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Abstract. This paper aims at proving the existence and the localization of an unbounded
connected set of positive regular solutions (λ, u) of the quasilinear Neumann problem

−
(
u′/
√

1 + (u′)2
)′

= λa(x)f(u), 0 < x < 1, u′(0) = u′(1) = 0,

bifurcating from u = 0 as λ → +∞. Here,
(
u′/
√

1 + (u′)2
)′

is the one-dimensional curvature
operator, λ ∈ R is a parameter, the weight a changes sign, and the function f is superlinear at
0. A novel approach is introduced based on the explicit construction of non-ordered sub and
supersolutions.

1. Results

The aim of this paper is analyzing the set of positive regular solutions of the quasilinear Neumann
problem {

−
(
u′/
√

1 + (u′)2
)′

= λa(x)f(u), 0 < x < 1,

u′(0) = u′(1) = 0,
(1.1)

where λ ∈ R is a parameter and the functions a and f satisfy:

(a1) a ∈ L∞(0, 1),

∫ 1

0
a(x) dx < 0, and there is z ∈ (0, 1) such that a(x) > 0 almost every-

where in (0, z) and a(x) < 0 almost everywhere in (z, 1).

(f1) f ∈ C0[0,+∞), f(s) > 0 if s > 0, and, for some constant p > 1, lim
s→0+

f(s)
sp = 1.

As a is sign indefinite and f is superlinear at zero, (1.1) is a superlinear indefinite elliptic problem.
These problems have attracted a huge amount of attention during the last few decades.

Date: September 15, 2021.
2010 Mathematics Subject Classification. Primary: 35J93, 34B18. Secondary: 35J15, 35B09, 35B32, 35A16.
Key words and phrases. Quasilinear problem, curvature operator, Neumann boundary condition, regular solu-

tion, positive solution, indefinite weight, topological degree, sub and supersolutions, connected set.
J. López-Gómez has been supported by the Research Grant PGC2018-097104-B-I00 of the Spanish Ministry

of Science, Innovation and Universities and by the Institute of Interdisciplinary Mathematics of Complutense
University. This research has been performed under the auspices of INdAM-GNAMPA.
* The final version of this paper has been accepted for publication in Applied Mathematics Letters:
https://doi.org/10.1016/j.aml.2021.107807.

1



BRANCHES OF POSITIVE SOLUTIONS OF A SUPERLINEAR INDEFINITE PROBLEM 2

The problem (1.1) can be regarded as a simple prototype of the more sophisticated multidi-
mensional problem 

−div
(
∇u/

√
1 + |∇u|2

)
= F (x, u,∇u), in Ω,

−∇u · ν/
√

1 + |∇u|2 = σ, on ∂Ω,

(1.2)

where Ω is a bounded regular domain in RN , with outward pointing normal ν, and : Ω×R×RN →
R and σ : ∂Ω→ R are given functions. The problem (1.2) plays a central role in the mathematical
analysis of a number of important geometrical and physical issues, ranging from prescribed mean
curvature problems for cartesian surfaces in the Euclidean space, to the study of capillarity
phenomena for compressible or incompressible fluids, as well as to the analysis of reaction-
diffusion processes where the flux features saturation at high regimes. An extensive discussion
on these and other closely related issues is presented in our previous papers [9–14], where rather
complete lists of relevant references can be found.

Although the study of (1.1), or (1.2), is often settled in the space of bounded variation func-
tions, here we will be instead concerned with the regular solutions of (1.1). Namely, by a regular
solution of (1.1), we mean a function u ∈W 2,1(0, 1) which fulfills the differential equation almost
everywhere in (0, 1), as well as the boundary conditions. It is straightforward to see that u is a
regular solution of (1.1) if, and only if, it satisfies{

−u′′ = λa(x)f(u)(1 + (u′)2)
3
2 , 0 < x < 1,

u′(0) = u′(1) = 0.
(1.3)

A function u ∈ C0[0, 1] is said to be positive if min[0,1] u ≥ 0 and max[0,1] u > 0, whereas it is
said strictly positive if min[0,1] u > 0. Throughout this paper, the positive solutions of (1.1) are
regarded as couples (λ, u) as, eventually, we will adopt the point of view of ‘bifurcation theory’
in our analysis. Naturally, for any given λ ≥ 0, a couple (λ, u) is said to be a positive, or strictly
positive, solution of (1.1) if u is a positive, or strictly positive, solution of (1.1), respectively.

The first, preliminary, result of this paper is related to the Vázquez strong maximum principle
[15] and yields, under conditions (a1) and (f1), the strict positivity of any positive regular

solution of (1.3), or, equivalently, (1.1). Indeed, setting g(x, s, ξ) = λa(x)f(s)(1 + ξ2)
3
2 , it is

apparent that the condition (g1) below holds true.

Theorem 1.1. Assume that

(g1) g : [0, 1]× [0,+∞)× R→ R satisfy the Carathéodory conditions and, for every compact
subset K of R,

lim
s→0+

g(x,s,ξ)
s = 0, uniformly for almost every x ∈ [0, 1] and every ξ ∈ K.

Then, any positive solution u ∈W 2,1(0, 1) of{
−u′′ = g(x, u, u′), 0 < x < 1,
u′(0) = u′(1) = 0

(1.4)

is strictly positive.
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Subsequently, we denote by S + the set of all couples (λ, u) ∈ [0,∞)×C1[0, 1] such that (λ, u)
is a positive, and hence strictly positive, regular solution of (1.1).

The second, and main, goal of this paper is establishing the existence of an unbounded closed
connected subset C+ of S +, bifurcating from u = 0 as λ→ +∞, and providing simultaneously
some sharp information on its localization. The existence of unstable solutions, however not
necessarily belonging to C+, is also detected.

Theorem 1.2. Assume (a1) and (f1). Then, there exists an unbounded closed connected subset
C+ of S + for which the following properties hold:

(i) there is λ∗ > 0 such that [λ∗,∞) ⊆ projR(C+);
(ii) there are functions α and β, explicitly defined by (3.8) and (3.12) respectively, such that,

for every (λ, uλ) ∈ C+, one has that:

• uλ(xλ) < λ
1

1−pα(xλ) for some xλ ∈ [0, z),

• uλ(yλ) > λ
1

1−pβ(yλ) for some yλ ∈ [0, 1];
(iii) there is C > 0 such that, for every (λ, uλ) ∈ C+,

‖u′λ‖L∞(0,1) < Cλ
1

1−p . (1.5)

Moreover, for every λ ∈ [λ∗,∞), there exists at least one (Lyapunov) unstable solution u ∈ S +

of (1.1) satisfying the conditions expressed by properties (ii) and (iii).

The existence of positive solutions of (1.1) for large λ > 0 has been previously established,
under (a1) and (f1), in [9] by variational methods and in [10] by topological degree techniques,
however without getting any information on the global structure of the solution set. The exis-
tence of a component of S + bifurcating from 0 as λ → +∞ was proven in [14] through some
global bifurcation techniques inspired by [1]. Theorem 1.2 is a substantial sharpening of all
these previous results. In this occasion we are exploiting an alternative method based on the
construction of some non-ordered sub and supersolutions and on the use of the Leray-Schauder
degree. This new approach, which appears of interest in its own, yields, in addition, the local-
ization and the instability information established by Theorem 1.2, which is a novel result in
the context of the problem (1.1).

This paper is organized as follows: Section 2 delivers the proof of Theorem 1.1 and Section 3
consists of the proof of Theorem 1.2.

2. Proof of Theorem 1.1

Suppose u ∈ W 2,1(0, 1) is a positive solution of (1.4). Let us introduce the auxiliary function
q(x, s, ξ) defined, for almost every x ∈ [0, 1] and every (s, ξ) ∈ R× R, by

q(x, s, ξ) =

{
g(x,s,ξ)

s if s > 0,
0 if s ≤ 0.

Assumption (g1) implies that, for every compact subset K of R, lims→0 q(x, s, ξ) = 0, uniformly
for almost every x ∈ [0, 1] and every ξ ∈ K. It is easy to check that q satisfies the Carathéodory
conditions (see [6, p. 28]). Consequently, the function V , defined, for almost every x ∈ [0, 1], by
V (x) = q(x, u(x), u′(x)), belongs to L1(0, 1) and u solves the linear equation

−u′′ = V u. (2.1)
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Suppose that u is such that u(x0) = 0 for some x0 ∈ [0, 1]. Also due to the boundary conditions
u′(0) = u′(1) = 0, it follows that necessarily u′(x0) = 0. Thus, the uniqueness of solutions for
the Cauchy problem associated with (2.1), which is a consequence of, e.g., [6, Ch. I, Thm. 5.3],
yields u = 0 in [0, 1], which is impossible as u was assumed positive. This contradiction ends
the proof of Theorem 1.1.

3. Proof of Theorem 1.2

Since f(0) = 0 and we are focusing attention on the positive solutions of (1.1), or (1.3), without
loss of generality we can extend f to the whole of R as an even function. By performing the
change of variable

u = εv, ε = λ
1

1−p , (3.1)

and setting

h(s) =

{
f(s)
|s|p if s 6= 0,

1 if s = 0,
(3.2)

the problem (1.3) can be equivalently written in the form{
−v′′ = a(x)|v|p h(εv) (1 + (εv′)2)

3
2 , 0 < x < 1,

v′(0) = v′(1) = 0.
(3.3)

Note that h(−s) = h(s) for all s > 0, like f . Throughout the rest of this proof, for every r > 0,
we consider the auxiliary function

`r(x, s) =


|s|p if s ≤ 0,

a(x) sp if 0 < s ≤ r,
a(x) sp (r + 1− s) if r < s ≤ r + 1,

−s+ r + 1 if s > r + 1,

(3.4)

as well as the associated problem{
−v′′ = `r(x, v)h(εv) (1 + (εv′)2)

3
2 , 0 < x < 1,

v′(0) = v′(1) = 0.
(3.5)

It is obvious that any solution v of (3.5), with 0 ≤ v ≤ r in [0, 1], solves (3.3). Moreover, due to
(3.2), the problem (3.5) perturbs from the semilinear problem{

−v′′ = `r(x, v), 0 < x < 1,

v′(0) = v′(1) = 0,
(3.6)

as ε > 0 separates away from 0.
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3.1. Existence of a couple of non-ordered strict sub and supersolutions for (3.6). The
next result, of technical nature, holds.

Proposition 3.1. There exists a constant r0 > 0 such that, for all r ≥ r0, the problem (3.6)
admits a subsolution α and a supersolution β such that:

(i) β − α changes sign in [0, 1];
(ii) any solution v of (3.6) such that α ≤ v in [0, 1], satisfies α(x) < v(x) for all x ∈ [0, 1];

(iii) any solution v of (3.6) such that v ≤ β in [0, 1], satisfies v(x) < β(x) for all x ∈ [0, 1].

In other words, according to [3, Ch. III], α and β are strict sub and supersolutions of (3.6).
In particular, they cannot be solutions. By Property (i), they are not ordered.

Proof. The proof can be divided in two steps.

Step 1: Construction of α. Let denote by µ1 > 0 the unique positive eigenvalue of the linear
weighted eigenvalue problem{

−ϕ′′ = µa(x)ϕ, 0 < x < z
2 ,

ϕ′(0) = 0, ϕ( z2) = 0,

whose existence and uniqueness follow, e.g., from [8, Thm. 9.2] by taking into account of the
strict positivity of the principal eigenvalue σ1 = (πz )2 of the problem{

−ψ′′ = σ ψ, 0 < x < z
2 ,

ψ′(0) = 0, ψ( z2) = 0.

Let ϕ1 be any positive eigenfunction associated to µ1. Since ϕ1(x) > 0 for all x ∈ [0, z2) and
ϕ′1(

z
2) < 0, by the mean value theorem, there exists x ∈ (0, z2) such that

ϕ1(x) + ϕ′1(x)(z − x) = 0.

Indeed, the function

Φ(x) = ϕ1(x) + ϕ′1(x)(z − x)

is continuous in [0, z2 ] and it satisfies Φ(0) = ϕ1(0) > 0 and Φ( z2) = ϕ′1(
z
2) z2 < 0, whence the

existence of x. Since ϕ1 is decreasing and p > 1, we can also find c > 0 such that

[cϕ1(x)]p−1 ≥ [cϕ1(x)]p−1 > µ1, for all x ∈ [0, x]. (3.7)

Next, we define

α(x) =


cϕ1(x) if 0 ≤ x < x,

cϕ1(x) + cϕ′1(x)(x− x) if x ≤ x < z,

0 if z ≤ x ≤ 1.

(3.8)

It is clear that α ∈ C0[0, 1] ∩W 2,∞(0, z) ∩W 2,∞(z, 1) and, moreover,

α′(z−) = cϕ′1(x) = − cϕ1(x)
z−x < 0 = α′(z+). (3.9)

Further, it follows from (3.8) and (3.7) that, for almost every x ∈ (0, x),

−α′′(x) = −cϕ′′1(x) = µ1a(x)cϕ1(x) < [cϕ1(x)]p−1a(x)cϕ1(x) = a(x)αp(x).
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Similarly, we have that, for almost every x ∈ (x, z), −α′′(x) = 0 < a(x)αp(x), and, for almost
every x ∈ (z, 1), −α′′(x) = 0 = a(x)αp(x). Thus, setting r0 = 1 + max[0,1] α, from (3.4) we infer
that

−α′′(x) ≤ a(x)αp(x) = `r(x, α(x)), for almost every x ∈ (0, 1),

provided that r ≥ r0. In addition, α is such that α′(0) = 0 and α′(1) = 0. Therefore, for every
r ≥ r0, α is a subsolution of (3.6) as discussed in [3, Def. II-2.1] (see also [2]).

Finally, we will check that α satisfies the assertion (ii) of Proposition 3.1. Let v be a solution
of (3.6), with v ≥ α in [0, 1], and set w = v − α, with w ≥ 0 in [0, 1] . We want to show that
w(x) > 0 for all x ∈ [0, 1]. Indeed, suppose, by contradiction, that there is some x0 ∈ [0, 1] such
that w(x0) = min[0,1]w = 0. Since v′(z−) = v′(z+), it follows from (3.9) that

w′(z−) = v′(z−)− α′(z−) > v′(z+)− α′(z+) = w′(z+).

As this is impossible at an interior minimum point, x0 6= z. Therefore, w′(x0) = 0, as w is
differentiable for x 6= z and it satisfies w′(0) = w′(1) = 0. Assume that x0 ∈ [0, z). Then, since
v(x0) = α(x0) < r0 ≤ r, there exists an interval J ⊆ [0, z), with x0 ∈ J , such that v(x) < r for
all x ∈ J . Thus, for almost every x ∈ J , we have that

−w′′(x) = −v′′(x) + α′′(x) > `r(x, v(x))− `r(x, α(x)) = a(x)(vp(x)− αp(x)) ≥ 0,

as α′′(x) > −`r(x, α(x)) = −a(x)αp(x) for almost every x ∈ [0, z). Hence, w is strictly concave in
J . Since w(x0) = minJ w = 0 and w′(x0) = 0, the strong maximum principle (see, e.g., [8, Thm.
7.11]) implies that w = 0 in J . As this contradicts the strict concavity of w in J , necessarily
x0 ∈ (z, 1]. As α = 0 in [z, 1], we have that w = v in [z, 1]. Thus, v(x0) = w(x0) = 0 and
v′(x0) = w′(x0) = 0, because v = w ≥ 0 and v′(1) = 0. Consequently, v is a local solution of the
Cauchy problem {

−v′′ = `r(x, v)

v(x0) = 0, v′(x0) = 0.

As the function `r(x, s) is locally Lipschitz with respect to s, because p > 1 and a ∈ L∞(0, 1),
by uniqueness, we conclude that v = 0 in [0, 1]. This is impossible, since we already proved that
v(x) > α(x) > 0 for all x ∈ [0, z). Therefore, the property (ii) of Proposition 3.1 holds for all
r ≥ r0.
Step 2: Construction of β. Fix r ≥ r0. Subsequently, for every κ > 0, we denote by zκ the
unique solution of the linear problem

−z′′ =
(
a(x)−

∫ 1

0
a(t) dt

)
κp, 0 < x < 1,

z′(0) = z′(1) = 0,

∫ 1

0
z(t) dt = 0.

(3.10)

Combining the Poincaré–Wirtinger inequality with (3.10) yields

‖zκ‖L∞(0,1) ≤ ‖z′κ‖L1(0,1) ≤ ‖z′κ‖L∞(0,1) ≤ ‖z′′κ‖L1(0,1) ≤ 2‖a‖L1(0,1) κ
p. (3.11)

Consequently, since p > 1 in the estimate (3.11), the function β ∈W 2,1(0, 1) defined by

β = zκ + κ (3.12)
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satisfies, for sufficiently small κ > 0,

0 < min
[0,1]

β ≤ max
[0,1]

β < max
[0,1]

α ≤ r0. (3.13)

Moreover, for almost every x ∈ [0, 1], we find from (3.10) that

−β′′(x) = −z′′κ = a(x)κp − κp
∫ 1

0
a(t) dt = a(x)βp(x) + a(x)[κp − βp(x)]− κp

∫ 1

0
a(t) dt,

and thus, by rearranging terms and using (3.12),

−β′′(x) = aβp(x) + κp
[
a(x)

(
1−

(
1 + zκ(x)

κ

)p)
−
∫ 1

0
a(t) dt

]
. (3.14)

Using (3.11) and the condition p > 1 again, it is easily seen that

lim
κ→0

[
a(x)

(
1−

(
1 + zκ(x)

κ

)p)]
= 0, uniformly almost everywhere in [0, 1].

Consequently, since
∫ 1
0 a(t) dt < 0, we can conclude from (3.14) that, for sufficiently small κ > 0,

−β′′(x) ≥ a(x)βp(x)− 1
2κ

p

∫ 1

0
a(t) dt > `r(x, β(x)), for almost every x ∈ [0, 1]. (3.15)

Therefore, for every r ≥ r0, the function β provides us with a supersolution of (3.6) fulfilling
the boundary conditions.

To complete the proof of Proposition 3.1 it remains to show the property (iii). Indeed, let
v be a solution of (3.6) such that v ≤ β in [0, 1] and consider the function w = β − v, where
w ≥ 0. Suppose, by contradiction, that min[0,1]w = 0. Then, there exists x0 ∈ [0, 1] such that
w(x0) = 0, i.e., β(x0) = v(x0). Note that, owing to (3.13), 0 < v(x0) < r0 ≤ r. Thus, there is
an interval J ⊆ [0, 1], with x0 ∈ J , such that 0 < v(x) < r, for all x ∈ J, and

|a(x)(βp(x)− vp(x))| < −1
2κ

p

∫ 1

0
a(t) dt, for almost every x ∈ J.

Consequently, by (3.15), (3.4) and (3.6), for almost every x ∈ J , we have that

−w′′(x) = −β′′(x) + v′′(x) ≥ a(x)βp(x)− 1
2κ

p

∫ 1

0
a(t) dt− `r(x, v(x))

= a(x)(βp(x)− vp(x))− 1
2κ

p

∫ 1

0
a(t) dt > 0.

Hence, w is strictly concave in J . Since w(x0) = minJ w = 0 and w′(0) = w′(1) = 0, it follows
that w′(x0) = 0. The strong maximum principle then implies that w = 0 in J . As this is
impossible, by the strict concavity of w in J , we find that indeed v(x) < β(x) for all x ∈ [0, 1].
The proof is complete. �
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3.2. Positivity. A priori bounds. The next result is the main positivity result of this section.

Proposition 3.2. Fix any r > 0. Then, the following assertions hold:

(i) every solution of (3.6) is non-negative;
(ii) every positive solution of (3.6) is strictly positive.

Proof. Let v be a solution of (3.6). Suppose, by contradiction, that min[0,1] v < 0 and let
x0 ∈ [0, 1] be such that v(x0) = min[0,1] v. As v′(0) = v′(1) = 0, we have that v′(x0) = 0. From
(3.6) and (3.4) we infer that v′′(x0) = −`r(x0, v(x0)) = −|v(x0)|p < 0, which is impossible at a
minimum critical point. This yields assertion (i).

To prove (ii), it is enough to observe that, for any given r > 0, the function `r satisfies
assumption (g1). Theorem 1.1 then guarantees that any positive solution of (3.6) is indeed
strictly positive. This ends the proof. �

The following result provides us with a priori bounds for the positive solutions of (3.6).

Proposition 3.3. The following assertions hold:

(i) for every r > 0, any solution v of (3.6) satisfies

0 ≤ v(x) ≤ r + 1, for all x ∈ [0, 1], (3.16)

and

‖v′‖L∞(0,1) < C = ‖a‖L1(0,1)(r + 1)p+1; (3.17)

(ii) for every r ≥ r0, any solution v of (3.6), with v(x0) ≤ a(x0) for some x0 ∈ [0, 1], satisfies

max
[0,1]

v < R = ‖α‖L∞(0,1) + ‖α′‖L∞(0,1). (3.18)

Proof. Let v be a solution of (3.6). Proposition 3.2 implies that min[0,1] v ≥ 0. Suppose, by
contradiction, that max[0,1] v > r + 1 and let x0 ∈ [0, 1] be such that v(x0) = max[0,1] v. As
v′(0) = v′(1) = 0, we have that v′(x0) = 0. From (3.6) and (3.4) we get v′′(x0) = v(x0)−r−1 > 0,
which is impossible at a maximum critical point. Hence, (3.16) follows. To prove (3.17), we
integrate (3.6) in (0, x) and thus we obtain v′(x) = −

∫ x
0 `r(s, v(s)) ds. Hence, we have, from

(3.16) and (3.4), that

|v′(x)| ≤
∫ x

0
|`r(s, v(s))| ds < ‖a‖L1(0,1)(r + 1)p+1, for all x ∈ [0, 1].

Setting C = ‖a‖L1(0,1)(r + 1)p+1, the proof of assertion (i) is completed.
Pick now a solution v of (3.6), with max[0,1] v > 0 and v(x0) ≤ α(x0) for some x0 ∈ [0, 1].

By Proposition 3.2, we know that min[0,1] v > 0. As α(x) > 0 if and only if x ∈ [0, z), we
necessarily have that x0 ∈ [0, z). Thus, since v(z) > 0 = α(z), there exists x1 ∈ [x0, z) such
that v(x1) = α(x1) and v′(x1) ≥ α′(x1). From (a1) and (3.16) it follows that v is concave in
[0, z), convex in (z, 1], and, as v′(0) = v′(1) = 0, strictly decreasing in [0, 1]. By concavity, we
get v(x) ≤ v(x1) + v′(x1)(x− x1), for all x ∈ [0, x1]. Hence, as v is decreasing, we find that

max
[0,1]

v = v(0) ≤ v(x1)− v′(x1)x1 ≤ α(x1)− α′(x1)x1 ≤ ‖α‖L∞(0,1) + ‖α′‖L∞(0,1).

Setting R = ‖α‖L∞(0,1) + ‖α′‖L∞(0,1), the conclusion (ii) is achieved. This ends the proof. �
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3.3. Existence of a couple of ordered strict sub and supersolutions for (3.6). Fix any
r ≥ r0. Due to the definition of the function `r, all negative costants are subsolutions of (3.6),
while all constants larger than r+1 are supersolutions of (3.6); accordingly, we set α1 = −1 and
β1 = r + 2. By our choice of r, it follows that α, β both satisfy

α1 < 0 ≤ α(x), β(x) ≤ r0 < β1, for all x ∈ [0, 1]. (3.19)

Moreover, Proposition 3.3 implies that every solution v of (3.6) is such that α1 = −1 < v(x) <
r+2 = β1, for all x ∈ [0, 1]. Thus, α1 and β1 form a couple of ordered strict sub and supersolutions
for (3.6).

3.4. Degree computation. Fix any r ≥ max{r0, R}, where R is the constant defined in (3.18).
Subsequently, C being the constant introduced in (3.17), we consider the open bounded subsets
of C1[0, 1] defined by

Ω1 = {v ∈ C1[0, 1] : α1 < v(x) < β1 for all x ∈ [0, 1], ‖v′‖∞ < C},
Ω2 = {v ∈ C1[0, 1] : α1 < v(x) < β(x) for all x ∈ [0, 1], ‖v′‖∞ < C},
Ω3 = {v ∈ C1[0, 1] : α(x) < v(x) < β1 for all x ∈ [0, 1], ‖v′‖∞ < C},
Ω = Ω1 \ Ω2 ∪ Ω3 = {v ∈ Ω1 : v(x0) < α(x0) and β(y0) < v(y0) for some x0, y0 ∈ [0, 1]}.

From (3.19), it follows that Ω2 ∪ Ω3 ⊂ Ω1. Moreover, we have that Ω2 ∩ Ω3 = ∅, because β − α
changes sign in [0, 1] by Proposition 3.1.

Let denote by T : [0,∞)×C1[0, 1]→ C1[0, 1] the operator sending each (ε, v) ∈ [0,∞)×C1[0, 1]
to the unique solution w ∈W 2,∞(0, 1) of the linear problem{

−w′′ + w = `r(x, v)h(εv) (1 + (εv′)2)
3
2 + v, 0 < x < 1,

w′(0) = w′(1) = 0.

It is clear that T is completely continuous and that its fixed points are precisely the solutions
of the problem (3.5). Moreover, by Propositions 3.1 and 3.3 and our choice of C, the operator
T (0, ·) cannot have fixed points on ∂Ω1 ∪ ∂Ω2 ∪ ∂Ω3. Thus, by the additivity property of the
degree,

degLS(I − T (0, ·),Ω) = degLS(I − T (0, ·),Ω1 \ Ω2 ∪ Ω3)

= degLS(I − T (0, ·),Ω1)− degLS(I − T (0, ·),Ω2 ∪ Ω3)

= degLS(I − T (0, ·),Ω1)− degLS(I − T (0, ·),Ω2)− degLS(I − T (0, ·),Ω3).

As, from, e.g., [3, Ch. III], we already know that

degLS(I − T (0, ·),Ω1) = degLS(I − T (0, ·),Ω2) = degLS(I − T (0, ·),Ω3) = 1,

we can conclude that

degLS(I − T (0, ·),Ω) = −1.

Therefore, by the existence property of the degree, the problem (3.6) possesses a solution v ∈ Ω,
where necessarily x0 ∈ [0, z), because α(x0) > v(x0) > 0 and α = 0 on [z, 1]. In addition, having
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chosen r > R, Proposition 3.3 guarantees that v(x) < r for all x ∈ [0, 1] and therefore v is a
solution of the problem (3.3) for ε = 0. Hence, if we define an open subset O of Ω by

O = {v ∈ Ω : min
[0,1]

v > 0,max
[0,1]

v < r},

then every solution v ∈ Ω must belong to O. Thus, the excision property of the degree yields

degLS(I − T (0, ·),O) = −1.

3.5. Existence of a continuum. Conclusion of the proof. The boundedness of ∂O in
C1[0, 1] and the complete continuity of the operator T guarantee the existence of some ε∗ > 0
such that T (ε, ·) has no fixed points on ∂O for all ε ∈ [0, ε∗]. Consequently, the homotopy
property of the degree implies that

degLS(I − T (0, ε),O) = −1, for all ε ∈ [0, ε∗],

and hence the existence of at least one solution v = vε ∈ O of the problem (3.3) for all ε ∈ [0, ε∗].
Actually, the Leray–Schauder continuation theorem [7, p. 63] provides us with a continuum K +

of solutions (ε, vε) of (3.3) with ε ∈ [0, ε∗] and vε ∈ O.
The change of variables (3.1) then implies the existence of a closed connected set C+ of

solutions (λ, uλ) of (1.1), where λ = ε1−p ∈ [λ∗,∞), with λ∗ = (ε∗)1−p, and uλ = εvε = λ
1

1−p vε.
Since vε ∈ O, there exist xε ∈ [0, z) such that v(xε) < α(xε) and yε ∈ [0, 1] such that v(yε) <
α(yε). This in turn implies that every (λ, uλ) ∈ C+ satisfies

uλ(xλ) < λ
1

1−pα(xλ), uλ(yλ) > λ
1

1−pβ(yλ), for some xλ ∈ [0, z) and yλ ∈ [0, 1]. (3.20)

Moreover, ul is strictly positive and satisfies (1.5).
Finally, adapting the results in [4, 5], we can prove the existence, for each ε ∈ [0, ε∗], of an

extremal solution v ∈ O of (3.5), satisfying the following condition: there is a sequence (vn)n,
either of subsolutions of (3.5) if v is maximal, or of supersolutions of (3.5) if v is minimal, which
converges to v in C1[0, 1] and is such that, for every n, a strong solution wn of the parabolic
initial value problem

wt − wxx = `r(x,w)h(εw) (1 + (εwx)2)
3
2 , 0 < x < 1, t > 0,

wx(0, t) = wx(1, t) = 0, t > 0,

w(x, 0) = vn, 0 < x < 1,

exists and either it blows up in finite time, or otherwise it satisfies

lim sup
t→+∞

‖wn(·, t)− v(·)‖C1[0,1] ≥ η,

for some η > 0 independent of n. Hence, for every λ ∈ [λ∗,∞), we can infer the existence an
unstable solution u of (3.3) which is strictly positive and satisfies (3.20) and (1.5). This ends
the proof of Theorem 1.2.
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