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A B S T R A C T

Polysaccharide electrospun wound dressings should be an effective strategy in the field of wound care, as they 
combine an extracellular matrix-like structure with excellent biomimicry. However, their high hydrophilicity and 
large surface area cause a rapid dissolution in aqueous environments, compromising their clinical employment. 
In the present paper, electrospun membranes prepared using hyaluronic acid, a bioactive lactose-modified chi-
tosan (CTL), and polyethylene oxide have been crosslinked using glutaraldehyde, genipin, EDC/NHS or thermal 
treatments, obtaining very poor results in terms of membrane stability. Therefore, carbonyldiimidazole (CDI) and 
methacrylic anhydride were investigated in an innovative way, where CDI proved to be the best compromise 
between nanofiber water resistance, architecture maintenance and degradability. Indeed, the swelling and 
degradation behavior as well as the water vapor permeability of these matrices were tested, revealing the 
effectiveness of the electrospun products in absorbing large amount of liquid while maintaining the balance 
between water retention and gas permeability.   

1. Introduction

Non-healing or chronic wounds are characterized by a dysregulated
healing path, where the normal timeline of coagulation and hemostasis, 
inflammation, proliferation, and remodeling stalls in the inflammation 
phase, causing fibrosis, tissue loss, and insurgence of infections (Andrabi 
et al., 2021; Hauck et al., 2021; Yang, Zhao, et al., 2021; Zhang et al., 
2021). Surgical debridement and negative pressure are common stra-
tegies for the cleaning and preparation of the wound bed, but a wound 
dressing (passive or active) must be then applied to protect the wound 
site (Khandelwal et al., 2021). There is no single definition of the 
characteristics that an ideal wound dressing should have, but some key 
factors clearly influence the goodness of the medical device; these 
include, for example, biocompatibility, antimicrobial and anti-scarring 
potential, water adsorption capacity along with gas permeability, 
adaptability to the wound shape, mimicking of extracellular matrix 
(ECM) structure and mechanical properties, and cost-effectiveness (Fu 

et al., 2021; Kraskouski et al., 2021; Liu et al., 2011). In this context, 
electrospinning has received much attention as a simple and effective 
technique to produce biomimetic nanofibrous wound dressings, with a 
large surface area and a highly interconnected porous structure, that 
mimics ECM architecture and favors gaseous exchanges, drainage of 
excess fluid, and hemostasis Li, Wang, et al., 2021; Tonda-Turo et al., 
2018). This moisturizing ability is then responsible for the anti-scarring 
potential of electrospun mats, as they accelerate wound repair and 
closure avoiding scar insurgence (Ekambaram & Dharmalingam, 2020). 

The use of FDA-approved synthetic polymers as bulk materials for 
electrospun wound dressings has been largely exploited in recent years 
due to their good biocompatibility and mechanical strength as well as 
their good degradation profile or thermal stability. However, they are 
usually hydrophobic and lack intrinsic bioactive properties and biolog-
ical cues directly recognized by cells (Kai et al., 2014; Wang, Song, et al., 
2021; Zhou et al., 2021). Attention was then drawn to natural polymers, 
namely proteins (such as collagen, fibrinogen, fibroin) and 
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polysaccharides (such as alginate, chitosan, hyaluronic acid, cellulose, 
dextran, to name a few). In addition to their excellent biocompatibility 
and ability to mimic ECM composition, which is essentially fibrous 
structural proteins (mainly collagen and elastin) and polysaccharides 
(such as hyaluronan and dermatan sulfate), natural polymers are hy-
drophilic and provide an optimal regenerative substrate due to their 
recognition signals for cells, even if they do not confer proper me-
chanical strength to the final product (Dodero, Schlatter, et al., 2021; 
Izadyari Aghmiuni et al., 2021; Memic et al., 2019). Among them, hy-
aluronic acid and chitosan are widely employed in the synthesis of 
wound dressing devices (Suo et al., 2021; Wu & Li, 2021; Xia et al., 
2020; Yang, Xie, et al., 2021; Zhong et al., 2020). Hyaluronic acid is a 
high molecular weight non-sulfated glycosaminoglycan given by a linear 
repetition of (β 1 → 4)-glucuronic acid and (β 1 → 3)-N-acetyl-D- 
glucosamine. The ECM of skin contains up to 50% of the total amount of 
hyaluronic acid in the body, where it acts as lubricant preventing skin 
dehydration. Furthermore, hyaluronic acid can be recognized by cells 
through CD44 receptor, promoting cell adhesion, proliferation, and 
differentiation (Alven & Aderibigbe, 2021; Makvandi et al., 2019; 
Mauro et al., 2021; Tokudome et al., 2018). All these properties, 
together with its antioxidant and anti-inflammatory activity, make it an 
ideal candidate for the preparation of wound dressings (Chen et al., 
2018; Corrêa et al., 2020). Chitosan, on the other hand, is a high mo-
lecular weight polysaccharide that is widely used as a biocompatible, 
biodegradable, hemostatic, and antimicrobial polymer. It is obtained 
from the deacetylation of chitin and is structured in a linear repeat of (β 
1 → 4)-linked glucosamine and N-acetylglucosamine residues (Chen, 
Lin, et al., 2021). Thanks to the presence of numerous available amino 
groups, highly deacetylated chitosan can be exploited for the insertion of 
specific ligands, such as oligosaccharides (Donati, Haung, et al., 2007). 
Among them, CTL (1-deoxylactic-1-γ-L-chitosan also known as Chitlac) 
is a hydrophilic lactose-modified chitosan obtained by reductive ami-
nation with the lactose aldehydic group. This gives CTL several 
chemical-physical advantages over chitosan, including higher solubility 
at pH values closer to neutrality (Cok et al., 2018; Donati, Borgogna, 
et al., 2007), allowing the employment of non-toxic solvents, as water, 
ensuring the biocompatibility of the final product. CTL even possesses 
bioactive properties; for example, it induces the aggregation of articular 
chondrocytes by stimulating the production of glycosaminoglycans and 
type-II collagen and interacting with Galectin-1 (Marcon et al., 2005) or 
it promotes the differentiation of multipotent stem cells (namely, human 
dental pulp stem cells) into an osteoblast phenotype (Porrelli, Gruppuso, 
et al., 2021). 

Despite all the advantages, electrospinning of natural polymers has 
some difficulties, due to the high viscosity, surface tension, and con-
ductivity of the solutions, so that the addition of synthetic polymers 
and/or surfactants to the polysaccharide solutions is necessary (Baz-
mandeh et al., 2020; Rošic et al., 2012). This includes polyethylene 
oxide (PEO), a hydrophilic, water-soluble, inert synthetic polymer often 
used to increase polymer chain entanglement in the solution and refine 
polysaccharides electrospinnability (Darbasizadeh et al., 2019; Zhao 
et al., 2016). On the other hand, the addition of surfactants, as Tween® 
20, reduces the surface tension of the solution and improves its con-
ductivity, resulting in thinner and bead-free fibers (Kriegel et al., 2009; 
Liu et al., 2011). 

However, the most important and critical issue related to the elec-
trospinning of natural polymers, and especially polysaccharides, is 
represented by their high solubility and thus almost immediate disso-
lution in aqueous environment, which requires an additional and 
properly selected crosslinking step (Baker et al., 2016; Campiglio et al., 
2019; Zheng, Yang, et al., 2021). Over the years, numerous crosslinking 
strategies have been employed, ranging from physical to chemical to 
enzymatic methods (Gruppuso et al., 2021). Physical methods include 
irradiation (γ-irradiation, UV irradiation, high-energy electron beam 
irradiation) or heat treatment. Chemical crosslinking, on the other hand, 
involves the formation of covalent bonds between the functional units of 

the polymer chains. This is the case of glutaraldehyde, genipin, or EDC/ 
NHS (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N- 
hydroxysuccinimide), to name the most commonly used methods. The 
enzymatic approach exploits enzymes (as transglutaminase or oxidore-
ductases) to catalyze specific chemical reactions (Dodero, Scarfi, et al., 
2021; Grabska-Zielińska et al., 2021; Koosha et al., 2019). 

The aim of this work is to present a novel electrospun wound dressing 
based on hyaluronic acid and CTL, paying special attention to all critical 
aspects related to the chemical and structural stabilization of the final 
matrix. Despite the huge variety of chitosan-based wound dressing 
materials, to the best of the author's knowledge, this is the first time that 
CTL-based electrospun wound dressings are produced, with numerous 
possible advantages, firstly related to the use of water as solvent and to 
the multiplicity of bioactive properties exhibited by CTL. Moreover, 
various crosslinking methods are here reported, by comparing strategies 
documented in literature with innovative ones. The results show that all 
the exploited traditional approaches do not stabilize the mats or main-
tain their fibrous structure, mechanical strength, and integrity. Hyal-
uronic acid/CTL mats were also compared with electrospun matrices 
based on poly(− ε-caprolactone) (PCL), non-electrospun polysaccharide 
membranes, and the commercial product Chitoderm® to highlight the 
advantages of using electrospun matrices compared to non electrospun 
ones, where the use of bioactive polysaccharides enables to switch from 
biologically inert to bioactive medical devices. The hypotheses on which 
this work is based are: i) that it will be possible to electrospun water- 
soluble CTL, ii) that it will be possible, given the chemical structure of 
hyaluronic acid and CTL, to stabilize the electrospun membranes pro-
duced with these polymers availing of novel crosslinking methods, and 
iii) that the polysaccharide-based electrospun membranes here pro-
duced will present swelling and degradation behaviors, together with 
vapor permeability, exploitable for wound dressing applications. 

2. Materials and methods

2.1. Materials 

Hyaluronic acid (HA) (MW = 40–50 kDa; Batch N# 2018082984) 
and CTL hydrochloride (lactose-modified chitosan; Batch N# 350118) 
were provided by Sigea S.R.L. (Trieste, Italy) and biopoLife S.R.L. 
(Trieste, Italy), respectively. CTL final composition, determined through 
1H NMR, was as follow: glucosamine residue 27%, N-acetylglucosamine 
18%, and 2-(lactit-1-yl)-glucosamine 55%; the calculated relative MW of 
CTL is around 1.5 × 103 kDa, as determined by viscometry (Porrelli, 
Gruppuso, et al., 2021). Polyethylene oxide (PEO) (MW = 900 kDa), poly 
(ε-caprolactone) (PCL) (MW = 80 kDa), Tween® 20, dichloromethane 
(DCM), N,N-dimethylformamide (DMF), sodium hydroxide, methanol, 
acetone, 1,1′-Carbonyldiimidazole (CDI), methacrylic anhydride, 
glutaraldehyde (25 wt% in water), 1-ethyl-3-(3-dimethylaminopropyl) 
carbodiimide (EDC), N-hydroxysuccinimide (NHS), and sodium chlo-
ride were purchased from Sigma-Aldrich (Chemical Co. USA). Genipin 
(purity 98%) was acquired from Challenge Bioproducts Co., Ltd. (Yun- 
Lin Hsien, Taiwan). Fortuna Optima glass syringes (an inner diameter of 
9 mm) were purchased from Sigma-Aldrich (USA). The D-ES30PN-20 W 
potential generator was purchased from Gamma High Voltage Research 
Inc. The syringe pump, model KDS-100-CE, was acquired from KD Sci-
entific (Holliston, MA, USA) (Ormond Beach, FL, USA). 

2.2. Membrane preparation 

2.2.1. HA/CTL/PEO based membranes 
The polysaccharide solution was prepared by separately dissolving 

hyaluronic acid (HA), lactose-modified chitosan (CTL), and poly-
ethylene oxide (PEO) in deionized water. After their complete dissolu-
tion overnight (o.n.), the pH of HA and CTL was adjusted to 7.5, with the 
aim to avoid the formation of complexes between the positively charged 
CTL and the negatively charged HA. CTL was then added to PEO solution 
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and stirred for 3 h, after which also HA was included to obtain a ternary 
mixture with final HA/CTL/PEO concentrations of 2% (w/v), 1% (w/v), 
2% (w/v), respectively. After 30 min of equilibration 1% (w/v) Tween® 
20 was added as surfactant and the mixture was stirred overnight at 
room temperature before electrospinning. 

The nanofibrous mats were obtained with a custom-made horizontal 
electrospinning device after 90 min of electrospinning, performed with 
the following parameters: voltage, 30 kV; distance between the tip of the 
needle and the collector, 20 cm; flow rate, 1.2 mL/h; needle gauge, 23 G. 
The negative pole of the high voltage power supply was set over the 
collector. 

The same solution used in the electrospinning procedure was cured 
in 6 cm (ø) Petri dishes and freeze-dried for 1 day (ALPHA 1–2 LD plus 
freeze-dryer, CHRIST, Osterode am Harz, Germany) to obtain non- 
fibrous membranes to be used for comparison. 

2.2.2. PCL based membranes 
PCL solution was prepared according to what reported by Porrelli, 

Mardirossian, et al., 2021. Briefly, 12% (w/v) PCL was dissolved in a 
DCM: DMF (7:3) mixture, by first dissolving PCL in DCM overnight, 
followed by the addition of DMF the day after. 

The membranes were obtained after 1 h of electrospinning using the 
following parameters: voltage, 17 kV; distance between the tip of the 
needle and the collector, 25 cm; flow rate, 0.6 mL/h; needle gauge, 27 G. 
The negative pole of the high voltage power supply was set over the 
collector. 

Some of the PCL mats were activated with air-plasma treatment, 
converting their basically hydrophobic behavior into a hydrophilic one. 
The process was carried out with a PDC 32-G Plasma Cleaner (Harrick 
Plasma, Ithaca, USA) used in low power mode (6.8 W) for 5 min, with a 
pressure of 0.1 mTorr. 

Activated PCL mats were even used to produce polysaccharide- 
coated PCL membranes. In this case, both HA and CTL were solubi-
lized in deionized water at the final concentration of 0.2% (w/V) and 
their pH was adjusted to 7.2–7.4. CTL was cured on PCL samples until 
complete adsorption and air-dried. CTL-coated membranes were then 
washed in deionized water and air-dried for a second time. Subse-
quently, HA was cured on the top of PCL-CTL samples, which were 
washed in deionized water and air-dried again. 

2.3. Crosslinking strategies 

Due to the high instability and complete dissolution of 
polysaccharide-based membranes in aqueous environments, HA/CTL/ 
PEO mats have been subjected to various crosslinking treatments in the 
attempt to stabilize them in water and enable their application for 
biomedical purposes. 

2.3.1. Carbonyldiimidazole (CDI) crosslinking 
Fifty equivalents of CDI per mol of CTL glucosamine residues were 

used. CDI powder was dissolved in DMF, and the polysaccharide mats 
were incubated at different time points (1 h, 2 h, 3 h, 4 h, 5 h, 7 h, 8 h, 
overnight) to find the optimal reaction conditions and the best 
compromise between mat stability and fiber loss. At the end of each 
selected timepoint, the membranes were washed in ethanol and air- 
dried. 

2.3.2. Methacrylic anhydride crosslinking 
Pure methacrylic anhydride was cured on HA/CTL/PEO samples 

until complete adsorption and air-drying. Membranes were then washed 
with various solvents, namely deionized water, sodium hydroxide, 
methanol, acetone, and dimethylformamide, to determine the best 
washing method. 

2.3.3. Glutaraldehyde vapor crosslinking 
Three Petri dishes (⌀ = 6 mm) filled with 25% glutaraldehyde in 

water were placed on the bottom of a vacuum chamber. Membrane 
samples were stabilized on the grid of the sealed chamber and cross-
linked under vacuum conditions for 4 h or 2 h. In the last case, the 
electrospun mats were heat treated for 24 h at 60 ◦C to stabilize the 
crosslinking between nanofibers. 

2.3.4. EDC/NHS crosslinking 
EDC and NHS were added to the polymer solution 30 min before 

electrospinning at a final concentration of 2% (w/v) and 1% (w/v), 
respectively. In one case, the powder was added directly to the final 
electrospinning solution; alternatively, EDC/NHS were first dissolved in 
deionized water and then added to the polymer solution. 

2.3.5. Genipin crosslinking 
Genipin crosslinking was performed according to two different pro-

cedures. In one case, genipin was directly added to the polymeric so-
lution at a final concentration of 0.2% or 0.05% (w/v) 5 min before 
electrospinning. After preparation, the electrospun matrices were placed 
at 37 ◦C for 24 h to 7 days with the aim to promote genipin reaction. 
Otherwise, electrospun polysaccharide mats were further treated with 
0.5% (w/v) genipin dissolved in ethanol for 15 min, 30 min, and 45 min, 
and then they were heated at 37 ◦C for 24 h to activate genipin reaction. 

2.3.6. Heat treatment 
Heat treatment was performed alone, by placing the electrospun 

samples in a convection oven at 80 ◦C for 4 h, or in conjunction with CDI 
crosslinking, by first crosslinking the polysaccharide matrices with 50 
equivalents of CDI in DMF and then heating them for 4 h at 80 ◦C. 
Another type of thermal treatment was performed by using a vacuum 
oven, in which the samples were heated for 1 h (after equilibrating from 
20 ◦C to 80 ◦C) or 1 h, 2 h, 3 h at 80 ◦C. 

2.4. Scanning electron microscope (SEM) analysis 

In all cases, dried membrane samples were sputter-coated with gold 
through a Sputter Coater K550X. 

(Emitech, Quorum Technologies Ltd., UK) and placed on aluminum 
stubs covered with a double-sided carbon tape. The morphological 
analysis was then performed with a scanning electron microscope 
(Quanta 250 SEM, FEI, Oregon, USA) working in secondary electron 
detection mode. The working distance was set at 10 mm to obtain the 
appropriate magnifications, and the acceleration voltage was set be-
tween 20 and 30 kV. Fiber diameters were calculated by 100 measure-
ments per sample using Fiji software. 

2.5. Attenuated total reflectance – Fourier transform infrared (ATR- 
FTIR) spectroscopy 

ATR-FTIR was performed to assess the occurred crosslinking in the 
presence of overnight CDI-treated samples. IR spectra were recorded in 
transmittance mode with a Nicolet iS50 FT-IR spectrometer (Thermo 
Scientific, MI, Italy), within a wavenumber range of 4000–400 cm− 1. 
HA/CTL/PEO membranes before and after CDI crosslinking were 
analyzed as well as HA, CTL, PEO, and CDI pure spectra as comparison. 
All the spectra were acquired with 32 scans and a resolution of 4 cm− 1. 

2.6. Swelling tests 

The swelling behavior was quantified after rehydration of the sam-
ples in deionized water or saline solution (NaCl 150 mM) by measuring 
the weight changes as a function of immersion time. Seven types of 
samples were compared here: CDI-crosslinked and methacrylic 
anhydride-crosslinked electrospun polysaccharide mats, CDI- 
crosslinked freeze-dried polysaccharide mats, PCL electrospun 
matrices (non-activated, activated, or coated with CTL/HA), and the 
commercial product Chitoderm® (Pietrasanta Pharma S.p.A.). 
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Once measured dry weights, wet weights were determined at each 
timepoint (15′, 30′, 45′, 1 h, 2 h, 3 h, 5 h, 7 h, 24 h) by gentle blotting 
with a filter paper to remove exceeding surface liquid. The swelling ratio 
was calculated according to Eq. (1), as proposed by Porrelli, Gruppuso, 
et al. (2021): 

Swelling (%) =

(
(Ws − Wd)

Wd

)

× 100 (1)  

where Wd and Ws are the weights of the samples in the dry and the 
swollen state, respectively. The results were taken as the mean values of 
four samples for each condition. 

2.7. Degradation tests 

The rate of degradation of the same samples investigated for their 
swelling behavior (Section 2.6) was assessed both in water and saline 
solution (NaCl 150 mM). Their stability was evaluated after 1, 3, 5, 7 
days of immersion at 37 ◦C. The wet weight was measured after 10 min 
equilibration and related to weight variations in time, which were 
calculated using Eq. (2), adapting the protocol proposed by Turco et al. 
(2009): 

Weight variation (%) =

[

1 −
(

Wtn
W10min

)]

(2)  

where Wtn and W10min are the wet weights of the samples at the defined 
time and after 10 min of rehydration, respectively. Four replicates were 
performed for each condition. 

2.8. Water vapor transmission rate (WVTR) 

The ability of membranes to transmit water vapor was assessed for 
CDI-crosslinked electrospun mats, PCL electrospun mats (non-activated, 
activated, and coated with CTL/HA), and the commercial product Chi-
toderm® (Pietrasanta Pharma S.p.A.). 

Glass vials with a top closure of 13 mm of diameter were filled with 
deionized water until a 2 cm gap remained between the water and the 
sample, which was placed on the top of the vial and sealed on the side 
with Parafilm®. The vials were then weighted and incubated at 37 ◦C for 
24 h and 48 h, by measuring water loss at each timepoint. Uncapped 
vials and vials capped with Parafilm® were used as free evaporation and 
no evaporation controls, respectively. Water vapor transmission rate 
was calculated using Eq. (3), as proposed by Tarusha et al. (2018): 

WVTR
( g

m2h

)
=

(
(Wtx − Wt0)

A × h

)

(3)  

where, Wtx is the weight after 24 h or 48 h, Wt0 is the initial weight of the 
vial, and A is the area of the top closure of the vial. Three replicates were 
analyzed per each sample. 

2.9. Statistical analyses 

Statistical analyses were performed with GraphPad software 
(Graphpad Holdings, LLC). Data not satisfying normality (Shapiro-Wilk 
test) assumptions were analyzed by means of Kruskal-Wallis and Man-
n–Whitney non-parametric tests, applying Bonferroni's correction. Data 
that satisfied the normality assumption were analyzed with one-way 
ANOVA test, applying Bonferroni's correction. Statistical significance 
was pre-set at α = 0.05. 

3. Results

3.1. Electrospun membranes and fiber morphology 

Polysaccharide membranes based on hyaluronic acid (HA), lactose- 

modified chitosan (CTL), and polyethylene oxide (PEO) were prepared 
by dissolving the three polymers separately in deionized water and then 
adding CTL and HA to PEO solution, after 3 h of equilibration between 
the two. Tween® 20 was added as a surfactant to reduce surface tension 
of the solution and improve its electrospinnability (Fig. 1). The mem-
branes obtained after 90 min of electrospinning (Fig. 2A-B) are highly 
reproducible and show an optimal morphology, with thin, uniform, and 
bead-free fibers. Fiber diameter (Fig. 2C), calculated from 100 randomly 
selected fibers on the sample, shows a normal distribution, with an 
average diameter of 442 ± 117 nm. 

To analyze the differences between electrospun matrices of various 
composition, PCL membranes were produced as a comparison. Three 
types of PCL mats obtained with the same electrospinning process, were 
considered: (i) untreated, non-activated PCL, (ii) air-plasma activated 
PCL, and (iii) PCL coated with CTL/HA. In all cases, a uniform distri-
bution of fibers was observed, with the activation process causing no 
significant changes in fiber morphology. On the other hand, the presence 
of the coating slightly alters the overall morphology and leads to a slight 
increase in fibers diameters due to rehydration, resulting in a statisti-
cally significant difference compared with pristine or activate PCL 
(Fig. 3). 

3.2. Non-electrospun membranes 

Freeze-dried mats were prepared with the same solution used for the 
synthesis of polysaccharide-based electrospun mats, to highlight the 
advantages underlying the employment of a nanofibrous structure over 
a non-fibrous one. As confirmed by SEM imaging (Fig. SI-1), the freeze- 
drying process yields membranes characterized by a thin amorphous 
layer of the polymer blend. As further non-electrospun control, a com-
mercial product, namely Chitoderm®, was chosen for its composition 
and structure. It consists of an outer polyurethan layer which serves as 
protection against the external environment, and a lower chitosan pad 
with a macro-fibrous structure. 

3.3. Crosslinking strategies for electrospun membranes 

The high degree of hydrophilicity of the polysaccharides used, 
combined with the high surface-to-volume ratio characteristic of nano-
fiber structures, imparts considerable structural instability to electro-
spun membranes in aqueous environments, as might be expected. 
Indeed, the nanofibrous mesh collapses in seconds when exposed to 
water, causing the immediate dissolution of the biomaterial. 

Therefore, different crosslinking strategies were tried to impart 
water resistance to membranes while maintaining the fiber structure 
(Fig. 4), with different results depending on the strategy chosen 
(Table 1). 

3.3.1. CDI 
With the aim of finding the optimal reaction time in addition to the 

best compromise between aqueous stability and fiber loss, crosslinking 
was carried out with 50 equivalents of CDI per mol of CTL glucosamine 
residues in DMF at different time points, namely 1 h, 2 h, 3 h, 4 h, 5 h, 6 
h, 7 h, 8 h, overnight, with the proposed mechanism illustrated in Fig. SI- 
2. Comparing the morphology of the crosslinked mats shows that the
overall nanofibrous architecture was slightly affected after the cross-
linking step, with a kind of partial fiber fusion. The best results were 
obtained after overnight incubation, since the slight morphological 
alteration is balanced by the optimal water resistance. Indeed, consid-
ering the first and the last crosslinking time points (Fig. 5), the overnight 
crosslinked fibers are stable in water while retaining almost the same 
morphology observed after the crosslinking step. All the time-points 
tested are reported in Fig. SI-3a-i. 

3.3.2. Methacrylic anhydride 
Membranes crosslinked with pure methacrylic anhydride were 
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subjected to an additional washing step to remove the excess meth-
acrylic anhydride while retaining the nanofibrous architecture. Of the 
different methods tested (Fig. SI-4), only washings in acetone and 
dimethylformamide gave satisfactory results in terms of structural 
integrity, but stability in water was not as high as for CDI-crosslinked 
mats. 

3.3.3. Glutaraldehyde 
Glutaraldehyde vapor was used to crosslink polysaccharide-based 

nanofibers using two different procedures: i) 4 h of crosslinking in a 
vacuum chamber and ii) 2 h of crosslinking in a vacuum chamber 
combined with heat treatment (Fig. SI-5). In the first case, a partial loss 
of the fibrous structure was observed, even though the overall archi-
tecture was still recognizable; in the second case, the nanofibrous ar-
chitecture was completely lost (Fig. SI-6). Nevertheless, aqueous 
stability was not achieved in either case. 

3.3.4. EDC/NHS 
In the case of EDC/NHS, the crosslinkers were added to the poly-

meric solution 30 min before electrospinning as powders or after their 

solubilization in water (Fig. SI-7). In both cases, an almost immediate 
gelation occurred hindering the electrospinning process (Fig. SI-8). 

3.3.5. Genipin 
Genipin was electrospun in the polysaccharide solution or the 

membranes were post-processed with genipin dissolved in ethanol at 
different timepoints (15, 30, 45 min) (Fig. SI-9). In both cases, the 
samples were subjected to heat treatment at 37 ◦C to activate the genipin 
and promote crosslinking between fiber meshes. Nevertheless, cross-
linking did not occur in any case, not even after 7 days, with the com-
plete membrane dissolution upon contact with water (Fig. SI-10). 

3.3.6. Heat 
Heat treatment was performed at 80 ◦C for 4 h both alone and in 

combination with chemical crosslinking by CDI. In both cases, the 
nanofibrous structure was lost and the membranes showed absolute 
instability in water (Fig. SI-11). With the aim of improving the thermal 
treatment procedure, the membranes were even crosslinked in a vacuum 
oven at 80 ◦C with different time settings, but in all cases neither the 
fibrous architecture was maintained nor the stability in water was 

Fig. 1. Schematic representation of HA/CTL/PEO membranes preparation.  
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achieved (Fig. SI-12). 

3.4. Membrane characterization by attenuated Total reflectance – Fourier 
transform infrared (ATR-FTIR) spectroscopy 

Once assessed the goodness of CDI-mediated crosslinking among the 
other methods tested, with an adequate equilibrium between fiber loss 
and aqueous resistance, ATR-FTIR spectroscopy was used to analyze the 
occurred amide bond formation within HA/CTL/PEO nanofibrous mats 
after the overnight treatment with CDI, as reported in Fig. 6. The not- 
crosslinked and crosslinked membrane spectra were compared with 
the spectra of their single components (namely, hyaluronic acid, CTL, 
PEO) and of CDI, and their characteristics bands were distinguishable 
within the mat spectra. However, no CDI signals were detected in the 
case of CDI-crosslinked meshes, since CDI is a coupling agent which only 
mediates the formation of the amidic bond without being incorporated 
within the structure (Vaidyanathan et al., 2004). On the other hand, the 
signal related to the amide bond formation was superimposed on the IR 
signals of carbonyl (C=O) and carboxylic (-COOH) groups. 

3.5. Swelling behavior 

The swelling behavior of CDI- and methacrylic anhydride- 
crosslinked matrices was evaluated in both water and saline solution 
(NaCl 150 mM), chosen to partially mimic physiological conditions 
(Chen et al., 2020; Oliveira et al., 2014; Sharma et al., 2017). Poly-
saccharide membranes were compared with electrospun mats based on 

synthetic polymers and non-electrospun products. In the first case, non- 
activated, activated, or CTL/HA-coated PCL matrices were chosen. In 
the second case, freeze-dried polysaccharide membranes obtained from 
the same solution as the electrospun membranes and the commercial 
product Chitoderm® were selected. As can be seen in Fig. 7, the nano-
fibrous structure along with the high hydrophilicity of the poly-
saccharides in the CDI-crosslinked electrospun membranes have a strong 
influence on the swelling capacity of the matrix in both water and saline 
solution. For similar reasons, activated PCL membranes showed a 
remarkable increase in the swelling ratio up to 24 h compared to non- 
activated PCL and polysaccharide-coated mats (Fig. 7B). The lower 
swelling behavior in the presence of polysaccharide-coating could be 
explained by the rapid formation of a hydrated uniform layer which 
affects membrane porosity and reduces the absorption capacity of the 
material. CDI-crosslinked electrospun polysaccharidic membranes 
showed swelling behavior close to that of activated PCL ones. This in-
dicates that these membranes retain a high swelling capacity, despite the 
partial loss of the fibrous structure. In contrast, the membranes cross-
linked with methacrylic anhydride were not able to retain large amounts 
of liquid as they start dissolving within the first hour of immersion. 
Furthermore, despite the high stability of the commercial product Chi-
toderm®, its ability to retain water was about 3 times lower at 24 h than 
CDI-crosslinked electrospun mats (Fig. 7A). A similar trend was 
observed with non-electrospun membranes, thus confirming the crucial 
role played by the nanofibrous structure in determining the swelling 
capacity of the device. The high hydrophilicity of CDI-crosslinked 
polysaccharide membranes and of activated PCL membranes, their 

Fig. 2. Morphological characterization of HA/CTL/PEO membranes: (A) and (B) SEM micrographs at different magnifications, 2000× and 1000×, respectively; (C) 
distribution of fiber diameters throughout the membrane. 
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marked swelling behavior and thus the large amount of absorbed fluids, 
are responsible for the higher variability of the results with respect to 
other materials. 

3.6. Degradation tests 

The stability of the electrospun membranes was evaluated for up to 7 
days in both water and saline solution, by observing the change in 
membrane weight over time (Fig. 8). Polysaccharide-based matrices 
crosslinked with CDI and methacrylic anhydride were compared with 
PCL membranes (non-activated, activated, coated), Chitoderm®, and 
freeze-dried polysaccharide membranes even crosslinked with CDI. The 
results confirmed the overall stability of the PCL membranes, even in the 
presence of the coating, which showed a slight degradation behavior, 
maybe due to the coating desorption in the aqueous environment. On 
the other hand, the effectiveness of CDI crosslinking was evaluated in 
comparison to methacrylic anhydride, with the membranes showing 
progressive degradation behavior already after 1 day. In fact, CDI- 
crosslinked mats revealed an optimal stability in water up to day 7, 
while they were stable in saline solution up to 3 days. After that a slight 
degradation trend was noticeable net of standard deviations, possibly 
caused by the presence of salts destabilizing the polysaccharide struc-
ture. On the other hand, CDI-crosslinked membranes obtained by freeze- 
drying underwent a mild degradation between one and three days in 
water or saline solution, without showing any degradation in the next 

time points; in contrast, Chitoderm® samples were stable over time 
regardless of the tested fluid. 

3.7. Water vapor transmission rate (WVTR) 

The ability to transmit water vapor was assessed on electrospun 
membranes crosslinked with CDI, which were compared with PCL 
membranes in different states (namely, non-activated, activated, or 
coated with CTL/HA) and Chitoderm®. Parafilm® was used as control 
for non-permeability; uncapped vials were tested as control for total 
evaporation. The results (Fig. 9) indicate good water vapor transmission 
ability in the case of PCL membranes, which all showed similar results. 
CDI-crosslinked polysaccharide mats revealed a similar trend to PCL 
mats after 24 h, but the transmission rate was lower than PCL at 48 h. 
This could be due to the composition of the membrane, based on highly 
hydrophilic polymers. Indeed, owing to its polysaccharide nature, its 
great ability to retain water could result in water being trapped in the 
nanofiber structure, leading to a consequent increase of weight when 
measuring the amount of residual water in the system. Nevertheless, the 
water vapor permeability of polysaccharidic electrospun mats was still 
higher than that of Chitoderm®, due to the outer polyurethane layer 
which shields pathogen entry, while reducing water evaporation. 

Fig. 3. SEM micrographs of PCL matrices, namely (A) non-activated, (B) activated, and (C) coated nanofibers. On the lower right, (D) a comparison of fiber di-
ameters. Statistical analysis was performed with Kruskal-Wallis test and Mann–Whitney test for two-groups comparison, applying Bonferroni's correction. Statistically 
significant differences are indicated as asterisks (*). 
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4. Discussion

Considering the compelling need for wound dressings able to mimic
the extracellular matrix (ECM) architecture and composition, absorb 
exudates, and provide a large surface area for gaseous exchanges 
(Ekambaram & Dharmalingam, 2020; Luan et al., 2021; Zheng, Zhang, 
et al., 2021), the current work presents the production of electrospun 
wound dressings based on two different polysaccharides, namely hyal-
uronic acid and a bioactive lactose derivative of chitosan (CTL). The 
presence of these two polysaccharides should strongly favor the wound 
healing process. Hyaluronic acid is indeed a natural component of the 
ECM and provides excellent biomimicry. On the other hand, CTL brings 
the enormous advantage of being water soluble at neutral pH values, 
combining chitosan properties with the possibility to use aqueous, non- 
toxic solvents. It has been studied for its bioactivity in numerous fields, 
such as osteochondral or neuronal regeneration (Donati et al., 2005; 
Medelin et al., 2018; Porrelli, Gruppuso, et al., 2021). As a derivative of 
chitosan, it should even exert some of the advantages given by chitosan 

itself, such as hemostatic or antibacterial activity, due to the presence of 
positive charges along the polymeric chains that bind negatively 
charged bacterial cell walls (Hu et al., 2021; Sharifi et al., 2021). 
Moreover, CTL can be easily functionalized to enhance its bioactive 
properties. For example, Porrelli and coworkers enriched CTL with nAg 
(CTL-nAg) to produce PCL-based antibacterial electrospun membranes 
coated with CTL-nAg, thereby increasing their antibacterial potential 
(Porrelli, Mardirossian, et al., 2021). Given the need to combine poly-
saccharides with synthetic polymers, able to improve their electro-
spinnability, and surfactants which can reduce the surface tension of the 
solution to favor the extrusion of the filament (Fahimirad et al., 2021; 
Kriegel et al., 2009; Liu et al., 2011; Rezaei et al., 2021), HA and CTL 
were used in a ternary mixture with polyethylene oxide (PEO), while 
Tween® 20 was used as a surfactant. This allowed to obtain for the first 
time a CTL-based nanofibrous mesh, with homogeneous, thin, uniform, 
and defect-free nanofibers, in a diameter range encountering the 
dimension of natural collagen nanofibers (50–500 nm) (Xue et al., 
2019). 

The challenge in producing polysaccharide-based electrospun 
matrices is not only in the electrospinning process, but also in the post- 
processing step. Indeed, due to their highly hydrophilic nature com-
bined with a large surface area available, polysaccharide membranes are 
extremely soluble in aqueous environments, hampering their applica-
tion for biomedical purposes, where the medical device is expected to 
interact with biological fluids (Li et al., 2005; Li et al., 2015; Mirzaei 
et al., 2014). Both hyaluronic acid and CTL are highly hydrophilic 
polymers, leading to the immediate dissolution of the synthetized 
membranes upon contact with water. For this reason, based on the 
numerous literature example (Dodero, Scarfi, et al., 2021; Gruppuso 
et al., 2021; Lin et al., 2020; Mak & Leung, 2019), different crosslinking 
strategies have been tested in this work with the aim of stabilizing HA/ 
CTL/PEO membranes, namely physical (heat treatment) and chemical 
(glutaraldehyde, genipin, EDC/NHS, methacrylic anhydride, CDI) 
methods. 

The use of carbodiimide-based coupling agents, such as EDC/NHS, is 

Fig. 4. SEM micrographs of HA/CTL/PEO membranes crosslinked with various strategies: (A) CDI overnight; (B) methacrylic anhydride coupled with acetone 
washing; (C) glutaraldehyde (25% in water) vapor after 4 h in a vacuum chamber; (D) genipin in ethanol after 45 min of immersion; (E) heat at 80 ◦C for 4 h; (F) heat 
in a vacuum oven at 80 ◦C for 3 h. 

Table 1 
Summary of the crosslinking strategies attempted on HA/CTL/PEO membranes 
and the effects on membrane stability, thought of as both water resistance and 
architecture preservation.  

Crosslinking 
treatment 

Outcome 

CDI Partial fiber fusion, but optimal stability in water 
Methacrylic 

anhydride 
Preservation of fibers after washing in dimethylformamide 
and acetone, despite rapid degradation compared to CDI 
crosslinking 

Glutaraldehyde No resistance in water. Fiber fusion or loss when coupled with 
thermal treatment 

EDC/NHS Immediate gelation after EDC/NHS addition to the solution 
Genipin Fiber loss and total instability in water, both when added 

before electrospinning or after membrane production 
Heat Fiber loss and immediate dissolution in water  
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well documented in the literature (Castro et al., 2021; Federico et al., 
2021; Keshvardoostchokami et al., 2021), as they promote the formation 
of an amide bond by the activation of carboxylic groups, that react with 
the crosslinking agents. Subsequently, in the presence of amino- or 
alcohol groups, a nucleophilic attack on the activated species unseat the 
crosslinker, leading to the formation of the amide bond without incor-
porating the reactive adduct (Khunmanee et al., 2017). In this context, 
Séon-Lutz and coworkers synthetized hyaluronic acid/polyvinyl alcohol 
nanofibrous dressing by electrospinning in water and crosslinking with 
EDC/NHS and obtained stable and only partially fused nanofibers at 
different relative humidity levels (up to 90%) (Séon-Lutz et al., 2019); 
moreover they did not observe any cytotoxic effect of EDC/NHS. 
Following these observations, HA/CTL/PEO nanofibers were cross-
linked by direct addition of EDC/NHS to the electrospinning solution, 
both in powder and previously dissolved in water. Unfortunately, im-
mediate gelation occurred, impeding the electrospinning of the solution. 
This could be due to the high reactivity of both HA and CTL that together 
hinders the maintenance of the solution state after crosslinker addition. 

In addition to EDC/NHS, glutaraldehyde stands out as an efficient 
aldehydic chemical crosslinker (Ardekani et al., 2019; Chen, Meng, 
et al., 2021b; Darbasizadeh et al., 2019; Mistry et al., 2021). Glutaral-
dehyde mediates the formation of imminic bonds (C–––N) through the 
Shiff's base reaction between amino groups and glutaraldehyde alde-
hydic groups (Vondran et al., 2008), allowing it to potentially interact 
with CTL chains, thus creating a mesh able to entangle hyaluronic acid 
and PEO chains. The glutaraldehyde treatment has been reported in 

Fig. 5. HA/CTL/PEO membranes crosslinked with CDI for 1 h and overnight (o.n.) before and after their immersion in water. After 1 h of crosslinking, the 
nanofibrous mesh is thinner and unstable in water, while the overnight-crosslinked nanofibers retain their morphology and resist longer in water. 

Fig. 6. ATR-FTIR spectra of CDI-crosslinked and un-crosslinked HA/CTL/PEO 
mats, compared with the spectra of the single membrane constituents (that are 
hyaluronic acid, CTL, PEO) and of CDI (in the case of crosslinked mats). 
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literature following the most varied timepoints, from 4 h to 12–16 h to 3 
days (Akbari et al., 2022; Ali et al., 2022; Qian et al., 2011). Two 
different strategies were here attempted by using glutaraldehyde vapor 
at different times (namely, 4 h and 2 h), in combination with heat 
treatment in the case of 2 h crosslinking for further stabilization. Pro-
longed reaction times were not possible, since partial fiber fusion was 
observed when membranes were crosslinked with glutaraldehyde only 
and the structure was completely lost after heat treatment. According to 
Ahmadi and co-workers, this could be due to the release of water as a by- 
product of the reaction, which could be entrapped into polymer chains 
causing fiber swelling and the alteration of the morphology (Ahmadi 
et al., 2021). This is particularly evident in the case of HA/CTL/PEO 
mats, where the presence of highly hydrophilic hyaluronic acid and CTL 
increases this swelling phenomenon, hampering membrane exposure to 
a wet environment for extended times. On the other hand, the heat 
treatment would be too strong, which would irreparably damage poly-
saccharide mats. In both cases, the membranes were completely unsta-
ble in water, undergoing immediate dissolution after a few seconds, 
showing the ineffectiveness of glutaraldehyde crosslinking in the case of 
HA/CTL/PEO membranes. 

Considering the potentially toxic effects of glutaraldehyde, the use of 
other chemical crosslinkers, such as genipin, has been investigated over 

the years (Lau et al., 2018; Mirzaei et al., 2014); indeed, it was proved 
that it is possible to substitute glutaraldehyde with genipin for the 
preparation of biocompatible chitosan-based biomaterials (Lai, 2012). 
Genipin crosslinking reaction occurs through the nucleophilic substitu-
tion of the genipin ester function by primary amines to form secondary 
amides or through the nucleophilic attack on genipin dihydropyran ring, 
creating a six membered nitrogen heterocycle (Aubert-Viard et al., 
2019). In the specific case of nanofibrous devices, genipin can be elec-
trospun by direct addition to the polymeric solution or it can be used as 
post-electrospinning crosslinker by solubilization in ethanol or PBS and 
immersion of the electrospun matrices in the crosslinking medium (Li 
et al., 2015; Mak & Leung, 2019; Sergi et al., 2020). For example, 
Panzavolta and coworkers synthetized gelatin-based nanofiber mats 
crosslinking them by direct genipin addition in the solution 30 min 
before electrospinning and post-treating the membranes by immersion 
in ethanol-solubilized genipin up to 7 days (Panzavolta et al., 2011). 
Both approaches have been tried in this case, where, as for glutaralde-
hyde, genipin could react with CTL aminic moieties producing an 
entangled nanofibrous mesh, in which hyaluronic acid and PEO chains 
are entrapped. Electrospinning of genipin did not alter polysaccharide 
solution properties, thus allowing the production of optimal nanofibers, 
with a uniform and defect-free morphology. The matrices obtained were 

Fig. 7. Swelling capacity of electrospun and non-electrospun membranes expressed as swelling ratio (%) as a function of the immersion time. Panel A: swelling 
behavior of (■) polysaccharide-based electrospun membranes crosslinked with CDI or (●) methacrylic anhydride, (⬣) polysaccharide-based freeze-dried membranes 
and (◆) Chitoderm®. Panel B: swelling behavior of (●) non-activated, (⬣) activated, and (▴) polysaccharide-coated PCL membranes. In the case of polysaccharides 
in water, statistical analysis was performed with Kruskal-Wallis test and Mann-Whitney test for two-groups comparison, applying Bonferroni's correction. In the case 
of polysaccharides in saline solution, PCL in water, and PCL in saline solution, statistical analysis was performed with one-way ANOVA, applying Bonferroni's 
correction. 
Statistically significant differences are indicated with asterisks (*). *** = p < 0.001. 
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then heated at 37 ◦C for 24 h to 7 days, with the aim to activate genipin 
reaction and facilitate the crosslinking between the polymer meshes. 
However, the reaction did not take place and even after 7 days of in-
cubation membranes were completely unstable in an aqueous environ-
ment. This could be due to the dry environment, which is not a suitable 
condition for genipin activity. Indeed, during the electrospinning 

process the solvent evaporates and the fibers are deposited on the col-
lector as ideally solvent-free fibers. On the other hand, the post- 
electrospinning crosslinking has been performed by dissolving genipin 
in ethanol and embedding the polysaccharidic membranes at different 
timepoints. The membranes were then heated to favor genipin reac-
tivity, but also in this case the crosslinking reaction did not occur, be-
sides leading to the loss of the fibrous structure. In fact, the extended 
immersion in ethanol disrupts the nanofibrous morphology and heat 
treatment seemed to further worsen the already altered architecture. 

With the objective to assess the effects of thermal treatment alone on 
nanofibrous meshes, heat was used as possible crosslinking strategy. 
Thermal crosslinking is a physical method to induce crystallization of 
the electrospun polymers and stabilize the resultant structure (Sarhan & 
Azzazy, 2015). Two different methods were adopted: membranes were 
heated at 80 ◦C in a convection oven or in a vacuum oven. Despite the 
higher temperatures reported in the literature (Esparza et al., 2017; 
Sandri et al., 2019; Sarhan & Azzazy, 2015), burning of membranes was 
observed above the 80 ◦C limit. On the other hand, the resulting mem-
branes were completely unstable in water apart from losing their 
nanostructure, thus demonstrating the ineffectiveness of thermal treat-
ment to crosslink HA/CTL/PEO membranes. For this reason, the thermal 
treatment was combined with chemical treatment involving carbon-
yldiimidazole (CDI), a carbodiimide coupling agent that mediates the 
formation of amide bonds between carboxyl- or hydroxyl-groups and 
aminic moieties without being incorporated (Woodman et al., 2009), as 
revealed by ATR-FTIR analysis. Indeed, the presence of CDI was not 

Fig. 8. Degradation behavior of electrospun and non-electrospun membranes expressed as weight variation (%) in time. Panel A: degradation of (■) polysaccharide- 
based electrospun membranes crosslinked with CDI or (●) methacrylic anhydride, (▴) polysaccharide-based freeze-dried membranes and (⬣) Chitoderm®. Panel B: 
degradation of (●) non-activated, (■) activated, and (▴) coated with polysaccharides PCL membranes. In all cases, statistical analysis was performed with Kruskal- 
Wallis test and Mann-Whitney test for two-groups comparison, applying Bonferroni's correction; no statistical differences were found. 

Fig. 9. Water vapor transmission ability of PCL (non-activated, activated, 
coated) mats, CDI-crosslinked polysaccharidic membranes, and Chitoderm® 
after 24 h and 48 h. 
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detectable in the spectrum of CDI-crosslinked mats, which was compa-
rable to that of not crosslinked ones. Moreover, in the presence of the 
characteristic carbonyl (C=O) and carboxyl (-COOH) bands, the amide 
bond IR spectrum was not clearly distinguishable, thus requiring further 
characterization of the reaction mechanism by 1H NMR. CDI has been 
studied as covalent crosslinker to immobilize specific molecules on the 
surface of electrospun membranes, as reported by Baştürk and co-
workers, which used CDI to covalently bind α-amylase on the surface of 
poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) nanofibers (Baştürk 
et al., 2013). It has also been employed as crosslinker in pullulan/gelatin 
hydrogels, with a “one-step” method enrolling aqueous DMSO as reac-
tion solvent (Han & Lv, 2019). However, CDI use as coupling agent for 
electrospun nanofibers, where it can induce amide bond formation be-
tween polymeric chains, is not documented to the best of the author's 
knowledge. Nonetheless, CDI provided the best crosslinking results, as it 
represents a promising compromise between mat stability and nanofiber 
morphology. Indeed, as shown by the morphological characterization, 
CDI-crosslinked matrices did not completely lose their nanofibrous ar-
chitecture despite the partial fiber fusion. Moreover, they were partic-
ularly stable in aqueous environment, maintaining their macroscopic 
integrity. This was confirmed by swelling and degradation studies, 
which highlighted the high absorption potential of CDI-crosslinked 
membranes as well as their adequate stability in water and saline solu-
tion. Indeed, the ability to absorb and retain exudates is of remarkable 
importance when considering the effectiveness of wound dressings and 
their potential use in application for mild-to-highly exudating wounds 
(Tamer et al., 2021; Wang, Song, et al., 2021b). A comparison with 
polycaprolactone (PCL) electrospun membranes was useful to assess the 
efficacy of electrospun products. Indeed, PCL is a widely exploited 
polymer in numerous fields, including wound management; several PCL 
wound dressing have been produced over the years, with in vitro and in 
vivo studies supporting the usefulness of employing this polymer for 
wound healing purposes (Ehterami et al., 2018; Karizmeh et al., 2022; 
Thomas et al., 2015; Zhou et al., 2022). Nonetheless, one of the major 
drawbacks of PCL lies in its hydrophobicity, thus requiring the associ-
ation with hydrophilic polymers or surface modifications allowing the 
interaction with biological environments (Asghari et al., 2022; Jacobs 
et al., 2013; Patel et al., 2021). In this direction, Porrelli and coworkers 
synthetized PCL-based nanofibrous scaffolds modifying their surface 
with air-plasma treatment to confer hydrophilicity to the final structure, 
thus increasing membrane wettability and allowing the interaction with 
cells (Porrelli, Mardirossian, et al., 2021). In this study, PCL membranes 
were employed as pristine (non-activated membranes), air-plasma 
activated membranes, and coated with a polysaccharide layer of CTL/ 
HA (to compare the presence of a polysaccharide coating with the use of 
polysaccharides as components of the nanofiber matrix itself). In terms 
of swelling capability, activated PCL membranes showed similar results 
to the CDI-crosslinked polysaccharide mats, indicating that a good 
swelling capacity can be achieved by using large-area materials as well 
as by using strongly hydrophilic surfaces. On the other hand, the poly-
saccharide coating of the PCL membranes slightly affected their ability 
to absorb fluids, perhaps because the swelling of the polysaccharide 
layer drowns the porosity of the electrospun meshes, thereby hindering 
the water uptake capacity of these membranes. The advantage of using 
electrospun wound dressings was further demonstrated by the com-
parison with a commercial product, namely Chitoderm®, and CDI- 
crosslinked membranes produced by freeze-drying. In both cases, the 
swelling capacity was significantly lower than that of electrospun 
membranes, despite their stability in both water and saline solution. 
Overall, the swelling capacity was slightly lower in saline solution 
compared to water. This could be due to the osmotic pressure estab-
lished by the mobile ions between the saline solvent and the nanofibrous 
network. According to Donnan's equilibrium theory, the ionic forces are 
determined by the counterions present in the solvent and the fixed 
ionizable groups on the material. In the presence of free sodium cations, 
a charge-screening effect could occur, thus reducing the osmotic 

pressure and moving the absorbed solution back towards the medium 
(Ferfera-Harrar et al., 2016; Ricka & Tanaka, 1984). 

The stability of CDI crosslinking became even more evident when 
compared to methacrylic anhydride crosslinking. Methacrylic anhydride 
is a methacrylating agent often used to chemically modify polymer 
chains through the introduction of methacryloyl moieties, allowing 
thereafter the photo-crosslinking of the methacrylated polymers, 
without affecting the biocompatibility of the final product (Joshi et al., 
2021; Nazir et al., 2021; Samani et al., 2021; Seo et al., 2021; Skardal 
et al., 2010; Zhang et al., 2020; Zhu & Bratlie, 2018). Here, pure 
methacrylic anhydride was used as post-electrospinning treatment on 
HA/CTL/PEO membranes. However, despite the good morphology dis-
played by treated membranes washed in acetone or dimethylformamide, 
the use of methacrylic anhydride alone was not sufficient to achieve 
long-term polysaccharidic membranes stabilization, resulting in their 
degradation from a few hours to 7 days. Probably, the interaction be-
tween the methacrylate moieties introduced after the electrospinning 
process determined a weak and temporary stabilization of the nano-
fibrous mesh, subsequently leading to its rapid degradation. On the 
contrary, CDI-crosslinked mats were stable up to 7 days in water, while 
in saline a mild degradation started after 3 days. Indeed, as described 
above, there should be a change in osmotic pressure, causing membrane 
shrinkage in the presence of salts, a phenomenon that varies depending 
on the composition of the material considered. Nevertheless, the fre-
quency of dressings changes must be taken into account, which is 
approximately 2–3 times per week, depending on the type of wound 
considered (Akita et al., 2006; Lindholm & Searle, 2016; Resch et al., 
2021). On the other hand, the advantages of a local release of the 
polysaccharides employed to favor skin regeneration should not be 
neglected (Hauck et al., 2021; Li et al., 2022; Liang et al., 2020; Wang, 
Feng, et al., 2021; Yao et al., 2022). Hence, the degradation behavior 
exhibited by CDI-crosslinked membranes should not affect the quality of 
the final product but should be an added value in promoting skin 
regeneration. 

Another important parameter to consider in the synthesis of wound 
dressings is their ability to transmit water vapor and favor gaseous ex-
changes (Catanzano et al., 2021; Chen, Pan, et al., 2021; Salami et al., 
2021). In fact, in 1962 Winter demonstrated how in the presence of a dry 
environment, with the wound covered by superficial scab, the regener-
ation process is delayed compared to a wound maintained in a moist 
environment, preventing the formation of the scab (Winter, 1962). 
Consequently, an ideal wound dressing should ensure the proper equi-
librium between a high evaporation rate, which would hamper the 
maintenance of a moist environment, and an occlusive behavior, which 
would not allow a correct drainage of fluids, leading to skin maceration 
and paving the way for infections (Du et al., 2021; Zoghi et al., 2021). 
After having assessed the goodness of CDI crosslinking among the 
different strategies tried, the ability to transmit water vapor was tested 
by a comparison with PCL electrospun membranes and Chitoderm®. 
The water vapor transmission rate of electrospun products was higher 
than that of the commercial product, due to Chitoderm® external pol-
yurethan layer, which acts as a barrier against microorganisms as well as 
being occlusive to water. On the other hand, the evaporation rate of CDI- 
crosslinked membranes was lower than that of the electrospun PCL 
products after 48 h, possibly due to their high efficiency in entrapping 
water molecules. In fact, the water vapor transmission ability also de-
pends on the diffusivity and solubility of the water molecules in the 
polymer meshes (Li, Ma, et al., 2021b); consequently, the presence of 
hyaluronic acid and CTL, with their high hydrophilicity, should cause a 
slight water retention on the nanofibrous mat after 48 h. Nevertheless, 
the ability of electrospun devices to transmit water vapor facilitating 
gaseous exchanges is well halfway between the complete evaporation 
and total impermeability, as expected from an ideal wound dressing. 

Based on these considerations, the present polysaccharide-based 
electrospun matrices should be a good starting point for the produc-
tion of polysaccharide-based wound dressings, despite all the critical 
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aspects related to the crosslinking with the numerous crosslinkers 
currently available. The mechanical stability of such products could be a 
critical issue too; therefore, it should make sense to combine them with a 
supporting synthetic matrix, resulting in a two-phase system with a 
protective outer synthetic layer and a bioactive inner layer. It will be 
also important to thoroughly characterize the membranes cytotoxicity 
and biocompatibility especially after crosslinking, as well as their me-
chanical properties in order to optimize their stability, their strength, 
their handling and their adaptability to the wound site. Although CDI 
has been already used for the production of biocompatible materials 
(Olsson et al., 2014), and FTIR analysis did not show the presence of 
residual CDI biproducts in the membranes here produced, cytotoxic 
assays are needed to confirm the biocompatibility of crosslinked mem-
branes. The as-obtained matrix could be even functionalized with anti-
bacterial agents, such as silver nanoparticles, with the aim of preventing 
undesired bacterial infection at the wound site (El-Aassar et al., 2020; 
2021). As a matter of facts, CTL-nAg has already been produced and 
characterized as coating for electrospun membranes (Porrelli, Mardir-
ossian, et al., 2021), thus encouraging its electrospinning for wound 
dressing production. Once assessed the stability of such devices, even in 
terms of long-time storage, the way for the biological characterization 
could be taken to translate in vitro research into clinical application. 

5. Conclusions

Polysaccharide-based electrospun wound dressings were synthe-
tized, using hyaluronic acid, a lactose-modified chitosan (CTL), and 
polyethylene oxide as the main components. The major problem with 
these nanofibrous matrices is their instability in aqueous environment, 
requiring a further crosslinking step. Based on the numerous examples in 
the literature, different strategies, such as glutaraldehyde vapor, geni-
pin, EDC/NHS, or heat treatment were explored, but did not give 
satisfactory results. Therefore, two new crosslinking methods were 
tested for their ability to stabilize the nanofibrous structure, namely 
methacrylic anhydride and carbonyldiimidazole, the latter being the 
most effective combination of structure preservation and water resis-
tance. The membranes thus produced were tested for their ability to 
absorb exudate and retain their structure apart from their capability to 
transmit water vapor and favor gas permeation, revealing promising 
results. Undoubtedly, the nanofibrous morphology represents a major 
advantage in terms of swelling capacity and water vapor permeability, 
as demonstrated by a comparison with synthetic polymer-based elec-
trospun products. The presence of polysaccharides should bring further 
advantages in terms of dressing bioactivity and interaction with the 
surrounding biological environment and the system should be even 
implemented with bioactive moieties, as antibacterial ones. For this 
reason, further efforts are being made to achieve robust mechanical 
stabilization of the polysaccharidic dressings, which will be character-
ized in terms of mechanical properties, cytotoxicity and biological 
properties, with the aim to produce a long-term stable and useful wound 
dressing. 
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