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A B S T R A C T

The need to understand how complex acoustic sources propagate noise in a realistic environment is of growing
interest. In this work, we propose a numerical model for the simulation of noise generated by sources
with directivity and propagating in ocean waveguides. The numerical model solves the wave equation for
the acoustic pressure in the physical space using a second-order accurate finite difference method (FDTD).
The source is implemented using an improved form of the hard-source method, which implicitly takes into
consideration the reflection of acoustic waves associated to the presence of the ocean free surface, through the
use of the method of images. This novel method is shown to improve the results with respect to the standard
hard source implementation. We first validate the numerical method considering both analytical solutions
and benchmark cases for the case of a monopole and then explore the acoustic energy patterns developed
in the case of dipole and quadrupole sources. Specifically, the algorithm and the implementation of complex
sources are evaluated first in a semi-infinite fluid layer and then considering two classical waveguides: the
Ideal one and the Pekeris one. The comparison with analytical results shows the numerical method’s accuracy
and that incorporating free surface effects in the hard source implementation improves results. In addition,
the study shows that the acoustic response in the near field, of the order of few kilometers from the source,
is strongly influenced by the source’s directivity and orientation relative to the free surface. The results of
this paper have implications for future research aimed at characterizing and quantifying ship propeller noise
in realistic waveguides. Indeed, this preliminary work is necessary to proceed to more complex numerical
experiments, such as considering a real propeller signal as a source or considering stratification of the medium
or propagation in confined domains such as experimental tanks.
1. Introduction

Characterization and prediction of propagation of anthropogenic
noise at sea is a field of research of paramount importance because
of the impact that it may produce on marine life. In 1982, the United
Nations Convention on the Law of the Sea (UNCLOS) Anon (1982)
recognized the hazard associated with the input of acoustic energy
(noise) in the marine environment. More recently (2008), the European
Union created a framework (Anon, 2008) to monitor and mitigate the
anthropogenic impact on the marine environment, focusing, among the
others, on underwater noise.

Noise at sea is due to the propagation of the acoustic pressure in the
fluid. It is affected by seabed morphology, waveguide properties, and
sediment rheology. Although the behavior of the acoustic energy in the
three-dimensional (3D) space has been addressed in the past (Tolstoy,
1996), it still constitutes an undergoing field of research due to the
complexity of the problem (Lin et al., 2019). Mathematical models
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have been developed over the latter decades for the prediction of
the propagation of acoustic waves at sea. Most of them consider the
interaction of omnidirectional sources with the environment. They do
not examine the effects of the directivity of complex sources, which is
ubiquitous of most anthropogenic sources, the latter being the cause of
the majority of noise pollution in the ocean (Hildebrand, 2009).

Several acoustic propagation models have been proposed in liter-
ature to reproduce the underwater sound environment. Their choice
depends on the acoustic problem under investigation (Etter, 2012).
They are characterized by the range of frequency of the source, the
variability of the domain with the distance from the source (range-
dependent vs. range-independent), and by the source location (whether
in a shallow or deep water environment).

When the solution is needed in the very far-field (order of ten-
to-hundred kilometers along the horizontal directions), the best pre-
ferred choice consists in the solution of the Helmholtz equation, which
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represents the wave equation for the acoustic pressure recast in the
frequency domain. The solution is obtained in a two-dimensional (2D)
domain, so the acoustic pressure is evaluated over vertical slices of the
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counterpart, in particular when analyzing the propagation in the near
field and out of plane, which is affected by the non trivial reflection and
refraction effects mentioned above. Finally, fully 3D solutions allow
ocean environment, namely a fluid waveguides bounded by a free sur-
face above and by the seabed below. To reconstruct a three-dimensional
(3D) environment 𝑁×2𝐷 slices along the azimuthal direction should be
onsidered unless fully 3D models are used. The comparison between
hese two approaches (𝑁×2𝐷 versus 3D) has been carried out by Sturm
2005) for the case of the propagation of a broadband acoustic pulse
ithin an ocean canyon. The 3D approach was found to estimate
higher sound pressure level inside the canyon than the 𝑁 × 2𝐷

approach highlighting the limitations of the latter. In Sturm (2005),
the author used a Parabolic Equation (PE) model, which is often used
for low-frequency sources in range-dependent environments both for
shallow- and deep-water cases. For high frequencies sources, the ray
theory model is the most reliable; the work of Weinberg (Weinberg and
Keenan, 1996) highlights the capabilities of this theory in a shallow
water domain. A serious limitation of the ray theory is the difficulty
of reproducing complex directivity patterns, which can significantly
impact the near-field acoustic response in a 3D environment. To be
mentioned that the initial development of these models was oriented
toward the analysis of the far-field noise, although in recent years the
understanding of the impact of anthropogenic sources in the near field
in shallow water situations is becoming of increasing importance.

Typical solutions of the Helmotz equation are obtained with om-
nidirectional sources, although most of the anthropogenic noise is
characterized by a significant directivity. The propagation of the acous-
tic pressure originated by a point source with a complex directivity
pattern in a fluid waveguide has been addressed in Haug et al. (1974),
Kuznetsov and Stepanov (2007); more recently, the effects of vibrating
source with specific directivity pattern on complex marine environ-
ments were analyzed in Zou et al. (2018, 2020), Jiang et al. (2018,
2020) regarding problems of fluid–structure interaction. Kuznetsov
and Stepanov (2007, 2017, 2018) employed analytical approaches to
evaluate the directivity of moving monopole, dipole, and quadrupole
in a layered medium, thus considering the directivity of the source.
Although not suited for the analysis of real complex sources, these latter
methods can serve as a helpful benchmark for validation of numerical
methods.

In recent years the available computational resources have led to the
possibility to solve the wave equation directly in the time domain, using
a discretization method, like, among the others, the finite-difference
method. The finite-difference-time-domain (FDTD) method is suitable
for relatively small domains and low-frequency sources and offers more
flexibility on the shape and physical properties of the domain as well
as on the properties of the source. Solving the Helmholtz equation in
a 3D domain has a similar computational cost compared to solving the
wave equation in the time domain, still being limited in the shape of
the source. On the other hand, the solution of the wave equation in
the physical domain is becoming more and more attractive for solving
more complex problems. To be noted that the noise generated by a
ship propeller (see, among the others Cianferra et al., 2019) has a
significant low-frequency content and may impact the marine life in
the surrounding field.

The solution in the physical domain enables considering the fluid
inhomogeneity (namely variation of fluid density and speed of sound)
and properties related to the solid matters layers present under the
seabed; also, the direct solution of the wave equation, in principle,
allows considering complex bathymetry. To be noted that the men-
tioned properties play an essential role in the propagation of sound
because of the effects of refraction and reflection, which substantially
modify the propagation pattern. Finally, sources more complex than the
monopole, like dipole and quadrupole, and multiple moving sources
can be directly considered. They are characterized by more elaborated
directivity, which is relevant in the near field. It has to be pointed out
that the solution in the 3D space is much more accurate than its 2D
visualization of the whole acoustic field, enabling the observation of
properties of the acoustic environment that are difficult to observe on
a line or at specific microphones.

Preliminary work on the direct solution of the wave equation in the
physical space was delivered by Fricke (1993). The author considered
a two-dimensional axial symmetric domain, using the FDTD approach
and focused on the scattering of Arctic ice, taking into consideration
the elasticity of the medium. More recently, Hafla et al. (2018) stud-
ied noise generated by marine hydrokinetic power devices, solving
the wave equation using the velocity–pressure system of equation by
the adoption of the FDTD method in a three-dimensional space. The
combination of the continuity equation, the momentum equation, and
the equation of state leads to a system of partial differential equations,
where both pressure and the velocity field have to be solved. This
approach is suited for seismology purposes, for example, where velocity
and acceleration are required to estimate the seismic hazard. However,
in hydroacoustics, the primary variable of interest is pressure. As a
consequence, from the above-mentioned system of PDEs (Bergmann,
1946) it is possible to derive the acoustic wave equation where the
acoustic pressure is the only variable.

The acoustic wave equation is easier to implement and to be solved
numerically compared to the velocity–pressure system of equations,
retaining most of the advantages; the most important is the possibil-
ity to obtain a detailed map of the acoustic field in the space–time
domain together with the possibility to implement complex sources
in a three-dimensional space. On the other hand, some difficulties
arise in implementing open boundary conditions and the attenuation
properties of a medium. Regarding the implementation of the source,
it is possible to take advantage of research in room acoustics, which is
based on the FDTD method (Botteldooren, 1995), and it is of primary
importance. To be noted that, compared to underwater acoustics, room
acoustics studies the propagation of high frequencies in small domains,
although the implementation is equivalent. We are interested in the
low-frequency range, which is generally easier to solve in the physical
domain. It is possible to use the hard source approach, where the
pressure values generated by the source are supplied as a boundary
condition within the computational domain.

The hard source technique allows to implement, within the 3D
propagation model, the noise source obtained from a separate simu-
lation (see, among the others (Cianferra et al., 2019; Cianferra and
Armenio, 2021) for the characterization of the source at a laboratory
scale and at a full scale) or from a campaign of experiments. To
make the mathematical model more effective, considering that the
marine environment is characterized by the presence of the free-surface
(mathematically expressed by an homogeneous Dirichlet condition for
the acoustic pressure), the hard source approach is herein expanded,
taking into consideration the effect of the boundary in the evaluation
of the source. The new strategy, which takes advantage of the method
of images, is found to improve the results.

This is the strategy accomplished in the present paper, which rep-
resents the first step of a long-standing research project aimed at
the development of a mathematical model for the simulation of the
noise generated by a moving body at sea in the presence of the free
surface and propagated in a real marine environment, characterized
by the presence of stratification and complex bathymetry. To show
the ability of the methodology to reproduce noise propagation in a
3D domain representative of the marine environment, we analyze the
acoustic response of the Pekeris waveguide in the presence of three
distinct sources: a monopole, a dipole, and a quadrupole. To analyze
the property of the acoustic waveguide in the presence of complex
sources, we quantify and visualize the acoustic energy distribution in
the 3D domains, which constitutes a new achievement since most litera-
ture studies are conducted considering omnidirectional, monopole-like
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sources. This because analyzing the acoustic pressure propagation of
sources characterized by strong directivity is crucial to understanding
how real sources (for example, hydrokinetic turbines or ship propellers)
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where 𝑐 is the local speed of sound, 𝐱 is the coordinate vector, 𝑡 is time,
and 𝑆 is a source term. Hereafter, the symbol (′) is omitted for the sake
of clarity.
impact the marine environment.
Overall, the mathematical framework herein developed, from one

side takes advantage of numerical methodologies well established in
the literature, although commonly employed for other purposes, from
the other side adapts these methodologies to the marine environment to
build up a novel mathematical model for the analysis of noise generated
by complex anthropogenic sources at sea and propagated in the near-
to-intermediate field. Although the present paper reports the first step
of the research, it contains significant outcomes: (i) a novel numerical
method is developed for the marine environment and carefully vali-
dated with benchmark cases; (ii) an accurate three-dimensional analysis
of the pressure field for extended domains is performed; (iii) it shows
the effect of directivity of the source on the acoustic field propagated
in the near-to-intermediate field.

First, we consider three different sources in a homogeneous domain
limited by the presence of the free surface (the air–water interface),
namely a monopole, dipole, and quadrupole, two over three of them
exhibiting directivity in a semi-infinite fluid layer.

Successively we analyze the propagation of the monopole within
two classical waveguides, the Ideal one and the Pekeris one, and
compare our numerical results with standard analytical solutions.

Finally, since the directivity of a complex source is relevant for
the propagation of the acoustic energy inside a fluid waveguide, we
consider a dipole in two different geometrical configurations and a
quadrupole within a Pekeris waveguide.

The paper is structured as follows. In Section 2, we describe the
mathematical model and the numerical method, addressing the prob-
lem of source modeling. In Section 3, three different sources are utilized
to validate the method considering propagation in a semi-infinite ho-
mogeneous space. In Section 4 we analyze propagation of a pressure
signal within the ideal and Pekeris waveguides and compare results
with analytical solutions; also Section 4 contains the analysis of propa-
gation of signals generated by sources with increased complexity within
the Pekeris waveguide. Section 5 contains concluding remarks.

2. The mathematical model

In this Section we first describe the mathematical model and, suc-
cessively, we report the numerical implementation.

2.1. The acoustic wave equation

Acoustic signals are small perturbations of pressure originated by
a source and propagated in a medium in form of waves. The pressure
field 𝑝 in a quiescent fluid can be written as

= 𝑝0 + 𝑝′,

here 𝑝0 is a bulk value (i.e. the hydrostatic pressure field) and 𝑝′

pressure perturbation. The pressure field can be associated to an
quivalent density field

= 𝜌0 + 𝜌′,

here 𝜌0 is the bulk density giving rise to 𝑝0, and 𝜌′ is the density
erturbation associated to 𝑝′. According to the linear wave equa-
ion, the perturbation propagates from a source point in the three-
imensional space. This equation is obtained by linearizing the mass
nd momentum conservation equations, assuming an inviscid fluid and
diabatic transformations. The three-dimensional wave equation for an
nhomogeneous fluid reads as:

1
𝑐(𝐱)2

𝜕2𝑝′(𝐱, 𝑡)
𝜕𝑡2

= 𝜌(𝐱)∇
(

1
𝜌(𝐱)

∇𝑝′(𝐱, 𝑡)
)

+ 𝑆(𝐱, 𝑡), (1)
Details and a rigorous derivation of the acoustic wave equation
are in Pierce (2019). This modeling strategy is different from that
associated with the Helmholtz equation and Hafla et al. (2018). The
use of the wave equation in the physical space allows determining
the space–time evolution of the acoustic disturbances in a general
three-dimensional physical space. The main advantage of this approach
is that one can consider a multi-directional source so as to study
the directivity; likewise, it can consider a realistic (non-archetypal)
propagation domain, which can produce diffraction and reflection of
the acoustic waves. The fluid properties can vary along the three
dimensions, overcoming the usual assumption of the idealized stratified
medium.

All media are dissipative in nature, but since the focus of this
work relies on the propagation of the pressure disturbance within the
waveguide rather than on the interaction with the sediment layer,
dissipation is not considered at this phase. The relation between stress
and strain rules the absorption of energy by a medium; it depends on
the medium’s viscoelasticity and the frequency of the acoustic waves.
Water exhibits a strong absorption in the range of high frequencies,
above 1000Hz, so it can be considered as a non-absorbing medium
for low-frequency sources (Ainslie and McColm, 1998) and domains of
the order of ten-to-hundred km. Several formulations of the acoustic
wave equation that consider the attenuation have been introduced in
literature, see, for example Petrov et al. (2012), where the evaluation
of the propagation of the acoustic waves was performed over a 2D axial
symmetric domain, which is a limiting feature in presence of complex
sources. Attenuation will be considered in future research.

2.2. Numerical implementation

The partial differential Eq. (1) is here solved in a Cartesian 3𝐷-
domain where the field variables are defined over the cell vertices.
Eq. (1) is integrated using an explicit time-advancement scheme in
conjunction with a centered in time and in space finite-difference
algorithm. Overall, it is second-order accurate both in time and in
space. For sake of clarity here we write down the discrete form of
Eq. (1) in a one-dimensional space; the extension to the 3D case is
straightforward.

𝑝𝑛𝑖 = −𝑝𝑛−2𝑖 + 2𝑝𝑛−1𝑖 + 𝛥𝑡2

𝛥𝑥2
𝑐2𝑖 𝜌𝑖 ∗

∗
[

1
2

(

1
𝜌𝑖+1

+ 1
𝜌𝑖

)

(

𝑝𝑛−1𝑖+1 − 𝑝𝑛−1𝑖
)

− 1
2

(

1
𝜌𝑖

+ 1
𝜌𝑖−1

)

(

𝑝𝑛−1𝑖 − 𝑝𝑛−1𝑖−1
)

]

+

+
𝛥𝑡2𝜌𝑖𝑐𝑖
𝛥𝑥

(

𝜎𝑖𝜓
𝑛−1
𝑖+1 − 𝜎𝑖−1𝜙𝑛−1𝑖−1

)

,

(2)

where 𝑝𝑛𝑖 is the acoustic pressure at the point defined by the index 𝑖 at
the iteration time 𝑛. The distance from the source in the 𝑥-direction is
defined as 𝑥 = 𝑖𝛥𝑥, where 𝛥𝑥 is the spacing between two consecutive
vertices in the 𝑥-direction. The overall time of the simulation is 𝑇 = 𝑛𝛥𝑡,
where 𝛥𝑡 is the time interval. The indices 𝑛 − 1 and 𝑛 − 2 denote
the two previous time steps, respectively. The density, (𝜌𝑖), and speed
of sound (𝑐𝑖) of the ambient fluid are assigned at the cell vertices of
the computational grid. In order to compute the Laplacian term, the
density at the midpoints between two vertices is required. We calculate
this density using the harmonic mean since it is better suited for the
algorithm’s stability in the presence of a sharp density gradient. We
drop the source term 𝑆, since in the hard source implementation the
source is treated as a boundary condition.

In Eq. (2) we see an additional term not present in Eq. (1), which
contains two auxiliary variables 𝜓 , 𝜙 and a damping coefficient 𝜎.
These variables arise from the Perfectly Matched Layer (PML) method,
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described in Chern (2019). This method is used to avoid spurious
reflection at the open boundaries. A wave without attenuation, apart
from the geometrical spreading, is able to propagate to infinity, but
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– PML: The value of 𝜓𝑛𝑖 , 𝜙
𝑛
𝑖 are evaluated from Eq. (3). Note

that in the 3D space, four additional equations are solved
since four auxiliary variables are added, two for each

(

the numerical domain must be limited. In absence of a reflective
boundary that constrains the energy, the waves have to leave the
numerical domain, making necessary the implementation of an open-
boundary condition. For low-order schemes and 1-D problems, exact
open-boundary conditions are available, which damp the wave’s ampli-
tude without reflecting energy inside the domain Engquist and Majda
(1977). For 3-D problems, different types of open-boundary conditions
were proposed in the literature to minimize spurious reflection inside
the domain. Among them we implemented the PML method, which
smooths the waves in a layer of cells close to the lateral boundaries of
the computational domain. In this buffer layer (PML region) the modi-
fied wave Eq. (2) which contains the additional damping coefficient (𝜎),
nsures that the pressure is correct at the first plane of computational
oints next to the region of the computational domain where the
umerical solution is valid. Consequently, due to the properties of the
odified wave equation, the error cannot propagate back into the do-
ain, and the acoustic waves propagating in the PML layer are damped.
he PML proposed by Chern (Chern, 2019) is exact, to machine zero,
or homogeneous cases (where no jump in density occurs) and exhibits
mall reflection in the presence of density discontinuities.

The computational domain is split into two regions, the real one and
he PML one. In the real region, the acoustic wave equation (Eq. (1))
s solved with the damping coefficients 𝜎𝑖 set to zero; in the PML region,
he additional term must be evaluated using two additional evolution
quations for each direction of propagation of the signal (Eq. (3)) for
he variables 𝜓 and 𝜙. The two equations, in discrete form, read as:

⎧

⎪

⎨

⎪

⎩

𝜙𝑛𝑖 = 𝜙𝑛−1𝑖 − 1
2
𝛥𝑡𝑐𝑖

(

𝜎𝑖−1𝜙
𝑛
𝑖−1 + 𝜎

𝑛𝑠𝑖𝜙𝑖
)

− 1
2𝛥𝑥

(

𝑝𝑛−1𝑖+1 − 𝑝𝑛−1𝑖−1
)

𝜓𝑛𝑖 = 𝜓𝑛−1𝑖 − 1
2
𝛥𝑡𝑐𝑖

(

𝜎𝑖−1𝜓𝑖 + 𝜎𝑖𝜓𝑖+1
)

− 1
2𝛥𝑥

(

𝑝𝑛−1𝑖+1 − 𝑝𝑛−1𝑖−1
)

.
(3)

The variables, which are defined at the cell vertices (𝑖) of the
umerical grid are used to decrease the acoustic pressure in the PML
egion, and are evaluated from the pressure field and can be initialized
at time step 𝑛 = 0) as zero. In three dimensions, a total of six equations
or the auxiliary variables are defined since two auxiliary variables
re introduced for each direction. The damping coefficients is set to
𝑖 = 1∕𝛥𝑥 as suggested in Chern (2019). The only free parameters to
e set are the PML thickness and the number of grid points where the
amping coefficients 𝜎𝑖 is not zero. We found that imposing a thickness
ength proportional to the principal wavelength of the source is suffi-
ient to obtain a satisfactory damping of the incoming waves together
ith negligible numerical reflections of the pressure waves over the
oundary of the computational domain. Note that here the equations
re solved in dimensional form in opposite to the non-dimensional one
resented in Chern (2019).

The layout of the numerical method is as follows:

1. Initialization: The physical (𝑝𝑛𝑖 , 𝑝
𝑛−1
𝑖 , 𝑝𝑛−2𝑖 ) and auxiliary (𝜓𝑛𝑖 , 𝜙

𝑛
𝑖 ,

𝜓𝑛−1𝑖 , 𝜙𝑛−1𝑖 ) fields are initialized at zero. The field variables, 𝜌𝑖,
𝑐𝑖, are initialized so as to map the ocean environment, and 𝜎𝑖 is
initialized as discussed above.

2. Time Loop: The following time loop is repetend 𝑛 times until
final time 𝑇 is reached.

– Acoustic Pressure: The value of 𝑝𝑛𝑖 is evaluated from
Eq. (2) at locations 𝑖 of the numerical domain. Note that
the 3D version of Eq. (2) has 𝑖, 𝑗, 𝑘 indexes for space loca-
tion, and the Laplacian term also contains the derivatives
in the other two directions.

– Source: The source term is imposed at the source location
as a time-varying Dirichlet boundary condition, 𝑝𝑛𝑖 =
𝑝(𝑥, 𝑡)𝑎𝑛𝑎𝑙𝑖𝑡𝑦𝑐𝑎𝑙, where the imposed values are evaluated
from the know analytical function at the position 𝑥 = 𝑖𝛥𝑋
of the numerical grid and at the time 𝑡 = 𝑛𝛥𝑇 .
direction. The methodology is explained in detail in Chern
(2019).

– Free-surface Boundary Condition: Pressure is set to be
zero at the water/air interface so as to reproduce the
complete reflection of acoustic waves.

– Final Step: All the physical and auxiliary fields are up-
dated, 𝑝𝑛−1 = 𝑝𝑛, 𝑝𝑛−2 = 𝑝𝑛−1, 𝜓𝑛−1 = 𝜓𝑛, 𝜓𝑛−1 =
𝜓𝑛

3. Data Collection: The dataset is stored for successive post-proce-
ssing and analysis.

We are interested in reproducing the ocean waveguides; thus, we
need to consider an inhomogeneous medium, with variations of density
and speed of sound along the fluid column. Note that in our case, these
two variables do not change in time, so the numerical domain’s physical
properties are steady. This is a very reasonable assumption since the
time scale of acoustic wave propagation is much smaller than that of
density variation along the fluid column.

The mathematical model herein considered evaluates the propaga-
tion in a fluid medium since the shear component of the velocity is not
considered; this approach is exact for the water layer and it is approxi-
mated for a sediment layer. The interaction with the seafloor becomes
relevant in a shallow water environment, so, as a consequence, the
sediment layer needs to be modeled. It is often a good approximation
to consider only compressional waves for the sediments since the shear
wave speed is very low compared to that in solid rocks. This enables
the evaluation of the acoustic wave propagation from the water layer
to the sediment layer without solving for the shear wave.

The air–water interface is represented by a pressure-free boundary
condition 𝑝 = 0, reflecting the acoustic energy back into the domain.
This is a good approximation since the transmission coefficient is
almost zero due to the sharp gradient of density and speed of sound
at the interface (Brekhovskikh et al., 1991). The boundary condition
is applied as a Dirichlet boundary condition. The amplitude of the
reflected waves is equal to the incident one, apart for a 180° phase shift.

The time step is constant in our simulations, and it is defined by
the stability criterion of the numerical method. It is evaluated with the
von Neumann criterion for the proposed numerical scheme 𝛥𝑡 ≤ (1∕𝑐) ∗
1∕𝑑𝑥2 + 1∕𝑑𝑦2 + 𝑑𝑧2)−1∕2. Note that the time step of the simulation

decreases with cell size. The source frequency determines an upper
limit for spatial discretization. Indeed, to resolve the wave propagation
correctly, a minimum number of points is required for the reproduction
of the smallest wavelength. For a second-order method, the minimum
number of points required per wavelength is 8 (Dablain, 1986); this is
the criterion adopted in our simulations.

The numerical method herein described is characterized by the
presence of numerical dispersion. The consequence of the discretization
of the wave equation is that the speed of sound of the discretized waves
becomes a function of the grid spacing. As discussed in Dablain (1986)
the computational domain has to be set in order to limit the numerical
dispersion in relation to the problem dimension and frequency of the
source. In presence of second-order methods, the dispersion error is
such that higher frequencies tend to travel with a lower speed of sound.
However, this problem is only alleviated by the available computa-
tional resources since increasing the number of computational nodes
decreases the numerical errors.

2.3. Implementation of the source

Most studies on the acoustic source’s characterization come from
research in room acoustics (Bilbao and Hamilton, 2018; Sheaffer et al.,
2014); the outcome of this research can be easily applied to underwater
acoustic also in consideration of the fact that underwater sources are
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easier to model since they operate in a low-frequency range, while
most of the numerical errors are related to very high-frequency signals.
Among the possible strategies of implementing the source, three are
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commonly in use, namely the hard source, the soft source, and the
transparent source.

The hard source may be considered the simplest method. It consists
of imposing the acoustic pressure at the source node(s), where Eq. (1)
does not need to be solved, whereas the source function 𝑆 is set to zero
in the computational domain. However, several drawbacks are known
to be related to this method. The first is related to the frequency; a
phase delay is observed with increasing the frequency of the source.
This problem is overcome by imposing the correct pressure in multiple
clustered points (Bilbao and Hamilton, 2018). Other difficulties arise
when the source is positioned near a wall. The hard source acts as a
barrier, and all the energy incident to the source nodes is reflected
away, generating extra pressure. Also, the hard source does not account
for the reflection of the signal due to the presence of the wall. This issue
will be discussed in the following.

The second method used in literature to implement the source
is the soft source. The source function 𝑆 is considered in the wave
Eq. (1) and updated at the source nodes at each time step. This method
allows avoiding the numerical errors of the hard source implementation
because the incoming waves can pass through the source and interfere
with it. The problem is that the pressure evaluated at the source
location is not the prescribed one, in terms of intensity. The correct
response of the source is obtained if the results are normalized, making
not straightforward the use of this approach for real-world application.
This method has additional limitations when considering finite size
sources because, in this case, the acoustic pressure must be prescribed
at all grid points, even if they are contained within the source, posing
additional constraints to its use in real-world applications.

The transparent source was developed (Schneider et al., 1998) to
liminate the scattering property of the hard source, making the source
ransparent to incoming waves. The applicability of this method is lim-
ted to line source and point sources, making it not suited for multiple
lustered points and, moreover, it requires high computational cost
ince two numerical simulations are required to obtain the solution.

Here we use the hard source method for its simplicity and because
t is possible to define the value of pressure evaluated using analytical
unction exactly. Moreover, if the pressure of a more complex source
s known at specific points, which coincides with the points of the
umerical grid, the pressure from that points can be propagated into the
umerical domain. This approach allows the direct computations of the
ropagation of noise from complex sources, which are not constructed
rom simple sources, such as a propeller, once its noise signature is
nown at specific points.

In Fig. 1 we show the nodes close to the source, the latter depicted
n red. The analytical function representing the source is known, and
t is used to evaluate the pressure at the gray nodes. The nodes are
hen considered as time varying boundary conditions and represent
he acoustic pressure produces by the source. From these nodes, the
coustic pressure is propagated into the numerical domain. A better
haracterization of the source can also be achieved using the second-
earest neighbor points or the third-nearest ones, thus considering a
arger box to impose the acoustic pressure.

In general, most methods for solving acoustic waves propagation
o not consider the interference between the source and the incoming
aves. In presence of a free surface in the propagation domain, the
se of the image method can mitigate this problem. The effect of the
eflected wave onto the source nodes can be evaluated and added to
he source imposed pressure, as follows:

ℎ𝑎𝑟𝑑 𝑖𝑚𝑔(𝑟, 𝑡) = 𝑝̂ℎ𝑎𝑟𝑑 (𝑟, 𝑡) + 𝑝̂𝑖𝑚𝑔(𝑟𝑖𝑚𝑔 , 𝑡)(𝑡 − 𝑟𝑖𝑚𝑔∕𝑐), (4)

where 𝑝̂𝑖𝑚𝑔 is the 𝑝̂ℎ𝑎𝑟𝑑 function evaluated at 𝑟𝑖𝑚𝑔 , which is the distance
between the source and its image. The Heaviside function acts as a
delay activating the image source only upon the arrival of the first
Fig. 1. Schematic of the hard source implementation. The red dot is the source and
the gray dots represent the computational grid points where the pressure signal is
imposed as boundary condition. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

reflected wave. The advantage of considering an image source when
adopting the hard source model in the presence of a free surface is
here tested in the case of a monopole source and is discussed in the
next Section 3.1. This method is defined as hard img source, in contrast
with the classical hard source.

3. Validation of the method

In this Section, we describe the results for the noise generated
by three different sources, namely monopole, dipole, and quadrupole.
These three sources are relevant for the underwater noise propagation
problem because they, or a composition of them, represent archetypal
models of real noise sources present at sea, like, among the others, ship
propellers and hydrokinetic turbines. The dipole and the quadrupole
exhibit directivity patterns and allow the evaluation of the directivity
effect in a marine environment. In Fig. 2 we report a schematic of the
sources used in the present paper.

In our numerical experiment, the marine environment is repre-
sented as a semi-infinite homogeneous water domain bounded by a top
free surface. This simplification allows the use of the image method
to obtain an analytical solution of the problem. An image source is
placed by the opposite side with respect to the free surface so that
the result inside the real domain is the sum of the acoustic pressure
generated by the real source and by the image source. The sign of the
image source is opposite to that of the real source so as to verify the
condition 𝑝 = 0 at the free surface (Rienstra and Hirschberg, 2004).
Hereafter the speed of sound is 𝑐 = 1500m s−1 and the water density
is 𝜌 = 1000 kgm−3. The frequency of the source is set to 𝑓20 =20Hz
and 𝑓100 =100Hz respectively giving wavelengths 𝜆20 = 75m and
𝜆100 = 15m, respectively. The wavelength associated to the source 𝜆𝑓
(𝑓 stands for the frequency of the source), is used to make the length
non dimensional. Hereafter, the symbol (⋅̃) defines non dimensional
quantities. As a consequence the grid spacing of 1m gives 𝛥𝑥20 = 0.013
and 𝛥𝑥100 = 0.066 respectively for the two frequencies. The numerical
domain is 600𝑚 (8𝜆20 and 40𝜆100) long in the 𝑥-direction, 200𝑚 (2.66𝜆20
and 13.33𝜆100) deep in the 𝑧-direction, and 100m (1.33𝜆20 and 6.66𝜆100)
large in the 𝑦-direction. Open-boundary conditions are imposed over all
directions but the top surface, in order to mimic a semi-infinite column
of water bounded from above. The numerical grid satisfies requirement
about the minimum number of points per wavelength, and the overall
dimension of the domain is within the value suggested in Dablain
(1986) to minimize the dispersion error.

The sound power radiated by these sources changes from case to
case. At the same frequency, the quadrupole and dipole do not radiate
the same energy as the monopole. Thus, the sound power radiated by
the dipole and quadrupole is normalized with respect to the sound
power radiated by a monopole in a uniform homogeneous domain. A
careful derivation of the sound power radiated by the sources presented
in the next Section, is described in (Norton and Karczub, 2003).
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Fig. 2. Schematic of the sources used in this study: (𝑎) monopole; (𝑏) dipole; (𝑐) quadrupole; (𝑑) 45◦ inclined dipole.

.1. Monopole black line sketched in Fig. 3 at a depth of 𝑧 = 52𝑚. The numerical results
are labeled Hard and Hard Img respectively based on the method used
6

The monopole radiates the acoustic pressure with spherical sym- for the implementation of the source. For the 100Hz monopole source

etry, an assumption used in most underwater acoustic research to
escribe the sources. The acoustic pressure generated by a monopole
𝑚(𝑟, 𝑡) is:

𝑚(𝑟, 𝑡) = −
𝑖𝑘𝜌𝑐𝑄𝑚
4𝜋𝑟

𝑒𝑖(𝜔𝑡−𝑘𝑟), (5)

here 𝑟 is the distance from the origin of the monopole, 𝑡 is time, 𝑄𝑚
s the source strength, 𝜔 = 2𝜋𝑓 is the angular frequency, and 𝑘 = 2𝜋∕𝜆
s the wavenumber. We remind the relation 𝑐 = 𝜔∕𝑘, where 𝑐 is the

speed of sound in the medium. The associated sound power 𝛱𝑚, in an
nfinite domain, is:

𝑚 =
𝑄2
𝑚𝜌𝑐𝑘

2

8𝜋
. (6)

t is used as a reference quantity to normalize the source strength of
he dipole and quadrupole, after imposing 𝑄𝑚 = 1.

The monopole source is located 36.5 𝑚 (0.48𝜆20 and 2.4𝜆100) below
he free surface at the center of the computational cell (Fig. 2a); it is
sed to estimate the error of our model, using the hard source and the
ard img source method when comparing with the analytical solution.
he free surface lies in the near field of the 20Hz source and in the
ar-field for the 100Hz one. In Fig. 3 we show the Sound Pressure Level
SPL) generated by the source on the 𝑥 − 𝑧 plane passing through the
ource for both frequencies. The SPL is evaluated as follows:

𝑃𝐿 = 20 log10
(

𝑝𝑟𝑚𝑠∕𝑝0
)

, (7)

here 𝑝𝑟𝑚𝑠 is the root-mean-square of the pressure, and 𝑝0 is the
eference pressure, which for an underwater acoustic environment is
0 =10−6 Pa. In Fig. 3 panel 𝑎, the 20Hz source is in the near field, and
ignificant interference pattern is not observed. In panel 𝑏 of Fig. 3, for
he 100Hz source, the interference pattern is observed. It appears in the
hape of divergent ribbons of pressure originated in the region between
he source and the free surface. The interaction between the source
nd the free surface leads to the observation of minima and maxima
f the SPL. This is known as the Lloyd Mirror effect (Tate and Spitzer,
946). To be noted that, since the source has spherical symmetry, the
olution is axial-symmetric as the planes of Fig. 3 are representative of
he solution as a whole.

In Fig. 4, we show the comparison between the numerical results
nd the analytical solution; the pressure signal is sampled along the
a second numerical experiment is conducted with a refined grid, and
the case is label Hard Refi, since the hard source method is used. In this
case, the distance between two vertices is halved compared to the other
cases in the three directions (𝛥𝑥𝑖 = 0.5m= 0.033𝜆100).

In Fig. 4 panel 𝑎, we observe a monotonic behavior for the SPL. The
source and the free surface do not generate an interference pattern since
the source is located on the near field of the free surface compared to
the 𝑓100 monopole (Fig. 4 panel 𝑐), where a non-monotonic behavior is
observed, reflecting the ribbon-like structure of the acoustic field.

In Fig. 4 panel 𝑏 and 𝑑 we show the relative error, which is
evaluated as:

Relative Error =
|𝑆𝑃𝐿𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 − 𝑆𝑃𝐿𝑎𝑛𝑎𝑙𝑖𝑡𝑦𝑐𝑎𝑙|

𝑆𝑃𝐿𝑎𝑛𝑎𝑙𝑖𝑡𝑦𝑐𝑎𝑙
(8)

In the Hard case, the relative error increases with the distance from
the source. Conversely, for the Hard Img case, we obtain better results.
The relative error is almost constant along the line. For both cases the
relative error is confined within 0.6%. The hard img sourcemethod gives
better results because it directly takes in consideration the effect of the
free surface on the source.

In Fig. 4 panel 𝑑, the relative error of the 𝑓100 monopole is higher
than the 𝑓20 monopole. However, the maximum relative error of 15%
is limited and confined where the SPL reaches the minimum. For the
Hard and Hard Img cases the minimum value of the SPL is still correctly
obtained, and, the error is mainly associated to a small shift of the
curves due to a weak dispersion feature, and, away from the minima,
the relative error is bounded below 4%.

The higher error of the 𝑓100 monopole is related to numerical disper-
sion, the dependency of the speed of sound on the frequency. Indeed,
the numerical scheme herein employed is such that higher frequencies
travel slower (Dablain, 1986). Consequently, the distance at which the
minimum of SPL occurs for the numerical simulation is shorter than
for the analytical solution. The refinement of the grid reduces the error
associated with the numerical dispersion. The distance at which the
minimum of the SPL occurs is evaluated correctly as observed for the
Hard Refi case, and in this case the relative error is below 4% along
the line.

To summarize, the hard source implementation corrected with the
hard img source method is found to improve the results. However, it
has to be noted that this method might fail under certain conditions
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Fig. 3. SPL on the 𝑥 − 𝑧 plane passing through the monopole source: (a) 𝑓20 = 20Hz; (b) 𝑓100 = 100Hz.
Fig. 4. Error analysis of the quadrupole source along a line at a depth of 52m: (a) SPL of the 20Hz source; (b) relative error of the 20Hz source; (c) SPL of the 100Hz source;
(d) relative error of the 100Hz source.

in the presence of density variation along the fluid column since the
correction relies on the image method, which is based on the assump-

and 𝑑 =0.4m, obtaining the dipole source strength 𝑄𝑑 ≃ 51.69𝑄𝑚 for
the 20Hz source and 𝑄 ≃ 10.34𝑄 for the 100Hz source respectively.
7

tion of propagation in a semi-infinite homogeneous field. Specifically,
𝑑 𝑚

The dipole source is placed at the same depth as in the previous cases

the density and speed of sound variation along the fluid column are
the main limiting factor. However, if this variation occurs at a distance
larger than that of the source from the free surface the hard img source
method still gives accurate results because the image solution imple-
mented over the boundary nodes is not affected by inhomogeneities in
the field.

3.2. Dipole

The second source herein considered is the dipole, characterized
by two lobes and directivity. The dipole source 𝑝𝑑 (𝑟, 𝑡) is made of two
monopoles placed at a distance 𝑑 from each other, and the dipole axis
is parallel to the free surface (Fig. 2b). The acoustic pressure generated
is:

𝑝𝑑 (𝑟, 𝑡) =
𝑖𝑘𝜌𝑐𝑄𝑑

4𝜋(𝑟 − 𝑑∕2)
𝑒𝑖(𝜔𝑡−𝑘𝑟) −

𝑖𝑘𝜌𝑐𝑄𝑑
4𝜋(𝑟 + 𝑑∕2)

𝑒𝑖(𝜔𝑡−𝑘𝑟), (9)

where 𝑟 is the distance from the origin of the dipole. The associated
sound power 𝛱𝑑 , integrated over a sphere in an infinite domain, is the
following:

𝛱𝑑 =
𝑄2
𝑑𝜌𝑐𝑘

4(𝑑∕2)2

6𝜋
. (10)

Since 𝑘 is usually ≪ 1, the dipole is less efficient than the monopole in
radiating energy. This is evident comparing the monopole and dipole
sound power formula and assuming the same source strength. The
source strength of the dipole 𝑄𝑑 is calculated setting its own sound
power equal to that of a monopole with source strength 𝑄𝑚 = 4𝜋∕𝜌𝑐𝑘,
(36.5m), and the radiated pressure field is compared with the analytical
solution.

In Fig. 5, we show the SPL of the source on the 𝑥− 𝑧 plane passing
through the source. Panel 𝑎 contains the SPL of the 20Hz dipole.
The space distribution of energy appears more complex than in the
monopole case due to the directivity of the source. The SPL of the
100Hz dipole shown in panel 𝑏 is similar to the 100Hz monopole, with
a larger number of acoustic ribbons giving a larger number of planes
of low pressure level. Also, the near field distribution of the acoustic
pressure appears more complex than in the monopole case.

As for the previous case, we show the comparison between the
numerical and the analytical results at a depth of 52m (Fig. 6). In panel
𝑎 we show the SPL profile of the 20Hz dipole. The main difference
observed compared to the monopole is the rapid decay near the source
up to a local minimum. The relative error shown in panel 𝑏 is limited
to 2% for the Hard case, and it is maximum near the local minimum
of SPL. The Hard Img case gives better results, and the relative error
is almost constant across the domain and remains confined below the
0.5%.

In panel 𝑐, we show the SPL profile of the 100Hz dipole. Compared
to the monopole source, the amplitudes of the local minima are smaller,
and these are clustered near the source. The dispersion error appears
larger for the high frequency source, as shown in panel 𝑑. The relative
error is limited within 3% for the Hard and Hard Img cases. The relative
error of the Hard Img case is maximum at the second local minimum
of the SPL profile, and then it remains nearly unchanged and below
1%. Conversely, the relative error in the Hard case increases with the
distance from the source.
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Fig. 5. SPL on the 𝑥 − 𝑧 plane passing through the dipole source is shown. (a) 𝑓20 = 20Hz source; (b) 𝑓100 = 100Hz source.
Fig. 6. Error analysis of the dipole source along a line at a depth of 52m: (a) SPL of the 20Hz source; (b) relative error of the 20Hz source; (c) SPL of the 100Hz source; (d)
relative error of the 100Hz source.

3.3. Quadrupole of local minima of the SPL (panel 𝑐). The relative error (panel 𝑑), does
not increase significantly with the frequency. Overall, for the Hard and
8

The lateral quadrupole 𝑝𝑞(𝑟, 𝑡) is the latter archetypal source case Hard Img cases, the error is smaller than 2%, and the latter gives better

herein studied. It is obtained from two dipoles (Eq. (9)) in opposition
of phase placed at a distance 𝑑 from each other, taking the distance 𝑑
the same as in the dipole case (Fig. 2c). The associated sound power
𝛱𝑞 , integrated over a sphere in an infinite domain, is the following:

𝛱𝑞 =
4𝑄2

𝑞𝜌𝑐𝑘
6(𝑑∕2)4

30𝜋
. (11)

To obtain the same sound power of the previous case, keeping the
monopole source strength to 𝑄𝑚 = 4𝜋∕𝜌𝑐𝑘, the quadrupole source
strength becomes 𝑄𝑞 ≃ 3348.96𝑄𝑚 for the 20Hz source and 𝑄𝑞 ≃
137.96𝑄𝑚 for the 100Hz source respectively. In Fig. 7 we show the SPL
of the quadrupole source on the 𝑥−𝑧 plane passing through the source.
In panel 𝑎 the SPL of 20Hz quadrupole shows that the quadrupole
introduces a plane of zero sound emission perpendicular to the free
surface. For the 100Hz quadrupole the distribution of the energy is
similar to that of the other sources, namely in form of divergent ribbons
propagating from the region confined between the source and the free
surface.

The comparison between the numerical and the analytical solu-
tions at a depth of 52m is shown in Fig. 8. In panel 𝑎 we show the SPL
profile for the 20Hz quadrupole. Compared to the dipole, we observe
the presence of a minimum value of SPL in the near field. The relative
error shown in panel 𝑏 is smaller than 1.5% over the line for the Hard
and the Hard Im cases. Increasing the frequency increases the number
results near the source. As for the previous sources, the error is mostly
associated with a slight spatial shift of the signal due to the mentioned
dispersion error.

As a conclusion of Section 3, the analysis shows that the direct
solution of the wave equation using an overall second-order accurate
numerical scheme provides accurate results for a number of different
sources, in a wide range of frequencies and for distances of the order
of 40 𝜆, where 𝜆 is the wavelength of the source. The limiting factor for
a second-order scheme is the minimum point per wave length required
to solve the acoustic signal. Our results show that the dispersion error
remains marginal at least up to 40 wave lengths, and it is expected to
remain very small even for larger domains.

4. Acoustic propagations in waveguides

In the present Section we consider the propagation of an acoustic
signal in two classical waveguides, the Ideal one and the Pekeris one,
both representing a simplification of the marine environment. The
two waveguides are standard benchmarks for the evaluation of the
performance of propagation model. More benchmarks are described
in Jensen and Ferla (1990). Most of them are relative to the prop-
agation over long distances and are not of interest in the present
work. In addition, these cases investigate the interaction between an
omnidirectional source and a range-dependent environment, where the
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Fig. 7. SPL on the x-z plane passing through the quadrupole source. (a) the 𝑓20 = 20Hz source; (b) the 𝑓100 = 100Hz source.
Fig. 8. Error analysis of the quadrupole source along a line at a depth of 52m: (a) SPL of the 20Hz source; (b) relative error of the 20Hz source; (c) SPL of the 100Hz source;
(d) relative error of the 100Hz source.

depth of the waveguide changes with the distance from the source;
this is a topic of interest for future research. Further, we consider the

imposed as hard source on a single node, is:
√

9

acoustic response of the Pekeris waveguide considering the different 𝑝(𝑡) = 2 sin (2𝜋𝑓𝑡), (12)

sources discussed in the previous Section. Compared to the monopole’s
spherical symmetry, the introduction of a complex directivity pattern
enables multiple configurations with respect to the free surface. An axis
of zero sound emission characterizes the SPL generated by a dipole.
This axis can be either aligned or inclined with respect to the free
surface, generating a change of the acoustic energy distribution inside
the waveguide. This aspect is considered in an additional case.

The first benchmark problem is the Ideal waveguide. The waveguide
is range-independent, it extends at the infinite over the horizontal
directions, and is bounded by two planes where the pressure is set to
zero. The numerical domain used to reproduce the benchmark is shown
in Fig. 9, panel a. The density of the fluid is 𝜌 = 1000 kgm−3 and the
speed of sound is 𝑐0 =1500m s−1.

The second benchmark problem is the Pekeris waveguide. It is
range-independent and extends at the infinite in the horizontal direc-
tion. Along the vertical, the homogeneous fluid layer is bounded from
above by the free surface and below by an infinite layer of sediment.
The numerical domain used to reproduce the benchmark is shown
in Fig. 9, panel 𝑏. The density of the fluid is 𝜌 = 1000 kgm−3 and
the speed of sound is 𝑐0 =1500m s−1. The sediment has a density of
𝜌𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡 =1800 kgm−3 and the speed of sound is 𝑐𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡 =1800m s−1.

4.1. Ideal waveguide

A continuous 20Hz monopole source is placed 36m below the free
surface in the Ideal waveguide (Fig. 9 𝑎). The source function 𝑝(𝑡),
where 𝑓 is the frequency of the source, 𝑡 is time, and
√

2 is an amplitude
factor. The source is omnidirectional like the monopole, but with a
finite amplitude at the origin. The pressure values used to obtain the
results are collected in the time window 𝑇 − 3𝑇 , where 𝑇 is defined
as the time needed by the acoustic pressure to reach the farthest
computational boundary along an horizontal line. In the simulation,
this distance is equal to 𝐿𝑥, and 𝑇 = 𝐿𝑥∕𝑐, where c is the slowest
speed of sound in the domain when different media are present. This
approach is needed to allow the simulation to reach a statistically
steady state. The numerical grid is uniform in all directions, and the
grid cells dimension is 1m, which normalized by the wavelength is
0.013; the largest horizontal extension of the numerical domain is 40
wave lengths. In Fig. 10 we show the numerical and the analytical
results of the Transmission Loss (TL) of the monopole source in the
ideal waveguide.

The TL, defined in Jensen et al. (2011), is:

𝑇𝐿(𝒓, 𝒓𝑠) = −10 log10

(

𝑍0(𝒓𝑠)
𝑍(𝒓, 𝒓𝑠)

|

𝑝(𝒓, 𝒓𝑠)
𝑝0(𝒓𝑠)

|

2
)

, (13)

where 𝒓 is the distance from the source, 𝑍(𝒓) = 𝜌(𝒓)𝑐(𝒓) is the acoustic
impedance of the medium, and 𝑝 is the acoustic pressure. The TL is
obtained by dividing the acoustic pressure at a distance 𝒓 by a reference
pressure given by the same source at reference distance 𝒓𝑠 =1m in a ho-
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Fig. 10. Transmission loss for a 20Hz continuous point source placed at 36m of depth
n the Ideal waveguide. The numerical and analytical results at 𝑧 =36m and at 𝑧 =46m.

ogeneous infinite medium. In our numerical experiment the acoustic
ressure is evaluated in the time domain, as a consequence, 𝑝(𝒓, 𝑡) is
function of time. For this reason in Eq. (13) the root-mean-square

ressure 𝑝𝑟𝑚𝑠 is used instead of 𝑝(𝒓, 𝒓𝑠).
The analytical results are taken directly from Figure 2.23 panel

of Jensen et al. (2011), where the authors solved the Helmholtz
quation, using the normal-modes approach.

The results are shown at two different depths, namely at the source
epth 36m and below, at 46m. The characteristic oscillations of the
L, which are related to the two modes propagating in the waveguide,
re well-replicated at both depths. These two modes have a specific
odal interference length 𝐿𝑖, which in this case is of 𝐿𝑖 ≃300m, namely

6𝜆20. The difference in the amplitude of oscillation is related to the
amplitude associated with the propagating modes, as explained in more
detail in Jensen et al. (2011). At 36m both modes are excited with the
same amplitudes, and at 46m the amplitude of the first mode is higher
than that of the second mode. A spherical decay (∼ 1∕𝑟) is observed
ear the source. At a distance equal to the depth of the domain, as
xpected, we observe a cylindrical decay (∼ 1∕

√

𝑟). There is a 1 dB to
2 dB difference at the maxima of the two TLs. However, the difference
is constant across the domain so that the error might be related to
the method used to extract the reference data. The difference observed
at the minima is basically due to the low resolution of the analytical
results, as extracted by the reference paper. Overall, the second-order
numerical method implemented for the solution of the wave equation
in the physical space provides accurate results.
Fig. 11. TL for a 20Hz continuous point source placed at 36 m depth in the Pekeris
waveguide. Comparison between numerical and analytical results at 𝑧 =36m and at
=46m.

.2. Pekeris waveguide

The second classical problem is the Pekeris waveguide, an archety-
al representation of a shallow-water marine environment (Fig. 9b).
he only physical boundary of the problem is the upper free surface, but
he interface between the water and sediment layers entraps part of the
coustic energy inside the fluid waveguide and allows the propagation
f the acoustic waves over long distances as in a real shallow water
nvironment.

A 20Hz monopole source is placed 36m below the free surface and
t is implemented as in the previous case using the function (Eq. (12)).
he pressure values are collected in the time window 𝑇 −3𝑇 following
he previous approach. The numerical grid is uniform in all directions,
nd the grid cell dimension is 1m, as in the previous case. In Fig. 11
e show the numerical and the analytical results of the TL of the
onopole source in the Pekeris waveguide. As in the previous case, the

nalytical results are taken directly from Figure 2.29 panel 𝑏 (Jensen
t al., 2011). The authors obtained the analytical results solving the
elmholtz equation using a wavenumber integration approach. The

esults are shown at the source depth 36m and at 46m. The fact that
he domain is a semi-infinite layer allows the energy to leave the
omain by the bottom side, propagating in the sediment layer. As a
onsequence, the modal interference length is different compared to the
deal waveguide case. In this case, it is larger, and it decreases with
he distance from the source. Moreover, as discussed in Jensen et al.
2011), just two modes are excited, a lossless mode, which propagates
ithout losing energy, apart the geometrical decay, and a leaky one,
hich losses energy with the distance. The difference in the magnitude
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Fig. 12. SPL comparison at a depth of 𝑧 =36m between a 20Hz continuous monopole,
dipole, and quadrupole source in a Pekeris waveguide.

of the TL between the two depths is related to the amplitude at which
the modes are excited. Compared to the Ideal waveguide case, the TL
is larger for the Pekeris waveguide, since the energy is not constrained
inside the fluid waveguide.

The comparison of the numerical and analytical results (Fig. 11)
shows a difference of the order of 1 dB away from the minima of the
TL. The maximum of the error is observed near the minima of the TL.
This is comparable with the error observed in Fig. 4 panel (𝑑), for the
monopole with a higher frequency. The error is related to the numerical
dispersion, which is known to increase with the frequency and, as
observed in this case, with the distance from the source. Increasing
the resolution of the numerical simulation reduces the error as shown
in Fig. 4, where the refined grid is used (note that for the Pekeris
waveguide we evaluated a refined-grid case also).

In the refined-grid case, the propagation of the source is evaluated
on a smaller numerical domain, which is halved with respect to the
standard domain, due to computational resource limitations. The grid
cells dimension in the refined case is 0.5m, which normalized by the
wavelength is 0.0066. In the refined case, the error is reduced, in
that the minima and maxima of the analytical solution are better
reproduced. Up to the second minimum, the two numerical simulations
give similar results. On the third minimum, the refined solution follows
better the behavior of the analytical solution, although the results
obtained with the coarse grid still appear of good quality.

The overall behavior of the interference pattern and the range of
value of the TL is correctly reproduced by the numerical simulation.
The errors can be reduced by implementing a higher-order method
as in Hafla et al. (2018) although the second-order scheme herein
presented produces accurate results.

4.3. Directivity signature on a Pekeris waveguide

The Pekeris waveguide (Fig. 9b) is used to evaluate the propagation
of the three different sources described in Section 3. The physical
characteristics of the waveguide and the numerical domain are the
same as in the previous case, together with the duration in time of the
simulation and the grid size. The sources have a frequency of 20Hz
and are placed at a depth of 36m. The source strength has been chosen
s described in Section 3. The different sources generate the same
mount of energy as the monopole, although distributed with a specific
irectivity in space.
Fig. 13. Pressure amplitude 𝑝̂(𝑘) of the Fourier Transform of the pressure field along
he 𝑥-direction from 300m to 2348m at a depth 𝑧 =36m for the four sources considered
n the Pekeris waveguide. The two vertical lines correspond to 𝑘 = 𝜔∕𝑐𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡 and
= 𝜔∕𝑐𝑤𝑎𝑡𝑒𝑟.

In Fig. 12 the SPL of the monopole, the dipole, and the quadrupole
n a Pekeris waveguide are displayed at a depth of 36m along a line
long the 𝑥-direction. The increasing complexity of the dipole and
uadrupole sources contributes to significant difference in the SPL
rofile in the vicinity of the source up to a distance of 500m (6.66 𝜆20)
here multiple local minima of the SPL are observed for the dipole and
uadrupole cases compared to the monopole.

At a distance larger than 500m (6.66 𝜆20), the characteristic oscilla-
ory pattern and the cylindrical decay of the SPL are recovered. The SPL
mplitude of the oscillations of the monopole is about 2.5 times larger
han those of the dipole and quadrupole. Among the three sources, the
ipole has the lower level of SPL across the domain; it is about 4 dB
ower than that of the quadrupole and about 8 dB lower than that of
he monopole.

The modal interference length is the same for the three sources, but
t appears shifted by half the interference length for the quadrupole
nd less than half the distance for the dipole. This effect is related to
he excitation of the modes inside the waveguide, which are the same
escribed in the previous case. The amplitude at which the modes are
xcited depends on the source’s depth and the type. As observed, the
onopole at a depth of 36m excites both modes with similar amplitude.
onversely, at the same depth the dipole and quadrupole excite the

irst (lossless) mode more than the second (leaking) mode as shown in
ig. 13. (details on these aspects are in the book of Jensen et al. (2011).)

The difference in the SPL is a direct consequence of the directivity.
nly the monopole can propagate the same energy in every 𝑥−𝑧 plane
assing through the source, in opposition to the dipole and quadrupole
ources.

In Fig. 14 we show the SPL over the vertical 𝑥 − 𝑧 plane passing
hrough the source. The presence of the sediment layer substantially
hanges the energy distribution inside the fluid waveguide, compared
o the case discussed in Section 3. The typical Lloyd pattern is not
bservable in this case. The monopole (Fig. 14a) is able to better
ransmit energy inside the fluid waveguide compared to the other two
ources. The dipole (Fig. 14b) transmits most of energy in the direction
erpendicular to the free surface; consequently, most of the energy
eaves the fluid domain, entering the sediment layer. The presence
f a zero plane of sound emission perpendicular to the free surface
or the quadrupole source (Fig. 14c) constrains energy over a specific
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Fig. 14. SPL over the vertical 𝑥 − 𝑧 plane at a depth of 𝑧 =36m: (a) 20Hz monopole; (b) dipole; (c) quadrupole.

directions, and, as a consequence, more energy is propagated inside the
fluid waveguide, compared to the dipole case.

45◦ degrees with respect to the free surface (Fig. 2d). The main aim
is to analyze the effect of a variation of the geometrical configuration
12

The dipole maintains an axial-symmetry over the x-y plane, as of the source which exhibits a directivity on the noise propagated in

shown in Fig. 15 panel (𝑏). Along this plane, the distribution of energy is
similar to the monopole (Fig. 15a). The quadrupole breaks the spherical
symmetry over the 𝑥–𝑦 plane, as shown in Fig. 15, panel 𝑐. Only a
quadrant of the 𝑥–𝑦 plane is shown due to the symmetry properties
of the solution. The 𝑦 − 𝑧 plane passing through the source, which is
not shown, is identical for the monopole and dipole sources due to
symmetry. The zero plane of the quadrupole is on the 𝑦 − 𝑧 direction
(Fig. 14 panel 𝑐) and it is not shown.

The monopole source, or, in general, the spherical symmetric sou-
rce, is the typical type of source used to investigate the acoustic
response of a marine environment due to its simplicity. The behavior
of a more complex source far from the origin is somewhat similar to a
monopole and, at a first approximation, it can be used as a reference.
However, the SPL can be significantly different. Also, our results show
that the monopole-like approximation is not valid in the near field,
when the analysis of sound generated by complex sources is required.

4.3.1. Effect of inclination of the source on the propagation within a Pekeris
waveguide

Finally, we consider the same Pekeris waveguide (Fig. 9b) used in
the previous cases to evaluate the propagation of the acoustic pressure
generated by the same dipole of the previous Section but inclined by
the medium. We compare the results of this additional case study with
those of the horizontal dipole discussed in the previous Section. The
inclined dipole is placed at a depth of 36m as the horizontal one. The
physical characteristics of the waveguide and the numerical domain are
the same as in the previous case, together with the time of the simu-
lation and the grid dimension. In Fig. 16 we show the SPL level over
an horizontal line at a depth of 36m. The SPL is significantly affected
by the inclination of the source. In the near field, up to a distance
of 500m (6.66 𝜆20), the decay of the signal is substantially different
between the two cases. Specifically, the inclined dipole resembles the
monopole, with a decay typical of a source exhibiting radial symmetry
along this plane. (compare Fig. 16 with Fig. 12) Further, at intermediate
distances (larger than 500m, 6.66 𝜆20) the signals appear different in
shape and amplitude. The inclined dipole SPL profile resembles that
of the monopole (compare Fig. 12). Specifically, the amplitude of the
oscillations of the SPL is nearly doubled with respect to that of the
horizontal dipole and more similar to that of the monopole. This is due
to the fact that the orientation of the source may dramatically affect
the amplitudes at which the modes are excited. In particular in Figure
figure:wavenumber we show that the modes of the inclined dipole are
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comparable to those of the monopole. In Fig. 17 we show the SPL over
the 𝑥 − 𝑧 plane passing through the inclined dipole. The black line is
at a depth of 100m at the interface between the fluid layer and the
Fig. 15. SPL on a quadrant of the 𝑥–𝑦 plane at a depth of 𝑧 =36m; (a) 20Hz monopole;
(b) dipole; (c) quadrupole.

Fig. 16. SPL of the 20Hz dipole at a depth of 𝑧 =36m: (a) horizontal dipole; (b) dipole
inclined by 45◦ with respect to the free surface.
sediment layer. The inclination of the dipole enables more reflection of
energy at the seabed than the case of the horizontal dipole (Fig. 14b),
where most of energy leaves the domain. This aspect is related to the
angle of incidence of the acoustic waves at the interface between the
two media. Obviously, different orientations may give rise to different
energy patterns, showing that directivity typical of real world sources
introduces non trivial effects worth of analysis. The minima of SPL
along the water–air interface are narrower for the inclined dipole
compared to the horizontal one. Different orientations may give rise to
different energy patterns, showing that directivity typical of real world
sources introduces non trivial effects worth of analysis. The situation
may be even more complex in presence of multiple sources. This is a
topic of a successive study.

5. Conclusion

In this paper, we presented the first important step of a long-
standing research project aimed at quantifying the noise generated by
anthropogenic activity at sea and propagated in a realistic inhomoge-
neous environment. We solve the acoustic wave equation ruling the
propagation of acoustic pressure in ocean waveguides in the physical
space using a standard finite difference time domain (FDTD) method.
The numerical method is accurate at the second-order in time and
space. The algorithm has been complemented with perfectly matched
layer (PML) open boundary conditions aimed at minimizing the spuri-
ous reflection of acoustic waves occurring at the open boundaries of
the domain. An improved version of the hard source technique has
been developed to consider the presence of a complex noise source
within the computational domain. In particular, as in the standard hard
source method, the acoustic signal generated by the source is set as
a boundary condition at grid points surrounding the source itself; In
addition, we complement the technique considering the image method
to reproduce the effect of the ocean free-surface on the reflection of
the acoustic waves within the interior of the ocean. This improve-
ment reduces unwanted spurious reflections, which appear when the
source is placed near the free surface. The numerical method has been
tested in a variety of cases. First, an extensive comparison between
analytical and numerical solutions has been conducted for archetypal
sources (monopole, dipole, quadrupole) with different frequencies in
a semi-infinite homogeneous water domain. The method was found
to reproduce the pressure signals accurately, provided that some res-
olution requirements are satisfied, particularly regarding the number
of grid cells per wavelength. The implementation of the hard image
source method was found to improve the results in all cases examined.
Successively, two classical problems have been considered: propagation
of the acoustic signals in the Ideal waveguide and the Pekeris waveg-
uide. In both cases, the numerical model performed well; the dispersion
error, associated with the second-order scheme employed for the spatial
discretization, appeared of minor importance. The principal analysis
carried out in the present paper regards the directivity, which is ubiq-
uitous of most real-world noise sources in the ocean. However, our
study shows that using a spherically symmetric source (i.e. monopole)
is not sufficient to correctly characterize real sources in the near field
since the energy distribution in the fluid waveguide is strongly affected
by the type of source and the environment. In particular, the paper
shows that the directivity modifies the way the fundamental modes are
excited, and this reflects on the patterns of propagation of the acoustic
energy in the ocean.
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Fig. 17. SPL on the 𝑥 − 𝑧 plane passing through the 20Hz dipole inclined by 45◦ with respect to the free surface.
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