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Introduction

In recent years, the study of Euler-Lagrange equations associated to multilinear
fractional inequalities received great attention (see [3, 5, 11, 23]). In particular, the

following Hardy-Littlewood-Sobolev system has been widely studied:

( () Uq(y) N
u(x) = ————dy, xeR",
|z —y|Ne
P
v(x) = %dy, r € RN
RN
[ u,v >0 in RY,

where 0 < a < N and p,q > 0. This system is associated to the well known

Hardy-Littlewood-Sobolev inequality:

/ /%dm dy S H||f||81 ||g||52, for all f - LSl(RN)7g c LS2(RN)7 (2)

RN RN

where 1 < 51,59 < 400 and -
In the same spirit, in thls the81s we Study the following problem:

RN RN

RN RN

RN RN
u,v>0 inRY,

\

= 2 (see [3, 12] for details).

vl (y)w" (2) N
//|,§U— |N 0‘|y—z|N B’z ;E|N_7dyd27 zeR )

() (2) N
— dyd ceR
0=/ Ty aly — ANz —gB Wi TERT,

(y)vq(z> N
//|:c—y|N Ty — 2N alz — g W TER

(3)



where p,q,r > 0 and 0 < «, 5,7 < N. Indeed, (3) is the system of Euler-Lagrange
equations associated to the following generalization of (2), proved by Beckner [1]:

1

Theorem 0.0.1 (Beckner inequality). Let 1 < s1,...,5, < 00, Zle s; > 1 and

0 < hij = hji < N be real numbers satisfying

N—hjm . Sm—l
Z N s forallm e {1,... k},
1<j<k

j#m

> =

1<i<j<k j=1 77

If f; € L5(RY) for all 1 <i <k, then

/ . ]1]; i) iy <5 T @)
j=1

|z — | N—hi
RNk 1<i<j<k

where by, = by(h;j, N).
Moreover, the best constant by, in (4) is attained for the estremal functions

file) = C(L+|z*) >,
up to a conformal automorphism.

Fractional integration arises in the context of Green’s functions and potential
theory, restriction phenomena for Fourier transform, intertwining operators for rep-
resentations of the Lorentz groups and correlation functions in conformal field theory
and statistical mechanics (see [1, 4, 7]).

In particular, multilinear fractional integral inequalities of the type (4) can be
used to investigate the endpoint estimates for restriction theorems of Fourier trans-
form (see [4]). Said results establish conditions on the exponents a,b > 0 and the
curve ¥ : [—1,1] = R¥, such that the following estimate holds:

o
J 1Pt < Clflary, foral £ & SEY),
—0

where § > 0, f is the Fourier transform of f and S (RY) is the set of Schwartz
function.



Moreover, Beckner inequality is connected also with Selberg integrals, indeed the
best constant by, is given by the following formula computed in [1]:

N- h”
b = bi(hi, N) = |SN[F s / II 1&-¢

p 1<i<i<k

hii =N qe, ... d&p.

(S™)

For the sake of clarity, in what follows we consider the inequality (4) in the
particular case k = 3:

[ [ [t WA vy < bl Wl Vlle )

RN RN RN

where, for simplicity, we recall a := hqo, 5 := heg and 7y := hy3.
As for Hardy-Littlewood-Sobolev inequality, the optimizers of (5) are related to
the solutions to (3). More precisely, if (u,v,w) € LPTH(RYN) x LIt (RYN) x L"H(RYN)

is a solution to (3),with p = r= 83%1, then the optimizers of (5) are
given by:

1 _
s1—17 q= so—17

w= M7 v=Xf2 and w = N\ f

where A1, Ay, A\3 are suitable positive constants.
The corresponding value of the best constant by was computed in an explicit form
by Grafakos and Morpurgo [8]:

by = baf,B,7) = (2m)|S¥

in the case a + 8+ v = 2N.

Unfortunately, for k& > 4 the Grafakos and Morpurgo formula does not hold [20]
and the value of by, is still unknown.

To the best of our knowledge, there is no study of the system (3) in the literature.
Our goal is to introduce the problem (3) and to prove related non-existence results.
In particular we give a proof of the following theorem:

Theorem 0.0.2. Let0 < o, 8,y < N, a++~v>3N —1 and p,q,r > 0.

If
1 1 1 3N —a—0—v

6
p+1+q+1+r+17é N ’ (6)




then the problem (3) has no nontrivial globally Lipschitz * solution
(u,v,w) € (C'RY) N L RY)) x (CHRY) N L2 (RY)) x (CHRY) N L3 (RY)),
forall 1 < sy, 89,583 < +00.

The proof of Theorem 0.0.2 is based on the identity contained in [3, Teorema 5.1].
In [3] Caristi, D’Ambrosio and Mitidieri proved the following non-existence result for
system (1):

Theorem 0.0.3 (Caristi - D’Ambrosio - Mitidieri). Let 2 < a < N and p,q > 0. If

1 L 1 >N—a
p+1 q+1 N

, (7)

then the problem (1) has no nontrivial radial solution (u,v) € C*(RY) x C*(RY).

We obtain Theorem 0.0.2 combining the ideas contained in the proof of Theorem
0.0.3 with the identity (2.29).

This thesis is organized as follow.

In the next chapter we consider some preliminary results: we prove some original
theorems to differentiate under the integral sign; moreover, we introduce the system
(3) and some properties of the kernel

1

N
vy e Y ER

with 0 < o, 8,7 < N.

In Chapter 2 we prove non-existence results for finite energy solutions, i.e. so-
lutions to the system (3) such that (u,v,w) € LPTHRY) x LITHRY) x LH(RY).
Whereas, solutions to (3) that are not necessarily finite energy solutions are consid-
ered in Chapter 3 and 4.

Results stated in this thesis are contained in [15, 16], unless otherwise specified.

1Observe that u € C*(RY) is a globally Lipschitz function if and only if the gradient is bounded:
[Vu| < C.



Chapter 1

Preliminary results

Let us consider the Beckner inequality

(A e S e A D Y A AR

RN RN RN

with s1, 89,83 and « := his, 8 := hoz, v := hi3 as in Theorem 0.0.1.
The best constant bs is given by

) f2(y) f3(2)
dx dy dz
T e =1 g =1 ///L"c— IN‘aly—Z!N Az — v Y

RN RN RN

In order to obtain b3, applying the Lagrange multiplier theorem, we have to maximize
the following functional

. £ ()
slisutil= [ [ [ sty P e v

R RN RN (1.2)
—/u/f dw—uz/f d:r—us/f

where fi1, fo, f3 > 0 and pg, o, pt3 are positive constants.

The optimizing problem above leads us to a system of integral equations on fi, fo
and f3. Letting p = 81%1, q= 82%1, r= cu= AT v = Mafs T w = A f !
and choosing suitable positive constants )\1, )\2, A3, we obtain the following system of




Euler-Lagrange equations for the inequality (1.1):

)
_ vl (y)w'(2) N
u(x) = / /\x—y\NQ|y—z\Nﬁ|z—x1N7 dydz, x€RY,
RN RN
uP (y)w" (2) N
dydz, xe€R",
R[R/ lz —y|N- “ly — 2|V |z — g |NP (1.3)
uP (y)vi(2) N
dyd cR
/ /m— [N =]y — 2N-alz — g8 P FER
RN RN
[ w,v,w >0 in RY .

where p,q,7 >0 and 0 < a, 8,7 < N.
In what follows we shall refer to (1.3) as Beckner system.

Definition 1.0.1. A solution (u,v,w) to (1.3) is a finite energy solution (or a
variational solution) if (u,v,w) € LPT(RY) x LITHRYN) x L™ (RY).

1.1 Selberg integrals and formulae

In this section we prove some properties of the kernel

1
ly — [Ny — 2Nz — 2V

x’y7z e RN; (14)

with 0 < a, 8,7 < N.

Lemma 1.1.1. Let 0 < o, 8,7 < N such that o+ 5+ v > N. Then, the following
integral is finite:

1
/ / [y eV aly —2N]s _ g WdE <Aoo, K0, (1.5)
B

where Br := {zx € RN : |z| < R}. Moreover,

1
dydz = . 1.6
/] [y — ey — 2 Bz — v 4= oo (16)

RN\B; RN\B;




Proof. First, we prove (1.5). Without loss of generality we assume that x = 0.
Considering z # 0, we denote

Ag = BrN By,

2

AlzBRm<BM@)\
U

Az = B \ ( 7( ?) 7) )
We have that B = Ay U A; U Ay. Hence,

/ 1 d / 1 d +/ L dy+-
y = y y
ly|[N=oly — 2|V ly|N-oly — 2|V ly|N-oly — 2|N-8

/IyIN Ty =7 4o

We estimate every integral of (1.7) separately:

JEd]
2

/ 1 p / _c 1 /rN_l p o 1

a — ay < o WY = = o =Ny
Syl =2 g IN I lyIN- 2|V =P J 2|V 7
0

IZI

1 1 1
dy < C / dy < C—— / v dy
A/IyIN‘O‘Iy—zIN‘ﬁ |Z|N‘°‘A |y—Z|N‘5 | 2|V ly — 2|N=F
1 1

B%(z)

1

1 1 1
dy<C [ ———dy=Cr—5——.
[ s = | = s
A2 AZ
Then,

1 1
dydz < C - 4
/ / =Ty — 2P S / P 0
Br Br i,

FN-1
= C/— dr = CROTPH=N,

r2N—a—B—y

=C

Finally,

0

~J



This implies (1.5).
Next, we prove (1.6). Consider R > |z| and R > 1, we have that

1
o+B+7—3N p2N __ o By—N

/ / ly — z|N—oly — 2[NB|z — 2N dydz > CR 2N _op |
Br\B1 Bgr\Bi1

letting R — +o00 we obtain (1.6). O

The kernel (1.4) is a generalization of the kernel

1

—— r,yeRY, 1.8
o —yp-ar Y (18)

which appears on Hardy-Littlewood-Sobolev system. This kernel is related to the
Beta integral by the following formula (see [8]):

Theorem 1.1.2 (Beta integral formula). Let 0 < o, 6 < N with o+ 8 < N. Then,
the following formula holds

1 1
dt=C—
R[ o=ty =77 =y

where C' = C(a, B, N).

Grafakos and Morpurgo [8] proved a similar result for the kernel (1.4) thus es-
tablishing a relation with Selberg integral. More precisely, they proved the following
theorem:

Theorem 1.1.3 (Selberg integral formula). Let 0 < «, 5,7 < N with a++~ = 2N.
Then, the following formula holds

1 1
dt =C ,
[ |z =ty —t]]z — ¢ |y — a|Noly — 2Nz — 2V
R

where C = C(N, a, 3,7).

Combining Lemma 1.1.1 and Beta integral formula we obtain the following result:

Theorem 1.1.4. Let 0 < o, 3,7 < N and x = a+ B+ . We have the following
cases:



i) If 0 < x < N then

dydz < 1.9
/) ry—era\y—z\Nﬂrz a Wiz <teo (19)

RN\Bg(z) RN\Bg(z

and

1
dydz = . 1.10
|/ [y = aly 2N Blz —gv o Y47 = Feo (1.10)

Br(z) Br(w)

it) If N < x < 3N then

1
dydz =
/ [y — 2] ey — 2z — a0
RN\Bg(z) RN\Bgr(x)

and

1
/ / dydz < +00.
ly — x|V ly — 2N P e — 2N

BR(.Z‘) BR(ZE)

Proof. Proceeding as in Lemma 1.1.1 we obtain the proof of ii).
Next, we prove i). If x < N, by Theorem 1.1.2, we get

1 C
dy = . 1.11
el P T —
N
Hence,
1 C
dy d —d
/ /ry—:crN oy — 2| NBlz — o[V YT / o — 2PN x
RN\Bg(z RN\Bpg(z)
“+o00 C
R
(1.12)

This conclude the proof of (1.9).



We proceed to prove (1.10). First, we observe that, (1.11) implies

1
dydz >
/ / y—zV ey — 2N Bz — v Y=

RN RN

A (1.13)

1 C
Z //|y—$|N_°‘|y—Z|N—5|z—x|N—7 dde:/mdr:+oo
0

Br RN

On the other hand, applying De Morgan Laws we have
RY x RN = <BR(:(:) X BR(x)> U <(RN x RM)\ (Bg(z) x BR(x)))

- <BR(:(:) x BR(:c)) U ((RN \ Br()) x RN> g (RN « (B BR(J}}))) (1.14)

Combining the decomposition (1.14) with (1.13) and (1.12) we obtain the claim. O

Corollary 1.1.5. Let p,q,r >0, 0< o, 8,y < N and x =a+ [ +.
If x < N, then the problem (1.3) has no nontrivial solution
(u,v,w) € (L

loc

(RY) N Lo (RY)) x (L

loc

(RY) N Ly (RY)) x (L

oe(RY) N Ly, (RY))
Proof. The idea is to prove that
max {u(x)v(x), v(z)w(z),u(x)w(r)} =0, (1.15)

for almost every x € RY. The identity (1.15) implies that the problem (1.3) has no
nontrivial solution.
First, we prove (1.15) assuming the additional hypothesis

(u,v,w) € CO(RY) x CO'(RY) x CO(RM).

Without loss of generality, we consider the product vw. If there exists xy such that
v(zg)w(zg) # 0, then there exist C' > 0 and a radius R > 0 such that

vi(y)w"(z) > C for all (y, z) € Bag(xo) X Bagr(xo).

10



Let x € Br(xzp). By (1.3) we have

V() (2)

= dyd

7) / /m—ywﬂw—zW%v—xwﬂ v
RNRN

vi(y)w"(z
e E——
|z —y[Noly — 2[NFlz — x|V

Bgr(z) Bgr(z)

1
>(C
/ 2 —y|N=oly — 2|V F|z — x|V
Bgr(z) Br(z

> dydz.

Hence, applying Theorem 1.1.4, we obtain the contradiction: wu(z) = 4oo for all
x € Bgr(zg). Then, (1.15) follows.
Next, we consider a solution

(u,v,w) € (LL(RY) 1 L, (BY)) x (L

loc loc

(®Y) N LE (RY)) x (L;

loc

(RY) N L (RY))

to the problem (1.3) and we prove that (1.15) holds.

Let K C RY a compact set and u,,, v,, w, a sequence of continuous functions such
that v? < uP) v? <09 w! < w" and u,(x) — u(x), v,(z) = v(z) and w,(z) = w(zx)
for almost every z € K.

Since,

V() (2)
- dyd
™) /:/u—wam—zwﬁv—xWW ydz

va(y)wn(2)
//|Z’—y|N aly_Z’N 6|Z—:C‘N Wdydz, neN, zeK.

RN RN

Then, vi(z)w! (x) = 0 for all z € K. Letting n — +00, we obtain the claim. 0

1.2 Differentiation under the integral sign

In this section we consider the following problem: let f : RY x R — R be a function.
When does the following identity hold?

%/f(x,)\)dx: /g—i(x,)\)dx, A€ R. (1.16)
RN RY

11



A first answer to this problem is given by Lebesgue theorem (see [24, Proposition
23.37]). Unfortunately, it is not possible to use the Lebesgue theorem in order to
apply (1.16) to the function defined by (2.8). Therefore, we prove some original
results in order to differentiate integral functions using the identity (1.16): Theorem
1.2.2 and Theorem 1.2.3 are new, whereas Theorem 1.2.1 is a particular case of [22,
Theorem 4]. Said results are fundamental tools to prove the theorems contained in
Chapter 2.

Theorem 1.2.1. Let a < b and f : RY x R — R be a function such that
i) f(-,\) € LYRYN) for all X € [a,b].
i) f(x,-) is differentiable in (a,b) for all x € RV,
iii) The following integral is finite:

/b/ ‘%(%A)‘ dr d)\ < +oo.

a RN

Then, [ f(x,\)dx is differentiable and

RN

d of
—)\/f(m,/\)dm: a)\(x AN dz, XE€(a,b).

RN

Proof. By the fundamental theorem of Lebesgue integral calculus and the Fubini
theorem we have

/gﬁ // (x,t)dedt = // (x,t)dtdz

RN a RN RN a

d d
= oy | @) = f@a)de = - / F(z, A) dx

RN

Theorem 1.2.2. Let a < b and f : RY x (a,b) — R be a function such that
i) f(-,A) € LYRY) for all X € (a,b).
i) f(z,-) € CYa,b) for all x € RN,

12



ii1) The derivative % € L (RY x (a,b)) and there exist a sequence R, — +o0

loc
such that the following improper integral exists:

G(\) = nl—lgloo / %(z, A)dx < 400, for all X € (a,b).
Br

n

i) There exists a function I € L'(a,b) such that

g(%)\) dx| < I(N), foralln €N and X\ € (a,b).

Bpr

n

Then, [ f(x,\)dx is differentiable and

RN

d . of
ﬁ/f(x,/\)dx—ngrfoo a(x,)\)dx—G()\), A € (a,b).
RN Br

n

Proof. Proceeding as in Theorem 1.2.1, by dominated convergence theorem we
have

b

b
60 =2 [ | im [ Srende| av=o | i [ [T ey
a Bg, a

Bpr

n

d
—a/f(x,)\)dxd/\.
RN

O
Theorem 1.2.3. Let a < b and f : RY x R — R be a function such that
i) f(-,\) € LYRYN) for all X € [a,b].
i) f(z,-) € CYa,b) for all x € RN,
ii) There exists a function h € L*(RY x (a,b)) such that:
af N
a(x,)\)—i-h(x,)\) >0 forallx e R, X € (a,b). (1.17)

13



Then, [ f(x,\)dx is differentiable and

RN

d of
—/\/f(x,/\)dx: a)\(a: N dzx, M€ (a,b).

RN
Proof. By the fundamental theorem of calculus

by
fz,\) = f(z,a) +/g—{(x,t) dt, forall z € RN )€ (a,b),

a

and integrating we have

/f(:z:,)\)d:v: //A%(:L‘,t)dtdxjt/f(x,a)dx
RN RN a RN

A
Adding [ [h(x,t)dtdz, we obtain

RN a

A
/fx)\dx—i-//h:vtdtdx //atxt—i-hxtdtdx—l—/fxa

RN a RN a

By assumption (1.17) and Tonelli theorem we have

/fm)\der// (z,t)dedt = //axt+hxtdxdt+/fxa

a RN a RN

Differentiating with respect to A we obtain the claim.

14



Chapter 2

Non existence of finite energy
solutions

In this chapter we prove some results of non-existence of solution to the Euler-
Lagrangian equations associated to the general Beckner inequality (see Theorem

0.0.1): _
Do)

[Licicjcn lmi — @[V (2.1)

us(zs) =
RN(k—1)
. N .
us, > 0in RY, s=1,...,k,

where p; > 0, 0 < h;; < N for all i,5 € {1,...,k}. We have used the notation
Xii= (21, ..., Ts_1,Tss1, ..., 2;) € RVE=D on the variables of integration x, € RV,

In particular, in this chapter we assume that the possible solutions of (2.1) are
globally integrable: u, € LP*(RY) s =1,... k.

2.1 Beckner system: k£ =3

First, we address the problem (2.1) in the case k = 3:

Theorem 2.1.1. Let 0 < o, 8,7y < N, x :=a+ S+~ and p,q,7 > 0.

If
1 1 1 3N —x

+

2.2
P R R N (2:2)

15



then the problem (1.8) has no nontrivial solution

(u,v,w) € (C'RY) N LPTHRY)) x (CHRY) N LH(RY)) x (CHRY) N LTHRY)),

satisfying
v (Ay)w” (A2
// / |z —y|N—oy — ,Z«\N (B|2)_ x’N77|VU()\?/) ~y|dy dz d\ < +o0,
a RN y (2.3)
I \z
// / o — \N °‘|y e |N(5|z)— x]vava(Az)'Zldydzd/\ < +00,
a RN RN

for some a <1 <b.

In order to prove Theorem 2.1.1 we apply the following lemma, which is a direct
consequence of mean value theorem.

Lemma 2.1.2. Let f: R — RY be an integrable nonnegative function *. Then there
exists a sequence (&,) such that &, — +oo and

&nf(&n) = 0.

Proof. The mean value theorem implies that there exists &, € [n,2n] such that

[ @y ds| = nls(6)] = 7l

hence,
lim =0
T &./(6)
O
Proof. of Theorem 2.1.1 By divergence theorem we have
/div (zuP™ (7)) dz = / uP™(z) 2 - ndS(z) = RI(R), (2.4)
Br dBr
We say that a vector function f = (fi,..., fn) : R — RY is integrable and nonnegative, if f;
is integrable and nonnegative for all ¢ =1,..., N.

16



where,

I(R) = / W (z) dS(z),

9Bg

and n is the unit normal vector to dBr. We have used the notation x - n in order to

indicate the Euclidean scalar product.

Since u € LPT(RY), then I € L'(R). Hence, by Lemma 2.1.2, there exists a

sequence R,, — +o00 such that

R, I(R,) — 0.
Therefore, by (2.4) we have
lim div (zu?™(x)) dx = 0,
n—-+4o0o
Br,,
le.
. D N p+1
nl_l)IJquoo uP(z)x - Vu(x)dr = o uP"H(z) dx.
BRn RN
Similarly, we get
i q N q+1
nl_l)gloo vi(z)zr - Vo(z)dr = Y v () dx,
Br, RN
and
: r N r+1
nl_lgloo w'(x)z - Vw(x) de = e (x) du.
Br, RN

Next, let A close to 1. Using the change variables rule, we have

_ V(g (2
0= | [ gty LA

RN RN

1(Ay)w"(Az)
— AN Y dy dz.
//|x—y|N oly — 2N Pz — a8 Y

RN RN

17
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Differentiating with respect to A this identity we obtain

é vI(Ay)w"(Az)
—u(A A N AXT N— 1// ind
oy ) = Vu(e) - w =(x - Z — gV aly — 2N Bl — v T
RN RN
N v~ 1 >\y> (Az)
o [ [ e e e e ) et
RN RN
r—1
N, Ay)w"H(Az)
+)\X //lx_ |N O‘|y—Z|N B’Z—ZL’|N ,yV’LU()\,Z)Zdde
RN RN

The differentiation under the integral sign is justified by Theorem 1.2.1 and the
assumption (2.3). In particular, for A = 1 we have

VI (y)w' (2)
Vu(x) -x=(x — N)u +q//|x_ |N_a|y_Z|N_(B|Z_w|N_7Vv(y)-ydydz+

RN RN

() -1(2)
-zdydz.
//|w—y|N Ty — oAz — gy VW) 2y dz

RN RN

Multiplying with v” and integrating over Bp, with respect to x we obtain

/ uP(z)Vu(z) - xdez = (x — N) / uPt (x) da+

Bgr,
) 1(y)w’"(z)
~ydydzd
Bpr,, RN RN
vi(y)w ! (2)
czdydzd
+7”/ //‘x_y‘N a|y Z|N_B|Z—x|N—’Yvw(Z) zayazazx,
Bpg,, RN RN
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1.e.

/ () Vu(z) -z dz = (x — N) / W () dat

BRn BRn
p ™
q—1 \V4 . u (x)w (2) drdzd
ta [T y/ oy ey — 2P e W
RN RN Bg,,
uP (x)v?(y)
dr dy dz.
”/‘” / / PR a|y—z|N = av o W
RN RN Bg,

Letting n — 400 we have

lim uP(x)Vu(z) - xdx =(x — N) /up“(x) dz+

n—-+0o
Br,, RN

+q lim v (y)Vo(y) - ydy+ (2.9)

n—-4o00
Br

n

+r nl—lgloo w'(z)Vw(z) - zdz.
Br

n

Combining (2.9) with (2.5), (2.6) and (2.7) we obtain

N N
T uPt (z) dx :(X—N)/up+1(:c) dr — qq_i_—l/vqﬂ(:r) dx
Y N BN RN (2.10)
— rr—i—l w™(z) d.
RN
Next, we claim
/up“(x) dr = /vqﬂ(x) dr = /w”l(:c) dx
= o (2.11)
x)vl(y)w"(z
dx dz dy.
= || [ S e e

RN RN RN
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Indeed, by Tonelli theorem we have

/up+1(x) dz = /up(;p)/ / P y|NaT;(g>Z:V(Zg|z o dy dz dz,

RN RN RN RN
uP(z)w"(2) /
_ q de dz dy = () dy.
/v (y>//]x—y]Na\y—z\N5|z—x|N'Y T dz ady v (y) dy
RN RN RN RN
Similarly,
/up+1(x) dr = /w”l(a:) dw.
RN RN

Combining (2.10) with (2.11) we obtain

N  ¢N N
_N - - P () dar = 0
(X L R r+1) /“ (z) dz =0,
]RN

Hence, (2.2) implies u = v = w = 0. O

In order to remove the assumption (2.3) in Theorem 2.1.1, first we consider the

simpler problem
.

v (y) N
u(x) = ————dy, xeR",
(@) |z — y|N—
RN
uP(y) N (2.12)
v(z) = ———dy, xeR",
(@) |z —y[N e
RN
u,v >0 inRY,

\
where 0 < a < N and p,q > 0. Then, we generalize the obtained results to the
system (1.3).

Proceeding as in Theorem 2.1.1 we get the following result:

Theorem 2.1.3. Let 0 < a < N and p,q > 0.

If
1 1 N —«

p+1+q+17£ N

then the problem (2.12) has no nontrivial solution

(2.13)

(u,v) € (C'RY) N LPTYRY)) x (CHRY) N LITYRY)),
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satisfying
b

v ( Ay
//—|x - y(|N—)a [Vu(hy) -yl dy dA < +oo, (2.14)
a RN

for some a <1 < b.
By Theorem 1.2.2, we can weaken the hypothesis of Theorem 2.1.3 by replacing

the condition (2.14) with: there exist a sequence R, — 400 and a function I :
R x RY — R such that the following improper integral exists

: v (M)
nl_l}r_{loo / QWVU(AZD : ydy < 400, (215)
Br,, ()
and
q—1 Ay
[ i ST | < T0u0). (2.16)
Br,, ()

with I(-,z) € L'(a,b) for some a <1 < b.
Proposition 2.1.4. Let 0 < a < N and p,q > 0. If
(u,v) € (C'RY) N LPPHRY)) x (CHRY) N LTHRY))
is a solution to (2.12). Then, there exists a sequence R, — +o00, such that the

following tmproper integral exist and

q—1
lim / q‘;&Vv()\y) (y—x)dy = —%u()\x), for all A > 0.

n—~400 — y‘N*a
Bry, (2)

Proof. Let 0 < € < R. By divergence theorem we have

/ div, (%(y—x)) dy = / %(y—x)-ﬁ(y) dS(y),

Br(z)\Be(z) O(Br(z)\Be(x))
vi(Ay)
=R — ——dS 2.17
sy - [ U as) (2.17)
OBR() OB (x)

21



where 7 is the unit normal vector to 0 (Bg(x) \ B:(x)). Since,

€ / Mds(y)éc‘ea,

|z —y[¥
OB.(z)
then, by the absolute continuity of Lebesgue integral, letting ¢ — 0, (2.17) becomes
: v (Ay) ) / v(Ay)
divy | ————Ww—2) | dy=R ——dS(y). 2.18
[ (o FEFIE
Br(z) dBr(x)

By Lemma 2.1.2, there exists a sequence R,, — 400 such that

lim R, / MdS(y):O,

n—+o0 ’x — y’N*a
OBr,, (z)
hence,
. : v (Ay)
1 d — (y— dy = 0.
oo / WV (\x — y|N-o (y—w) ) dy
Br,, (z)

On the other hand,
q q—1 Ay — _
divy(—| vd) (y—@) g VIR =) i (—y v >:
y —

wNe |y — z[¥e |y — z[¥e
vI(AY)Vo(Ay) - (y — z) v (Ay) ( 1 )
= \q + N————+ I (M) V| ————— | - (y—2) =
|y_l.|N—a |y—$|N_O‘ ( y) Y |y—l‘|N_o‘ (y )
vi(Ay)Vo(Ay) - (y — x) vi(Ay) vl(Ay) y—x
Sy VA N, ) =
ly — x| N ly — z|N-2 ( )ly_gle—oz—i-l ly — z (y )
) qvq(ky)W(Ay) (y—x) v (Ay)
ly — x|V ly — z|N-«
Therefore,

n—-+oo /\ n——+oo
BRn (CE) BRn ( )

vi( )\y Q

. v \y) a . v (Ay)
lim / qWVU(Ay) (y—2z)dy = —— lim / y—aV dy =
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Corollary 2.1.5. Let 0 < a < N and p,q > 0. If (2.13) is satisfied, then the
problem (2.12) has no nontrivial, globally Lipschitz solution

(u,v) € (LPT'RY) N CYRY)) x (LT RY) N CYRY)).

Proof. 1t is sufficient to prove that (2.15) and (2.16) are satisfied. We have that

vI (O
/ Q%W(Ay) ydy =

1’ —
Bg, (2)

o VTN G, V) g, .
= [ o n s [ e SV (- a)dy

|z —
Br, (@) Br,, ()

for all x € RY and X close to 1.

Let
v (Ay)
I\ z ::/ —dy,
( ) q|x_y|N7a Y

RN
we get

q—1 (\y) a=1()
/ o () ———Vu(Ay) dy| < /qﬁ]—(y)a|Vv()\y)\dy§C[()\,a:).

=y =yl

Let p € C5°(RY), applying the Hardy-Littlewood-Sobolev inequality with exponents

g+l N(q+1)

S1 = qT and S9 = m, we obtain

Bs
/uxm¢Qst<mﬁﬂwﬁmw@

g+1
RN

Hence, integrating with respect to A over a neighborhood |a, b] of 1, we get

b

// (A, z)p dxd)\—/ /I()\,a:)d)\ o(r)dr < +oo, for all p € C°(RY).

a RN RN a

Then I(-,x) € L'(a,b). Finally, by Proposition 2.1.4, the condition (2.15) is
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satisfied. Moreover, by Lemma 2.1.2 and (2.18) we have

/ QMW(M)-@—%) dy S% / IW&dw

|z —y[Ne y — x|N-«
BRH(QZ) BRn(x)
v!(Ay) «Q v?(Ay)
+ R, / ds(y) = & / -
e B0 =3 | oo
9Bz () B, (z)
2n
vI(\
+ 2 / z _(yﬁ\,)a dS(y)dR,
hence,
=10\
/ q|v_ <|z\%)avv()‘y) (y—a)dy| < (% +2> u(Az), A>0
BRn IE)
Therefore, (2.16) is also satisfied. 0

The regularity of the solutions to system (2.12) assumed in Corollary 2.1.9 is
motivated by the following result, proved by Li, Chen and Ma [10]:

Theorem 2.1.6 (Li- Chen - Ma). Let p,q > 1 and 0 < a < N satisfying
1 1 N —«
+ =
p+1 qg+1 N

If (u,v) € LPTH(RYN) x LITY(RYN) is a positive solution of (2.12), then u,v are bounded
and globally Lipschitz continuous.

(2.19)

In the particular case a = 2, the problem (2.12) corresponds to the system of
differential equations of Lane-Emden:

—Au=27 inRY,
— Av=uf, inRY, (2.20)
w,v >0, inRY,

In the following non-existence result for the system (2.20), we assume the boundness

of |Vu| and |Vv| with respect to the L?-norm, instead of L>®-norm as in Corollary
2.1.5.
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Theorem 2.1.7. Let p,q > 0. If

1 1 N -2

p+1+q+17é N

(2.21)

then the problem (2.20) has no nontrivial solution
(u,v) € (C*(RY) N LPPHRY) N WHRY)) x (CPRY) N L RY) nWH(RY)) .

Proof. 'We apply the following Rellich type identity (see [13])

/Au(w)Vv(x) -z 4+ Av(z)Vu(x) - xdr — (N — 2) / Vu(z) - Vo(z)dr =

Br Bgr

_ / 2(Vu(al:) -z)(Vo(z) - x)

|z]

— Vu(z) - Vo(z)|z| dS(z).
OBp
(2.22)
We have that

/ 2<W<x>'~"f|>x<|w<x>'x> - Vula) - Vola)lal dS(a)| < 3R [ [Vu(a)|[Vo(a)| dSiz).

0BRr OBR

Since

/IVU(Jf)HW(SU)I dr < [[Vul[2[[Vollz < +o0,
RN

by Lemma 2.1.2, there exists a sequence R,, — +00 such that
R, / |Vu(z)||Vou(z)| dS(x) — 0. (2.23)
OB,
Proceeding as in Theorem 2.1.1, by the divergence theorem, we obtain

N

Jim [ (@) Vo(e) -z de = —1 v () da, (2.24)
Br, Br,
lim uP(x)Vu(z) -z de = N uP™(7) dx. (2.25)
n—+oo P +1
BRn Rn
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On the other hand,

/up+1(x) dr = /vq“(x) dr = /Vu(x)-Vv(x) dz. (2.26)

RN RN RN

Indeed, multiplying by v the first equation of the system (2.20) and integrating over
Bpg, we have

/ () di = / (—Au(z))o(z) do =

BRn BRn

/ Vu(z) - Vo(z) dr + / o(2)Va(z) - - dS(z).

N |
Bry, 9Br,,

Since

/U(I)IW(CE)!dfv < [vllal[Vullz,

RN
letting n — 400, we get
/ v(2)Vu(z) - % dS(z) — 0,
OBg

and the identity (2.26) follows.
Combining (2.22) with (2.23),(2.24),(2.25) and (2.26) we get

N N

T (N2 P () da = 0,

<p+1+q+1 ( ))/u (x)dz =0
RN

This conclude the proof. O
Next, we want to generalize the ideas that we have used to prove Corollay 2.1.5
and Proposition 2.1.4 to obtain a non-existence result for the problem (1.3). Pro-

ceeding as in the Corollary 2.1.5, by Theorem 1.2.2, we can weaken the hypothesis
of Theorem 2.1.1 by replacing the assumption (2.3) with the following conditions:
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i) There exists a sequence R, — +o0o such that the following improper integral
exists

I / v Ay)w” (Az)
im q
e |yl — A

By (z.2)

Vo(\y) -y d(y, 2)+

Ow)er—032) 220
v Ay)w" (A2
Vw(Az) - zd <

! / "r =y ey — 2N Bl — N w(Az) - z2d(y, z) < +00,

B?{Z(w,m)
where B\ (z,2) = {(y,2) e R* : |y — x> + |z — 2> < R2}.

ii) There exists a function I : R x RY — R such that
v (Ay)w"(Az)
Vou(\y) -yd
/ |z —y|N=oly — 2| NPz — [N v(Ay) -y dly, )+
B%x(m,z)
(2.28)

+ / r Vg (A2) Vw(Az) - zd(y,z)| < I(\ x)

o= yV-oly — 2" Alz = 2
BE) (z,)
and I(-,z) € L'(a,b) for some a < 1 < b.
Proposition 2.1.8. Let0 < a, 8,y < N, x =a+8+~v>3N -1 and p,q,r > 0. If
(u,v,w) € (C*RYN) N LT RY)) x (CHRY) N LITHRY)) x (CHRY) N LT RY))

is a solution to (1.8). Then, there exists a sequence of radius R,, — +00, such that
the following improper integral exist and

. v Ay)w"(Az)
1 ) - (y —
Jm | o= gP=aly — sz — g+ ) =
B%{Z(z,x)
a(\ r—1 by
+r Pyl (Az) Vw(Az) - (z —z)d(y,z) =

| e (e e

— 2N
=X S u(Ax), for all A > 0.

(2.29)
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Proof. Let 0 < e < R and

{<y72)€R2N : |y—Z|<8}7

{(y,2) e R¥ : |z — 2| < e},
={(y,2) eR™ : |z —y| < e},

5 = (Cl UCQ UCg) ﬂBIZ%N(x,a:)

By divergence theorem, we get

/ div (.2 < _Uq()\y)wr<_)\z) = (y—x,2— x)) d(y, z) =

|y — x[Vely — 2[V7z

B}%N (z,2)\ I

. VOg)ur(A2)

L A e

(y—x,z —.’L‘) ﬁ(ya Z) dS(y, Z)

o(BEY (@a)\Ix )

_R / Ay (A2) dS(y, 2)— (2.30)

e e e

BB2N (z,x)

/ |y Uq )\y) ()\Z) (y—x,z—m) ﬁ(ya 2) dS(y,Z),

— z[Voly — 2Nz — 2N

where 7 is the unit normal vector to 9 (BE' (z,z) \ I.).
As in Proposition 2.1.4, we need to estimate the following surface integral:

/ |y Uq Ay)z|]\f<>\,6’z|)z_ — |(y—CL’,Z—I) ﬁ(y,Z)|dS(y, Z) S

—ZE|N oc|y I‘|N ¥

1
=¢ dsS — OeX—3N+1.
~ <C:/v |y — $|N—a|y_ Z|N_B|Z —,’L‘|N_'Y <y72> £

Indeed, considering the boundary 9C; = {(y,2) : |y — z|* — €% = 0} we have that

V(ly—z*—¢*) 1 L
Wy =P =)~ vaj g P

n(y,z) =

therefore on JC; we get

ly—z

= (2.31)

n-(y—z,z—x)=

S
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The same argument prove that (2.31) holds also on dCy and 9Cs.
By (1.3) we have that the function defined by ] — (Z/A_yirjvrf’;ﬁ_ﬂ ~— is integrable.
Then, by absolute continuity of Lebesgue integral and iemma 1.1.1, letting ¢ — 0

in (2.30) we obtain

/ div (,..) (Iy — vdg)ur (1) phel e x)) d(y, ) =

| Nmoly — 2N Pz —

vI(Ay)w" (A\z)
=R ds
/1 [y — 2P ey — 2V-7]z — av W)
BB%N (z,x)

BEY (x,z)

(2.32)

By Lemma 2.1.2; there exists a sequence R,, — +00 such that

: vl (Ay)w" (A2)

lim R, N el _ LINBl. NS
n—-+00 ly — x| ly — 2| |z — x|
8312217\{(1,3:)

dS(y,z) = 0.

Hence,

lim / div (. (|y ___vyurdz) (y -,z — m)) d(y, z) =

n—s+o0 x|N=oly — z|N=B|z — x|N—7
B?{Z(w,x)

On the other hand, we have

_ vI(Ay)w" (A\z)
div ) (|y — 2V oly —)z|N_5|z v (y—z,z— x)) =
v Ay)w' (Az)
ly — =[Ny — 2|V Pz — x|V
vi(Ay)w " (Az)
ly — z[N=oly — 2V F |z — x|V
v (Ay)w" (Az)

ly — [Ny — 2|N=F|z — x|N=7

! )-(y—x)+

jy— oV aly — 2]z — 2
1
1(Ay)w"(A\2)V, (z—x).
02 (e =)

Aq Vou(Ay) - (y — o+

+Ar

Vw(Az) - (z — )+

+N

+vl(Ay)w"(A2)V, (
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Since,

1
vV . _
y(w—xWﬂw—zW”v—xW”)(y o

1
v. (z—a) =
* Qy—ﬂNaw—zwﬁu—va) S

= -
- -
[y =¥ Ty — VA N
B—N (y=2)-(y—2)
ly —x[Nely = 2V — 2Ny — 2
o ER
z—x
ly — z|N=aly — 2|N=B|z — z|N—+1
I N—-p (y—2)-(z—x) _
e ey A g2
B a—N N
y = aVely = 2NV — 2N
_N N
+ — 7 — — + - B - —
[y — ol Ty — ANz — eIV Ty — el ely — AN — v
Then,
. vI(Ay)w" (Az)
div (.. —x,z— =
Y (Iy — N7y — 2|N=P|z — x|V y—zz-2)
v Ay)w" (Az)
A Vo) - (y —
Ny =2l ey — 2N Bz — [V v(Ay) - (y — o)+
vI(Ay)w "t (A\z2)
+Ar Vw(Az) - (z —x)+
|y — a[Voly — 2Nz — 2V
vI(Ay)w" (Az)
— 2N _
—l—(X >|y_x|N—a|y_Z|N—ﬁ|z_l,|N_,y
This conclude the proof. O

Corollary 2.1.9. Let p,q,r >0 and 0 < o, 5,7y < N with o+ +~v > 3N — 1. If
(2.2) is satisfied, then the problem (1.3) has no nontrivial, globally Lipschitz solution

(u,v,w) € (L*RY) N CYRY)) x (L=(RY) N CHRY)) x (L*(RY) N C'RY)),

for every 1 < sq, 89,53 < +00.
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Proof. 1t is sufficient to prove that the assumptions (2.27) and (2.28) are satisfied.
We have that

/ v Ay (Az)

x —ylN-—ly — z|N-8|z — x|N—
|z —y|N oy — 2|

Vu(Ay) -y d(y, z)+

B%Z(a:,x)
) </> Tl V) ) -
N B;;zé,x) TR & P e ACULURS
b y (/ x) r— y|Nfi(|2yzti’“| ;_(?'»z)_ s Vule) dly. )+
B</ NE STy A g =)
’ </ NCE Ty A V) e )2,
Let

vi~ 1 (Ay)w"(Az)
)\ = dydz.
7) q//|x— N=aly — 2[NBz — a8 Y

RN RN

We have that

v )’ (12)
Ay)dydz| <
| | iy e Ve dys| <

o 1 (2.33)
//u_ VI (Ay)w" (Az) |N_W|VU(/\y)|dydzgcjl()vx)'

y[Voly — 2V -

RN RN
Let ¢ € C°(RY), by Beckner inequality, there exist sy, 55, s3 > 0 such that

bs
/I(A,x)so(x) dr < —x—x [[vlls, [lwllss | l]ss-

s1 52
RN
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Integrating with respect to A over a neighborhood [a, b] of 1 we obtain that

b

// (N, x) d:)sd/\—/ /I()\,x)d)\ o(r)dr < +oo, for all p € C°(RY).

a RN RN a

Then I,(-,z) € L'(a,b). Similarly, there exists I : R x RY — R such that Ir(-,z) €
L*(a,b) and

Ay)w'(Az)
//’fﬂ— R a\y—ZIN Blz — x|N-v s Vwdy)dydz| <
RN RN (2.34)

Ay)w™H(A2)
< (CI )
//‘x_ y|v- a’y ’Nfg‘z_x’N,va()\yNdde_C2()\,515)

RN RN

Combining Proposition 2.1.8 with (2.33) and (2.34), we have that the condition (2.27)
is satisfied.

Moreover, proceeding as in Corollary 2.1.5 we obtain that also the condition
(2.28) holds. O

2.2 Radial solutions to Beckner system

We consider the possible radial solutions
(u,v,w) € (C*RYN) N LPTHRY)) x (C*(RY) N LHH(RY)) x (C*RY) N L™THRY)),

to (1.3) and we apply a different strategy to justify the differentiation under integral
sign in (2.8). The idea is to prove that v and w are superharmonic functions in
order to obtain estimates for Vou(z) - z and Vw(x) - x. More precisely, we apply the
following lemma proved by Mitidieri [13]:

Lemma 2.2.1. Let N > 3. If p € C?*(RN¥\{0}) is a radial and non-negative solution
to
—Ap >0 inR"\ {0},

then
Vo(z) -+ (N —2)p(x) >0, foralxzecRY\{0}.
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Proposition 2.2.2. Let N > 3, p,q,r > 0 and 0 < o, 8,7 < N such that a« + =
N+2and B+~v=N+2. If (u,v,w) € C*(RY) x C*(RY) x C*(RY) is a solution
to (1.3), then v and w are superharmonic.

Proof.  We prove that v is superharmonic, the same argument can be used to
prove that w is superharmonic.

Testing the second equation of (1.3) with —Agp, where ¢ € C°(RY) and ¢ > 0,
we obtain

—Ap(x)
A d dy dz.
/ el //w—zwv /|x—y|N aly —gvs | W

RN RN RN

Let 0 =2N —a — = N — 2. By Selberg integral formula we have

—Ap(z) B Neo —Ap(z)
/ P L / Ty aly — ANl e

RN
—Ag(x)
= Cly — 2|? dx dt
vt [ | Ty — Pl =g

RN RN

2
/ |g Lo
|y — 17z — ]

Theorem 2.2.3. Let N >3, p,q,v > 0,0 < a, 3,7 < N and x = a+[B+~. Suppose
that a + B8 =N +2 and f+~v= N +2. If (2.2) is satisfied, then the problem (1.3)
has no nontrivial radial solution

(u,v,w) € (C*RY) N LPFHRY)) x (C*(RY) N LY RY)) x (C*RY) N L™TH(RY)).

Proof. 'We proceed as in the proof of Theorem 2.1.1, the only difference is the
application of Theorem 1.2.3 to differentiate under the integral sign with respect to

A the following function
ua) = [ [ fap 2y

RN RN
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where 9Oy)w”(A\2)
v Ay)w" (A2

A = .

f( 7957?/’2) ]g;—y]N*a|y—Z]N’ﬁ‘Z—$‘NJY

Let 0 <a<1<band
vl (Ay)w" (Az)

xr — My —z|V TPl — x| Y
|z — y|Noly — 2|NF) [N

h(z,y, z,\) = CAXN

where C' = 252 (¢ + 7). We have
b b
// / \h(z,y,z,\)|dydz d\ = C’/u()\x) d\ < +oo, forallz € RY.
a RN RN a

Moreover, by Lemma 2.2.1 we obtain

v (Ay)w” (A2)Vo(y) - ViAW" (A2)Vw(Az) - 2
)= OO O i)
[z —y[V oy — 2Nz — 2N fa — [Ny — 2N — 2N
> _T(q +T)f()‘7ya Z) > —W(Q—FT))\X f()‘7y7 Z) > h()‘7y7 2)7
hence, (1.17) is satisfied. O

2.3 Beckner and Stein-Weiss system: general case

Let us consider the following generalization of the Beckner system:
[1; 4, u5 ()

U\ =
= | [hirsee a7 s — 2| oy o
RN(k—1) ==

us >0inRY, s=1,... k,

dX;, s € RV\ {0},

(2.35)
where N > h;; = hj; > 2, 0;; € R and ps > 0.
This problem has been studied in the particular case k = 2 (see [5, 23]), i.e.:
v'(y)

u(x) = dy, xRN\ {0},
= | By MO

(

(2.36)

)= [ o s © RO

RN

u,v > 01in RV,

\
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where 0 < a, 8 < N, (,n € R and p,q > 0.
(2.36) is the system of Euler-Lagrange equations associated to the following in-
equality, proved by Stein and Weiss [21].

Theorem 2.3.1 (Stein-Weiss inequality). Let 0 < s1,80 < 400, (,n € R, (+1n>0
and 0 < a < N be real number satisfying
1 I N+a—-(—n

S1 So N

If f € L**(R"N) and g € L*>(RY), then

f(x)g(y)
dxdy SS f 31 g 82’
R{ / koD 151l N9l

where S = S(s1, s2,,(,m).

Motivated by the above-mentioned description, in this section we study the gen-
eral system (2.35).

Theorem 2.3.2. Let N > hij = hji > 2, 05 € R , Ds > 0 and

Z hij) p:ZO'Z‘j.

1<i<j<k i#j

Iif

k
1 (k—1Dk x—p
- 2.
;z?erl7é 2 N’ (2.37)

then the problem (2.35) has no nontrivial solution u, € CH(RYN) N LPsHL(RY) s =
.,k satisfying the following condition: there exists a < 1 < b such that the
following integral is finite

/ / upr 1 )\xr ’V%«(Axr) xT"H];ﬁTl ?j()\xj)

H1<z<j</r€ |73 |y — aj|N~his | |05

dXjd\ < o0, forallre{2,... k},

a RN(k-1)

where the variables of integration are X; = (2o, ..., x) € RVGE-D,
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Proof. We proceed as in the Theorem 2.1.1: let A close to 1, we have that

u(Aay) = ——— [T, ]>N_h__ — dX;
A(Q)N_X+p H1§i<j§k |47 |2; — 24 i 24|75
RN(k—1)
(2.38)
_ yx-poN Gl IT)_ uf (M) 0x;
- H1§i<j§k |70 [ — @[NP |0
Therefore,
ou —1)(k—2
Vuy(zy) -2 = (9>\1 )\xl (X p— N )2( )> uy (zq)+

i uzzr—l(xr)vur (@) - 2 Hg;ér 1 ug "(x5)

H1§i<j§k |27 | — | N i |

dX;.

gy
Ji
]

=2 RN(k—1)

(2.39)

Hence, multiplying by «}" and integrating with respect to z; the previous identity,
we have

/uﬁ’l(:cl)Vul(xl) cxydry = (X —p— N(k — 1)2(k — 2)) /uflﬂ( 1) dxy+

RN

k
+ Z /prufr(xr)Vur(xr) -y dx,.
r=2

(2.40)
By divergence theorem there exists a sequence R,, — 400, such that
. N "
lim ubr (x, ) Vu,(x,)-x, dr, = — ulr(x,) dx,, forall r € {1,... k}.
n—+o0 Dr + 1
Br, RN

Therefore, by (2.40) we obtain

N k—1)(k—2

ot P () day = (X—p—N( )2( )) /u’fﬁ (1) dxi—
1

RN

. Y (2.41)

_ Z NpT /ungrl(xT) de.
— pr+

RN
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By Tonelli Theorem we have that

/uflﬂ(aﬁl) dr, = /uffrﬂ(xr) dz,, forallre{l,... k}.

RN RN
Hence,
k
(x e > ;fﬁ) [ty don =0
r= BN
This conclude the proof. O
In the particular case 0;; = 0 for all 7,5 = 1, ..., k, as a consequence of Theorem

2.3.2 we obtain the following result about the system (2.1).

Theorem 2.3.3. Let N > h;; > 2, and ps > 0.
If

k

N — hy;
> 117& > v (2.42)

o1 Ps 1<i<j<k

then the problem (2.1) has no nontrivial solution u, € C*RY) N LP<T(RY) s =
1,...,k satisfying the following condition: there exists a < 1 < b such that the
following integral is finite

b

/ / ubr = (Awy) [V (A - ] T wy (Ay)

HlSi<j§k |z; — :z;j]N—hi]-

a RN(k-1)

where the variables of integration are X; = (za, ..., 1) € RNE-D,
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Chapter 3

Non existence results without
finite energy condition

P (RY) s = 1,...,k to the system (2.1) (not nec-
essarily u, € LPHH(RY) s = 1,...,k). If s = 2 the problem (2.1) coincides with
(2.12) and it is known that the Sobolev hyperbola (2.19) plays a key role in the
non-existence criteria: the HLS conjecture [3] states that if

Let us consider solutions u, € LP*

1 n 1 >N—a
p+1 qg+1 N

, 0<a<N, (3.1)

then (2.12) has no nontrivial solutions.

Even in the case where o = 2, the conjecture, better known as the Lane-Emden
conjecture, remains an open problem. However, partial results has been proved: for
n < 4 the Lane-Emden conjecture has been verified (see [17, 18, 19]). For n > 5
other contributions with stronger assumptions than (3.1) on exponents are known
(see [2, 6, 14, 19]).

For a not necessarily o = 2, Caristi, D’Ambrosio and Mitidieri [3] prove a Rellich
type identity for solutions to (2.12) obtaining the proof of the Hardy-Littlewood-
Sobolev conjecture for radial solutions to (2.12) (see Theorem 0.0.3). Another con-
tribution to the Hardy-Littlewood-Sobolev conjecture contained in [3] is the following
result, where no conditions on symmetry or energy of solutions are assumed:

Theorem 3.0.1 (Caristi - D’Ambrosio - Mitidieri). Let p,q >0 and 0 < o < N. If
pqg <1 or

(3.2)

1 1
pqg>1 and N—agamax{q+ Pt },

pg—1"pg—1
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then the system

q
u(z) > %dg/, r € RY,
T — «
RN Y
p 3.3
v(x) > —| u(g@_ dy, ze€RY, (3:3)
xr—y @
[ u,v >0 in RN,

has no nontrivial solution

(u,v) € (Lj,(RY) N LY

loc

(RY)) x (Lioe(RY) N L, (RY)).
In view of the description above, it is then natural to formulate the following
conjecture:

Conjecture. Let 0 < h;; < N, p; >0 forall 4,5 € {1,...,k}. If

k

) i1> 2 Nz_\fhij’ (3:4)

=1 bi 1<i<j<k

then (2.1) has no nontrivial solutions.

In this chapter we prove some contributions to this conjecture. More precisely,
we obtain some non-existence results for solutions u, € L (RY) s =1,...,k to the

loc
system
iy
Hj;és U/(%‘) X

ug(zs) > .
[Ticicjcr lwi — 2|V (3.5)

RN (k-1)
us >0inRY, s=1,... k.

3.1 Beckner system of inequalities: k£ = 3

Lemma 3.1.1. Let0 < o, 8,7y < N, x =a+ 8+, and p,q,r > 0.
If

(1, 0,0) € (L (RY) N Ly (RY)) x (Lo (RY) N L (RY)) x (L}

loc

(RY) N Ly (RY))
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18 a solution to

RN RN

e [ () () ;
Yy o

RN RN
N
u,v,w >0 in R,

\

then
P
C
/up(x) do > NN /Uq(y) dy
Br Br
q
C
/vq(x) dx > TGN N /up(y) dy
Bgr Br
, C
/w (x)dx > TGN N /up(y) dy
BR BR
for all R > 0.

Proof. By the system (3.6), we have

v (y)w' (z) N
2//\x—y\Nayy—z|Nﬁ\z—x1Nvdde’ r e RY,

P(y)ur () N
dy d cR
/ /m— wa—zwvu gy W =R

ydz, xeRY,

/ /u— IRIEE e

C
> g e | ) YO

Bgr

/ vi(z)dz

Br

Raising to r and integrating over Br with respect to x we obtain

T

, C
/w(x)deW /up(y)dy

Br Br
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In a similar way, we can prove (3.7) and (3.8). O

Theorem 3.1.2. Letp,q,r >0,0<a,8,y< N and x =a+ +v=2N + o with
o>0.If

min {pq, gr,pr} <1,

then the problem (3.6) has no nontrivial solution

(u,v,w) € (L}

loc

(RY) N Lo (RY)) x (L

loc

(RY) N Lo (RY)) x (L

loc

(RY) N Lo (RY)) .
Proof. We may assume that pg < 1 without losing of generality. If w # 0, i.e.
w # 0 almost everywhere in RY, then
/w’"(:v)dx >C>0, R>R,.
Br

Consequently, by Lemma 3.1.1, we have

C
/Up(x) du > RIGN—)-N /Uq<y) dy | (3.10)
Br Br
q
) dp > — P(y)d (3.11)
vi(x x—Rq(?)fo)fN uP(y)dy | . )
Br Bpr

Combining (3.10) and (3.11), we obtain

Pq

/up(w) drv > CR' /up(y) dy | . (3.12)

Br Bgr

Since pg < 1 and x > 2N, than the exponent of R in (3.12) is
t:=—(PEBN =x) =N +pgBN = x) —pN) = N(1 —pq) + o(p+ pg) > 0.

If pg = 1 then (3.12) implies R < C. Hence, letting R — 400, we have a contradic-
tion. If pg < 1 then

/up(x) dx > CR . (3.13)

Br
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On the other hand, taking R > |z| and proceeding as in the proof of Lemma 3.1.1
we have that

v(x) > R3g—x /up(y) dy | . (3.14)

Br
Combining (3.13) with (3.14) we obtain

a+1

v(z) > CROPi) > 0|7 (i) (3.15)

Similarly we get
(@) > ORTH955) > Oz)o (=) (3.16)
The estimates (3.15) and (3.16) imply that u and v are bounded from below by a

positive constant on R™\ B;. Hence, applying Lemma 1.1.1, the integral on the right
hand side of the third inequality (3.6) is not finite, and we have a contradiction. O

Theorem 3.1.3. Let 0 < o, 8,7 < N, x = a+ f +7 = 2N + 0 with o > 0 and
p,q,r > 0 such that pgr > 1. If

I+q+qr 1+r+rmp 1+p+pg
N <omax<p ,

) ) r
pgr — 1 qpqr—l pgr — 1
then the problem (3.6) has no nontrivial solution

(u,v,w) € (L],

loc

(R™Y) M Ligo(RY)) x (L

loc

(R™Y) M Ligo(RY)) x (L

loc

(RY) N Lo (RY)) .
Proof. Without losing of generality, we may assume that

14+qg+qgr
pgr —1

By Lemma 3.1.1, if u # 0, v # 0 and w # 0, then (3.10) holds and

N <op

q

¢ .
/UQ(IL’) dz > W /w (Z) dz , (317)
BR BR
r C p
BR BR
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Hence,
Pq

C C )
/ uH(z)dr 2 PN RN / w'(z) dz

Br Br

N C C C b d
= RPBN—)-N RplaBN—)—N] RpalrBN—x)—N] uP(y) dy

Br

™Pq

rPq
—cr| [wway|
Br
where
a:=—{pBN —x) = N +pla3BN — x) — N] +pg[r(3N — x) — N|}
=op(1+q+qr)— N(pgr —1) > 0.

Therefore,

/up(x) dx < CR w1,

Br

Letting R — +o0, if @ > 0 then v = 0. Hence, we may assume that a = 0 and
u € LP(RY). Next, we proceed as in the proof of Lemma 3.1.1 and we obtain that

Br Br

raising to the power p and integrating over Agr = Bor \ Bg both hand-side we have

p p
C
/Up(x) dr > RIGN—-N /wr(y) dy /Uq(y> dy
A br , (3.19)
C
> e [ ) d
Bgr

Since a = 0, by (3.17) and (3.18), the estimate (3.19) becomes

pgr

/up(a:) de > C /up(a:) dx

AR Br
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Letting R — +00, since u € LP(RY) therefore

lim uP(z)de =0,
R—+o00
AR

and we have the claim. O

Theorem 3.1.4. Let 0 < o, 8,y < N, x =a+ [ +v=2N + 0 withc > 0 and
p,q,r > 0. If one of the following conditions holds

1 1

pqg>1 and Nﬁamax{p@—i_ )’q(p—l— )}, (3.20)
pg—1 " pg—1
1 1

gr>1 and N <omax rla+ )’q(r—i-) , (3.21)
rg—1 " rqg—1
1 1

pr>1 and N < omax p(r + ),T(p+) , (3.22)
pr—1" pr—1

then the problem (3.6) has no nontrivial solution

(u,v,w) € (L}

loc

(RY) N Ly (RY)) x (Lj

loc

(RN) N Llloc<]RN)) X (L;oc

(RY) N Li,(RY)).
Proof. Without losing of generality, we may assume that (3.20) holds and

ax{p(q+1) Q(P+1)} _plg+1)
pg—1" pg—1 pg— 1

Proceeding as in the proof of Theorem 3.1.2, by (3.12) we have

/up(x) dr < C’R_bel,
Bpr
where
b=—pBN —x)+N —pg(3N — x) +pN =op(q+1) = N(pg — 1) > 0.
Letting R — +o00, if b > 0 then © = 0. Hence, we may assume that b = 0 and

u € LP(RY). Next, we proceed as in the proof of Lemma 3.1.1 and we obtain that

Bgr Br
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raising to the power p and integrating over Ag = Byr \ Br both hand-side we have

p p
C .
/Up(fv) dx > TGN N /w (y) dy /Uq(y) dy
An br , (3.23)
C
Z Rp(gN_X)_N /Uq(y) dy
Br

Since b = 0, combining this estimates with (3.11), we get
Pq

/up(x) dx > C /up(y) dy

AR Br
Letting R — +o00, since u € LP(RY) therefore

lim uP(x)dr =0,
R—+o00
AR

and we have the claim. O

Theorem 3.1.5. Let 0 < o, B,y < N, x=a+ L+~ > N and p,q,r > 0 such that
min{p+q, ¢g+r,p+r}>1

If
foine BN
-
PHAHTS g
then the problem (3.6) has no nontrivial solution

(RY) N Lip(RY)) x (L

loc

(3.24)

(u,v,w) € (L, (RY) N Ly (RY)) x (L

loc

(RY) N Lip(RY)) -

Proof. By Lemma 3.1.1, we have

. C
/up(a:) dx /'Uq(x) dx /w (x)dx | > RGN )N
Bgr Br Br
q+r p+r ptq
/up(q:) dx /Uq(:c) dx /wr(a:) dx )
Br Br Br



q+r—1 ptr—1 ptg—1

/up(q:) dx /vq(:c) dx /wT(:L‘) dx < COR°, (3.25)

Br Br Br

where b= (p+q+7)(3N — x) — 3N.
fp+qg+r< 31%/JXX then b < 0. Hence, letting R — 400 in the inequality (3.25),
we have that u,v,w = 0.

On the other hand, if p4+q+1r = 31%71Xx then b = 0. Hence, one of the following

possibilities occur: v € LP(RY), v € LI(RY) or w € L"(RY).
Without loss of generality, we suppose u € LP(RY), therefore

lim uP(z)dr = 0.
R—+00
AR

Proceeding as in the proof of Lemma 3.1.1, we obtain

p p

/up(x) dr > W /vq(y) dy /wT(z) dz | . (3.26)

Agr Br Br

Combining the inequalities (3.8) and (3.9) with (3.26) we get

., C
/up(x) dx /vq(x) dx /w (x)dx | > RoTerGN 03N

AR Br Br
q+r p+r p+q
/up(:v) dx /’Uq(:L') dx /w”(m) dx :
Br Br Br
i e
q+r p+r—1
Plx)dx | > ¢ P(z)d Uz)d
AR Br Br
p+g—1 q+r
/wr(x) dx >C (/up(:v) dx : R >Ry
Bgr Br



Finally, letting R — 400 in (3.27), we have that u = 0, therefore we obtain the

claim.
O

3.2 Beckner system of inequalities: general case

Theorem 3.2.1. Let k> 3,0 < h;j = hj; < N and ps > 0 for all s=1,... k.
Suppose that both the following conditions are satisfied:

k—1
; = min is 3.28
H jein, Hp (3.28)
#J
= Y hiy=(Ci—1)N+o, (3.29)
1<i<j<k
where o > 0 and Cy, = (g) If
k—1
[Iri <1 (3.30)
i=1

then the problem (3.5) has no nontrivial solution

el RMNLLMRY) s=1,... k.

loc

Proof. Let R > 0, by system (3.5), we have that
C

[T & IR+ )™ [ @t la)

1<i<j<k,i,j#s 1<i<s s<j<k (3.31)

11 / o2 (z;) da;,

L<i<kizs 5.

ug(zs) >

foralls=1,...,k—1.
Supposing u; # 0 almost everywhere in RY for all s =1, ..., k, we prove that we
obtain a contradiction. Since,

/uz;j(xj)dxj>0>0, R> Ry, forall j=1,...k,

Bgr
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then by system (3.31) we get

C
H RN H (R + |m8|)N_his H (R + |x5|)N_th .

1<i<j<k,i,j#s 1<i<s s<j<k (3.32)

ug(zs) >

. /ugfll(xsﬂ) drey,, foralls=1,...,k—2,

Br
Up—1(Tp—1) > <
k=1(Tg—1) = - “hi —he;
IT B I] R+la)™ " T (R+ |z )"
L<i<j<kiijrs 1<i<s s<i<k (3.33)
-/u’fl(xl)dxl.
Br

Rising the inequality (3.32) to the power p, and integrating it over Bg we obtain
Ps
/uﬁs () dzy > CR™(CN PN /uls)fl1 (Xsq1)dxsir | Sforalls=1,...k—2,
Br Br

(3.34)

Similarly, rising the inequality (3.33) to the power p;_; and integrating it over Br
we have

P—1
/ui’“f (2p_1) dap_y > CR™ (NP1t /u’f1 (1) dxy : (3.35)
Br Br
Combining (3.34) with (3.35) we get
=i p;
/ufl(xl)dxl =CR' /ufl(xl)dxl , (3.36)

Br Br
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where

t= (N~ (CN =x)p) + ) ((N— (CkN—x)pz)Hpg> =

If Hf;f pj = 1, then we conclude that R < C' and we have a contradiction.
On the other hand, if Hf;ll p; < 1, then

/u’f1 (1) dxy > CR" =17 (3.37)
Br

Next, we consider |zs| < R for all s = 1,...,k — 1. Combining (3.37) with (3.33)
and (3.35), we obtain

Ug—1(7p-1) > CR™',  and /Uzk—f(?ﬁkl) dey—y = CRY 1,

Bgr
where
k—1 17i
t i= 1D
&kl_ﬁ—(CkN—X)_U<1+&k]1”> >O,
1-T1I: - 1—11; .
H]:l Dj j=1Dj
and ;
Dh—
b1 = kk,ll — (CkN = X)pe—1 = pr—1ar-1 >0
1 Hj:l Dj

Similarly, assuming by induction that

. . N+b,
Usy1(Tsr1) > CR™H . and /ui’ﬁl (Tgy1) drgyy > CRY Ot

Bgr

with asy1,b541 > 0. Then, by (3.32) and (3.34) we have

us(zs) > CR*, and /u§ (z¢) dxy > CRNTP:

Br
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where
as =bsy1+0 >0 and by = 0ops+ bsi1ps = psas > 0.

Therefore,
us(rs) > CRY > Clxg|*

, foralls=1,....,k—1. (3.38)

The estimates (3.38) imply that u, is bounded from below by a positive constant on
RN\ By for all s =1,...,k — 1. Hence, the integrals on right hand side of (3.5) are
not finite and we have a contradiction. O

Theorem 3.2.2. Letk >3,0>0,0<h;; =hj; <N andps >0 foralls=1... k.
Suppose that both conditions (3.29) and (3.28) are satisfied.

Consider
Sk ={m:{l,....k—=1} = {1,... k= 1} bijective},

the set of permutations of {1,...,k —1}.
If

k—1
Hpj>1 and N <o max {Z HJ 12%@}7
j=1

k—1
€S- Hj:l p;i—1

then the problem (3.5) has no nontrivial solution

G Lps

loc

R®RYNLLRYY s=1,...,k
Proof. Without loss of generality we may assume that
z H] 1p7r ) Z H] lpl
max k 1 = k-1
H] 1 pj— 1 HJ 1 pj—1

Let R > 0 such that |xs] < R for all s = 1,...,k — 1. Proceeding as in Theorem
3.2.1, by (3.36) we obtain

TESK_1

/ul (x1) dzy <CR™, (3.39)

where



If -
Dict Hj:l Dj
R, 1
Hj:l b —
then ¢ > 0. Therefore, letting R — +00, (3.39) implies u; = 0.
On the other hand, if
k—1 i
azz‘:l [L_1p o

N,

[ ip—1 7
then t = 0 and u; € LP*(RY). Since u; € LP*(RY), we have

Rlirfm ul (1) dxy = 0,
AR
where Ap := {z € RV : R < |z| <2R}. In order to obtain the contradiction, we
rise to the power p; and integrate over Ag the inequality of (3.32):

p1

/ul'f1 (z1) dzy > CR™(CN=0P+N /ug2 (xo)dzy | . (3.40)
AR Br
Next, combining (3.40) with the estimates (3.34) and (3.35), we have
1521 1= p;
/u’l’l(arl)dxl > CR' /uzfl(xl)dxl =C /ufzf1 (1) dxq
Ag Br Br
Finally, letting R — 400 we get u; = 0. O

Theorem 3.2.3. Let k> 2,0 < hj; = hj < N and ps >0
Suppose that the condition(3.29) is satisfied.

If
k
j=1

k k i .
j=1 b —1

or

)

then the problem (3.5) has no nontrivial solution

u, € L RN N L (RY) s=1,... k.

loc
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Proof. The case k = 2 of Theorem 3.2.3 was proved in [3, Theorem 5.7]. Hence,
we may assume k > 3.

Moreover, we may suppose Hle p;j > 1, or else Theorem 3.2.1 implies the thesis.
In fact, if (3.30) does not hold:

k
min > 1
JE{L,....k} 1__[1% ’
=1,
i

then

kok k k=1
1<HHP¢Z (HPJ) )
j=11i=1,
i#]
ie. H?:l p; > 1.
Next, we suppose H§:1 pj > 1. Proceeding as in Theorem 3.2.1, we obtain that
the inequalities (3.32) hold and

C
Up—1(Tp-1) 2 '
IT B I] R+la) " T (R+[a)V "
1<i<j<k,i.j#s 1<i<s s<jsk (3.41)
. / P (1) iy,
Br
(z1) > d
Up\T) = '
[T & [T @+l T (R4 o)™
1<i<j<k,ij#s 1<i<s s<isk (3.42)
. / WP (21 da.
Br

By estimates (3.32), (3.41) and (3.42), we get

H§:1Pj*1
/u’l’l(m) dzy <CR™, (3.43)
Br
where
k koo
N (1_Hpj> coS o
j=1 i=1 j=1
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Finally, it is sufficient to proceed as in Theorem 3.2.2 in order to obtain that u; = 0.
O
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Chapter 4

Existence of solutions to Beckner
system of inequalities

The problem to determine necessary and sufficient conditions for the existence of
solutions to (3.5) is still open for k > 3. However, in the case k = 2, Theorem 3.0.1
is optimal, since Lei and Li [9] proved that if pg > 1 and (3.2) is not satisfied, then
there exists a solution (u,v) to (3.3) given by

Ay Ay

R (e N (A FO

where Ay, Ay, 11,5 > 0 are suitable constants.
The idea of the proof of Lei and Li is to estimate the integrals on the right hand
side of (3.3), using the following decomposition of the domain of integration:

RY = BrU Bjyja(z) U (RN \ (BRU By 2(z))),  R>0. (4.1)

On the other hand, considering

A
uj(z;) = W7 Aj, 95 >0,
although the decomposition (4.1) of RY does not allow us to estimate the integrals
on the right hand side of system (3.5), we apply a different type of decomposition of

of RY (see Lemma 4.1.2), in order to prove the following results:

%)



Theorem 4.0.1. Let p,q,r > 0, 0 < «a, 8,7 < N and x := a+ [+ v such that
N < x < 2N. Suppose that two of the following conditions hold:

1 1

pg>1 and N>(X—N)max{p<q+ )7q(p—|— )}, (4.2)
pg—1 " pg—1
1 1

rg>1 and N > (x — N)max rla+ ))q(r—i—) : (4.3)
rq—1 " rqg—1
1 1

pr>1 and N > (x— N)max plr + )77“(]0—1—) . (4.4)
pr—1 " pr—1

Then there exist 91,092,935 > 0 and an infinite number of trios of positive constants
(Aq, Ag, A3) such that

Al AQ

As
T+ P = T e

e 4

w(z) =

u(z) =

is a solution to the system (3.6).

Theorem 4.0.2. Let p,q,r > 0, 0 < o, 8,7 < N and x := a+ S+ v such that
N < x < 2N. Suppose that the following condition hold:

1 1 1
tqtgr Ltrdrp —|—p+pq}. (4.6)

pgr>1 and N > (x— N)max<{p ,q ,
pgr — 1 pqr — 1 pgr — 1

Then there exist 91,092,935 > 0 and an infinite number of trios of positive constants
(A1, Ag, A3) such that (u,v,w) given by (4.5) is a solution to the system (3.6).

4.1 Decompositions of RY

In order to prove Theorems 4.0.1 and 4.0.2 we apply the following lemmas.

Lemma 4.1.1. Let s,t > 0 such that t < 2s < N. Then there exists a constant
C > 0 such that

C
RN, 4.
/\:c— \meyr) S TrEp? “S (4.7
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We recall the following inequality between real numbers that we need in the proof:
let a,...,a; >0, s1,...,8, >0and S = Zlesi. Then

k
Hafz‘ < <ze?11aX az) < Za (4.8)
i=1

.....

Proof of Lemma 4.1.1. First, we consider z < 1. We use the following decompo-
sition of RV:
RY = Ay U A, U A,

where

Bi(z),
A = Bl \ By (z),

Ay = RN\ (B, U By (2)).

We have that

1 1
dy < / T W <G
/I:E—@/IN‘t(lﬂL lyl*)® |z =y
Ao B

1
d</1d<C
/u—|N%rﬂm> Y Y

B1

Applying the inequality (4.8), we obtain

1
d <
| == ”-/|wv% ./| TS

Az

1 1 N-1
S / |y|25+N—t dy + / |y _ I|2S+N—t dy = C / T25+N—tr dr S C
1

RN\ B, RN\ B, (x)
(4.10)
Using (4.9) and (4.10) we have

1 C
dy<C<—— <1
/Iw—le‘t(lJr ly[?)® (1 + [z]?)s=t/2

RN
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Next, we suppose |z| > 1. Now, we consider the following decomposition of R¥:
RY = Dy U Dy U Ds,

where
Dy = Bjy|j2(),
Dy = By \ Blaj2(x),
Dy =R\ (Bjyjj2(2) U Byja).
If y € Dy then |y| > |z| — |y — x| > |z|/2. Hence,

/ ! s [ e
Y= N Y=

A T e e N

0

s e (4.11)
~ TR [ mertan=g R e
If y € Dy then
1/2
N o e e
Hence,
C
/|ar—y|N YL+ [y[? ) 1+\xy / 1+ |y| T A1)
e (4.12)
Next, we consider the following decomposition of the set Ds:
Dy = Hy U Hy,
where
Hy =D\ Biaja = (RY\ (Bpay2() U Biajj2)) . Ha = D2 N By
By straightforward calculation, we have
1
/]a:— |N=t+2s dy = / Wdyg
Bl (4.13)
C C
=€ / e S e S T

|=[/2
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and

1 dy < ! dy < ¢
|y[N—t+2s ¥y= |y[N—t+2s ¥y= (1+ [z[2)s/2 (4.14)
H RM\Bjo)/2

Combining the inequality (4.8) with (4.13) and (4.14) we obtain

— y — _ y _ Yy >
|ZU _ y|N t(l |y|2)s |./E y|N t+2s |y|N t+2s
H;y H,y Hiy
C

(4.15)

<
= T+ Py

On the other hand, if y € Hy then |z — y| > |y| and |z — y| > |z| — |y| > |z|/2.
Hence,

1 C 1 c 1 (416)
|z — y[N—t = [g[Nt-(N=2s=1) [y[N=25-1 — |g|25—t+1 [yy[N-2s-1
Using the estimate (4.16), we get
1 C 1
dy < —dy =
/ o=y ) e / v
Ho Biy1/2\B1/2 (4.17)
C C
= — -1 —F—+i—5.
|x|2sft+1(|x| )< (1 + [z[2)s/2
Therefore, by (4.15) and (4.17) we have that
1 C C
dy < —— -1 ——mF~—. 4.18
|t S VS e 009
Do
Finally, combining (4.11), (4.12) and (4.18) we obtain
1 C C
dy < + . 4.19
/!x—y!Nt(lJr [y S CH P2 T (1 ) 9
RN
Moreover, since t < 2s < N, (4.19) leads to our desidered result. O

59



Lemma 4.1.2. Let 0 < o, 3,7 < N and x := a+ [+ 7 such that N < x < 2N. If
s1, 89 > 0 satisfy the following condition:

X — N < 251,259 < N, (4.20)

then there exist C' > 0 such that

1
dydz <
u//11+wmﬁu+vwwm—ywﬂw—zW%v—xwﬂ yes=
R RY (4.21)
< min { ( ¢ ¢ ,

Lo o) 2 (1 [ty

for every v € RV,

Proof. First, we prove that.

/] 1 PR
Yyaz > —
(+ TR (1 o)l — g —oly — s — oV (1 ey
RN RN
(4.22)

We consider the following decomposition of RY:

RN = DyU Dy U Dy U Dy,
where

DO = B|x—z|/2($)7

Dy := Bjg_.i2(2),

D2 = B|x—z|/2 \ (D() U Dl) y

D3 =R\ (DyUD; U D).
If y € Dy, then |y — 2| > | — 2| — |y — x| > |z — z|/2. Hence,

/ L dy < / L,
Yy —~v_3 T N Y =
[z — y[Nmoy — 2| NE(L + |y[?)= |z — 2|N-F |z —y[Ne
Do Blg—z)/2(%)
|z—=2[/2

T | — 2| N8 PN—a” dr = |z — z|N-o=8"
0

(4.23)
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If y € Dy then |z —y| > |z — 2| — |y — 2| > |z — 2|/2. Hence,

1
dy < .
| T S 424
Dy

If y € Dy, then |y — 2| > |z — 2|/2 and |y — x| > |z — z|/2. It follows that

/ ! dy < / ldy =
AR A (e R e T
Do B|z—z\/2 (425)

C

T jr— 2N B
By the inequality (4.8), as well as 2N — x + 2s; > 0, we have

/ 1 dy < / 1 dy <
— — y < — ~ y <
J [z —y|VNoy — 2| N1 4 |y2)= J |z — y|N=2ly — 2| N=A|y|?
3 3

< ! d ! d N dy <
= | |z — yPN-o—F+2s y+ ly — z[PN-a—B+2s1 yr [y PN —o—F+2s1 Y=
D3 D3 D3

< ! d ! d
- |I _ /yPN—O&—ﬂ-F?Sl Y + |y _ Z|2N—C¥—5+251 y+
RN\B|,_;|/2() RN\B|,_;/2(2)
+oo

1 1 N C
+ / [y|PN—a—F+2s dy =C / FZN—a—pB+2s1 | dr = |z — 2|N-o-Bt2s
RM\B|; /2 lz—2z|/2

(4.26)
Using inequalities (4.23),(4.24), (4.25) and (4.26) we get

/ 1 du < C n C
o=y ey — PP Py T e e (4127)
RN
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By Lemma 4.1.1 as well as (4.27), we obtain

1
dydz <
//(1+|y\2)81(1+|Z’2)82’$—y|Naly—ZIN5|z—:c\NW vee=

RN RN
C C
< d dz < 4.28
- / (14 |2]?)%2|z — 22N —x+2 et / (1+ [2[2)%2|z — 2]2N—x °= (4.28)
RN RN
< ¢ ¢ < ¢
B e O T e (R

Then, the proof of (4.22) is completed. Changing the names of the variables in the
inequality (4.22) we have

[/ | e C
— — —dydz < —
(T + [yl (1 + [2[2)%2|z — y|N=ly — 2|V Flz — 2|V (1+[a|2)=5"

RN RN

and this completes the proof. O

Proof of Theorem 4.0.1. Without loss of generality, we suppose that (4.2) and
(4.3) are satisfied. Let 9, 15,93 such that

X — N < 2191]), 2?92(], 21937” < N, (429)

and Ay, Ay, A3 > 0. By Lemma 4.1.2, we have

ALAT CALAT
9 D3 N-a N_3 N dydz < XN
(1 + [y[2)Pe(1 + [2]2) %72 — y[N =y — 2|V Pz — [N (1+ |z[?) 2

RN RN
AV AL CAVAL
// 2)9 2\0 Sy N- Ny dydz < S e
(L [y2)e (L + [2[2)%57 |z — y[V =2y — 2[N Pz — 2N (1 + |z[2)Pr—3
RN RN
AV AS CAVAl
2)9 2\0 N- N- Ny dydz < XN
(L [y2)?re (L + [2[?)%29]z — y[¥=oy — 2[N Pz — 2N (1 + |z[2)Pr—3
RN RN
(4.30)
In order to complete the proof we need to find Ay, Ay, A3 such that
Ay > CALAL, Ay > CAVAL,  As > CATAL (4.31)
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and v, ¥, Y3 such that both (4.29) and the following conditions

N _N _N
191§192q—X2 ; 192§191P—X2 ; 193§191P—X2 : (4.32)
We observe that (01,42, 3J3) given by
- N 1 - N 1
S S B b S N S Sk (4.33)
2 pg—1 2 pg—1

satisfy both (4.29) and (4.32).
Finally, it is easy to check that there exists a constant o > 0 such that the trios

7“((1+1 r(p+1)

(AlaA27A3) (O Pq 1A va1) C pq IA pa—1

JAs),  As € [0, +00), (4.34)
are solutions to
Ay =CALAL, Ay =CATAL Az > CATAL

For the details see Appendix.
This leads us to the desired result. O

Proof of Theorem 4.0.2. Since pgr > 1, then one of the following conditions holds:
pqg>1, pr>1 qr>1.

Without loss of generality, we suppose pq > 1, then we proceed as in the proof of
Theorem 4.0.1: we consider ¥y, J5, V3 satisfying (4.29) and A;, Ay, A3 > 0. Then,
applying Lemma 4.1.2, we obtain

/ / AlAT s < CALA"
ydz < v
(L4 [y[)29(1 + [2]2)%s7 |z — y|[N =2y — 2|NF|z — x|V (14 |z[?) b

RN RN
/ / Al AL duds < CAP AL
ydz < s
o L+ [y[2)?P(1 + |2[2)%7 |z — y|N =y — 2[NFlz — [N (1 + |z[2)Per—%"
P pq P A4
/ / 2\ 2\0 AlAQN N Ny dydz < CA XN
S A (L+ [yl)P (1 + [22)729]z — y|N |y — 2[NF|z — x|V (1 + |z[2)?r—5

(4.35)
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Choosing (v1, 5, 93) given by

X—Nagr+q+1 X—Npr+r+1 X—Npg+p+1

191 - ) 192 - ) 193 = ’
2 pg—1 2 pg—1 2 pg—1
(4.36)
both (4.29) and the following conditions are satisfied
- - ~N
?91§§2q—x 792§7937”—X 193§791P—X2 :
Hence, by (4.35), (u,v,w) defined by (4.5), with Ay, As, A3 and ¥y, ¥5, U3 given
by (4.34) and (4.36) respectively, is a solution to (3.6). O

4.2 Appendix

In this section we check that there exists an infinite number of trios (A, As, A3) of
positive real numbers such that

A = CALAT, (4.37)
Ay = CAPAT, (4.38)
As > C AP AL (4.39)

Substituting (4.37) in (4.38) we have

Cp-&-lqu—lAg(P'i‘l) -1

Y

that is,
T(P+1)
Ay = C ri 1A pa-t (4.40)
Similarly, substituting (4.40) in (4.37) we obtain
alp+1)  p_ar(etl _r(g+1
A = O A ) o o A ), (4.41)
Combining (4.40) and (4.41) with (4.39) we get
AT gy o (4.42)
le.
As > O, (4.43)
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where (1) (ot )
p+1)(q
pg—1 (p + 1)(‘1 + 1)

b= = .
prig+l) | gr(p+1) 2 —1
g1 + P +1 pqr + pq + qr + pr
The trios
r(g+1 r(p+1
T )7 A3)7 A3 S [O_b7 +OO)7

gkl — _ -
(O pg—1 A3 pa—1 )7 (™ pa—1 A3 pa—1

satisfy conditions (4.37), (4.38) and (4.39).
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