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We present results of numerical simulations of a stratified reservoir with a three-layer
stratification, subject to an oscillating surface shear stress. We investigate the effect of
sloped endwalls on mixing and internal wave adjustment to forcing within the basin, for
three different periods of forcing. The simulations are carried out at a laboratory scale,
using large-eddy simulation. We solve the three-dimensional Navier–Stokes equations
under the Boussinesq approximation using a second-order-accurate finite-volume solver.
The model was validated by reproducing experimental results for the response of a
reservoir to surface shear stress and resonant frequencies of internal waves. We find
interesting combinations of wave modes and mixing under variation of the forcing
frequencies and of the inclination of the endwalls. When the frequency of the forcing
is close to the fundamental mode-one wave frequency, a resonant internal seiche occurs
and the response is characterized by the first vertical mode. For forcing periods twice
and three times the fundamental period, the dominant response is in terms of the second
vertical mode. Adjustment to forcing via the second vertical mode is accompanied by the
cancellation of the fundamental wave and energy transfer to higher-frequency waves. The
study shows that the slope of the endwalls dramatically affects the location of mixing,
which has a feedback on the wave field by promoting the generation of higher vertical
modes.

Key words: internal waves, stratified flows, turbulent mixing

1. Introduction

We are interested in turbulent mixing and internal wave dynamics induced by wind
action in a stratified basin, archetypal of lakes or reservoirs. During the summer
season, stable stratification develops that can be approximated by a three-layer model:
an upper, well-mixed layer (epilimnion) with warm water; a transitional middle layer
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(metalimnion) with a high temperature gradient; and a bottom layer (hypolimnion) with
cold and low-momentum water, isolated from the more energetic upper layer by the stable
stratification in the metalimnion. The surface with the highest temperature gradient inside
the metalimnion identifies the thermocline.

When the thicknesses of the epilimnion and hypolimnion are much larger than that of
the metalimnion, the system can be approximated as composed of two layers with different
densities which meet at the thermocline. In a closed basin, the main hydrodynamic forcing
is wind stress. The response of a two-layer system to the wind shear stress is controlled
by the Wedderburn number W (Thompson & Imberger 1980; Imberger & Hamblin 1982),
which is defined as the ratio between the baroclinic restoring force and the wind driving
force,

W = g′h2
1

u2∗L
. (1.1)

Here g′ = g�ρ/ρ0 is the reduced gravity based on the density difference �ρ across the
thermocline with density ρ0; g is the gravitational acceleration; h1 is the thickness of the
upper layer; L is the length of the lake; and u2∗ = τ is the square of the friction velocity
resulting from the kinematic wind shear stress over the water surfaceτ . All the above and
the other parameters used in this paper are listed in table 1.

The action of the wind shear stress leads to the displacement of the thermocline. For
steady wind, an analytical solution for the steady displacement is obtained, given by the
balance between the baroclinic gravitational pressure force due to the tilted thermocline
and the force due to the wind stress (Boegman 2009). When this solution is put into W,
W−1 ≈ η0/h1, where η0 is the steady-state vertical displacement of the thermocline at the
endwalls. This solution allows the simplified interpretation of W−1 as the portion of h1
that is occupied by the displacement of the thermocline at the upwind endwall.

When the wind stops blowing and the surface stress is relaxed, a wave field forms
and degenerates in time. As initially observed by Mortimer (1953) for various lakes, the
internal wave field is dominated by basin-scale linear waves or internal seiches, which are
the solution of the linear wave equation for the initial condition with inclined interface.
This linear equation also allows the development of higher horizontal odd modes of linear
waves. The period of the internal seiches is

T(n)
i = 2L

nc0
, (1.2)

where c0 = √
g′h1h2/H is the linear long-wave speed, h2 is the bottom layer thickness,

H is the depth of the reservoir and n denotes the seiche’s horizontal modal structure. If
the amplitude of the internal seiches is large enough, nonlinear effects become significant,
causing the occurrence of other wave modes including even horizontal modes.

The steepening of long waves due to nonlinear effects results in the formation of
internal solitary-like waves. Associated with the nonlinearities is a steepening time scale
Ts = L/(αNLη0) where η0 is the maximum displacement of the interface and αNL =
(3/2)c0(h2 − h1)/(h1h2) is a nonlinear coefficient. As the wave steepens, the effects of
dispersion increase and balance out the nonlinear steepening, leading to the generation of
high-frequency solitary waves with permanent form. Horn, Imberger & Ivey (2001) and
Boegman, Ivey & Imberger (2005b) carried out a thorough theoretical and experimental
analysis of the degeneration of the internal wave field. In general, high-frequency
internal waves can be grouped into two fundamental classes: waves described by linear
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stability models, which are associated with shear instability; and waves described by
weakly nonlinear models such as solitary waves, internal hydraulic jumps and waves
excited by flow interaction with the boundaries (Boegman et al. 2003). As shown by
Boegman et al. (2003), waves associated with shear instability dissipate their energy
locally, while nonlinear waves propagate to the boundary where they dissipate their energy
through interactions with the boundary.

In lakes where the thicknesses of the metalimnion and epilimnion are comparable, which
is often the case for the small and mid-sized lakes in which we are interested, the two-layer
approximation is no longer valid and a response in terms of high-order vertical modes is
possible. For example, the second vertical mode can be described as a variation of the
thickness of the metalimnion, where the upper and lower edges of the metalimnion do not
oscillate in phase.

The second vertical mode was mathematically described by using a three-layer
stratification (see, among others, Csanady 1982; Monismith 1985; Münnich, Wüest
& Imboden 1992), and more accurately using the continuous stratification model to
calculate both the second-order (Münnich et al. 1992) and the higher-order vertical
modes (LaZerte 1980). Observations show that the occurrence of these modes strongly
depends on the thickness of the metalimnion (Roget, Salvadé & Zamboni 1997; Vidal,
Rueda & Casamitjana 2007; MacIntyre et al. 2009), the duration of forcing (Wiegand &
Chamberlain 1987; Münnich et al. 1992; Vidal et al. 2007; Valerio et al. 2012) and the
bathymetry (Münnich 1996).

Most situations are characterized by wind stress oscillating according to a diurnal
cycle, typically due to atmospheric circulations such as anabatic/katabatic winds and lake
breezes. Oscillatory forcing was experimentally investigated by Boegman & Ivey (2007,
2012) with an oscillating tank and by Rozas et al. (2014) by applying a moving belt, both
using an experimental set-up with a two-layer stratification, therefore allowing only for
the development of the first vertical mode. Boegman & Ivey (2007, 2012) found that the
response to the forcing is controlled by the ratio between the forcing period Tw and the
fundamental oscillatory period, which we denote as T1 = T(1)

i , calculated according to
(1.2). We will denote this ratio as rT = Tw/T1. For rT < 0.5, internal seiches with higher
horizontal mode occur; for 0.5 < rT < 1.5, a resonant fundamental internal seiche V1H1
develops; and for rT > 1.5, a non-resonant forced V1H1 internal seiche is present, where
V1H1 denotes a combination of first vertical mode and first horizontal mode.

In general cases, the endwalls (beaches) of a lake are not vertical. Mixing in the
near-shore region can originate from the interaction of boundaries and seiching currents
or breaking of high-frequency waves.

Internal seiches induce upslope/downslope flow along the inclined walls and can cause
the periodic occurrence of convective mixing. During an upwelling event, currents can
transport heavier deep water over lighter surface water, leading to unstable stratification
and consequent mixing. This process is described by Lorke, Peeters & Wüest (2005) as
shear-induced convection.

Breaking of the high-frequency progressive nonlinear internal waves (NLIWs) on
the slopes has been extensively investigated via laboratory experiments (Helfrich 1992;
Michallet & Ivey 1999; Boegman, Ivey & Imberger 2005a; Boegman & Ivey 2009)
and numerical simulations (Vlasenko & Hutter 2002; Aghsaee, Boegman & Lamb 2010;
Arthur & Fringer 2014, 2016). In the experiments of Michallet & Ivey (1999) it was found
that mixing efficiency is low for small and large slopes; consistent with these findings are
the results of Boegman et al. (2005a) who analysed mixing efficiency with respect to the
Iribarren number, which is the ratio of the beach slope to the wave slope, and found that
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mixing efficiency is highest for intermediate values of this parameter, which correspond
to medium slopes. Wave breaking at the sloped walls can be described by the rotor model
(Thorpe 1998); breaking leads to diapycnal mixing, mainly in the lower layer, producing
water of intermediate density that forms an intrusion and flows along isopycnals towards
the body of the lake (Wain et al. 2013).

Boundary mixing induced by the high-frequency internal waves was observed by Lorke
(2007), while MacIntyre et al. (2009) and Wain & Rehmann (2010) found boundary
mixing caused by low-frequency waves which correspond to internal seiches.

Although there have been many studies regarding internal waves, most of them used
simplified models in terms of an idealized basin (e.g. Monismith 1987), two-layer models
for stratification (e.g. Horn, Mortimer & Schwab 1986), or constant mean density profile,
where perturbations of density field correspond only to seiche motion (e.g. Fricker &
Nepf 2000). More recently, Ulloa et al. (2019, 2020) employed large-eddy simulation
(LES) to study the hydrodynamics of a full-scale lake. In Ulloa et al. (2019) a case-study
investigation was conducted for the summer conditions in Lake Alpnach, Switzerland. A
periodic diurnal forcing yielded a near-resonant V2H1 wave response, along with other
non-resonant vertical modes. Besides the wave analysis, they investigated turbulence and
mixing and identified episodic mixing at the sloped walls as a significant factor in overall
mixing. In Ulloa et al. (2020) different resonant wave responses (quasi-linear V1H1, V2H1
and nonlinear V2H1) to periodic forcing were obtained by varying the level of stratification
in a three-layer stratified basin with sloping walls. The main focus of their investigation
was the analysis of transport processes under the fully developed resonant wave regimes.

Similarly, we use LES to analyse the wave responses of a basin to periodic wind stress,
mainly focusing on the influence of variations of forcing and bathymetry at a laboratory
scale. The general set-up of our simulations is similar to that of Ulloa et al. (2020) in that
we apply periodic stress to a three-layer stratified domain with sloped walls; however, the
focus of our research is substantially different, since we inspect the initial development of
the wave response. This is an important issue, since in real systems often the wind stress
regime does not allow a steady arrangement of the internal wave system, which, rather,
often moves through successive transitional states.

Specifically, we investigate the response of a three-layer stratified basin to an oscillating
surface shear stress. The three-layer model for the stratification is such that the proportions
of layer thicknesses are similar to those typical of alpine mid-sized lakes (data from
Magni et al. 2008). We consider different forcing periods and study the initial and internal
adjustment of the wave response to the forcing, and the feedback that sloped endwalls have
on the wave field and mixing. Our focus is on two main issues: the response of the system
to different forcing periods, quantified by different values of rT , and the influence of the
slope of the endwalls on mixing and internal wave dynamics. The study is carried out at a
laboratory scale, characterized by scale effects with respect to the Reynolds number.

At the present stage of the research, we are interested in lakes that are not affected by
the Earth’s rotation. The Coriolis force is negligible for mid-latitude small and mid-sized
lakes (up to ≈5km). For a typical geometry and stratification profile of this class of lakes,
only large ones (≈5km) may have a fundamental period that matches the diurnal forcing
period (rT = 1); smaller lakes generally have a fundamental period that is several times
smaller than a day. That is why we will focus on rT ≥ 1.

The paper is organized in the following way. In § 2 we describe the numerical model,
which is validated in Appendix A, by reproducing experiments relevant for the purposes
of our research. In § 3 the response of the system with vertical endwalls is considered.
In § 4 we analyse the influence of the variations of the angles of the endwalls. In § 5
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we give concluding remarks. Appendix B contains results of regridding tests for the case
study.

2. Mathematical model

The flow we investigate in the present paper is characterized by the coexistence of
internal waves and turbulence. We will see that mechanical turbulence is generated in
the near-surface layer, in the corner flow due to the presence of a downward jet and
processes that take place at the sloped walls. Also, wave breaking at the slope walls
produces turbulence which flows into the interior; reproduction of these mechanisms needs
eddy-resolving simulations, either direct numerical simulation (DNS) or LES. The former
would need a resolution of the near-wall and free-surface thin viscous layer; the latter
requiring a huge and unjustified resolution in a flow region not central for the scopes of
the present research. For this reason, our strategy was to use LES in conjunction with
a wall-layer model of the wind stress at the free surface, which accurately reproduces
the mechanism of generation of mechanical turbulence at the free surface. On the other
hand, since the flow may stand in a transitional regime, due to the above-mentioned
interaction between turbulence and internal waves and to the periodic forcing, we use a
dynamic Lagrangian model, which is well known in the literature to be able to reproduce
accurately flows characterized by transitional and intermittent turbulence. Specifically, the
model automatically switches off in regions of relaminarization and switches on in the
presence of turbulence, to reproduce significant subgrid-scale (SGS) events, whenever
they occur. We solve the set of filtered three-dimensional Navier–Stokes equations under
the Boussinesq approximation for the density field:

∂ ūj

∂xj
= 0, (2.1)

∂ ūi

∂t
+ ∂

∂xj
(ūiūj) = − ∂ p̄

∂xi
+ gi

ρ

ρ0
+ ∂

∂xj

{
νeff

[(
∂ ūi

∂xj
+ ∂ ūj

∂xi

)
− 2

3

(
∂ ūk

∂xk
δij

)]}
, (2.2)

∂ρ̄

∂t
+ ∂

∂xj
(ρuj) = ∂

∂xk

(
κeff

∂ρ̄

∂xk

)
. (2.3)

In (2.1)–(2.3), the overbar denotes a filtering operation, ui is the velocity component
along the xi direction (hereafter we use x1, x2, x3 and x, y, z, respectively, for along-wind,
transverse and vertically upward directions), p is pressure divided by the bulk density ρ0,
g ≡ (0, 0, −g) is the gravitational acceleration vector, νeff = ν + νSGS is the sum of the
kinematic viscosity ν and the SGS turbulent viscosity νSGS, ρ is the fluid density, and
κeff = ν/Sc + νSGS/ScSGS is sum of molecular and SGS diffusivity of a dissolved phase
(i.e. salt), with Sc and ScSGS being the molecular and SGS Schmidt number, respectively.

The SGS tensor, which comes out from filtering the Navier–Stokes equations, τij =
uiuj − ūiūj, is here parametrized using the eddy viscosity assumption:

τij − δij

3
τkk = −2νSGSS̄ij, (2.4)

where S̄ij = 1
2(∂ ūi/∂xj + ∂ ūj/∂xi) is the filtered strain-rate tensor. The SGS viscosity is

related to the strain-rate tensor (Smagorinsky 1963) as

νSGS = c2
SΔ

2|S̄ij|, (2.5)
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τ

h1 ρ1

h2 ρ2

α

�h
L

Probe A Probe B

hm1 hm2

Figure 1. Sketch of the simulation set-up with the main parameters and locations of the probes.

where Δ = (ΔxΔyΔz)
1/3 is the filter width computed using the local cell width and c2

S is
the Smagorinsky constant for SGS momentum fluxes. Here the constant is determined
dynamically using the Lagrangian dynamic SGS model of Meneveau, Lund & Cabot
(1996) as implemented by Cintolesi, Petronio & Armenio (2015). For SGS concentration
diffusivity, we use the Reynolds analogy κSGS = νSGS/ScSGS, with ScSGS = 1. The
Schmidt number is set to Sc = ν/κ = 500 as discussed in Lienhard & Atta (1990) and Liu
(1995), while ν = 10−6 m2 s−1. The choice of the Schmidt number corresponds to use
of salt as the stratifying agent, and it is consistent with the laboratory-like set-up that we
choose for our numerical experiments. Though most stratified lakes are subject to thermal
stratification, a number of closed basins are characterized by salt stratification, which is
typically much stronger than the thermal one (Boehrer & Schultze 2008). Regardless of
the type of stratification, our set-up is relevant for the internal wave dynamics in stratified
lakes, which is the main focus of our investigation.

As initial condition, we consider a fluid at rest with a piecewise-linear density
stratification:

ρ(x, t = 0) =

⎧⎪⎪⎨
⎪⎪⎩

ρ1 if z ≥ hm1,

ρ2 − ρ1

hm2 − hm1
(hm2 − z) + ρ2 if hm2 < z < hm1,

ρ2 if z ≤ hm2,

(2.6)

where ρ1 and ρ2 are the densities of the upper and lower layer, and hm1 = h2 − 0.5�h and
hm2 = h2 + 0.5�h are the heights of the edges of the middle layer. The vertical coordinate
z is zero at the bottom and positive upwards. The positions and thicknesses of the layers
are sketched in figure 1.

Since large movements of the free surface are not expected in the cases under
investigation (Boegman 2009), the free surface is approximated as a rigid lid and the
periodic wind stress with period Tw is represented through sinusoidal kinematic shear
stress implemented as

τ = (ν + νw)
∂u
∂z

= u2
∗ sin

(
2πt
Tw

)
,

∂v

∂z
= 0, w = 0, (2.7a,b)

where νw is calculated with a wall function that generates a near-wall value of νw based on
the modelled kinetic energy (Robertson et al. 2015; Liu 2016).
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Periodically forced stratified basin with inclined endwalls

We use u ≡ u1, v ≡ u2 and w ≡ u3. Horizontal stress components are energized with the
addition of random fluctuations with zero average. In the x and y directions, fluctuations
were 20 % and 1 %, respectively, of the mean value of τ . We use no-slip conditions along
the solid walls.

The boundary condition for the density field is zero gradient for surface, bottom
and endwalls (no-flux conditions). We consider a two-dimensional problem, meaning
that the problem is, in a Reynolds-averaging sense, two-dimensional. Hence, we use
a three-dimensional domain with periodic conditions along the cross-stream x2 or y
direction.

The Courant number is defined as Co = c0�t/�x, with c0 the internal wave speed,
�t the time step and �x the cell length. To properly resolve the wave field, C0 ∼ 0.2
is obtained using �t = 0.01 s. For larger time steps (i.e. �t = 0.02), non-physical
high-frequency waves develop at the interface.

The Navier–Stokes equations are integrated in time using the PISO (pressure implicit
with splitting of operators) algorithm (Issa, Gosman & Watkins 1986). For the time
scheme, we used the Crank–Nicolson scheme (Crank & Nicolson 1947), for spatial
derivatives we use central differences, and for the divergence operator we use the Van
Leer scheme (Van Leer 1974). The system of equations is solved using the solver
buoyantBoussinesqPimpleFoam implemented in the OpenFOAM library (Jasak 1996;
Weller et al. 1998; Chen et al. 2014). The solver has been extensively validated in a number
of cases, including variable-density flows (see, among others, Cintolesi et al. 2015).

In order to calculate turbulent statistics, we will decompose the filtered field in
a Reynolds-averaging sense as θ̄ (t) = 〈θ〉 + θ ′′(t), where θ represents a generic field
quantity, 〈θ〉 represents the mean value and θ ′′(t) represents the resolved part of the
fluctuating field. Note that the total fluctuating field is the sum of resolved fluctuations
plus SGS ones θ ′(t) = θ ′′(t) + θSGS. The quantity θSGS is unknown in a deterministic
sense, but one can write that the generic field is a sum of resolved and SGS ones,
specifically for the turbulence dissipation rate ε = εRES + εSGS. The resolved part comes
from post-processing the LES resolved field, and the SGS part comes from the SGS model.

In the rest of the paper we omit the overbar for the filtered quantities. We anticipate
that, since the grid resolution of our numerical experiments is high, in our simulations
most of the turbulent spectrum is resolved directly during the simulation and the residual
SGS stresses are low. After the initialization of the wave response, the modelled νSGS is
quite low throughout the interior due to the grid resolution and the nature of the flow. The
highest values are about 2ν, and they are located near the surface and at the intersection of
the stratified middle layer and endwalls. This indicates that the flow field is well resolved
by the grid used herein and also classifies our simulation as quasi-DNS, according to the
definition given in Spalart (2000). This family of simulations is well known in the literature
and indicates the case when most of the turbulent spectrum is directly resolved in the
simulations. Apart from fully turbulent fields (see, among others, Armenio & Piomelli
2000), these simulations are especially suited for simulation of transitional flows, like that
of the present study.

3. Analysis of the rectangular basin response to oscillating surface shear stress

We perform laboratory-scale numerical experiments of a stably stratified basin subject to
periodic surface stress, mimicking the effect of a daily-cycle breeze over the surface of a
stratified lake.
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S. Marković and V. Armenio

Here, we first discuss the case of vertical endwalls (α = 90◦) and discuss the response
of the basin with respect to the oscillatory modes. The importance of using idealized
basins, such as rectangular, stands in the fact that results of simulations can be compared
to analytical solutions and experimental data, which typically consider the idealized
rectangular domain. In addition, this geometry yields results that are easier to interpret,
as they are free from complex processes that take place at the sloping walls.

The dimensions of the domain are, respectively, length L = 2 m, depth H = 0.2 m
and cross-stream extension of the computational domain B = H. The conditions of the
simulation are summarized in table 2. The density difference used herein is typical for
laboratory-scale experiments, while the vertical stratification profile, namely the thickness
of the three layers, is typical for medium and small lakes. We will label the surface
and bottom layers as epilimnion and hypolimnion, respectively, and transitional layer as
metalimnion. The density distribution used herein, characterized by the thickness of the
metalimnion being comparable to those of the other layers, is well known to favour the
development of internal waves with higher vertical modes. The steepening time scale Ts
presented in table 2 is calculated as a reference value using the approximation η0 ≈ h1/W.
A sinusoidal kinematic shear stress applied to the surface is set in such a way as to give a
ratio rT ≈ 1, 2, 3. The initial condition for density and the wind stress boundary condition
are sketched in figure 1. Each simulation has a duration of 6Tw.

The computational grid is discretized as (nx × ny × nz) = (300 × 25 × 80), such that
the middle layer contains (300 × 25 × 16) cells. The grid resolution as wall units per cell
size �z+ = �zu∗/ν is (�x+, �y+, �z+) = (37.2, 44.6, 13.9).

For each case, we store time series of isopycnal heights, which were used for spectral
analysis. The sampling resolution in time for the time series is �t = 0.01s. At each time
step, we sampled the density profile over the 80 vertical grid points and then interpolated
the height for the values of density to be tracked. Time series of isopycnal heights are
sampled at 0.25L (probe A) and 0.5L (probe B) (see figure 1). Probe B is on a nodal
location for odd quasi-linear horizontal waves, and therefore isopycnal fluctuations at this
location are indicative of energy transfer to even modes and NLIWs.

We define the interface as ρ0 = 0.5(ρ1 + ρ2) and we compute the spectral energy
of interface height time series. For two isopycnals, respectively above and below the
interface (ρ0 − 0.25�ρ and ρ0 + 0.25�ρ), where �ρ = ρ2 − ρ1, we compute the cross
power spectral density to indicate the phase lag among them. The absence of a phase lag
indicates that the vertical distance between these isopycnals does not vary in time, which
corresponds to the behaviour of the first vertical mode, while the existence of a phase lag
indicates the existence of higher vertical modes.

To examine the vertical modal structure of the dominant wave response, we show
vertical profiles of velocity components and buoyancy frequency squared for each case.
The displayed quantities are sampled during the last forcing period when the flow is
fully developed. The quantities are averaged over 25 cells in the homogeneous spanwise
direction and shown at a time instant, where time is denoted as the phase of the forcing
period ϕ, where ϕ = 0 corresponds to the beginning of the sixth forcing period t = 5Tw.

When a surface forcing is applied on the rectangular basin at the laboratory scales,
the fast near-surface layer rapidly produces downwelling as it reaches the endwall and
penetrates through the stratified region. This was observed in the experimental set-ups
of Monismith (1986) and Stevens & Imberger (1996), who prevented this jet-like flow
from destroying the stratification by using a sponge at the endwalls. To reduce the effects
of the formation of the geometry-related return jet (see Appendix A for details), we
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Periodically forced stratified basin with inclined endwalls

Parameter Symbol (unit)

Geometry Domain height H (m)
Pycnocline length L (m)
Upper layer thickness h1 (m)
Lower layer thickness h2 (m)
Transitional layer thickness �h (m)
Endwall angle α (deg.)

Forcing Kinematic surface shear stress τ (m2 s−2)

Surface friction velocity u∗ (m s−1)
Oscillatory period Tw (s)

Environment Upper layer density ρ1 (kg m−3)

Lower layer density ρ2 (kg m−3)

Density difference �ρ = ρ2 − ρ1 (kg m−3)

Reference density ρ0 = 0.5(ρ1 + ρ2) (kg m−3)

Reduced gravity g′ = g�ρ/ρ0 (m s−2)

Buoyancy frequency N (s−1)

Vertical shear S (s−1)

Internal waves Linear long-wave speed c0 = √
g′h1h2/H (m s−1)

Fundamental wave period T1 = 2L/c0 (s)
Maximum interface displacement η0 (m)
Nonlinear coefficient αNL = (3/2)c0(h2 − h1)/(h1h2)

Steepening time scale Ts = L/(αNLη0) (s)
Fluid properties Kinematic viscosity ν (m2 s−1)

Diffusivity of density κ (m2 s−1)

Turbulence properties Turbulence dissipation rate ε (m2 s−3)

Turbulent diffusivity of density Kρ(m2 s−1)

Dissipation rate of turbulent available
potential energy ερ (m2 s−3)

Non-dimensional Wedderburn number W = g′h2
1/u2∗L

Forcing to fundamental period ratio rT = Tw/T1
Turbulence intensity parameter Reb = ε/(νN2)

Richardson number Ri = 〈N2〉/〈S2〉
Table 1. Dimensional and non-dimensional parameters.

h1 h2 �h ρ1 ρ2 u2∗ W T1 Ts Tw
(cm) (cm) (cm) (kg m−3) (kg m−3) (m2 s−2) (s) (s) (s)

4 16 4 1000 1020 3.11×10−5 5 50.73 112.74 50, 100, 150

Table 2. Main parameters of the numerical experiment.

apply a stronger stratification and weaker amplitude of forcing, which results in a higher
Wedderburn number. This parameter cyclically changes in time, with a minimum (W = 5)
at the peak of forcing, while it is higher during the rest of the forcing period. The
Wedderburn number used in our numerical experiment is representative of situations in
real-scale basins exposed to weak to moderate wind forcing. Based on Horn’s diagram
(Horn et al. 2001) and the parameters used for our set-up, W−1 = 0.2 and h1/H = 0.2, we
expect the degeneration of large-scale waves due to damped linear waves and the formation
of high-frequency NLIWs.
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Figure 2. (a,b) Time series of non-dimensional interface height hi/H for resonant forcing rT = 1 plotted
versus the number of forcing periods at probes A and B, respectively. The signature of the high-frequency
NLIWs is marked with a circle and the dashed grey vertical lines denote the non-dimensional time period
T1/Tw and multiple values, while the dashed black vertical line denotes the non-dimensional steepening time
scale. (c,d) Non-dimensional spectral energy of interface height (lines) and phase lag among isopycnals (grey
crosses) at probes A and B, respectively. Vertical dotted lines represent non-dimensional forcing frequency and
its mth superharmonics. Theoretical frequencies of internal seiches are integer values of f /f1. (e, f ) Wavelet
spectra of interface height sampled at probes A and B, respectively. The dashed white horizontal lines denoted
with letters indicate: w, forcing frequency fw; f, fundamental frequency f1; and s, approximate frequency of
high-frequency NLIWs ≈ fs.

3.1. Case rT = 1
When rT = 1, the fundamental V1H1 seiche is directly forced and we obtain a resonant
response. In the time series of interface height hi (figure 2a,b), we observe at position A
(non-nodal for odd modes) that a wave response with the fundamental period develops,
which corresponds to the occurrence of a basin-scale linear wave. As forcing continues,
the fundamental response is subject to resonant amplification, and we observe an increase
in the wave amplitude. The formation of nonlinear modes is highlighted at position B,
which is nodal for odd-mode quasi-linear waves. There, a dominant wave response has a
periodicity of half the fundamental period, which corresponds to the V1H2 mode. We
observe that the growth of the amplitude of nonlinear waves is roughly ruled by the
steepening time scale Ts; for t > Ts, the amplitude of nonlinear waves is nearly constant
and high-frequency NLIWs develop. These waves can be observed as pulse-like waves that
degenerate the large-scale waves marked with a circle in figure 2(a).
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Periodically forced stratified basin with inclined endwalls

While we do not inspect the instantaneous fields for each high-frequency wave
that appears in the time series, we note that the Richardson number Ri (shown in
§ 4) is generally supercritical except in the near-surface layer; thus we can exclude
shear instabilities as theorigin of these waves. The degeneration of the wave field by
high-frequency NLIWs is expected based on Horn’s diagram, and they are the only
high-frequency waves that we observe in instantaneous fields. The high-frequency NLIWs
propagate with almost permanent form, and therefore they can be observed at all locations.
They decay in time due to viscous wall effects (Koop & Butler 1981; Tang, Patel &
Landweber 1990) or they deform and disintegrate (Grimshaw et al. 2010). Given that our
time series contain many superimposed waves, we cannot directly observe these changes.

The presence of higher horizontal modes is also evident in the energy spectrum of
the interface height time series (figure 2c,d). We indicated forcing frequency fw and its
superharmonics fwm = mfw, m = 2, 3, . . .. The fundamental frequency of the basin-scale
linear wave is f1 and the higher-mode frequencies are calculated as fn = f1/n. Most
energy is confined in the first mode, although appreciable energy is transferred by
nonlinear interactions to the second horizontal mode. The excitation of higher horizontal
modes up to mode 10 is observable in the spectra. To get information on the vertical
structure of the modes identified by energy spikes, we calculate the phase lag (coherence
phase interpreted as a phase lag) between the heights of the isopycnals ρ0 ± 0.25�ρ.
The phase lag is generally very small across all frequencies, indicating that isopycnals
maintain approximately constant vertical separation distances so that the system response
corresponds to the first vertical mode. The largest phase lag is found only in the middle
of the basin (position B) near the fundamental frequency, corresponding to the periodic
spreading and contraction of isopycnals at this location.

To better understand the development of the wave field in time, we use the wavelet
analysis of the interface height time series (figure 2e, f ). The cone of influence is plotted
within the white dashed lines; it represents the border between data with accurate
time–frequency representation and data in the shaded region where the accuracy of data is
potentially influenced by edge effects. Initially, the fundamental mode is energized. After
the first forcing cycle, the resonant response begins, which is characterized by the increase
of energy in the fundamental mode (figure 2e). With time, energy is gradually transferred
towards modes with higher frequencies, and high-frequency NLIWs (approximately
denoted by the dashed line s at a frequency that corresponds to short NLIWs observed
in the time series for rT = 1) can be observed in the wavelet spectrum of time series from
probe B (figure 2f ). After the third oscillatory cycle, a quasi-steady state is reached without
further changes in energy distribution.

The dominant vertical modes of the internal waves can be identified by looking at the
vertical profiles of the velocity components. The vertical profile of streamwise velocity
allows identification of the dominant mode; the vertical profile of vertical velocity, which is
more sensitive to particular waves passing through the chosen location, helps identification
of other higher vertical modes.

In figure 3 we show the vertical profiles of the spanwise-averaged velocity components
at probe B at several phases during the oscillatory cycle. We observe the presence
of a three-layer structure: the near-surface layer, where stratification is weak, which is
characterized by high velocity gradient and a velocity that decreases rapidly up to the
beginning of the strongly stratified region; a stratified middle layer, where the velocity
decreases with lower shear; and the third layer in the lower unstratified region, where
velocity is nearly uniform and changes sign, due to the inversion of the mean current.
Overall, the behaviour is that of a two-layer response showing the presence of an upper
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Figure 3. Vertical profiles at probe B of (a) 〈u〉/u∗, (b) 〈w〉/u∗ and (c) 〈N2〉. Curves: ——, ϕ = 0; · · · · ·,
ϕ = 0.5π; – – – –, ϕ = π; and – · –, ϕ = 1.5π. The initial position of the middle layer is between z/H = 0.7
and z/H = 0.9.

layer moving along the wind direction and a lower layer moving in the opposite direction.
This scenario corresponds to the first vertical mode V1, as described by Monismith (1985)
for a system exposed to surface forcing. Two local maxima of 〈N2〉 = −(g/ρ0)〈∂ρ/∂z〉
form at ϕ = 0 and π and they collapse to a single one at ϕ = 0.5π and 1.5π, indicating
that these variations of density profile are not permanent.

During the resonant two-layer response, the maximum streamwise velocity of the
metalimnion is ≈5u∗, and it reduces to ≈2u∗ in the hypolimnion. Surface velocity locally
reaches values of 20u∗. The near-surface region follows the forcing oscillatory behaviour
with a phase lag between streamwise velocity u and forcing τ of about �ϕ ≈ 0.2π.

As observed by Lorke et al. (2002), under the influence of seiching, the bottom boundary
layer dynamics are governed by the oscillatory nature of the system. In our case, the
bottom boundary layer is periodically driven by the internal seiches, as a system response
to wind forcing; hence we use a simple analysis for Stokes oscillatory bottom boundary
layer (SBL).

The Reynolds number, based on the Stokes viscous penetration length δS =√
2ν/(2πfw), is Reδ = U0δS/ν. As free-stream velocity, we use the maximum velocity

of the bottom layer and obtain Reδ = 44.5, which is strictly in the laminar regime – for
details see Salon, Armenio & Crise (2007) and references therein. Consistently, we do not
observe any indicators of turbulent disturbances. In other words, in the present case the
bottom boundary layer generated by the internal seiches is weak and not able to produce
substantial turbulence in the hypolimnion. The SBL behaviour matches that observed
by Lorke et al. (2002) when analysing field data, although in our study a scale effect
on Reynolds number is present. Ulloa et al. (2019) found a large value of the turbulent
intensity parameter in a region near the centre of the basin in their real-scale simulation.

3.2. Case rT = 2
Variation of the forcing period dramatically changes the response of the basin. The time
series of the interface height for the forcing period rT = 2 is plotted in figure 4(a,b).
After the initial fundamental wave response, characterized by a linear wave with the
fundamental period (marked with the grey dashed vertical lines), the oscillation adjusts
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Figure 4. (a,b) Time series of non-dimensional interface height hi/H for rT = 2 plotted versus the
number of forcing periods at probes A and B, respectively. The dashed grey vertical lines denote the
non-dimensional time period T1/Tw and multiple values, while the dashed black vertical line denotes
the non-dimensional steepening time scale. The arrow denotes the fundamental wave destruction event.
(c,d) Non-dimensional spectral energy of interface height (lines) and phase lag among isopycnals (grey crosses)
at probes A and B, respectively. Vertical dotted lines represent forcing frequency and its mth superharmonics.
Theoretical frequencies of internal seiches are integer values of f /f1. (e, f ) Wavelet spectra of interface height
sampled at probes A and B, respectively. The dashed white horizontal lines denoted with letters indicate: w,
forcing frequency fw; f, fundamental frequency f1; and s, approximate frequency of high-frequency NLIWs
≈ fs.

to the forcing period together with the appearance of high-frequency waves. Based on
the analysis of Boegman et al. (2003) for high-frequency waves, these waves are excited
by nonlinear effects and we denote them as high-frequency NLIWs. They cannot be
associated with shear instability because they occur in a region where the Richardson
number Ri = 〈N2〉/〈S2〉 is well above the critical value Ricr = 0.25 under which shear
instability can develop. The nonlinear effects that excite high-frequency NLIWs, in this
case, are related to the destruction of the fundamental wave. Their presence just at probe
A together with an inspection of the instantaneous field suggests that they are created
locally, between probe A and the left endwall, and they travel towards the left endwall,
where they lose a substantial part of their energy.

According to Cooker, Weidman & Bale (1997) upon collision of a large-amplitude
solitary wave with a vertical wall, it loses energy (to a dispersive wave train) and height,
which explains why we do not observe these high-amplitude, high-frequency NLIWs later
in the time series. Instead, high-frequency waves with lower amplitudes appear and remain
present throughout the simulation. Given that the Richardson number is very high in the
metalimnion, all of these high-frequency waves are NLIWs. At the nodal location B,
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the initial response corresponds to even mode V1H2 with frequency f2. However, as the
system basin-scale response adjusts to the forcing conditions, due to energy transfer, so do
the higher modes, as the period of the second horizontal mode at location B adjusts to the
half-period of forcing fw2. In this case, we do not observe resonant amplification.

In spectral energy analysis of these time series (figure 4c,d), we can identify forcing
frequency fw as the most energetic at location A. The energy spike that belongs to the
fundamental wave V1H1 is found near f1 at the same location. At location B, which is
nodal for the fundamental wave, the spike of energy near f1 is associated with a wave that
occurs as a superharmonic of the forcing frequency near f1 = fw2. Higher superharmonics
of the forcing frequency can be identified: fw3 at non-nodal location A; and fw4 and fw5 at
nodal position B. The phase lag near fw and fw4 indicates that these waves are in the form of
higher vertical modes. There is increased energy in the region with high-frequency NLIWs
(circled), which is characterized by the absence of a phase lag, indicating the presence of
V1 mode.

The wavelet spectrum analysis of interface height series (figure 4e, f ) shows that,
initially, both the fundamental frequency and the forcing frequency are energized. During
the second forcing period, the energy of the fundamental wave mode decreases rapidly
(figure 4e), followed by the transfer of energy to nonlinear waves (figure 4f ) and towards
the high-frequency NLIWs. Upon transfer, energy is soon dispersed. After the decay of
the fundamental mode, the energy of the wave with the frequency of forcing fw rises. Part
of this energy is transferred to higher modes fwm up to the high-frequency NLIWs that
develop as a result of steepening of the nonlinear waves.

Antenucci, Imberger & Saggio (2000) analysed data from field observations using an
analytical model and found that a forcing period equal to that of the internal wave is not
enough for resonant amplification. If the wave is pre-existing, the phase between wind
and wave plays an important role. A zero phase causes resonant amplification, while a
phase equal to 180◦ (half-period) causes antiresonance and wave cancellation. Vidal et al.
(2007) further hypothesized that strong wind events that are out of phase with the dominant
wave drain its energy and energize other vertical modes. Observing the destruction event
on figure 4(a) (marked with an arrow), we see that the existing wave reaches its peak
amplitude when forcing is at phase ϕ = 0, yielding a phase difference between wave
and forcing of about a quarter of the forcing period. This difference is enough to drain
energy from the fundamental mode and cause a wave cancellation. This process occurs
with energy transfer from a quasi-linear fundamental wave to NLIWs, and subsequent
energizing of the non-resonant wave with frequency fw and higher vertical mode.

The behaviour of the velocity and density fields during the wave cancellation events is
depicted in figure 5. At t/Tw = 0.7 the wave starts its upward motion on the left side of
the basin, which can be observed in the time series sampled at location A, and develops
positive streamwise velocity u in the middle layer, while the forcing produces negative u
near the surface, which is in the same direction as the flow in the bottom layer. At t/Tw =
0.9 to t/Tw = 1, the velocity in the middle layer intensifies, and spread and contraction of
the metalimnion occur, respectively, at the left and at the right endwall. At t/Tw = 1 the
basin-scale V1 wave is at its own peak and about to start the downward motion (at the left
side, where the sampling point is) and to reverse its circulation. At t/Tw = 1.1 close to the
bottom and endwalls, u has reversed its direction, while most of the middle and upper layer
are still strongly dominated with the forcing-induced velocities from the previous forcing
period. At the left side of the basin, where the metalimnion is contracted, short waves
appear whose signature in u is visible throughout the upper part of the water column. At
t/Tw = 1.2 both density and velocity field are favourable for the formation of V2 waves.
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Figure 5. Illustration of the velocity and density fields during the wave cancellation event. Time series display
the oscillation of isopycnal ρ0 at 0.25L while red areas display the state of the non-dimensional forcing τ/u2∗.
The five panels above the time series show internal fields at various times. White lines show the isopycnals
in the range ρ0 ± 0.5�ρ, arrows show velocity direction and the field is coloured with non-dimensional
streamwise velocity u/u∗.

The increase of the period of oscillation substantially changes the response of the basin;
namely, it moves from two-layer to three-layer dynamics. Vertical profiles of the averaged
velocity components and squared buoyancy frequency at probe B are shown in figure 6
at different phases during the oscillatory cycle. A clear three-layer response is depicted
with two horizontal velocity inversions at the edges of the metalimnion. Basically, in the
surface and bottom layers, the flow moves in the same direction, and inversion is present in
the intermediate stratified region. This comes from a combination of a spatially evolving
wave (typical of oscillatory flows) and the inversion required by mass conservation due to
the presence of the endwalls. This structure clearly indicates that the dominant response
of the system is in terms of second vertical mode V2 with forcing frequency.

The maximum of the streamwise velocity in the metalimnion and hypolimnion is about
3u∗ and 0.4u∗, respectively. Vertical velocity is more sensitive to the passage of different
waves. Together with profiles with one vertical reversal (at ϕ = 0 and 0.5π), which
corresponds to the second vertical mode, we can observe a profile with no reversals (at
ϕ = 0.5π), which corresponds to the passage of a wave with the first vertical mode. The
system adjusts to the forcing period via a second vertical mode, while waves with the first
vertical mode remain present. The profile of 〈N2〉 shows periodic behaviour, where 〈N2〉
increases at ϕ = 0.5π and 1.5π and decreases at ϕ = 0π and 1π. The increase of 〈N2〉
corresponds to stronger stratification as a consequence of the contraction of metalimnion,
while the decrease of 〈N2〉 corresponds to the metalimnion spread, which is a behaviour
characteristic of waves with second vertical mode. In this case, the Reynolds number of
the bottom SBL is Reδ = 12.6 for which the flow is again in the strictly laminar regime.
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Figure 6. Vertical profiles at probe B of (a) 〈u〉/u∗, (b) 〈w〉/u∗ and (c) 〈N2〉. Curves: ——-, ϕ = 0;
· · · · ·, ϕ = 0.5π; – – – –, ϕ = π; and – · –, ϕ = 1.5π.

3.3. Case rT = 3
A third forcing period was considered, resulting in the response of the interface height
time series depicted in figure 7(a,b). At the non-nodal location A, we observe that the
initial response is in terms of a non-resonant fundamental seiche (the fundamental period
is marked by vertical dashed grey lines) as predicted for the two-layer system based on
the results of Boegman & Ivey (2012). During the third forcing period, the fundamental
wave degenerates, and NLIWs become dominant. We note that the fundamental wave is
cancelled and re-formed several times. The first cancellation is observed at the beginning
of the second forcing period, similarly to the rT = 2 case. A fundamental wave peak
appears at forcing phase ϕ = 0, which results in fundamental wave cancellation and
formation of a new fundamental wave; the transition is always followed by energy transfer
towards higher frequencies and the appearance of the high-frequency NLIWs. At the nodal
location B, the initial response has a half-fundamental period, therefore corresponding
to V1H2 mode. At the beginning of the second forcing period, even modes and NLIWs
with a half-forcing oscillatory period appear, corresponding to forcing superharmonic fw2.
Growth of nonlinear waves and the appearance of NLIWs does not occur at Ts, so we can
argue that their origin is related to processes that are not explained by the two-layer theory
from which the steepening time scale Ts is derived.

We show the spectral energy of the interface height time series in figure 7(c,d). At
non-nodal location A, the highest-energy peak is found at fundamental and forcing
frequencies f1 and fw, respectively; at the nodal location B, the superharmonic fw2 is
even more energetic. At the non-nodal position, peaks of energy can also be observed for
superharmonics fw4 and fw5 and at the nodal position for fw4 and fw6. Phase lag is generally
high across most frequencies, indicating that the motion of isopycnals ρ0 ± 0.25�ρ is
practically decoupled and that the system responds with higher vertical mode. This is also
true for the region with NLIWs.

The wavelet spectrum analysis of the interface height shown in figure 7(e, f ) indicates
that fundamental and forcing frequencies are dominant at probe A (figure 7e). The wave
with fundamental frequency has a particular behaviour with respect to energy content,
which is characterized by several events of increase and decrease of energy. These events
coincide with the appearance of energy in the higher frequencies. The sudden losses in
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Figure 7. (a,b) Time series of non-dimensional interface height hi/H for rT = 3 plotted versus the number of
forcing periods at probes A and B, respectively. The dashed grey vertical lines denote the non-dimensional
time period T1/Tw and multiple values, while the dashed black vertical line denotes the non-dimensional
steepening time scale. (c,d) Non-dimensional spectral energy of interface height (lines) and phase lag among
isopycnals (crosses) at probes A and B, respectively. Vertical dotted lines represent forcing frequency and
its mth superharmonics. Theoretical frequencies of internal seiches are integer values of f /f1. (e, f ) Wavelet
spectra of interface height sampled at probes A and B, respectively. The dashed white horizontal lines denoted
with letters indicate: w, forcing frequency fw; f, fundamental frequency f1; and s, approximate frequency of
high-frequency NLIWs ≈ fs.

fundamental wave energy are caused by wave cancellation, due to the phase difference
between wave and forcing. Besides the high-frequency NLIWs that originate from the
wave cancellation events, there are energy bursts in NLIWs with lower frequencies
whose energy increases with each occurrence, which will be discussed later. At location
B (figure 7f ), substantial energy is contained in the even superharmonic fw2. In fact,
energizing of fw2 coincides with both energy loss from fw and cancellation of f1, upon
which the energy of fw2 remains constant throughout the simulation. This leads to the
conclusion that the system adjusts to the fw2 response. Given that this wave is absent
at location A, and this location is nodal for H2 waves, we can identify this wave as
horizontal H2 mode. The wavelet spectrum analysis of the time record at probe B
shows that superharmonics originate from fw2. Besides, we see the pathways of energy
towards high-frequency NLIWs, which occur with period 0.5Tw (corresponding to fw2). By
inspecting the spanwise-averaged fields at the time instant (discussed in the § 4), we find
that these are V2 mode NLIWs that periodically pass through the probe with frequency
fw2.
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Figure 8. Vertical profiles at probe B of (a) 〈u〉/u∗ (the inset shows the metalimnion jet at ϕ = 1.6π),
(b) 〈w〉/u∗ and (c) 〈N2〉. Curves: ——-, ϕ = 0; · · · · ·, ϕ = 0.5π; – – – –, ϕ = π; and – · –, ϕ = 1.5π. As
before, ϕ indicates the phase within the forcing cycle.

The vertical profiles of the spanwise-averaged velocity components are shown in
figure 8. The streamwise velocity profile (figure 8a) has a three-layer structure similar
to that of the rT = 2 case, but it is substantially less uniform across the metalimnion.
This indicates that the second vertical mode V2 dominates in the presence of other
superimposed waves. Occasionally, metalimnion jet-like behaviour appears, which is
related to the V2 response. It reaches a velocity of about 4u∗. By examining the
instantaneous fields, we found that this behaviour is associated with the occurrence of V2
high-frequency NLIWs. Similar association of the V2 mode NLIWs with the metalimnic
jet is made in Boegman et al. (2003). Excluding the jet-like events, the maximum of the
streamwise velocity in the middle layer is ≈ 2u∗ and up to ≈ 0.4u∗ in the lower layer.
The vertical velocity profile (figure 8b) at ϕ = 0.5π clearly belongs to the wave with
the second vertical mode, while in other profiles different waves are superimposed. The
metalimnion appears deepened compared to other cases (figure 8c), which is partially the
consequence of substantially different duration of the numerical experiment. Even in this
case (Reδ = 15.4), the bottom layer flow is strictly in the laminar regime.

Ulloa et al. (2020) resonantly forced a nonlinear V2H1 wave that is characterized by a
V2 undular bore and found that it is followed by a train of V2 high-frequency NLIWs. In
our case, a nonlinear V2H2 wave is the dominant response, and its period corresponds to
that of the passage of V2 NLIWs; therefore, V2H2 is likely to be the wave they originate
from. The inspection of the structure of V2 NLIWs corresponds to the description of
Ulloa et al. (2020), where each wave consists of the two cores with opposite vorticity
(not shown). While the association of the nonlinear V2 wave and V2 NLIWs corresponds
to that observed by Ulloa et al. (2020), the general response differs. Namely, we do
not observe the differentiation on the quiescent and disturbed part of the domain by the
nonlinear wave. This may be because in our case the nonlinear response is a non-resonant
wave and there are a variety of other superimposed waves in the field.

3.4. Summary
In basins where metalimnion thickness cannot be neglected and when periodic forcing has
period close to or greater than the fundamental one (which is the case for most small and
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mid-sized lakes), only resonant forcing of V1H1 (rT ≈ 1) excites a response in terms of
first vertical mode. Forcing with larger forcing period produces a response with higher
vertical mode; in the cases we tested, rT = 2, 3, the wave response has a second vertical
mode. The excitation of the higher vertical modes by larger rT is expected because the
propagation speed of vertical mode-n waves decreases roughly like n−1 (Monismith 1987),
which increases the period of these waves with n. We may argue that the limit for resonant
excitation of V1H1 is rT � 1.5 as determined by Boegman & Ivey (2007) for a two-layer
system. The results of Boegman & Ivey (2007) are also valid for the initial response for
forcing periods larger than those given by the above condition, where the initial response
is in terms of the non-resonant fundamental wave.

Differences arise after a time period when forcing conditions become unfavourable
to the fundamental wave, and lead to its cancellation. This process results in transfer
of energy from the fundamental mode to high-frequency NLIWs through nonlinear
mechanisms. In the rT = 2, 3 cases, the first cancellation occurs at about ≈1.15Tw. Upon
cancellation, the wave field develops differently depending on the forcing period. Namely,
for rT = 2, this cancellation is permanent; the system adjusts to forcing by energizing
the V2H1 wave whose frequency corresponds to that of the forcing. For rT = 3, the
fundamental wave V1H1 re-forms and gets cancelled several times during the oscillatory
cycles. Upon the first cancellation, forcing superharmonic fw2 is energized as nonlinear
V2H2, while the energy of fw decreases; therefore, the system adjusts to nonlinear fw2 and
it becomes the dominant response.

Generalizing the results, a lake-like system with a fundamental period shorter than
diurnal and having relatively thick metalimnion compared to other layers is susceptible to
the formation of higher vertical modes and will respond with higher vertical mode waves
unless the fundamental wave is resonantly forced with rT � 1.5. The response can adjust
to forcing frequency fw or to its superharmonic. The ability of the system to adjust to the
periodicity of the forcing is closely related to the occurrence of NLIWs, and they might be
a bridge for internal adjustment.

4. Influence of inclination of the endwalls

Here we investigate how the inclination of the endwalls modifies the response of the
basin to the periodic wind forcing discussed in the previous section. The variations of
the domain are obtained by varying the angle α, which is the angle between the endwalls
and the bottom along L (figure 1). Specifically, we vary the angles of the endwalls
α = 30◦, 45◦, . . . , 90◦, where the latter stands for vertical walls. This bathymetry is
representative of alpine glacier-carved lakes whose water basins are typically found in
steep valleys.

The endwalls are varied such that the length of the domain at the height of the
interface where ρ = ρ0 (h2) is kept constant. Shintani et al. (2010) gave a formulation
of the effective Wedderburn number that accounts for the sloping bottom geometry. The
effective Wedderburn number slowly changes with geometry variations due to physical
characteristics such as symmetry over the yz-plane, constant pycnocline length and
relatively steep slopes. We found that, for the different geometrical configurations herein
investigated, differences in Wedderburn number are of the order of 10−3, and therefore
(1.1) is valid for all the cases.

As in the previous section, turbulent statistics are obtained by averaging the
instantaneous field data along the spanwise direction and shown at a given time instant
during the last forcing period. Owing to continuous mixing during the simulations,
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averaging in time was considered not appropriate; thus we discuss separately the cases
at constant rT and analyse the effect of the inclination of the endwalls.

4.1. Resonant response, rT = 1
The time series of interface height in figure 9(a,b) show that, as α decreases,
high-frequency NLIWs (circled) appear before the steepening time scale Ts, indicating
that the mechanism of their formation is not gradual energy transfer from quasi-linear
waves to nonlinear ones and their subsequent steepening. As in the previous section, the
presence of high-frequency NLIWs in the time series is characterized by high-frequency
pulse-like waves superimposed on the main almost sinusoidal low-frequency wave field.
Another effect of inclination of the endwall is that the time series are smoother, with less
pronounced high-frequency NLIWs for small values of α. The time series are all very
similar apart from α ≤ 45◦, for which the amplitude of the oscillation of density interface
reduces substantially with time at both probes. This matches the behaviour speculated
by Ulloa et al. (2020) that water bodies with a lower slope angle will escape resonance
sooner than those with steep slopes due to enhanced mixing at the sloping boundaries
which changes the background stratification. We will further discuss these effects later on.

The energy spectra of the time series of interface height are very similar for all
inclination angles of the endwalls (not shown). Also, the phase lag between the two chosen
isopycnals is generally low, except at frequencies near f1 in the middle of the channel. This
corresponds to periodic spread and contraction of the metalimnion in the middle of the
basin, which is the indicator of the formation of higher vertical modes. This effect is more
pronounced for the lower inclination of the endwalls.

The wavelet spectrum analysis of the time series for α = 30◦ shown in figure 9( f,g)
reveals that high-frequency NLIWs form before Ts, at the end of the first forcing period,
which can be observed as an increased amount of energy near the dashed line s (figure 9f ).
We note that, before reaching high-frequency waves, energy is transferred through the
lower frequencies. The origin of these waves may be attributed to forcing-induced
nonlinear surges, like those observed by Farmer (1978), that quickly steepen, thus
producing high-frequency NLIWs. This is confirmed by inspection of the instantaneous
fields: figure 9(h) shows the formation of the surge at the interface (denoted with a
downward triangle), while figure 9(i) shows the degeneration of the surge into the
high-frequency NLIWs.

The energy contained in the region of the high-frequency NLIWs is relatively low until
the third forcing period, which corresponds to the formation of solitary-like waves by
nonlinear steepening (timed by Ts), after which their energy is reduced. This behaviour is
significantly different from that of the rectangular case, where, for t > Ts, a quasi-steady
state is reached. The cause of this behaviour will be discussed later in this section.

Vertical profiles of averaged streamwise and vertical velocity components and squared
buoyancy frequency are shown in figure 9(c–e). The vertical profiles of buoyancy
frequency squared (figure 9e) show that the epilimnion becomes more stratified for steeper
slopes. Given that the initial state of the epilimnion is uniform density 〈N2〉 = 0, this
indicates that, as the slope steepens, there is more mixing in the upper layer. Going
down, we observe that for steep slopes α = 75◦, 90◦, the maximum of 〈N2〉 (indicating
pycnocline) is shifted downwards. Both these phenomena can be explained by vigorous
corner flow at the downwind end that appears for steep slopes (such as that described by
Monismith (1986) and Stevens & Imberger (1996)). This flow cannot penetrate through
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Figure 9. (a,b) Time series of interface height for rT = 1 and different values of α at probes A and B,
respectively. (c–e) Vertical profiles of the velocity components and 〈N2〉 sampled at probe B for all values of
α. ( f,g) Wavelet spectrum for α = 30◦ at probes A and B, respectively. Dashed white horizontal lines denoted
with letters indicate: w, forcing frequency fw; f, fundamental frequency f1; and s, approximate frequency of
high-frequency NLIWs ≈ fs. (h,i) Slices through the instantaneous density field together with velocity vectors
and interface ρ = ρ0 denoted with a white line for the case α = 30◦ at time instants t/Tw = 0.9 and t/Tw = 1,
respectively. Colour code for (a–e): black, α = 90◦; red, α = 75◦; green, α = 60◦; blue, α = 45◦; and brown,
α = 30◦.

the metalimnion, but it erodes it with time. At the bottom of the metalimnion, the stratified
region, with non-zero 〈N2〉, spreads downwards with a decrease of α. Mixing under the
metalimnion can be explained in relation to the reduction/decrease of the high-frequency
NLIWs from the wave field (as observed in figure 9a,b, f,g), as a consequence of breaking
of the NLIWs at the slopes, which is known to cause mixing in the lower layer (e.g.
Michallet & Ivey 1999). Widening of the metalimnion is known to promote the formation
of higher vertical modes.

The vertical velocity profiles (figure 9d) do not exhibit reversals, indicating V1
as the dominant vertical mode for all endwall angles. However, as α decreases, a
substantial reduction of the vertical velocity and additional spatial oscillations occur.
The first one is explained by the resonance-escape hypothesis of Ulloa et al. (2020),
whereas the latter indicates the existence of higher vertical modes superimposed over
the profile of the dominant V1H1 mode. The additional waves drain energy from the
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fundamental mode, causing the further reduction of the amplitude of vertical velocity,
as observed in figure 9(d).

The vertical profile of streamwise velocity (figure 9c) changes little with the variation
of the angle of the endwalls, and the behaviour roughly corresponds to that described for
the rectangular domain. We observe that, as α decreases, the vertical profiles become
less sharp, which is related to the appearance of higher vertical modes that create a
non-uniform distribution of velocity in each layer.

The spatial oscillations observed in the vertical velocity profiles, together with the
progressive irregularities of profiles of horizontal velocity component, for low endwall
angles α, indicate the increase of the number of shearing layers.

The quantity 〈S2〉 = 〈∂u/∂z〉2 + 〈∂v/∂z〉2 is indicative of regions with high shear,
where turbulence is more likely to occur if stratification is weak, resulting in low values of
Richardson number. The largest values are close to the free surface in all cases, due to the
action of the wind stress. The second region with high 〈S2〉 is found in the lower end of the
metalimnion where the velocity reverses (see figure 9c). Lowering of α introduces higher
shear into the interior, as a direct consequence of the occurrence of the higher vertical
modes. Indeed, they produce a number of layers moving with different velocities. In all
cases, shear is evident close to the bottom, indicating the presence of a weak boundary
layer, and at the inclined walls, for a low value of α. As already discussed, the bottom
boundary layer is very weak and in the laminar regime. This holds also in the presence of
inclined walls.

The gradient Richardson number Ri = 〈N2〉/〈S2〉 shown in figure 10 quantifies the
relative importance of the local stabilizing buoyancy forces against the destabilizing effect
of shear. In general, in our simulations, Ri is very high, which is a consequence of the
laboratory configuration. There is a thin near-surface layer where Ri is under the critical
value Ricr = 0.25, which corresponds to the surface mixed layer, where 〈N2〉 is very low
and 〈S2〉 is very high. This is the case also in real-scale basins. The region with subcritical
and negative Ri can be found near the corner due to the return jet, where the downward
jet creates overturns. We observe that the downward reach of this jet increases with α.
In the interior, Ri is generally supercritical; exceptions are the intermittent regions with
subcritical Ri that appear at the lower edge of the metalimnion (where 〈N2〉 is very low)
for lower α. For the lowest α, some wider regions with Ri < Ricr are observed, in particular
near the walls, as a consequence of wave breaking, which will be discussed below in the
following paragraphs. We acknowledge that, due to laboratory-type set-up, there is a lack
of patches with subcritical Ri that would produce shear instabilities and turbulence in the
interior, compared to real lakes (Saggio & Imberger 2001).

In our numerical experiments, as in real lakes, the flow is strongly dominated by
the internal wave field characterized by continuous variations in space and time, which
produces high intermittency. In such situations, vertical fluxes (such as 〈ρ′w′〉, 〈u′w′〉,. . . )
appear at a similar rate as down-gradient and counter-gradient (Saggio & Imberger
2001), indicating the presence of stirring, or reversible fluid rearrangement (see Linden
2018; Villermaux 2019; Caulfield 2021). This characteristic of lakes makes it difficult
to quantify the irreversible part of vertical density flux 〈ρ′w′〉 and subsequently the
buoyancy flux B = (g/ρ0)〈ρ′w′〉, which are needed in order to calculate the diffusivity
of density Kρ = 〈ρ′w′〉/(∂〈ρ〉/∂z) = B/N2. The vertical fluxes are dominated by the
reversible component in all simulated cases. In other words, these quantities are not very
robust for quantification of mixing in the case studied herein.

There are several methods that have been developed in the literature to extract
information on the turbulent mixing: the widely used Osborn–Cox method (Osborn &
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Figure 10. Richardson number Ri for rT = 1 at ϕ = 1.2π: (a) α = 90◦, (b) α = 60◦ and (c) α = 30◦. The
turquoise colour scale represents subcritical Ri.

Cox 1972) evaluates the turbulent diffusivity of the scalar, using some assumptions
that are difficult to verify in transitional non-equilibrium flows; the available potential
energy methods (e.g. Winters et al. 1995; Scotti & White 2014) directly relate changes
in the available potential energy to irreversible diapycnal mixing; and, finally, there are
parametrizations which constitute a simple and efficient way to obtain the desired field.

The laboratory-scale parametrization of Kρ for Prandtl number Pr = 0.7 proposed by
Shih et al. (2005) was extended to the range 0.7 < Pr < 700 by Bouffard & Boegman
(2013). These models are based on the strong correlation between Kρ and the turbulence
intensity parameter Reb = ε/(νN2), where ε is the dissipation rate of turbulent kinetic
energy, namely, Kρ = C1νRen

b, where C1 and n are constants characteristic of the mixing
regimes initially defined by Shih et al. (2005) and successively expanded by Bouffard
& Boegman (2013) as the molecular, buoyancy-controlled, transitional and energetic
regimes.
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We calculated the turbulence intensity parameter (or Reynolds buoyancy number) Reb
using the dissipation rate ε = −(ν + 〈νsgs〉)〈(∂u′′

i /∂xj)(∂u′′
i /∂xj)〉, for i, j = 1, 2, 3 and

buoyancy frequency 〈N2〉.
Instantaneous resolved buoyancy fluxes in the metalimnion for the phase ϕ = 0.8π are

plotted as a function of the turbulence intensity parameter Reb = ε/(ν〈N2〉) in figure 11.
Here we take the metalimnion to be the region 0.5 < z/H < 0.9, which is wider than
in the initial set-up, in order to account for metalimnion spread due to mixing (see
figure 9e). We show the values of positive and negative buoyancy flux events as B+ and
B− made non-dimensional with κN2. We are not replacing B/(κN2) with the equivalent
expression Kρ/κ because the first contains events of reversible fluid rearrangement that
do not contribute to turbulent mixing. We note that in our simulations the events with
Reb values are significantly lower than in the real-scale simulations of Ulloa et al. (2019),
where typical values of Reb in the metalimnion are ≈102 and at the sloped walls from
about 102 to 105. Vertical lines divide different regions as defined by Bouffard & Boegman
(2013). Most of the distribution is found to be in the molecular and buoyancy-controlled
regimes. This is due to the laboratory scale employed in our study, which is better suited
for the analysis of internal wave dynamics rather than for the analysis of mixing. The
values obtained in our simulations are higher than those estimated using the Bouffard &
Boegman (2013) parametrization for Sc = 500, probably due to the reversible buoyancy
fluxes associated with internal waves. The effect of the angle α is hardly detectable from
these plots since the dots are overlapped over the same regions, but histograms (not shown)
show the shift of the distribution towards higher values for lowerα.

Spatial distributions of the turbulent dissipation rate and turbulent diffusivity of density
calculated using the Bouffard & Boegman (2013) parametrization based on laboratory and
numerical data are shown in figure 12. The turbulent dissipation rate ε (figure 12a–c) is
larger near the surface and near the corner where vigorous corner flow is present. With
the decrease of α, we observe that the spatial distribution of dissipation rate changes
substantially; regions with significant dissipation rate, which are in the path of the
downward beams radiating off-slope, penetrate further into the hypolimnion; for the lowest
values of α, we find high dissipation rate in the regions where the metalimnion encounters
the endwalls. For the lowest inclination angle, a large non-dimensional dissipation rate
ε/(u4∗/ν) occurs in the metalimnion near the walls ∼10−2–10−3, while in the interior
it is ∼10−5–10−6. This difference is close to that observed by MacIntyre et al. (1999)
for onshore and offshore dissipation rates (two to three orders of magnitude), while it is
somewhat higher than that simulated by Ulloa et al. (2019) and substantially higher than
that observed by Wain & Rehmann (2010).

We use the method of Scotti & White (2014) in order to calculate the dissipation rate of
the available potential energy ερ as

ερ = κ

〈
∂ρ′′

∂xj

∂ρ′′

∂xj

〉
g2

2ρ2
0〈N2〉 , (4.1)

which we show in figure 12(d–f ). We note that the spatial distribution of ερ is similar to
that of ε with the abrupt drop in the hypolimnion region where 〈N2〉 ≈ 0. We note that, for
the steep slopes (α = 60◦, 90◦), regions with high ερ are located in the near-wall regions
and upper metalimnion, while for the gentle slope (α = 30◦), high-ερ regions are shifted
towards the border between the metalimnion and unstratified hypolimnion.
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Figure 11. Non-dimensional buoyancy fluxes B/(κ〈N2〉) as a function of turbulence intensity parameter Reb
for rT = 1 at ϕ = 0.8. Plots of directly calculated positive B+ and negative B− buoyancy flux. Thick purple
lines represent the parametrization of Bouffard & Boegman (2013) for Pr = 500 . Colour code: black, α = 90◦;
red, α = 75◦; green, α = 60◦; blue, α = 45◦; and brown, α = 30◦.

We calculate the spatial distribution of diffusivity of density Kρ (figure 12g–i) and
mixing efficiency E (not shown) following VanDine, Pham & Sarkar (2021), where
Kρ = ερ/〈N2〉 and E = ερ/(ε + ερ). We note that, for steep slopes, Kρ is high only near
the surface and corner, where mixing is a direct consequence of forcing. As slope angle
decreases, we observe some mixing also near the walls, at the edges of the metalimnion.
The increase of mixing as the slope moves from steep to moderate, together with lowering
of mixing location, corresponds to the behaviour associated with high-frequency NLIWs
breaking (Michallet & Ivey 1999; Boegman et al. 2005a) and shear-induced convective
mixing (Lorke et al. 2005). For the lowest angle α = 30◦, we observe an overturn event
(region with negative 〈N2〉) at the bottom of the metalimnion.

The observed mixing efficiency is generally low throughout the metalimnion (O(10−3)),
while at the bottom of the metalimnion, where stratification is weak and shear is high due
to the structure of the internal waves, E is high locally (O(10−2–10−1)) with highest values
of almost 0.6.

We also observe downward beam-like activity near the sloped walls, and we investigate
the criticality of the slopes. We use the slope criticality parameter (Garrett & Kunze 2007;
Gayen & Sarkar 2010, 2011) defined as γ = tan α/tan θ , where tan θ = √

ω2
w/(〈N2〉 − ω2

w)

is the slope of the forced internal wave with frequency ωw = 2πfw. Slope criticality and
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Figure 12. Fields of (a–c) non-dimensional turbulent dissipation rate ε/(u4∗/ν), (d–f ) dissipation rate of
turbulent available potential energy ερ/(u2∗Ninit) and (g–i) turbulent diffusivity of density Kρ/κ for rT = 1
at ϕ = 0.4π for (a,d,g) α = 90◦, (b,e,h) α = 60◦ and (c, f,i) α = 30◦. White lines represent isopycnals. Closed
yellow lines represent the unstable stratified regions with negative 〈N2〉.

observed beams are shown in figure 13. Slopes are near-critical at the bottom edge of the
metalimnion (white line) and supercritical above it. In the streamwise velocity, we observe
the downward beams that radiate away from the slopes, which is a known behaviour at
supercritical slopes (Sarkar & Scotti 2017). These downward beams can induce turbulence
and overturns on their path (Aucan et al. 2006). This explains the particular spatial
distribution of Ri, where cases with low α show regions in the deep interior where the
Richardson number is near-critical or subcritical. For α = 30◦, there is a weak downslope
flow near the critical region of the slope, which induces weak mixing (Kρ ≈ 20κ) at the
endwalls and creates a region with subcriticalRi.

Near-shore mixing can be generated by seiching currents or breaking of internal waves.
We observed in both time series and their wavelet spectrum analysis that high-frequency
NLIWs are substantially reduced for low α. In figure 14 we can observe the formation of
an unstable layer during the upslope seiching event that corresponds to the shear-induced
convective mixing as described by Lorke et al. (2005). We can therefore conclude that
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Figure 13. Non-dimensional streamwise velocity component for rT = 1 at ϕ = 0 for (a) α = 60◦, (b) α = 45◦
and (c) α = 30◦. The line shows the slope criticality parameter γ = 1 and the arrows indicate the near-wall
end of downward beams.

the increased mixing and dissipation rate near the wall is due to the combination of wave
breaking events and shear-induced mixing.

Time development of the horizontally (along x and y directions) averaged field 〈N2〉h
is shown in figure 15. In all cases, deepening of the metalimnion is more rapid during
the initial transient, when shear-induced mixing occurs. According to Spigel & Imberger
(1980), this mixing is later damped by the internal waves and the deepening slows down.
There is a clear tendency of faster metalimnion deepening for basins with lower α.
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Figure 14. Contours of density field and velocity direction for α = 30◦ at ϕ = 1.8π, showing generation of
unstable stratification during the upwelling event.
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Figure 15. Time development of the horizontally averaged buoyancy frequency squared 〈N2〉h for (a)
α = 90◦, (b) α = 60◦ and (c) α = 30◦.

It should be stressed that this deepening weakly stratifies the hypolimnion (which initially
has uniform density) and it becomes susceptible to the occurrence of internal waves. On
the other hand, deepening does not cause such dramatic changes in the stratified region, in
terms of relocating isopycnals, as seen in figures 9(a,b) and 12.

Analysis of the time series, velocity, indicators of stratification and turbulence fields
suggests the following scenario. After the initial transient, the mechanism that deepens the
metalimnion for lower slope angles is a combination of wave breaking, seiching currents,
downward beams and the presence of higher vertical modes. Owing to wave breaking,
shear-induced mixing and near-critical or supercritical slopes, fluid under the metalimnion
is getting mixed near the boundaries, whereas the higher vertical modes enhance the
intrusion that transports this mixed fluid towards the interior (Wain & Rehmann 2010).

4.2. Non-resonant response and wave destruction, rT = 2
In the interface height time series of figure 16(a,b), we observe similar oscillatory
behaviour for cases with different angles of the endwalls. First, the fundamental mode is
excited; later on, the forcing frequency dominates the oscillatory cycle. The inclination
angle of the endwalls does not affect the response very much. For lower inclination
angles, high-frequency waves appear earlier, being less pronounced in the later forcing
periods compared to the rectangular case; likewise the case of resonant forcing. A larger
quantitative variation of the amplitude of oscillation of the density interface occurs for
α ≥ 45◦. There is a characteristic behaviour of interface height to decrease with time,
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Figure 16. (a,b) Time series of interface height for Tw/T2 = 2 sampled at probes A and B, respectively, for all
values of α. (c) Wavelet spectrum for α = 30◦ at probe A. Colour code for (a,b): black, α = 90◦; red, α = 75◦;
green, α = 60◦; blue, α = 45◦; and brown, α = 30◦.

and this decrease is greater for larger α. This is due to the already discussed erosion
of the upper side of the metalimnion by forcing. We notice that, as in the previous
case, high-frequency NLIWs (pulse-like waves) appear earlier in the time series, but are
substantially reduced at later times for the low-α cases. The explanation for this behaviour
is the same as for rT = 1.

The response in terms of spectral energy of these time series does not exhibit substantial
modification from case to case (not shown). For all inclination angles, fw and fw2 are the
dominant response frequencies. The phase lag near the forcing frequency increases with
a decrease of α, indicating stronger V2 response for lower inclination angles. The wavelet
spectrum for α = 30◦ shown in figure 16c is very similar to that of the rectangular case.
The main differences are that high-frequency waves appear earlier (at ≈0.5t/Tw) and that
fw and its superharmonics are more energetic.

The inclination of the walls produces only minor modifications of the streamwise
velocity profiles. The streamwise velocity maximum in the metalimnion is up to (3–4) u∗
and in the hypolimnion (0.4–0.7) u∗. Vertical velocity profiles show a variety of profiles
with a different number of velocity reversals. Profiles for cases with lower α tend to have
more vertical velocity reversals that intrude deeper into the interior of the basin. Profiles
of buoyancy frequency show similar behaviour as in the rT = 1 case. In addition, we can
observe the tendency of cases with lower α to have multiple local maxima, indicating the
formation of a multiple-layer structure.

Given that we identified the second vertical mode as the dominant response for forcing
rT = 2, we are interested in the analysis of how different responses affect the spatial
distribution of internal fields.

The tendency of cases with lower α to develop multiple shearing layers is present for
rT = 2, similar to the case rT = 1. Owing to the nature of the V2 response, for rT = 2,
there are two layers with high shear, corresponding to two regions with horizontal velocity
reversals. The non-dimensional turbulent dissipation rate ε and turbulent diffusivity of
density Kρ shown in figure 17 exhibit similar characteristics as in the previous case. Most
of the dissipation rate and mixing occurs near the surface, while the decrease of α promotes
the intrusion of dissipation rate and mixing events, from the near-wall region further into

932 A13-29

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 1
88

.2
.1

02
.1

22
, o

n 
15

 D
ec

 2
02

1 
at

 1
6:

07
:4

4,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

99
1

29

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.991
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Figure 17. Fields of (a–c) non-dimensional turbulent dissipation rate ε/(u4∗/ν), (d–f ) dissipation rate of
turbulent available potential energy ερ/(u2∗Ninit) and (g–i) turbulent diffusivity of density Kρ/κ for rT = 2
at ϕ = 0.4π for (a,d,g) α = 90◦, (b,e,h) α = 60◦ and (c, f,i) α = 30◦. White lines represent isopycnals. Closed
yellow lines represent the unstable stratified regions with negative 〈N2〉.

the interior. In figure 17, we can also observe a substantially larger amplitude of the V2
mode for the lowest values of α, as isopycnals have a much wider opening.

The turbulent dissipation rate has higher values in the region of the first horizontal
velocity reversal compared to the rT = 1 case. Still, most of the dissipation rate is a direct
consequence of forcing and is located near the surface and near the corners. For α = 60◦
(figure 17b), we observe a higher dissipation rate near the walls, under the metalimnion.
For α = 30◦ (figure 17c), the dissipation rate increases throughout the metalimnion close
to the walls, eventually spreading far into the interior. The spatial distribution of regions
with increased ε coincides with the spatial distribution of shear squared (not shown),
suggesting that this is the consequence of the appearance and distribution of shearing
layers due to the higher vertical modes.
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Periodically forced stratified basin with inclined endwalls

The spatial distribution of the dissipation rate of the turbulent available potential energy
ερ is similar to that of the turbulent dissipation rate, with an abrupt drop in the hypolimnion
where 〈N2〉 ≈ 0.

The turbulent diffusivity of density Kρ shows that, for the rectangular case (figure 17g),
mixing predominantly occurs above the metalimnion, near the surface and the walls. In this
case, high-frequency NLIWs are clearly visible in the isopycnals as short waves locally
present throughout the isopycnals in the water column. As inclination angle decreases,
additional mixing appears under the metalimnion, next to the wall by the side where
the metalimnion widens (figure 17h). For the lowest angle, mixing is present near walls
inside and under the metalimnion at both endwalls. Substantial mixing is present inside
the contracted side of the metalimnion. Under the widened side, we observe a region
with negative 〈N2〉, which indicates overturning events. The reduction of the number and
amplitude of high-frequency NLIWs observable in the time series, together with increased
mixing near the walls for the non-rectangular cases, indicate the occurrences of NLIWs
and breaking events at the sloped walls. Based on the classification of breaking events
(Aghsaee et al. 2010; Nakayama et al. 2019), the vast majority of the wave breaking events
are surging breakers. Plunging breakers are possible only for the gentle slopes α ≤ 45◦
when the NLIW amplitude is larger than 0.1h1; such high-amplitude waves occur only at
the wave cancellation event.

Similarly to Ulloa et al. (2019), we found that the highest Kρ/κ is present in the
epilimnion, where it ranges from O(0.1) around the middle of the basin to O(104) closer
to the endwalls. In addition, we found some mixing Kρ/κ = O(102) at the bottom end of
the metalimnion in a region close to the sloped walls, namely, the location where most of
the mixing processes in the metalimnion occurs.

The substantial difference in the region where mixing occurs under variation of α

modifies the time evolution of the density field and produces differences in the interface
heights, as observed in figure 16. Mixing in the upper layer is dominant for steep slopes,
which pushes the metalimnion downwards. For moderate slopes, the effect of upper
metalimnion mixing due to forcing is weaker, while mixing under the metalimnion caused
by wave breaking and shear-induced mixing increases, which results in smaller variations
of the interface height over time.

4.3. Non-resonant response and internal adjustment to resonance, rT = 3
As the forcing period becomes larger than the fundamental one, the role of the inclination
angle of the endwalls becomes substantially more important. In the interface height
time series of figure 18(a), on a non-nodal location A, we can observe that the initial
response corresponds to a non-resonant fundamental seiche, as previously described for
the rectangular case. The fundamental wave remains dominant until the third forcing
period, during which its shape degenerates. Upon degeneration, high-frequency NLIWs
become dominant for cases with the steep slopes (α > 45◦), while the system starts
to adjust to the forcing as dominant wave response adjusts to forcing frequency for
moderate slopes (α ≤ 45◦). For the lowest α we observe that a resonant response develops,
characterized by resonant amplification of the wave amplitude. Upon degeneration, steep
slopes (α ≥ 75◦) behave as described for the rectangular case: high-frequency waves are
always present and the main response adjusts to non-resonant, nonlinear, second vertical
mode V2H2. Besides this response, multiple fundamental waves form and cancel, thus
energizing high-frequency NLIWs. For moderate slopes (α ≤ 45◦), the dominant wave
response starts to adjust to forcing during the third forcing period and the amount of
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Figure 18. (a,b) Time series of interface height for forcing rT = 3 and different values of α at probes A
and B, respectively. (c,d) Non-dimensional spectral energy of interface height (lines) and phase lag among
isopycnals (crosses) at probes A and B, respectively. Vertical dotted lines represent non-dimensional forcing
frequency and its mth superharmonics. (e, f ) Wavelet spectra of interface height for α = 30◦ sampled at probes
A and B, respectively. Dashed white horizontal lines denoted with letters indicate: w, forcing frequency fw; f,
fundamental frequency f1; and s, approximate frequency of high-frequency NLIWs ≈ fs. (g) Vertical profile
of the final background density field ρB/ρ0, where the dashed line represents the initial background density
profile. (h) Vertical profile of the total change of the background density field �ρB/ρ0. Colour code: black,
α = 90◦; red, α = 75◦;green, α = 60◦; blue, α = 45◦; and brown, α = 30◦.

high-frequency waves decreases. For the lowest angle (α = 30◦) case, there is a significant
amplification in the wave amplitude, indicating that a resonant response occurs. The
interface for the slope angle α = 60◦ (green line) shows intermediate behaviour: it
develops a V2H2 mode, which is substantially less energetic than that for steeper slopes.
At the same time, the frequency of the response adjusts to forcing frequency, but less
effectively compared to cases with lower angles.

There is a significant deepening of the interface ρ0 over time, and this deepening is
directly related to the slope angle α, as it increases with steepening of the endwalls.
This is related to different mixing mechanisms that change the background density over
time. In figure 18(g,h), we show the final background density profiles and their variation
throughout the simulation, respectively, calculated by sorting the density field. We first
permutate the volumes (cells) while respecting the actual shape of the domain and then
horizontally average the field. This procedure is equivalent to that of Peltier & Caulfield
(2003), where cells with sorted density are stacked vertically while their volumes are
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stretched over the domain width, with subsequent averaging of the volumes in order to
retrieve the original number of cells in the vertical. In the epilimnion and metalimnion,
the change of background density due to mixing is greatest for steep slopes. This is due to
vigorous corner flow that erodes the metalimnion. In the bottom end of the metalimnion,
mixing increases with the decrease of α, as processes at the endwalls intensify.

The spectral energy of the interface height time series is shown in figure 18(c,d). On the
non-nodal position (figure 18a), there are two dominant spikes, near forcing frequency fw
and near fundamental frequency f1, respectively. The amount of energy near fw decreases
with an increase of α, showing a connection between the inclination of the endwalls and
the efficiency of internal adjustment to forcing. The phase lag near the forcing frequency
is high, revealing its vertical structure as a higher vertical mode, while near f1 there is no
phase lag, indicating the presence of V1H1 mode. On the nodal position for odd-mode
quasi-linear waves (figure 18d), there are three dominant spikes near superharmonics of
forcing fw2, fw4 and fw6, where fw6 ≈ f2. High phase lag near fw2 and fw4 indicates higher
vertical modes, while the lack of phase lag near the fw6 spike indicates that the V1H2 mode
is excited by nonlinear interactions with V1H1. Cases with steep slopes (α > 45◦) have
generally more energetic nonlinear modes, which confirms that their adjustment occurs
essentially through nonlinearities.

The wavelet analysis of the interface height shown in figure 18(e) for the resonant case
(α = 30◦) indicates that the fundamental and forcing frequencies were both energized
at the beginning of the forcing. After three forcing periods, the energy contained in the
fundamental frequency waves decreases, while the energy in waves with forcing frequency
dramatically increases, indicating the occurrence of resonance. After the system adjusts
and reaches resonance, the fundamental wave is not re-formed as in the case for the
steep slopes. At the nodal location (figure 18f ), the energy of superharmonics fw2 and
fw4 increases later compared to the rectangular case. In fact, the occurrence of these waves
is related to energizing of fw due to resonance, indicating that they originate by energy
transfer. This is significantly different than for the rectangular and steep slopes, where the
same frequency wave was excited directly by the forcing.

The vertical profiles of averaged velocity components (not shown) behave as for rt = 2
for large inclination angles, whereas substantial differences are evident for small angles,
where we have observed internal adjustment to forcing and resonance. Vertical velocity
profiles show the second vertical mode as the most dominant, with fewer additional
oscillations compared to the other forcing cases. Profiles of 〈N2〉 show the same tendencies
as in previous cases.

The spatial distribution of 〈S2〉 (not shown) is very similar to that for rT = 2 for steep
slopes, while for the low ones we observe fewer additional shearing layers in the interior,
indicating that V2 may be the highest vertical mode that appears.

The non-dimensional dissipation rate ε/(u4∗/ν) is shown in figure 19(a–c). As α

decreases, the region with high dissipation rates deepens. Unlike rT = 2, here we observe
less spatial variation among cases with different α. This similarity of the distribution for
different inclinations is associated with the occurrence of a single vertical mode V2. For
the resonant response (figure 19c), we observe substantially increased dissipation rates
inside the contracted part of the metalimnion, where jet-like flow and high shear occur.
A similar spatial distribution is observed for the non-dimensional dissipation rate of the
turbulent available potential energy.

The diffusivity of density Kρ is shown in figure 19(g,h). We observe the general
tendency of having more mixing near the endwalls and increased mixing with a decrease
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Figure 19. Fields of (a–c) non-dimensional turbulent dissipation rate ε/(u4∗/ν), (d–f ) dissipation rate of
turbulent available potential energy ερ/(u2∗Ninit) and (g–i) turbulent diffusivity of density Kρ/κ for rT = 3
at ϕ = 0.4π for (a,d,g) α = 90◦, (b,e,h) α = 60◦ and (c, f,i) α = 30◦. White lines represent isopycnals. Closed
yellow lines represent the unstable stratified regions with negative 〈N2〉.

of α, consistently with previous cases. The return jet that turns downwards near the
endwall causes mixing and overturns in the upper layer. For the steep slopes, this jet causes
substantial contraction of the metalimnion next to the wall. For the moderate slopes, the
jet meets the metalimnion under a milder angle, and it does not directly cause contraction
of the metalimnion. Besides the contraction of the metalimnion, for the rectangular case,
contours of the density field depict NLIWs with second vertical mode, as described by
Ulloa et al. (2020).

4.4. Summary
In order to quantify globally turbulent quantities in terms of dissipation rate, we determine
the spatially (volume-weighted) and temporally (using 0.1π spaced time windows)
averaged dissipation rate 〈ε〉s,t over the last forcing period, which is representative of the
fully developed flow. The non-dimensional dissipation rate 〈ε〉s,t is plotted in figure 20(a).
There is a clear trend of decrease of total dissipation rate as the endwalls steepen.
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Figure 20. (a) Space–time averaged non-dimensional dissipation rate 〈ε〉s,t versus inclination angle of the
endwalls α. (b) Non-dimensional change of the background potential energy over the entire simulation t = 6Tw.
Colour code: black, rT = 1; red, rT = 2; and green, rT = 3.

The dissipation rate is lowest for the resonant V1H1 response (rT = 1), when the transfer
of energy from the surface input to waves is the most efficient and more energy goes to
additional modes rather than to turbulence. The non-resonant V2H1 response (rT = 2)
has non-dimensional dissipation rate higher than for rT = 1. The increase comes from the
fact that the V2 mode response has two vertical reversals (Münnich et al. 1992), which
increase shear. The relatively constant difference between rT = 1 and rT = 2 indicates
that the mechanisms that lead to a decrease of dissipation rate for steeper slopes remain
the same as the internal wave dynamics change from the first to the second vertical mode.
The largest forcing period, rT = 3, deviates from the other two, which is mostly due to the
dependence of the wave response on α. For the resonant V2H1 response (α = 30◦), we see
a substantial increase of the dissipation rate; this can be related to increased dissipation
rate in the interior due to the development of a narrow jet. For intermediate angles, the
dissipation rate is very close to that for non-resonant V2H1 response (rT = 2), but it
decreases faster as the endwalls steepen.

In figure 20(b) we show the rate of change of the background potential energy over
the duration of the simulations made non-dimensional with ρ0u4∗/ν. In order to find the
minimum background potential energy PB, we calculate the background density ρB(z) by
sorting the density field according to Peltier & Caulfield (2003) and average it horizontally.
The rate of change of the background potential energy is due to two processes: the first
one (D) is equivalent to molecular diffusion in a static fluid, while the second (M) is
irreversible mixing enhanced by turbulent processes:

dPB

dt
= 〈g(ρB,final − ρB,init)z〉z

6Tw
= M + D. (4.2)

For cases rT = 1, 2 where the same wave response is dominant over the variation of α,
we observe that the highest amount of mixing is in cases with gentle slopes, which can be
associated with turbulent activity at the sloped walls. For steep slopes, we observe a trend
in the weak increase of mixing as slopes steepen, which can be associated with upper
layer mixing due to the downward jet that causes vigorous corner flow. The scenario is
different for rT = 3. In this case, we observe that most mixing occurs for the steep slopes,
characterized by nonlinear V2 response. Mixing decreases as this response gets weaker
for the cases with lower α and increases again for α = 30◦ when resonant V2 response
occurs.

We observe that here the lowest amount of mixing occurs for the quasi-linear
non-resonant V2 response rT = 2, while the longest forcing period rT = 3 exhibits the
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highest amount of mixing for both resonant quasi-linear V2 response and nonlinear V2
response.

We can conclude that resonant responses introduce more mixing in the system, with
V2 response being more effective on mixing than V1. This is because of the multilayer
structure of the flows characterized by higher shear. We find that a large amount of mixing
is related to nonlinear V2 response. We also highlight that the nonlinear V2 response is
the dominant wave response and its period is different than the forcing one.

Overall, we can depict the following scenario, upon definition of the state of the
periodically forced system as stable or unstable. If the system responds with a wave
that absorbs most of the energy input, and this state persists for several forcing periods,
the system is in a stable state. On the other hand, if energy input by forcing feeds two
or more highly energetic waves that are in competition, and the state of the wave field
changes from one forcing period to another, the system is in an unstable state. When the
periodically forced system is close to a stable state, variations of the inclination from gentle
to steep slopes do not play an important role in driving the kind of response. Namely, the
system soon adjusts to the closest stable state and there it remains. In these cases (namely
rT = 1, 2), the general response remains the same, while the amount of high-frequency
NLIWs and near-boundary mixing vary with the variation of inclination. As time goes on,
boundary mixing can have different effects on the wave field: among others, the deepening
of the metalimnion, which is characteristic for basins with gentle angles. For rT = 1,
this leads to escape from V1H1 resonance; while for rT = 2, it leads to increase of the
amplitude of the V2H1 mode.

When a periodically forced system is far from a stable state, the variation of inclination
plays a crucial role in the basin response. For rT = 3 we saw how the transition from
gentle to steep slopes moves the response from quasi-linear to nonlinear waves. We note
that the nonlinear response that we obtain is unstable, as quasi-linear waves (in terms of
fundamental V1H1) continue to form throughout the duration of numerical experiments.
If periodic forcing ceases, these waves would remain present for a while, as there is no
wave cancellation.

5. Concluding remarks

In the present paper, we investigated the response of a periodically forced stratified basin
in terms of excitation of internal modes and mixing. We discuss energy transfer in the
wave field starting from the initial phase of excitation and, specifically, the transfer of
energy from the quasi-linear basin-scale waves to the nonlinear waves and their feedback
on the dominant wave response of the basin. The analysis was carried out numerically,
using LES, at a laboratory scale. The model was validated against two different laboratory
experiments (see Appendix A). We set a three-layer stratification, typical of real-scale
basins, and studied the system under variation of the forcing frequency (the frequency of
the forcing wind stress) and variation of the inclination of the endwalls of the basin. We
obtained different basin responses, classified in table 3 according to wave modes and the
occurrence of resonance.

Resonant V1H1 response. For a forcing period near the fundamental period, resonant
V1H1 response occurs for all the endwall inclinations analysed. The resonant wave
gradually energizes higher horizontal modes. There are slight differences among cases,
related to the variation of the angle of the endwalls α. Generally, we found that decreasing
the angles of the side leads to increased mixing near the sloped walls. This causes a
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rT Main response α (deg.)

1 Resonant V1H1 30, 45, 60, 75, 90
2 Non-resonant V2H1 30, 45, 60, 75, 90

Non-resonant V2H2 60, 75, 90
3 Non-resonant V2H1 45

Resonant V2H1 30

Table 3. Dominant response with respect to rT and α.

more rapid transition from resonance and changes in the level of stratification in favour
of excitation of higher vertical modes superimposed over the main wave response.

Non-resonant V2H1 response. For a forcing period with rT = 2, a particular situation
develops. At the beginning, the fundamental response switches on, and after one forcing
period, this response is out of phase with the forcing, causing cancellation of this
wave. During that event, energy gets transferred from the fundamental mode into a
nonlinear surge, which quickly steepens and energizes the high-frequency NLIWs. After
the destruction of the fundamental V1H1 response, a non-resonant V2H1 response with
forcing frequency develops. As the inclination angle decreases and the metalimnion
widens, V2H1 becomes more energetic, but a resonant response does not occur.

Non-resonant nonlinear V2H2 response. The system responds to rT = 3 forcing with a
superposition of a fundamental wave response and waves with forcing frequency. For steep
slopes, cancellation of the fundamental wave occurs several times. Each time, this wave
forms again, as the system fails to adjust to the forcing. Instead, upon the first cancellation
event, nonlinear wave V2H2 develops with twice the forcing frequency and remains the
most energetic non-interrupted wave throughout the simulation. The nonlinear V2 wave
response is specific for its own ability to produce V2 high-frequency NLIWs, as recently
investigated and described by Ulloa et al. (2020). Nevertheless, the system is not stable in
this state, as a quasi-linear fundamental wave, with an amount of energy similar to that of
the V2H2 wave, is continually formed and cancelled, unlike the situation observed with
V2H1, where this wave does not reoccur once the system response adjusts to the forcing
frequency.

The inclination of the endwalls also plays an important role. With the decrease of
the angle of the endwalls, the spatial distribution of mixing and dissipation rate changes
dramatically. As α decreases, more mixing occurs at the intersection of the metalimnion
and boundaries. This corresponds to the well-known behaviour of seiche interaction with
the boundaries (Lorke et al. 2005) and wave breaking at the slopes (Michallet & Ivey
1999). The mixed fluid is subsequently transported towards the interior, which leads to the
thickening of the metalimnion (Wain & Rehmann 2010). The thicker metalimnion enables
the formation of the higher vertical modes, which enhances the transport of fluid away
from the wall (Wain et al. 2013) and creates shearing layers in the interior that can produce
shear instabilities in the regions where stratification is weak.

As the inclination angle decreases, the system gains the ability to adjust to the forcing.
For α = 60◦ the main response is still characterized by nonlinear V2H2, but V2H1
with the forcing frequency appears more energetic than for steeper slopes, yet its energy
decreases with time. For even lower inclination angle α = 45◦, the system non-resonantly
adjusts to the forcing frequency via V2H1, while the fundamental V1H1 is still present.
For the lowest tested angle α = 30◦, the system develops a resonant V2H1 response and
the fundamental wave is not re-energized. We conclude that, for a forcing period that is
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long enough compared to the fundamental one, rT = 3 in this case, the fundamental wave
will occur as a response even when the system adjusts to forcing via higher vertical modes,
except in the case of resonant adjustment.

We recognize that there are some differences between our laboratory set-up and the
situation in lakes. Namely, due to the low Reynolds number and high Richardson number
that are commonly used at laboratory scales, our work is likely to underestimate mixing in
the interior and near the bottom boundary layer compared to the higher-Reynolds-number
and lower-Richardson-number situations found in lakes. We also note that the Schmidt
number used herein corresponds to the usage of salt as a stratifying agent, while in most
stratified lakes stratification is caused by temperature differences. We acknowledge that the
ratio of vertical to horizontal dimension is exaggerated compared to the lake dimensions
and that the uniform density used in the hypolimnion and epilimnion is an approximation
of a weak stratification commonly found in nature. Nevertheless, we may argue that
the mechanisms that we have observed, such as internal adjustment, wave destruction,
the influence of higher vertical mode on the spatial distribution of the turbulent fields,
and the dependence of the obtained response on the domain shape, may be helpful for the
analysis of field and laboratory data. We hope to motivate more laboratory and numerical
research on the internal adjustment to forcing.
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Appendix A. Validation – reproduction of experiments

In order to test the ability of our numerical model to properly predict the behaviour of
a stratified basin forced by surface shear stress, we reproduce two significant laboratory
experiments, one by Monismith (1986) and the other by Boegman et al. (2005b). We use
the former to test the ability of the model to reproduce the response to the surface shear
stress, whereas the latter is used to test the performance of the model to reproduce the
internal wave field. In the tests, we use no-slip conditions at the solid walls of the tank, to
mimic experimental conditions. The sizes of the domains correspond to the tank size used
in each experiment.

A.1. Response to surface shear stress
Monismith (1986) performed experiments by applying a moving belt at the bottom of
a rectangular tank filled with stratified water. In the experiments, the author used salt
concentration as a stratifying agent, and density has a roughly linear distribution over a
finite thickness �h.

The experimental set-up herein reproduced is summarized in table 4. Here, we discuss
the simulation relative to experiment 8 of Monismith (1986). As a boundary condition
for the moving belt, we use constant kinematic stress τ = u2∗. Numerical simulations
were set up using (nx × ny × nz) = (525 × 30 × 60) grid points and (�x+, �y+, �z+) =
(59.6, 89.4, 30).
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Exp. h2 H B g′ UB u2∗ Ri L/h2 W T0 T1
(m) (m) (m) (m s−2) (m s−1) (m2 s−2) (s) (s)

8 0.1 0.2 0.3 0.11 0.203 8 × 10−5 138 35 3.9 874 94.39

Table 4. Set-up of experiment 8 of Monismith (1986) for two-layer stratification. Here h2 is the thickness of
the lower (near-belt) layer, UB is the belt velocity, T0 is the duration of the belt running and T1 is the period of
the fundamental internal seiche mode.

To suppress the vigorous flow that appears at the intersection of the running belt and the
endwall of the tank, a sponge was installed next to the endwall in the experimental set-up
(for details see the original paper by Monismith (1986)). We modelled the diffusive effect
of the sponge as a diffusive layer, which is set according to Farrow & Stevens (2003)
by adding a linear drag term λu to the momentum equation, where λ /= 0 only near the
downwind wall. The magnitude of λ is increased linearly from zero at the beginning
of the end flow region x = xλ to λmax = 2.9 s−1 at the endwall x = L. The kinematic
stress is constant, except in the diffuse layer, where it linearly goes from u2∗ to 0 at
the endwalls.

The numerical simulation reproduced well the characteristics of the flow, specifically the
initial barotropic flow as well as the development of the jet-like flow at the interface for t >

0.25T1. Differently from the physical diffuser used in the experiment, the numerical one
causes the attenuation of the jet-like flow that forms at the interface. In the experiments,
this flow was observed to plunge and to be incorporated into the mixed layer within
20–30 cm from the wall (see Monismith (1986) for details); in the numerical simulation,
this flow plunges faster and the jet-like behaviour disappears after only a few centimetres.
The main effect of concentrated return flow was to sharpen the interface at the downwind
end and to diffuse it at the upwind end (Monismith 1986); these effects are weaker in our
simulation. Figure 21(a–h) shows good agreement among contours of the density field,
with the difference in sharpening and diffusing near the endwalls that can be directly
related to the attenuation of the return jet-like flow.

The net effect of applied stress consists of a net change of the density profile that is
indicative of time-averaged vertical buoyancy flux. In figure 21(i,k) we can see that the
numerical profiles of vertical density are very similar to the experimental ones. The main
difference can be observed in figure 21(j,l) as somewhat less net change in density at the
interface and more in the bottom layer, which can be a consequence of attenuation of a
jet-like flow.

We can conclude that our model reproduces reasonably well the initial seiche response to
the wind action, in terms of both inclined isopycnals and the amount of mixing (indirectly
estimated through the density profile). The differences may be mainly attributed to the
intrinsic differences always present between a laboratory experiment and a numerical
one: among other things, the already discussed corner flow issue, the small difference
in the initial profile (nearly discontinuous transition versus smooth transition), differences
in impulsively started motion in the experiments and numerical simulation, or the fact
that the belt used in the experiment might have generated vibrations, which can alter the
shear stress and produce vertical velocity fluctuations hardly reproducible in a numerical
experiment.
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Figure 21. (a–h) The distribution of isopycnals at times (a,e) 0.32T1, (b, f ) 0.64T1, (c,g) 0.96T1 and (d,h) 8T1.
Superposition of initial (solid) and final (dashed) density profiles is shown in (i,k) and net density difference due
to mixing in (j,l). Panels (a–d) and (i,j) are from Monismith (1986) and (e–h) and (k,l) are from our simulation.
The density is expressed in units σt = ρ − 1000 kg m−3. Quantities are dimensional for comparison purposes.
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Periodically forced stratified basin with inclined endwalls

Run h1/H θ (deg.) W−1 = η0/h1 Ts (s) T1 (s)

5 0.30 0.28 0.15 434 109.78

Table 5. Settings of run 5 of Boegman et al.’s (2005b) experiment used herein as reference. Here θ is the
initial tilt angle and h1/H is upper layer to total height ratio.

A.2. Internal waves
Boegman et al. (2005b) conducted experiments in a rectangular tank filled with a two-layer
stratified fluid, characterized by the presence of a thin interface layer with a thickness of
about 1–2 cm (for details see the original paper). Internal waves were initiated by tilting
the tank with respect to the horizontal plane (to create an inclined pycnocline somewhat
mimicking the wind-induced set-up) and subsequent rapid release to the horizontal
position (which may be interpreted as relaxation of the wind conditions). They performed
different experiments in a rectangular tank with dimensions (6 m × 0.3 m × 0.29 m), and
we consider run 5 of Boegman et al. (2005b) as reference for our simulation, summarized
in table 5. The computational grid is composed of (nx × ny × nz) = (600 × 20 × 58) grid
points.

Our simulation differs from the experiment in that we start from an initial ideal
condition, which is a hydrostatic field in a horizontal tank with the interface inclined using
the value of W−1 as in the experiment. As density profile, we use a two-layer distribution
with a finite thickness of the interface resembling that of run 5 of Boegman et al. (2005b),
with density decreasing linearly with height. The density field was sampled along vertical
lines matching the wave gauges B and C used in the experiments; therefore, we refer
to the sampling positions likewise. Line B is placed near the middle of the channel, a
nodal position for linear basin-scale internal waves, so that the wave signal comes from
nonlinear internal waves. Spot C is placed approximately at three-quarters of the length of
the channel, where the basin-scale linear-wave (H1 internal seiche) signal dominates.

The interface displacement time records obtained in the experiment and in the numerical
simulation (not shown) are similar to each other, in spite of the intrinsic differences
between the two set-ups. The comparisons between the two records are quite good,
showing the presence of a fundamental mode and a decrease of the amplitude with time
due to viscous effects. At wave gauge B, where the presence of nonlinear waves can
be detected, the analytical solution for interface displacement gives zero amplitude. The
comparison between our numerical results and experimental ones appears satisfactory. As
expected, nonlinear wave amplitudes in both simulation and experiment increase as t → Ts
and decrease afterward.

To quantify better the information contained in the time signals, we perform the
spectral analysis (discrete Fourier transformation) of the interface displacement time series
and compare the results with those of the experiments and of the analytical solution.
Figure 22(a,b) shows the time spectra of the signals at wave gauge C. The most energetic
resonant mode of internal seiche H1 corresponds to the analytical solution and has a
similar shape as in the experiments.

Higher modes are reproduced by our simulation, with a small shift in the frequency
with respect to both experiments and analytical solutions. Although differences are
expected between our simulation results and the analytical solution, differences with the
experimental data are less intuitive. They may arise from the different set-ups (specifically
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Figure 22. Spectra of interface displacement: (a,b) sampled at the wave gauge C; and (c,d) sampled at the
wave gauge B. Panels (a,c) are from the experiments of Boegman et al. (2005b) (lowest line marked with arrow
represents run 5), while panels (b,d) are from numerical simulation. The dashes denote the frequencies of the
first eight modes.

initial condition) or they may even be attributed to some amount of artificial dissipation in
the numerical model, although regridding tests (not shown) have proved that a numerically
convergent solution has been obtained. We also note that frequency shifts in the spectra
are sensitive to the changes of the length of the time series; therefore, they may be related
to wave degeneration with time. For the spectra herein shown, we have chosen to use the
same length series as that used in the original paper, that is, 800 s. The high-frequency
modes are well present in our signal, showing the capability of the numerical model to
reproduce the higher-frequency energy content.

Figure 22(c,d) shows the spectral analysis at the wave gauge B, where nonlinear effects
are dominant. We point out that the initial conditions directly excite the linear (odd)
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Figure 23. Vertical profiles of horizontally averaged and non-dimensionalized streamwise velocity
component and density obtained using different grids. Colour code: black, basic grid; blue, 50 % finer grid.

modes only; the steepening of the linear modes due to nonlinear effects excites nonlinear
(even) modes. Our simulation reproduced well these nonlinear effects and the consequent
even modes. With respect to experimental results, we obtain similar energy distribution
among even modes, with the same shift in frequencies as previously observed.

Although there is a small shift in frequencies of higher modes between theory,
experiment and numerical simulation, our model seems to reproduce well both the linear
and nonlinear aspects of the wave field. Differences may likely arise from the different
laboratory set-up with respect to the numerical one. In particular, rapid rotation of the
tank introduces Coriolis, Euler and centrifugal forces, not present in our experiments. We
can conclude that our numerical model reproduces the internal wave field in a satisfactory
way.

To summarize, comparison with data from laboratory experiments shows that our
numerical model appears suited for the laboratory-scale analysis of a stratified basin forced
by wind stress.

Appendix B. Validation tests

For each simulation set we test different grids to verify the accuracy of the results. In
figure 23 we show horizontally averaged quantities obtained with four different grids
for the case of oscillating surface shear stress (rT = 1) with sloped walls α = 30◦ at the
time1.5Tw.

We express the grid resolution in wall units as �x+
i = �xiu∗/ν. Table 6 reports the

grid used in our tests with resolution expressed in wall units. The basic grid is that used
in our simulations (nx × nx × nz) = (300 × 25 × 80); we test the sensitivity of the results
to grid resolution by refining the grid 50 % in the x and z directions (nx × nx × nz) =
(450 × 25 × 120).

Based on the comparison of the vertical profiles, we conclude that we have reached
grid convergence, apart from minor changes that do not contribute to the physics we are
studying and that, on the other hand, would increase the computational cost also in view
of the large number of simulations carried out in the paper.
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S. Marković and V. Armenio

(nx × nx × nz) ntot �x+ �y+ �z+

(300 × 25 × 80) 600 000 37.2 44.6 13.9
(450 × 25 × 120) 1 350 000 24.7 44.5 9.3

Table 6. Main parameters of the numerical experiment.
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