-

troscopy (NIRS) is a promising technique for food authenti-

cation because it is fast, sensitive, reagent-free and can be

used for process control in the industry in continuous food

processing lines (Campos, Mussons, Antolin, Deb�an, & Pardo,

2017; Garcia-Martin, 2015; Martı́nez Gila, Cano Marchal,

G�amez Garcı́a, & G�omez Ortega, 2015; Massantini et al., 2017;

Munir et al., 2017; Santos et al., 2016). NIRS has been demon-

strated to be a reliable technique for food control and food

authentication in different meat products: prediction of meat

quality parameters (Barbin et al., 2015; Li et al., 2016; Wang,

Peng, Sun, Zheng, & Wei, 2018), meat discrimination (Prieto

et al., 2015), differentiation between fresh and frozen/

thawed chicken (Grunert, Stephan, Ehling-Schulz, & Johler,

2016), adulteration of turkey meat (Alamprese, Amigo,

Casiraghi, & Engelsen, 2016) and beef (Rady & Adedeji, 2018),

classification of chicken breast fillets (Yang et al., 2018) and

classification of different parts of chicken (Nolasco Perez et al.,

2018).

Red, green and blue Imaging (RGB-I) is interesting for the

meat industry for its simplicity, low cost, and non-destructive

nature (Santos Pereira, Barbon, Valous, & Barbin, 2018). RGB

images can be captured by digital cameras, webcams or

scanners from computer vision systems (CVS), which usually

contain a lighting system, camera, and image analysis soft-

ware using a computer (Liu, Sun, Young, Bachmeier, &

Newman, 2018). This technique allows the general colour

and visual appearance of the sample to be determined (Barbin

et al., 2016). RGB-I has been used to discriminate beef and pork

(Arsalane, El Barbri, Rhofir, Tabyaoui, & Klilou, 2017), to pre-

dict pork colour attributes (Sun, Young, Liu, & Newman, 2018)

and to classify and predict beef freshness (Arsalane et al.,

2018).

Near infrared hyperspectral imaging (NIR-HSI) combines

imaging and NIR spectroscopy, overcoming some limitations

of these techniques when they are used individually (Feng,

Makino, Oshita, & Garcia-Martin, 2018; Zheng, Li, Wei, &

Peng, 2019). NIR-HSI provides simultaneous determination of

physical and chemical properties of the sample, as well as

their spatial distribution (Feng, Makino, Yoshimura et al.,

2018; Riccioli, P�erez-Marı́n, & Garrido-Varo, 2018). Therefore,

this technology is capable of identifying analytes that are not

homogeneously distributed in the food matrix (Barreto, Cruz-

Tirado, Siche, & Quevedo, 2018; Feng, Makino, Yoshimura

et al., 2018). The capacity of NIR-HSI to identify chemical

features has been used for identification of beef adulterated

with chicken (Kamruzzaman, Makino, & Oshita, 2016), lamb

adulterated with duck meat (Zheng et al., 2019), beef adulter-

ated with chicken, pork meat and/or vegetable proteins (Rady

& Adedeji, 2018), adulteration of fat content in chicken meat

(Fernandes et al., 2019) and beef and horse meat discrimina-

tion (Arsalane et al., 2017).

Each of the three techniques has advantages and draw-

backs. NIR spectroscopy provides spectral information but

several measurements are necessary, while RGB-I provides

spatial information in a limited number of wavelengths.

Although NIR-HSI solves this drawback by combining spatial

and spectral information, it is muchmore expensive than NIR
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spectroscopy or RGB-I. In general, the meat industry can use

these technologies for meat authentication and routine

mixture analyses in real time, according to their needs.

To the best of our knowledge, no work has reported iden-

tification and classification of chicken meat adulterated with

pork comparing NIR-HSI, NIRS and RGB-I. Therefore, the main

objective of the present study was to investigate and compare

NIRS, NIR-HSI and RGB-I techniques for fast classification of

pure chickenmeat and chicken samples adulterated with beef

or pork.
2. Material and methods

2.1. Sample preparation

Meat samples from breast (chicken), leg (pork) and round

(beef) were used in the present research. This study consisted

of two parts: first, 60 samples from three different species (20

chicken, 20 pork, 20 beef) were prepared and used for classi-

fication models.

Afterwards, 420 samples (210 samples adulterated with

pork and 210 samples adulterated with beef) were prepared

for prediction models, to quantify the amount of beef or pork

added to chickenmeat. Chickenmeat was mixed with pork or

beef in the range of 0e50% of mixtures, at intervals of

approximately 2%. The samples were divided into two sample

sets: the calibration (training) set containing 135 samples (in

the range of 0e50% at approximately 2% increments) and

prediction (test) set containing 75 samples (in the range of

0e48% at approximately 4% increments). Samples of each

species were individually cut, weighed (totalling 20 g) and

ground together in a meat processor. The ground samples

were moulded in a circular glass (1.1 cm deep and 5 cm

diameter).

2.2. NIR spectroscopy

NIR spectra were acquired in the range of 900e1700 nm at

3.51 nm intervals with 228 spectral bands using a portable

spectrophotometer (NIRScan Nano, Texas Instruments, USA)

in absorbance mode. The acquisition of the spectra was per-

formed by direct contact in the same (central) region of each

sample. Therefore, one spectrum was collected from each of

the 60 pure samples and 420 adulterated samples.

2.3. NIR hyperspectral imaging (NIR-HSI)

Spectral imageswere recorded in the range of 900e2500 nm, at

spectral intervals of 6 nm giving 256 spectral bands, in the

reflectance mode at a scanning speed of 63.30 mm s�1, using

an NIR-HSI system (SisuCHEMA NIR/SWIR, Specim Ltd.,

FINe90571 FINLAND). The system consisted of line scan

spectrograph; a near infrared spectral camera (Specim e

SisuCHEMA NIR XL, SPECIM Ltd, Finland), with a line scan

detector of 320 pixels and spatial resolution of 623 mm; an

OLE15 lens with 200 mm field of view and adductor, a diffuse

illumination unit of 10 W halogen side reflector lamp Osram

Ministar (Specim Ltda, Oulu, Finland), a sample tray platform,

linear moving stage, and a computer supported with data
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Fig. 1 e Average spectra of ground meat samples: (····) beef,
( ־־־ ) pork and (d) chicken; acquired by: a) portable NIR

spectrometer; b) NIR hyperspectral imaging system.
acquisition software ChemaDAQ (Specim Ltda, Oulu, Finland).

The focal length for camera was 15 cm and frame rate was

100 fps. The calibrations for black reference and white refer-

ence were performed automatically by the system.

Hyperspectral images were manually segmented, isolating

the region of interest of each sample (ground meat) from the

background, for extraction of spectral information. The seg-

mentation was carried out to obtain the average spectrum for

each sample, using the EVINCE 2.0 software (UmBio AB, 2009).

2.4. RGB-imaging (RGB-I)

Images of ground sampleswere captured by a computer vision

system previously described by Santos Pereira et al. (2018).

The system consists of an illumination source of two LED

lamps (Natural daylight, 100We Brazil), located at an angle of

45�, a digital camera (Sony, Japan) and chamber with matte

black internal walls to reduce the shadowing effects. The

camera settings for the images were: manual exposure with

shutter speed of 1/60 s (zoom and flash off) and ISO number

of 200.

2.4.1. Image analysis and feature extraction
Each colour image was pre-processed in MATLAB R2016a

(Mathworks, USA), and the segmentation was carried out for

extraction of the region of interest (ROI) by removing the

background of the image. All images were separated into 3

images representing the absorption of the primary colours

red, green and blue (RGB), subsequently converted to hue

saturation value (HSV). Once the matrix to be analysed had

been chosen, the Otsu method was used to transform the

grayscale image (Mora & Fonseca, 2014; Otsu, 1979). After

applying the Otsu method, a binarised image was obtained,

and small objects were removed in the image to perfectly

isolate the region of interest; thus, only the features of the

samples were extracted. In total, 59 variables (9 variables from

average of colour channel R, G, B, H, S, V, L*, a* and b*; 1 var-

iable from average of binary image intensity; 28 variables from

texture features of Gray Level Co-occurrence Matrix (GLCM),

contrast, energy, correlation and homogeneity from R, G, B, H,

V, S and binary, 21 variables from entropy, kurtosis, skewness

from R, G, B, H, V, S and binary) were extracted for each image.

2.5. Multivariate analyses

Principal component analysis (PCA) was applied to the NIR

spectra, NIR-HSI spectra and RGB-I data of the pure samples

for classification of meat species (chicken, pork, and beef).

Then, a few wavelengths were selected using the PCA load-

ings, and another PCA and linear discriminant analysis (LDA)

was carried out using only the selected wavelengths. LDA

discriminates functions to achieve maximum variation be-

tween classes and to minimise variation within each class

(Pizarro, Rodrı́guez-Tecedor, P�erez-del-Notario, Esteban-Dı́ez,

& Gonz�alez-S�aiz, 2013).

Similarly, Partial Least Squares regression (PLSR) was car-

ried out using all the wavelengths without any pre-processing

and compared with information after Multiplicative Scatter

Correction (MSC), Standard Normal Variate (SNV), 1st deriva-

tive, 2nd derivative. Each pre-processing technique was
3

applied separately for comparison. Then, PLSR was developed

in the pretreated data to verify the best result. Performance of

the models was compared by root mean square error of cali-

bration (RMSEC), cross-validation (RMSECV), and prediction

(RMSEP), as well as the coefficient of determination of cali-

bration (Rc
2), cross-validation (Rcv

2 ), and prediction (Rp
2); and

finally, the ratio performance to deviation (RPD) and the ratio

of error range (RER).

2.5.1. Selection of most relevant wavelengths
Selecting wavelengths is important to reduce the high

dimensionality of the spectral data to increase processing

speed and to reduce the cost of hardware configuration

(Kamruzzaman, ElMasry, Sun, & Allen, 2012). Stepwise

regression (Cluff et al., 2008) and PCA loadings for the pure

samples and PLSR regression coefficients for the adulterated

samples were used to select important wavelengths. Stepwise

regression using forward selection with p-value of 0.25 of

significance level was performed to identify which wave-

lengths were most relevant, using the program Minitab

https://doi.org/10.1016/j.biosystemseng.2019.04.013
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(Minitab 14 Inc., Release forWindowsTM, U.S.A.). Thismethod

begins with one wavelength and incorporates a new variable

in the model at each iteration until a specified number of

wavelengths is reached (Kamruzzaman & Sun, 2016; Liu, Sun,

& Zeng, 2014). Regression models with selected wavelengths

were used for building the adulteration map of samples.

2.5.2. Adulteration map
NIR-HSI has the advantage of visualising the distribution of

the prediction model values in the spatial domain (pixels)

(Kamruzzaman et al., 2016). The PLSRmodel with the selected
Fig. 2 e PCA scores for ground samples of different species: (■) be
by portable NIR spectrometer; (b) PCA for three selected wavele

RGB-I; (d) PCA for three selected features from RGB-I; (e) PCA fo

wavelengths selected from NIR-HSI.
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wavelengthswas applied to predict the level of adulteration in

each pixel of the chicken sample. The hyperspectral image at

selected wavelengths was unfolded in a two-dimensional (2-

D) matrix, so that each single-band image became a column

vector. Each pixel in the image was multiplied by the regres-

sion coefficients obtained from the PLSR model. After multi-

plication, the resulting matrix was refolded to form a 2-D

colour image with the same dimensions of the single band

image. This process results in a prediction map that demon-

strates the distribution of the adulteration in each pixel of the

image. A linear colour scale was used to map the predicted
ef, (●) pork and (:) chicken. (a) PCA for full spectra acquired

ngths from NIR spectrometer; (c) PCA for all features from

r full spectra acquired by NIR-HSI; (f) PCA for three
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Fig. 3 e PCA loadings plot for ground samples of different

species (a) spectra acquired by portable NIR spectrometer;

(b) spectra acquired by NIR-HSI.
values of each pixel in different colours, where the colours

represent different concentrations of the expected adultera-

tion (Barbin, ElMasry, Sun, Allen, & Morsy, 2013;

Kamruzzaman et al., 2016).
Table 1 e Results for PLSR models for chicken samples adulter

Technology Pre-treatment LV

Rc
2 Rcv

2

Portable NIR spectrometer None 5 0.56 0.38

SNV 5 0.48 0.24

MSC 5 0.48 0.24

1st der. 7 0.69 0.42

2nd der. 1 0.16 0.10

NIR-HSI None 8 0.94 0.83

SNV 7 0.94 0.81

MSC 7 0.94 0.82

1st der. 6 0.91 0.87

2nd der. 6 0.90 0.80

RGB-I None 59 0.90 0.86

5

3. Results and discussion

3.1. Spectral analyses

The average NIRS spectra (900e1700 nm) in absorbance mode

and NIR-HSI (900e2500 nm) in absorbance mode from

chicken, beef and pork present similar trends across the NIR

range 900e1700 nm (Fig. 1a and b). The characteristic bands of

970 nm and 1450 nm are related to 2nd and 1st overtone OeH

stretching of water (Nolasco Perez et al., 2018; Xiong et al.,

2015) and 1195 nm is related to the second overtone of CH3

stretching (De Marchi, Riovanto, Penasa, & Cassandro, 2012).

Specifically on the NIR-HSI spectra, thewavelength 1670 nm is

related to the first overtone of the CeH stretching (Budi�c- Leto

et al., 2011).

3.2. Classification of ground meat

PCA scores were used to visualise samples with similar

spectral signatures (Fig. 2aec). The first three principal com-

ponents were responsible for 99.1% (portable NIR spectrom-

eter), 74.0% (RGB-I), and 99.4% (NIR-HSI) of the total variance

among the samples examined. Also, it is possible to observe

that the samples did not overlap, showing a clear separation

of the three species of ground meat. In addition, the loadings

of the NIR data (Fig. 3a, b) were used to select important

wavelengths. Regarding RGB-I, the variables were selected

from the regression coefficients of PLSR models with highest

modulus.

Figure 2def show PCA scores using, respectively, selected

wavelengths 1132 nm, 1261 nm, 1453 nm for NIR spectrom-

eter; 1073 nm, 1359 nm and 1657 nm for NIR-HSI; arithmetic

mean of H, V and L* selected from RGB-I. It is possible to

observe that the three classes are separate, with the first three

main components responsible for 100% of the total variance

among the samples examined for the three techniques,

increasing its representativeness with respect to the PCA

performed using all variables. Next, we performed the clas-

sificationmodel based on the LDA algorithmusing the data set

of the ground meat samples.

Results for LDA of the three classes (chicken, beef, pork)

reached an overall accuracy of 100%, with sensitivity and

specificity of 1.00 for the ground meat data set of the three
ated with pork.

Calibration Validation

RMSEC RMSECV Rp
2 RMSEP RPD RER

13.58 16.20 0.28 20.32 0.96 4.92

14.66 17.91 0.02 23.79 0.82 4.20

14.71 17.95 0.01 23.90 0.82 4.18

11.40 15.68 0.18 21.77 0.90 4.59

18.76 19.59 0.13 22.38 0.88 4.47

5.18 8.61 0.83 10.00 1.96 10.00

5.00 8.87 0.77 11.58 1.69 8.64

4.90 8.40 0.77 11.58 1.69 8.64

6.16 7.44 0.80 10.65 1.84 9.39

6.32 9.17 0.84 9.51 2.66 10.52

6.31 7.57 0.60 15.67 1.25 6.38

https://doi.org/10.1016/j.biosystemseng.2019.04.013
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Table 2 e Results for PLSR models for chicken samples adulterated with beef.

Technique Pre-treatment LV Calibration Validation

Rc
2 Rcv

2 RMSEC RMSECV Rp
2 RMSEP RPD RER

Portable NIR spectrometer e 12 0.93 0.82 5.48 8.08 0.67 13.81 1.42 7.24

SNV 11 0.92 0.71 5.92 11.12 0.59 15.29 1.28 6.54

MSC 11 0.91 0.67 6.05 11.89 0.59 15.28 1.28 6.54

First derivate 9 0.92 0.82 5.87 8.74 0.70 13.07 1.50 7.65

Second derivate 13 0.92 0.46 5.68 15.15 0.33 19.72 0.99 5.07

NIReHSI e 6 0.98 0.97 2.82 3.47 0.94 5.51 3.56 18.15

SNV 5 0.97 0.96 3.18 3.73 0.93 6.50 3.01 15.38

MSC 5 0.97 0.96 3.18 3.76 0.93 6.50 3.01 15.38

First derivate 5 0.96 0.95 2.81 3.09 0.87 8.27 2.37 12.09

Second derivate 5 0.97 0.95 2.65 3.7 0.78 10.71 1.83 9.34

RGB-I e 59 0.96 0.94 4.11 4.86 0.90 7.67 2.56 13.04

Fig. 4 e Prediction map for ground chicken samples
types of species (chicken, beef and pork), for the three tech-

niques used. The results of LDA confirmed the good perfor-

mance of the classification of ground meats for different

species, which is consistent with previous studies carried out

by Rady and Adedeji (2018), using Vis/NIR and NIR

spectroscopy.

3.3. Prediction of adulteration in ground chicken
samples

In this section, the techniques were investigated to predict the

concentration of pork or beef in ground chicken meat. Thus,

NIR spectroscopy, NIR-HSI and RGB-I information were used

as predictors for PLSR models. For NIR and NIR-HSI data, the

calibration models were developed using raw and pre-

processed spectra, separately (MSC, SNV, 1st derivative, 2nd

derivative). Regression models using raw data provided good

results to quantify beef in chicken meat using portable NIR

spectrometer. However, the results with this spectrometer for

prediction of pork adulteration in chicken samples were less

accurate, maybe due to the small size of the sample area
Table 3 e Results for PLSR models with selected features for ch

Samples LV Wavelengths

R

Hyperspectral imaging

Chicken and pork PLSR 4 960, 1054, 1218, 1268, 1356 0.8

Stepwise 5 979, 1048, 1218, 1262, 1306 0.8

Chicken and beef PLSR 3 1067, 1187, 1444 0.9

Stepwise 3 1073, 1105, 1300 0.9

Portable NIR spectrometer

Chicken and pork PLSR 4 977, 1013, 1195, 1280, 1476 0.4

Stepwise 3 977, 1055, 1496, 1640, 1682 0.3

Chicken and beef PLSR 4 1086, 1195, 1290, 1368, 1470 0.7

Stepwise 5 977, 1079, 1269, 1382, 1406 0.7

RGB imaging

Chicken and pork PLSR 2 GLCM G Energy

Mean a*, Mean b*,

0.8

Chicken and beef PLSR 2 Mean G, Mean BW

Mean L*

0.9

LV e latent variable; GLCM G energy e gray level co-occurrence matrix G

arithmetic mean of colour channel b*; mean G e arithmetic mean of col

tensity; mean L* e arithmetic mean of colour channel L*

6

analysed in comparison to the imaging techniques (NIR-HSI or

RGB-I) where the total area of the sample is assessed

(Pasquini, 2018).

The results are presented for calibration and validation

models (Tables 1 and 2). According to De Girolamo, Lippolis,

Nordkvist, and Visconti (2009), R2 values from 0.66 to 0.81
icken samples adulterated with beef and pork.

Calibration Prediction

c
2 Rcv

2 RMSEC RMSECV Rp
2 RMSEP RPD RER

7 0.87 7.20 7.45 0.84 9.53 2.54 10.49

6 0.85 7.49 7.88 0.83 9.98 2.43 10.17

5 0.95 4.05 4.20 0.92 6.34 3.82 15.77

6 0.96 3.61 3.76 0.91 6.89 3.51 14.51

5 0.41 15.21 15.93 0.39 18.68 1.3 5.35

2 0.27 17.04 17.55 0.35 19.42 1.25 5.15

5 0.74 10.22 10.79 0.64 14.37 1.68 6.96

9 0.78 9.35 9.80 0.66 13.99 1.73 7.15

4 0.83 8.07 8.39 0.82 10.16 2.38 9.84

6 0.96 3.90 4.04 0.86 9.10 2.66 10.99

energy; mean a*e arithmetic mean of colour channel a*; mean b* e

our channel G; mean BW e arithmetic mean of the binary image in-

adulterated with different percentages of beef.

https://doi.org/10.1016/j.biosystemseng.2019.04.013
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would allow the approximate quantitative prediction, while R2

between 0.82 and 0.90 would allow a good prediction and R2

higher than 0.91 would provide an excellent model.

In addition, the models were evaluated based on RPD and

RER in order to verify the capacity and ability of the models.

RPD values in the range 1.8e2.0 indicate that the model is

good, and quantitative predictions are possible; 2.0e2.5 indi-

cate that the model is very good and larger than 2.5 indicates

thatmodel is excellent (Kamruzzaman et al., 2016). RER values

of less than 3 indicate little practical utility, RER between 3 and

10 indicate that themodels are limited to good practical utility

and RER greater than 10 indicate high accuracy (De Marchi

et al., 2011; Jiang, Yoon, Zhuang, & Wang, 2017).

Therefore, the best results were obtained for NIReHSI-

based models to quantify pork or beef in chicken meat

(Rp
2 ¼ 0.83 and Rp

2 ¼ 0.94, respectively), compared to RGB-I and

NIR spectroscopy. For RGB-I technique (Rp
2 ¼ 0.90) the model

was good for quantification of beef in chicken meat. The re-

sults for portable NIR spectrometer (Rp
2 ¼ 0.67) for quantifica-

tion of beef or pork in chicken meat presented high values of

RMSEP and RPD lower than 2.5, indicating they were not

adequate for prediction.

The results of RPD and RER for NIR-HSI were 3.56 and 18.15

and for RGB-I were 2.56 and 13.04, respectively, indicating the

models were excellent for predicting the level of beef in

chicken samples. Overall, best results were obtained for

identification of the presence of beef, than pork. Regarding the

techniques, NIR-HSI was more accurate than NIR spectros-

copy, probably due to the small region ofmeasurement for the

spectrometer. The limited sampling area of NIR spectroscopy

instruments may represent a disadvantage that NIR-HSI is

able to solve, since the region of interest for this application

usually includes the entire sample.

3.4. Prediction of adulteration in chicken samples using
selected wavelengths

In order to improve, optimise and reduce the size and time

of data processing, a few selected wavelengths and/or

image features were used to develop optimised PLSR

models (Table 3). The validation model with the selected

wavelengths was more accurate and robust than the

models on full wavelengths due to the elimination of noise

and variables with redundant information. The values of

the quadratic calibration and cross-calibration errors

showed little difference between them, which is indicative

of good performance of the models. The coefficient of

prediction (Rp
2) was 0.66 using the portable NIR spectrom-

eter for chicken samples adulterated with beef, which in-

dicates the possibility of using this instrument in the

detection of adulterated chicken samples.

Values for RMSEC, RMSECV and RMSEP were high, but

similar to previous studies. Zheng et al. (2019) obtained similar

values for RMSEP, using NIR-HSI for prediction of adulteration

of duck meat in minced lamb. L�opez-Maestresalas et al. (2019)

obtained better results for identification of chicken meat

mixed with beef, than pork mixed with beef, using NIR spec-

troscopy, depending on the spectral pre-processing technique

used. Kamruzzaman et al. (2016) found RPD values similar to

the current study, for prediction of chicken adulteration in
7

beef using NIR-HSI. In general, NIR-HSI provided better results

for identification of meat adulteration, compared to NIR

spectroscopy. This was also observed in the current work. The

limited sampling area of NIR spectroscopy instruments may

represent a disadvantage that NIR-HSI is able to solve, since

the region of interest for this application usually includes the

entire sample.

On the other hand, for NIR-HSI and RGB-I, the values in the

coefficient of prediction were Rp
2 ¼ 0.84 and Rp

2 ¼ 0.82 respec-

tively, with RPD and RER values of 2.54 and 10.49, respectively,

for NIR-HSI, and 2.38 and 9.84, respectively, for RGB-I. This in-

dicates that themodelswere good in predicting the levels of the

admixtures of pork in chicken samples. For chicken meat

samples adulterated with beef, RPD and RER values were 3.82

and 15.77 for NIR-HSI, respectively, and for RGB-I the RPD and

RER values were 2.66 and 10.99 respectively. According toWold,

Jakobsen, and Krane (1996), in some cases the multivariate

prediction model may improve with the selection of important

variables, similar to reported in this research for NIR-HSI.

3.5. Prediction map

The optimised model with selected wavelengths was trans-

ferred to each pixel of the image, where the different adul-

teration levels from lowest to highest percentage were

presented in different colours (Fig. 4). As can be observed,

hyperspectral imaging has the advantage of allowing the

visualisation of the concentration of adulteration when

compared to the portable NIR technique, thus providing in-

formation about the homogeneity of the mixtures. However,

the RGB-I has also provided considerable results that can be

used in the meat processing industry.
4. Conclusion

This research compared the results of three different ap-

proaches for classification of ground meat from different

species and quantification of adulteration by pork and beef in

ground chickenmeat. Portable NIR spectrometer, NIR-HSI and

RGB-I system were able to classify the ground meats with

different levels of accuracy. Further, data processing was

optimised with the reduction of variables, obtaining 100%

classification of chicken, pork and beef samples using Linear

Discriminant Analysis. PLSR models confirmed that NIR-HSI

provided the best results among these techniques for quan-

tification of beef and pork added to chickenmeat, and could be

a fast and non-invasive tool for meat inspection. These tech-

niques could provide alternatives to the meat processing in-

dustry, according to the cost of equipment and objective of the

analysis to be performed.
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