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a b s t r a c t

Alpine lakes are well known as “environmental sentinels”, which are sensitive to anthropogenic impacts,
and paleoecological studies provide useful information regarding the effects of local and global changes.
In the present study we investigate, for the first time, the temporal variations in testate amoeba as-
semblages in relation to environmental factors and anthropogenic impacts in a high-altitude lake located
in the Italian Alps (Balma Lake, Piedmont, Italy). The testate amoebae are well-suited as bioindicators and
have been employed to reconstruct past climate and environmental changes from lake sediments.
However, these organisms have not been thoroughly studied in alpine lakes, especially in Europe. We
detected significant changes in testate amoeba assemblages along an alpine lake sedimentary profile
over the last 2000 years. These changes were mainly associated with variations of trace elements, nu-
trients, and grain size. Moreover, five different time periods were identified and related to pluvial/
drought events of the last 2000 years and to the “Late Antique Little Ice Age” (LALIA). Alpine lakes are
originally fishless and fish introductions for recreational purposes could cause important changes in
these ecosystems. However, the introduction of brook trout in Balma Lake during the 1970s seems to
have had little influence on testate amoeba assemblages. The present work provides new insights for the
evaluation of temporal changes in testate amoebae through paleoecological investigations. Similarly, the
comparison of testate amoeba and chironomid proxies offered an important tool for analyzing recent
climatic and environmental changes in alpine lakes (in lacustrine environments), especially for the
European Alps.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Alpine lakes or high-altitude lakes are known to be ‘‘early
warning systems’’ for the whole mountain environment
(MOLARWater Chemistry Group,1999; Perilli et al., 2020; Cantonati
et al., 2021). Due to their harsh environmental conditions, these
systems allow for colonization by a few well-adapted species,
resulting in low diversity communities with relatively simple
structures and trophic webs (e.g., Füreder et al., 2006; Cantonati
et al., 2020). Despite their remote location, small size and the
high turnover of surface waters, these environments are extremely
sensitive to natural and anthropogenic impact (Fjellheim et al.,
2009), both on a local (water diversion, tourism, grazing, the
introduction of non-native species) and global scale (long-range
pollutant transport, radioactive-nuclides transport, acid rain, global
climatic changes) (Psenner and Schmidt, 1992; Psenner and
Catalan, 1994; Camarero et al., 1995a, 1995b; Battarbee et al.,
2002; Magnea et al., 2013). In this context, paleoecological in-
vestigations in alpine lakes are of great scientific interest, as these
aquatic systems can be considered good indicators for global
changes (Rogora et al., 2008) and can aid in the evaluation of the
large-scale effects of anthropogenic activities (e.g., Battarbee et al.,
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2009). Moreover, paleoecological reconstructions based on sub-
fossil organism assemblage datasets are commonly used to recon-
struct past environmental changes over long timescales (from
hundreds of years to millennia) (Willis and MacDonald, 2011;
Roberts, 2013). Assuming that species ecological requirements are
stable over time, the main premise in paleoecology is that changes
in species assemblages similarly reflect past environmental
changes within a study site or region (Birks et al., 2016). Among
biological proxies employed for paleolimnological investigations,
several organisms have been used such as chironomids, diatoms,
ostracods, cladocerans, pollens and testate amoebae (Douglas,
2013).

The testate amoebae (Amoebozoa: Arcellinida; Rhizaria:
Euglyphida; Stramenopiles, Labyrinthulomycetes) are single-celled
organisms characterized by the presence of a “shell” that protects
the cytoplasm (Ogden and Hedley, 1980; Adl et al., 2019; Todorov
and Bankov, 2019). These organisms are globally distributed and
are abundant in freshwater environments (Patterson et al., 1985;
Asioli et al., 1996; Roe and Patterson, 2006; Yang et al., 2010;
Burdíkov�a et al., 2012; Davidova and Vasilev, 2013; Ju et al., 2014).
Among lotic systems, testate amoebae can be found in all types of
lakes, from the littoral to the profundal zone (Sigala et al., 2016) and
play a crucial role in organic matter cycling, energy flow and water
purification (Han et al., 2011a). Moreover, testate amoebae are
highly sensitive to environmental conditions (Neville et al., 2010;
Han et al., 2011a; Ndayishimiye et al., 2021): the populations can
change with natural climate variability (Yang et al., 2006; Han et al.,
2011b; Burdíkov�a et al., 2012; Ren et al., 2018) and species that can
survive in the new modified environment are those with the
greatest adaptation abilities (Han et al., 2011a). Due to these char-
acteristics, testate amoebae are well-suited as bioindicators and
have been employed from lake sediments to reconstruct past
climate and environmental changes (Sch€onborn, 1973; Ruzicka,
1982; Patterson et al., 1985; Asioli et al., 1996; Charman, 2001;
Mitchell et al., 2008; Qin et al., 2009; Prentice et al., 2018). Testing
the response of lacustrine testate amoebae to climate and envi-
ronmental changes for the Late glacialeHolocene transition in the
Lake Lautrey (Jura Mountains, eastern France), Wall et al. (2010a)
strengthened the potential of the lacustrine testate amoebae in
the paleoclimatic and paleoecological reconstructions.

Several studies have shown strong relationships between
lacustrine testate amoeba assemblages composition and environ-
mental parameters such as salinity, conductivity, pH, pollution and
anthropogenic impact (Sch€onborn, 1965, 1966, 1973; Sch€onborn
et al., 1965; Sch€onborn et al., 1984; Ruzicka, 1982; Patterson,
1996; Roe et al., 2010; Patterson et al., 2012a). Indeed, testate
amoebae are sensitive to industrial contamination (Asioli et al.,
1996; Patterson, 1996; Reinhardt et al., 1998) and to mine-derived
contaminants including potentially toxic trace elements (Kauppila
et al., 2006; Kihlman and Kauppila, 2009, 2010, 2012; Nasser
et al., 2016; Gavel et al., 2018; Misailidis et al., 2017; Cockburn
et al., 2020; Nasser et al., 2020a, b). The reconstruction of past cli-
mates and environments using testate amoebae proxies has
focused on the water table in peatlands, pH, nutrients and recently
on water temperature (Ndayishimiye et al., 2020). Recently,
Charque~no-Celis et al. (2019) found that dissolved oxygen con-
centration and water depth are important factors affecting the
composition of testate amoeba assemblages in some lakes in
southern Mexico. Ndayishimiye et al. (2020) observed that changes
in testate amoeba assemblages in a Chinese alpine lake could be
due to soil erosion and nutrient inputs due to anthropogenic ac-
tivities. Currently, there is a paucity of studies regarding testate
amoebae in alpine lakes and no information is available for high-
altitude lakes in the Alps. In this context, it was deemed of inter-
est to investigate temporal changes in testate amoeba assemblages
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in a high-altitude lake located in the Italian Alps (Balma Lake,
Piedmont, Italy). The main aims of the present research were (i) to
characterize the testate amoebae paleo-assemblages of an alpine
lake, located in an area where these organisms have not previously
been investigated; as the main testate amoebae in lacustrine en-
vironments are Arcellinida (Marcisz et al., 2020), we focused only
on this group; (ii) to assess changes in testate amoeba assemblages
in relation to environmental factors and to anthropogenic impact;
(iii) to compare the results obtained for testate amoeba assem-
blages with the effects observed in other paleoecological proxies
such as Diptera Chironomidae and diatom assemblages. This
research provides new insights for the evaluation of temporal
changes in testate amoebae through paleoecological investigations
in alpine lakes.

2. Materials and methods

2.1. Study area

Balma Lake is an alpine lake located above the tree line in the
Cottian Alps (Municipality of Coazze, Piedmont, northwestern
Italy), at 2116m a.s.l. (Fig.1a and b). It is included in the Special Area
of Conservation (SAC) and Special Protection Area (SPA) IT1110006,
called “Orsiera Rocciavr�e” and in the Orsiera Rocciavr�e Nature Park.
The lake is of glacial originwith a circular perimeter equal to 414m;
the surface area is 1.21 ha, and the maximum depth is 6.42 m. The
catchment is composed of ophiolite metamorphic bedrock and the
landscape is dominated by rocky outcrops, ridges, and mountain
walls. The ice cover generally lasts from late October to late May/
early June. A small inlet is located at thewestern shore dividing into
three small branches before entering the lake. Although a true
outlet is not evident, Balma Creek originates from water filtration
through the sediments at the eastern side of the basin (Fig. 1b and
c) (Perilli et al., 2020; Cantonati et al., 2021). Values of the main
physico-chemical parameters recorded during the sampling period
are reported in Table 1.

The most relevant anthropogenic impacts in Balma Lake area
over the last four decades of the 20th century are represented by
the long-distance airborne transport of pollutants from the urban
areas in the plain, grazing activities, and fishing (Pastorino et al.,
2020; Perilli et al., 2020; Cantonati et al., 2021). Although Balma
Lake was originally without fish, the brook trout Salvelinus fonti-
nalis Mitchill, 1814 was introduced for recreational fishing in the
1970s (Balma et al., 1992; Pastorino et al., 2020; Perilli et al., 2020;
Cantonati et al., 2021). The brook trout population is well struc-
tured, with individuals in age classes from 0þ to 4þ and an average
fish biomass equal to 17.9 g m�2 (Pastorino et al., 2020).

2.2. Sediment core sampling and testate amoebae identification

Coring was done during the ice-free period in October 2018
using a 50 mm Kajak-type gravity sediment corer (Renberg, 1991)
and a 30-cm long sediment core was extracted from the deepest
point of the lake (6.42 m depth) (Fig. 1c). The sediment core was
sealed in a coring tube and brought to the laboratory where it was
stored at 4 �C until subsampling. Subsamples were obtained by
cutting the core into 2-cm thick interval transverse sections, in
agreement with previous analyses performed by Perilli et al. (2020)
and Cantonati et al. (2021) for the same site. Each level was named
using the letter “L” for “level” followed by the middle depth of the
section (from L1 for the top level to L29 for the bottom level). The
age-depth model used for the present study was developed for
Balma Lake by Perilli et al. (2020) using the RStudio Package Clam
2.3.2 (Blaauw, 2010) through smooth interpolation function,
analyzing 14C AMS data (two points) and total Pb concentrations



Fig. 1. Study area (a, b) and location of the sediment core sampling station in Balma Lake (c).

Table 1
Mean values and standard deviations of physico-chemical parameters measured at
Lake Balma during the sampling period in autumn 2018 (from Cantonati et al., 2021).
Mean values were calculated from different samplings taken both in littoral areas (5
samplings) and in the profundal zone (3 sampling points, mean depth of the water
column).

Mean ± SD

Temperature (�C) 8.44 ± 0.37
Dissolved oxygen conc. (mg L�1) 5.91 ± 0.32
Oxygen saturation (%) 65 ± 4
pH 7.61 ± 0.10
Conductivity (mS cm�1) 19 ± 1
NH4

þ (mg L�1) 70 ± 40
NO3

� (mg L�1) 7.34 ± 2.06
TP (mg L�1) 10 ± 10
(two points) determined by means of Inductively Coupled Plasma-
Mass Spectrometry (ICP-MS). These data were obtained from
another sediment core collected in 2017 near the core sampling site
considered in the present study. Average sediment accumulation
rate for Balma Lake was 0.018 cm year�1 (Perilli et al., 2020;
Cantonati et al., 2021).
2.3. Core chemistry and sediment characteristics

In order to analyze total carbon content (Ctot), total organic
carbon (TOC, %) and total nitrogen (TN, %), 15 mg of each sediment
sample were manually powdered using an agata mill, and oven-
dried at 105 �C for 24 h. Samples were acidified using HCl,
increasing concentration up to 18%, and processed by frontal
chromatography using a CHN Analyzer (model ECS 4010 CHNSO,
3

manufactured by Costech Analytical Technologies Inc, Valencia,
California, U.S.A) (Hedges and Stern, 1984). C/N ratio was then
calculated.

For trace element (Pb, Zn, As and Cd) determination, freeze-
dried (CoolSafe 55-4 SCANVAC) sediment samples were manually
powdered using an agata mill and aliquots of 0.300 g were acid-
digested in PTFE vessels in a closed microwave system (Multi-
wave PRO Anton Paar, Graz, Austria). The acid-digestion was per-
formed using a mixture of 5 mL of nitric acid (HNO3, 65e69% v/v,
VWR) and 1 mL of hydrogen peroxide (H2O2, 30% m/v, Supelco),
following the modified EPA Method 3052. The obtained solutions
were then centrifuged to remove solid residue particles and diluted
up to a volume of 25 mL by adding MilliQ water. Samples were
diluted 1:20 and analyzed by ICP-MS using a NexION 350X Spec-
trometer equipped with an ESI SC Autosampler (PerkinElmer,
Waltham, Massachusetts, U.S.A.). The instrument was calibrated
using five standard solutions (ranging between 0.5 and 100 mg L�1)
prepared by diluting a multistandard solution for ICP analysis
(10 mg L�1, Periodic Table MIX 1, Sigma Aldrich). Analysis was
performed using the KED (Kinetic Energy Discrimination) mode in
order to avoid and reduce cell-formed polyatomic ion interference.
The precision of the analysis expressed as RSD % was <3%.

For grain size analysis, 2 g of each sediment sample was treated
with hydrogen peroxide (H2O2, 3%) in order to eliminate the ma-
jority of the organic matter. After 24 h samples were washed with
distilled water and filtered with a sieve (1000 mm mesh) to elimi-
nate the coarse component which was then considered separately
for analysis. Samples were then processed with a Malvern Mas-
tersizer 2000 laser diffraction particle size analyzer. As indices of
high transport capacity, one percentile Cm andmedian diameter Mm
were considered.



2.4. Testate amoebae extraction and identification

In order to facilitate sediment break-up, freeze-dried samples
were washed with distilled water and subsequently screened with
a 500 mm sieve to remove coarse organic particles and then with a
45 mm mesh filter to remove fine organic and mineral detritus and
in order to avoid the loss of small specimens (Medioli et al., 1994;
Asioli et al., 1996; Boudreau et al., 2005; Roe and Patterson, 2006;
Wall et al., 2010b). The residues on the 45 mm sieve were retained
for testate amoebae analysis.

Testate amoebae were then extracted, mounted on slides, and
identified and counted using a light microscope at
200e400 � magnification. Identification and classification were
performed according to Mazei & Tsyganov (2006), Mazei and
Warren (2012, 2014, 2015), Siemensma (2021) and Todorov and
Bankov (2019). 300 individuals per sample were identified;
generally, an amount of 150 individuals is considered representa-
tive for paleolimnological investigation, sufficient for community
data statistical analysis, and for a correct estimation of rare species
abundances (Patterson and Fishbein, 1989; Payne and Mitchell,
2009; Wall et al., 2010b). Three subsamples were considered for
each section of Balma Lake sediment core and testate amoeba
densities (ind g�1) were calculated for each subsample.

2.5. Statistical analysis

A principal component analysis (PCA) was used to investigate
the testate amoeba assemblages, using the Q-mode and the VARI-
MAX rotation (Malmgren and Haq, 1982; Mackensen et al., 1990;
Majewski et al., 2018). PC loadings exceeding a value of 0.4 are
regarded as statistically significant after Malmgren and Haq (1982).
Three principal components explain 97.0% of the total variance.
Most PCA components are characterized by a single species with
the highest positive PCA scores contribute to the definition of the
assemblages. Taxa that accounted for at least 2% of the total asso-
ciation in at least two samples were included. Based on the PCA
results, five core section groups, corresponding to different core
zones, were identified (named Groups 1, 2, 3, 4 and 5, from the
bottom to the top of the core).

A resemblance matrix was obtained from testate amoebae
density data using the BrayeCurtis measure and one-way PER-
MANOVA (Anderson, 2001; McArdle and Anderson, 2001) was
performed to check significant differences among assemblages of
the core section groups, which were pairwise compared. Prior to
analyses, data were transformed (log [xþ1]) to reduce the influence
of very abundant taxa (Clarke and Gorley, 2006) and the multi-
variate homogeneity of group dispersions was checked using
PERMDISP2 (Anderson, 2006). A SIMPER analysis (Clarke, 1993)
was applied to the datamatrix to identify themain taxawhichmost
highly contributed to observed significant differences highlighted
by the PERMANOVA.

Redundancy Analysis (RDA) (ter Braak and Smilauer, 1998;
Legendre and Legendre, 1998) was used to investigate the rela-
tionship between testate amoebae and environmental variables
through the core section. RDA was chosen after applying the
Detrended Correspondence Analysis (DCA), as the gradient lengths
were <4 standard deviations (ter Braak & Smilauer, 2012). To avoid
multicollinearity, a subset of environmental variables was chosen
after correlation analyses. The Pearson product-moment correla-
tion coefficient (r) was used for this purpose. If two or more vari-
ables were strongly correlated (threshold value r < [|0.7| and
p < 0.001), one of them was excluded from the analysis (Dormann
et al., 2013). In addition, the presence of fish was also considered a
variable. The total explained variance within the testate amoebae
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species data was partitioned among four groups of variables asso-
ciated with nutrients, trace elements, sediment characteristics and
the presence of fish using variation partitioning analysis (VPA)
(Borcard et al., 1992). The contribution of each variable group was
then plotted as a Venn diagram. The significance of each variable
group and relative interactions were checked using theMonte Carlo
permutation test with 999 permutations.

The analyses described above (PERMANOVA, SIMPER, RDA and
VPA), were also applied to the dataset regarding Chironomidae
assemblages reported for Balma Lake by Perilli et al. (2020), to
check for common ecological trends between testate amoeba and
chironomid assemblages. Chironomid assemblages were deter-
mined via the analysis of another 30 cm-long sediment core, pre-
viously collected in Balma Lake in 2017, near the core sampling site
considered in the present study. Analyses were based on core
section groups identified by the PCA performed on the testate
amoebae and described in this research.

All analyses were performed using RStudio version 2021.9.0.351
(R Core Team, 2021). Figures were produced with RStudio and with
Origin (Pro), (Version 2021b; OriginLab Corporation, Northampton,
MA, USA) and processed with software Inkscape version 0.92.

3. Results

3.1. Core chemistry and sediment characteristics

The grain size analysis highlighted the presence of sandy silt in
all core samples, representing the deep zone of the lake. The
highest values of Mm (61.2) and Cm (789) were recorded at the top of
the core (Fig. 2). Sedimentological changes were observed along the
core sections with poorly sorted sediments in the top and bottom
core sections interspersed by poorly sorted sandy pelite sediments.

Total carbon (Ctot) concentrations ranged between 1.2% and 8.1%,
showing a fluctuating trend with increasing depth, with three
lower values at sections L25, L21 and L9 (1.9%, 1.9% and 1.2%,
respectively) and the maximum values reached at sections L19 and
L29 (6.8% and 8.1%, respectively). Total organic carbon (TOC) and TN
values showed similar parallel trends with maximum values (0.6%
and 7.4%, respectively) in section L29 (bottom of the core) and
alternating increasing/decreasing phases, with lower values at
three levels along the core (in sections L25, L15 and L5). The C/N
ratio increased with increasing depth reaching the maximum value
(11.2) at the bottom, with a drop-down point at sections L13 and
L15 (values equal to 9.1 and 9.2, respectively).

Trace element concentrations showed a constant decreasing
trend from the top to the bottom of the core. Pb, Zn and As
maximum values (73.1, 78.1 and 2.3 mg g�1, respectively) were
recorded at section L3, whereas maximum value for Cd was
recorded in section L5 (0.25 mg g�1). Levels of Pb, Zn and to a lesser
extent As, showed higher concentrations in the upper sections of
the core, decreasing from section L7 towards the bottom. Cadmium
reached generally low concentrations, especially at the top of the
sedimentary sequence decreasing with increasing depth from
section L9 to the bottom.

There was a strong significant correlation among trace element
concentrations (r2 > 0.79, n ¼ 45, p < 0.001), therefore, only Pb and
As were chosen for further analyses. Total organic carbon (TOC) was
strongly correlated with total nitrogen (TN) (r2 ¼ 0.98, n ¼ 45,
p < 0.001), therefore, TOC was excluded from the analyses reported
below. TN was chosen as a significant factor affecting testate
amoeba assemblages (Gilbert et al., 1998). Other correlations
showed values of the Pearson coefficient under the threshold level
indicated by Dormann et al. (2013) (r < [|0.7| and p < 0.001). The
final dataset used for RDA and VPA analyses included the following



Fig. 2. Values of total carbon (Ctot%), total organic carbon (TOC%), total nitrogen (TN%), C/N ratio, trace element concentrations (Pb, Zn, As, Cd, mg g�1) and descriptors of sediment
characteristics (first percentile Cm and median diameter Mm) observed along the sediment core samples of Balma Lake. Samples are indicated by the letter L, followed by the average
depth of the section (L1-L29).
variables: Ctot, TN and C/N for nutrients, Pb and As for trace ele-
ments, one percentile Cm and median diameter Mm for sediment
characteristics and the presence of fish.
3.2. Testate amoeba assemblages

Analyses allowed for the identification of 6946 testate amoebae
individuals (4 genera and 11 species) belonging to Order Arcellinida
Kent, 1880, with four variants (Fig. 3a, Fig. 4, Table 2). The average
density of individuals observed along the core was 644 ind g�1. The
maximum and minimum number of individuals were observed in
sections L7 (1746.7 ind g�1) and L25 (95.8 ind g�1), respectively. The
only exception was section L21 where the testate amoebae almost
disappeared and only a single species was recorded with very low
density (D. viscidula, 2.3 ind g�1). Except for section L21, the
number of taxa ranged between 9 and 13 (Fig. 5a). Values of the
Shannon-Wiener index ranged between 1.46 and 2.02 (sections
L13-L7) and was generally higher downcore than in the top levels
(Fig. 5b). Dominance ranged between 0.16 and 0.35 (sections L15
and L25) (Fig. 5c).

Genus Difflugia was the most abundant along the core, with 8
species (4 variants) (Fig. 3a, Table 2) recorded. Among these species,
Difflugia viscidula was observed in all the core levels and was the
most abundant, ranging from 2.3 to 429.6 ind g�1 (mean density
229 ind g�1). Difflugia rotunda and Difflugia acuminata var. Brevi-
caulis, also showed high densities along the core (ranges 12.1e407.6
ind g�1 and 10.2e372.6 ind g�1, respectively). D. rotunda,
5

D. acuminata var. Brevicaulis, Difflugia oblonga and Difflugia pyr-
iformis were found in all the core levels with the only exception
being section L21. Other Difflugia species were observed discon-
tinuously through the core. Three species did not belong to the
genus Difflugia: Lesquereusia modesta, Centropyxis cassis and Pon-
tigulasia bigibbosa. The latter species was present in all the core
levels except L21, whereas L. modesta, and C. cassis were mainly
found at the top of the sedimentary sequence (Fig. 3a, Table 2).

The Q-mode PCA allowed for the highlighting of five core sec-
tion groups which were identified on the basis of the most abun-
dant species (Fig. 3b). In Group 1 (L29-L27cm/158e260 DC),
D. viscidula and variants of D. acuminata were identified as the
dominant species, in particular D. acuminata var. Brevicaulis.
D. acuminata species decreased in Group 2 (L25-L21 cm/260e675
AD), which was dominated by D. viscidula. Group 3 (L19-L11 cm/
675e1444 AD) was mainly characterized by both D. viscidula and
D. acuminata. The densities of the latter species increased in Group
3, reaching values similar to those observed at the bottom of the
core. L. modesta appeared in this group. However, densities of the
testate amoeba species showed fluctuating trends (Fig. 3; Table 2).
Group 4 (L9-L7/1444e1843 AD) was dominated by D. rotunda,
D. acuminata and D. viscidula. With the only exception being
D. acuminata var. Inflata, all the observed species increased in
density in this group, especially in section L7. Finally, Group 5 (L5-
L1/1843e2017 AD) differed from the others as densities of
D. acuminata and D. viscidula decreased at the top of the core,
whereas D. rotunda became the dominant species.



Fig. 3. Distribution of testate amoebae species (ind g�1, yellow) along the sediment core of Balma Lake (a). Groups of the sediment core samples highlighted by the Q-mode PCA with VARIMAX rotation are reported on the left side
between depths and ages of the sediment core samples. The age depth model was developed for Balma Lake by Perilli et al. (2020). Distribution of Chironomidae genera/species observed by Perilli et al. (2020) (ind g�1, green) were also
reported. The right side of the figure (b) shows the reconstruction of the summer temperatures (June, July, August) for Central Europe in the last 2000 years and the main climatic events which occurred in Europe during the Late
Holocene (source: Büntgen et al., 2021, modified). Characteristics of diatom assemblages studied by Cantonati et al. (2021) in Balma Lake are indicated for each event (red and blue dots). (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version of this article.)
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Fig. 4. Scanning electron microscope of selected arcellininid shells from the study lake (1 - Centropyxis cassis, lateral view; 2 - Difflugia acuminata strain “brevicaulis”, lateral view; 3 -
Difflugia acuminata strain “levanderi”, lateral view; 4 - Difflugia acuminata strain “inflata”, lateral view; 5 - Difflugia lacustris, lateral view; 6 - Difflugia oblonga strain “longicollis”,
lateral view; 7 - Difflugia oblonga, lateral view; 8 - Difflugia rotunda, lateral view; 9 - Difflugia rotunda, apertural view; 10 - Difflugia pyriformis, lateral view; 11 - Difflugia viscidula,
lateral view; 12- Lesquereusia modesta, lateral view; 13e14 - Pontigulasia bigibbosa, lateral view).
3.3. Testate amoebae-environment relationships

All variable groups taken into consideration to explain the
variation of the testate amoeba assemblages through the core were
significant (Table 3) and explained 51.5% of the total variance
(Fig. 6a, c). Among individual fractions, nutrients and trace ele-
ments explained most of the variation (respectively 26.2% and
24.2%). Sediment characteristics explained 13.4% whereas the
presence of fish explained only 2.7%. The same analysis performed
on the Chironomidae assemblages showed that all the variable
groups were significant (Table 3) and explained 56.3% of the total
variation (Fig. 6b, d). Analysis of the individual fractions highlighted
7

that fish occurrence appeared to be associated with the highest
percentage of explained variation (15.0%), followed by sediment
characteristics (9.0%) and nutrients (7.2%). The lowest portion of the
explained variation was associated with trace element concentra-
tions (1.0%).

The application of the PERMANOVA on the testate amoebae
dataset allowed for the detection of significant differences between
the observed groups (Table 4). Group 5 (top of the core) and Group
2 (including section L21) differed from the others. The other groups
did not differ. The SIMPER test highlighted that the observed
dissimilarity was mainly related to D. viscidula, D. Rotunda,
D. acuminata var brevicaulis and var. levanderi. The contribution of
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these species to the dissimilarity was up to 76% (Table 5).
The application of the PERMANOVA to the Chironomidae as-

semblages, based on the core section groups identified by the Q-
mode PCA applied on testate amoebae dataset, also highlighted
significant differences among the core section groups (Table 4).
Only Group 5 significantly differed from the others, which did not
differ among them. The SIMPER test highlighted that the dissimi-
larity was mainly due to Paratanytarsus austriacus type, Micro-
psectra, Zavrelimyia, Psectrocladius, Corynocera oliveri and
Heterotrissocladius marcidus type. These taxa contributed to 95.3%
of the observed dissimilarity (Table 5).

4. Discussion

4.1. Core chemistry and sediment characteristics

The grain size analyses highlighted the occurrence of sandy silt
for the deep area of Balma Lake, with sedimentological variations
observed along the core sections. These results are likely related to
high contribution from the shores with mixed particle size due to
increased/intense precipitation or possible short flash flood events.
Depositional trends in lakes depend on the relationship between
the catchment extension and the lake surface. Lakes with small
catchments generally show low sedimentation rates (Anderson
et al., 2011; Ilyashuk et al., 2011; Arnaud et al., 2016), with values
of approximately 0.01 cm year�1, due to the absence of notable
terrigenous sediment contributions and low primary productivity.
This is likely the case of Balma Lake, which showed a sedimenta-
tion rate equal to 0.018 cm year�1 (Perilli et al., 2020). In this
condition, erosion flux largely depends on the occurrence of
extreme events (Arnaud et al., 2016). For instance, in high altitude
systems dominated by terrigenous sediment, few events play an
important role for the export of sediment from the catchment area
exclusively triggered by flash-flood events such as recorded in Lake
Anterne sediments (Giguet-Covex et al., 2012).

The deposition of TOC is affected by multiple processes
including nutrient inputs, which could increase primary produc-
tion (Anderson et al., 2013; Dietz et al., 2015; Gallant et al., 2020).
In addition, increasing water temperatures and high oxygen
exposition of the sediments contribute to increase TOC minerali-
zation and CO2 production (Sobek et al., 2009; Gudasz et al., 2010;
Marotta et al., 2014; Beaulieu et al., 2019). Moreover, TOC deposi-
tion is influenced by variations regarding the deposition of
terrigenous components due to changes in the landscape
(Anderson et al., 2013; Alcocer et al., 2020). Values of TN and TOC
observed in Balma Lake core varied across the sections and drop-
down events observed in levels L5, L15 and L25 could be related
to decreasing temperatures due to climate changes which occurred
in the late Holocene. On the other hand, increasing temperatures
and insolation could positively affect organic production, as TOC
content in alpine lakes is mainly influenced by climatic factors
(Ros�en, 2005). The range of C/N ratio values observed for Balma
Lake (9.1e11.2) overlap with those related to the occurrence of
phytoplankton (4e10), similar to those related to aquatic macro-
phytes (10e20), and notably lower than those related to terrestrial
plants (>20) (Meyers, 2003; Zhao et al., 2020).

Regarding trace element concentrations in Balma Lake core, the
results from this study were consistent with those reported for
similar alpine lakes in France, Switzerland and Germany. Indeed,
several studies confirmed that the amount of trace elements in
lake sediments has notably increased since the end of the XIX
century (Shotyk et al., 2001, 2003; Arnaud et al., 2003; Arnaud,
2003; Aboud and Nandini, 2009). In detail, the highest trace
element levels were recorded between the 60's and 70's due to the
rapid industrial development in Europe after World War II. In



Table 3
Results of the Redundancy analysis (RDA) and variance partitioning (VPA) performed on testate amoebae species observed in the Balma Lake sediment core samples. Results
of the RDA performed on Chironomidae taxa observed in a core sample collected in the same lake by Perilli et al. (2020) are also reported. VPA groups of variables were
associated with nutrients (Ctot, C/N e TN), trace elements (Pb, As), sediment characteristics (first percentile Cm and median diameter Mm) and the presence of fish. Results of
the VPA applied to the Chironomidae assemblages observed in the Balma Lake sediment core are also reported.

RDA Testate amoebae Chironomids

RDA1 RDA2 RDA1 RDA2

Eigenvalue 0.041 0.024 0.067 0.007
Proportion Explained 0.289 0.169 0.525 0.057
Cumulative Proportion 0.289 0.458 0.525 0.582
Significance (999 permutations) p < 0.001 p < 0.001 p < 0.001 p ¼ 0.025

VPA Testate amoebae Chironomids

Variable r2 Adjusted r2 d.f. F p-level r2 Adjusted r2 d.f. F p-level

Nutrients þ
Trace elements þ Sediment þ Fish

0.603 0.515 8 6.848 < 0.001 0.643 0.563 8 8.092 < 0.001

Nutrients 0.239 0.184 3 4.299 < 0.001 0.083 0.016 3 2.265 0.047
Trace elements 0.207 0.169 2 5.478 < 0.001 0.29 0.257 2 8.597 < 0.001
Sediment 0.078 0.034 2 2.165 0.049 0.108 0.066 2 2.547 0.039
Fish 0.12 0.099 1 5.861 < 0.001 0.45 0.438 1 35.247 < 0.001

Fig. 5. Values of main community indices calculated for testate amoebae assemblages observed in the Balma Lake sediment core. Core section L21 was omitted, as only one species
was observed.
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Fig. 6. Redundancy analyses (RDA) showing the relationships between testate amoebae species and considered variables (a) and between Chironomidae and considered variables
(b). Venn diagrams show the variance partitioning (VPA) results for the four variable groups associated with nutrients (Ctot, C/N e TN), trace elements (Pb, As), sediment char-
acteristics (first percentile Cm and median diameter Mm) and the presence of fish in relation to the testate amoebae RDA (c) and the Chironomidae RDA (d). Unexplained variance and
explanations <1% are not shown.

Table 4
Results of PERMANOVA tests based on testate amoebae and chironomid assemblages observed in the Balma Lake sediment core for the sample groups identified by Q-mode
PCA with VARIMAX rotation applied to the testate amoebae dataset.

Testate amoebae PERMANOVA

Factor d.f. Sum of squares Mean square F r2 p-value

Core section groups 4 1.26 0.315 3.663 0.268 0.002
Residuals 40 3.439 0.086 0.732
Total 44 4.699 1

Chironomidae PERMANOVA
Factor d.f. Sum of squares Mean square F r2 p-value

Core section groups 4 1.534 0.384 8.348 0.455 < 0.001
Residuals 40 1.838 0.046 0.545
Total 44 3.372 1.000
particular, elements such as Zn, Cu, and Pb showed the highest
increasing trends, followed by Hg and Cr (Nedjai et al., 2021). The
rapid decrease of the trace element content observed along the
sediment core of Balma Lake could likely be related to the imple-
mentation of stricter emission standards and the introduction of
lead-free petrol (Br€annvall et al., 2001; Renberg et al., 2001; Siver
10
and Wonziak, 2001). Indeed, since the 1970s, Pb emissions have
decreased by 60e70% (Pacyna et al., 2007; Renberg et al., 2002;
Thevenon et al., 2011), also showing a strong declining trend in Italy
(ISPRA, 2009). In addition, stricter emissions for industrial activities
were introduced in the same periods (Ministerial Decree July 12th,
1990).



Table 5
Results of SIMPER tests based on testate amoebae and chironomid assemblages observed in the Balma Lake sediment core for the sample groups identified by Q-mode PCA
with VARIMAX rotation applied to the testate amoebae dataset.

Testate amoebae Chironomidae

Taxon Av. dissim Contrib. % Cumulative % Taxon Av. dissim Contrib. % Cumulative %

Difflugia viscidula 12.07 29.88 29.88 Paratanytarsus austriacus type 18.68 48.43 48.43
Difflugia rotunda 7.46 18.45 48.33 Micropsectra 11.32 29.34 77.77
Difflugia acuminata var. Brevicaulis 7.25 17.94 66.27 Zavrelimyia 3.46 8.96 86.74
Difflugia acuminata var. levanderi 3.93 9.72 75.98 Psectrocladius 1.68 4.36 91.09
Pontigulasia bigibbosa 2.16 5.34 81.33 Corynocera oliveri 0.87 2.26 93.36
Difflugia oblonga 2.07 5.13 86.46 Heterotrissocladius marcidus 0.76 1.96 95.31
Difflugia pyriformis 1.76 4.34 90.8 Orthocladius 0.67 1.73 97.04
Lesquereusia modesta 1.03 2.55 93.35 Metriocnemus 0.58 1.51 98.55
Difflugia acuminata var. Inflata 0.95 2.35 95.7
4.2. Temporal changes in testate amoeba assemblages

Variations recorded for testate amoeba assemblages in Balma
Lake sediment core allowed for the identification of different time
periods/level groups that could be summarized as follows:

� Group 1 (L29-L27cm/158e260 AD): sediment parameters (Mm
and Cm) did not allow for the highlighting of abundant inputs of
coarse sediment in Balma Lake catchment, but this group is
related to the highest C/N values observed along the core, which
indicates the increasing contribution of land-plant organic
matter in Balma Lake (Meyers, 2003). The dominant species
were D. viscidula and D. acuminata with its different variants.
The latter species prefers alkaline pH levels (Qin et al., 2013;
Todorov and Bankov, 2019) and high nutrient concentrations
(Schwind et al., 2017). The functional traits of D. acuminata could
help the species for stabilization and predation (Han et al., 2008)
and/or act as defense against predation (Gomaa et al., 2015).
D. viscidula, which has one of the greatest shells observed in the
present study (~320 mm) (Fig. 4). This is a functional trait that
could be related to a high sensitivity to environmental changes,
as larger shells need more time to recover compared to small
organisms (Marcisz et al., 2020). These findings allow one to
suppose that the Group 1 period was characterized by stability
in precipitation regimes. These data suggest the occurrence of
exogenous nutrient inputs in Balma Lake due to high precipi-
tation and rainfall, in agreement with Büntgen et al. (2016,
2021) defining this period as “Late Roman Pluvial”. This finding
is supported by the results of the RDA and VPA application that
highlighted how nutrient features explain most of the observed
variance in testate amoeba assemblages.

� Group 2 (L25-L21 cm/260e675 AD): sediment texture param-
eters did not highlight the presence of exogenous terrigenous
inputs, whereas TOC, TN and C/N values decreased from levels
observed in the previous group. The most abundant species is
D. viscidula, which showed a decreasing trend in the L25 section
and then increase densities in L23, indicating again stability in
precipitation regimes. On the other hand, in section L21 testate
amoebae almost disappeared. This dramatic reduction of the
amoebae assemblage could be related to a marked decrease in
water temperatures due to the “Late Antique Little Ice Age”
(LALIA) (536e660 AD), in associationwith drought time periods
(Büntgen et al., 2016, 2021). The L21 period was dated as
513e626 AD (Perilli et al.,0.2020; Cantonati et al., 2021) and was
associated with the presence of diatom species belonging to
genus Psammothidium, which includes cryophilic species such
as the cold stenothermic Psammothidium curtissimum
(Cantonati et al., 2021), in agreement with the LALIA period.
11
� Group 3 (L19-L11 cm/675e1444 AD): trends observed for Mm
and C/N showed high variability and highlighted the presence of
exogenous inputs. The dominant species were D. viscidula,
D. rotunda and D. acuminata, whereas Lesquereusia modesta
appeared. The latter species shows a shell made both of exog-
enous particles and by biogenic siliceous structures (Beyens and
Meisterfeld, 2001; Todorov and Bankov, 2019) and prefers
alkaline pH levels (Payne et al., 2008). Moreover, L. modesta
could be found in habitats with a presence of high detritus
content and macrophytes (Lansac-Tôha et al., 2014; Siemensma,
2021), and it has been recognized that the species could be
considered an indicator of both macrophytes and periphyton
(Tran et al., 2021). In addition, the occurrence of D. rotunda is
related to habitats with epiphytic vegetation and/or planktonic
organisms (Marcisz et al., 2020). The association between
D. acuminata and L. modesta could be related to nutrients and
plant particle inputs from the shoreline during this period, in
agreement with values of sediment texture parameters and C/N
trends. The exogenous inputs were likely related to increased
precipitation and alluvial events, which could have caused an
increase both in the hydrometric level of the lake and in the
material flow to the center of the lake. In fact, the period cor-
responding to the L19 core level is reported by Büntgen et al.
(2021) as “Early Medieval Pluvial”. This period was followed
by phases called “Medieval Drought” and “Late Medieval
Pluvial” (Fig. 3b). The variability observed in the Group 3 period
from core sections L19 to L11 (nutrients, sediment grain size and
composition and fluctuating densities of testate amoeba spe-
cies) could likely be related to the alternating phases identified
in the medieval period (Trouet et al., 2009).

� Group 4 (L9-L7/1444e1843 AD): grainsize parameters showed
reduced variability in relation to possible low fluxes of exoge-
nous material. Total carbon (Ctot), TN and TOC showed fairly
constant concentrations, with the lone exception of the L9
dropdown point, whereas values of the C/N ratio indicate a high
contribution of vegetal organic matter. This is confirmed by the
density of L. modestawhich reached its highest density in Balma
Lake sediments, as the dominant species were D. acuminata,
D. viscidula, and D. rotunda. However, all testate amoebae spe-
cies increased in density except D. acuminata var. Inflata.
Moreover, the L7 core section showed the highest density value
of testate amoebae along the sediment core. The general
development observed for the testate amoeba assemblages is
also confirmed by the community indices, with the highest
values observed for species number and the Shannon-Wiener
index and the lowest value recorded for dominance (Fig. 5b).
The period corresponding to core section L7 is known as “Little
Ice Age Pluvial” (Büntgen et al., 2006, 2011, 2021; Frank et al.,
2010) which was recorded between the so-called minimums



of Maunder and Dalton (Büntgen et al., 2006; Delaygue and
Bard, 2010). The conditions corresponding to the Group 4
period seemed to promote the development of testate amoeba
assemblages.

� Group 5 (L5-L1/1843e2017 AD): at the top of the sediment core,
grainsize parameters (Cm and Mm) are notably higher than in
other groups and reach the maximum values at the top section
(L1), indicating an increase in coarse particles from the lake
catchment. This could be exclusively triggered by flash-flood
events as previously recorded in Lake Anterne (Giguet-Covex
et al., 2012). D. viscidula and D. acuminata showed marked
decreasing trends, while D. rotunda became dominant at the top
of the core. However, in this group a general decreasing trend
was observed for the whole testate amoebae assemblage.
Anthropogenic impact characterizes the Group 1 core sections.
As highlighted by the RDA and VPA analyses, after nutrients,
trace elements were found to be one of the most important
factors in shaping the amoeba assemblages in Balma Lake. It is
known that the occurrence of potentially toxic trace elements
could affect testate amoeba assemblages (Asioli et al., 1996;
Patterson,1996; Sigala Regalado et al., 2018;Wanner et al., 2019;
Ndayishimiye et al., 2021). Nguyen-Viet et al. (2007) observed a
general decrease in testate amoebae abundances in zones
characterized by elevated concentrations of potentially toxic
trace elements. However, The increase in TOC and TN values and
the decrease in the C/N ratio indicate the prevalence of aquatic
(algae) origin of sedimentary organic matter than in previous
sections and a concurrent high terrigenous input to the sedi-
ments with elevated sedimentation rates and short transport of
the sinking particles (and hence low exposure to water column
oxidation). This could also be related to softer precipitation
regime linked to the drying trend observed by Büntgen et al.
(2021). The influence of the temperature increase was also
highlighted by the size of the amoebae, whichwere smaller than
those observed in the other core sections. Indeed, it has been
demonstrated that decreasing trends in amoebae shell dimen-
sion is correlated to a temperature increase (Wanner, 1994;Wall
et al., 2010a). The observed changes in species richness as
recorded by Wall et al. (2010a) in the sediment core of the Lake
Lautrey, are related to the response of testate amoeba assem-
blages to climate change and seems to be more rapid and
marked in assemblage structure and composition and particu-
larly in terms of species dominance (Wall et al., 2010a;
Ndayishimiye et al., 2020). Wall et al. (2010b), besides, reported
during warmer climatic periods the dominance of small species
such as Paraquadrula irregularis, unrecovered in Balma Lake
sediment record. The use of mesh-size filters greater than the
25 mm mesh-size could have partially reduced intersample dif-
ferences and altered the species richness and assemblage
structure (Wall et al., 2010b), even if numerous studies have
highlighted that it is adequate a 40e55 mm screen to retain
testate amoebae because most specimens are found in the
44e174 mm size fraction (Ellison, 1995; Patterson and Kumar,
2000, 2002).

As highlighted by the application of the PERMANOVA, testate
amoeba assemblages significantly differed from those observed in
the rest of the sediment core and were characterized mainly by
decreasing trends for all the observed species, in particular for
D. acuminata. The dominant species is D. rotunda characterized by a
small test, which could be considered a better adaptation to survive
under dry conditions and/or in sites following direct human-
induced impact (McKeown et al., 2019; Marcisz et al., 2016).
Interestingly, Centropyxis cassis was observed among the species
that maintained good density values in the top sediment core
12
section. It was reported that most Centropyxis taxa are opportu-
nistic and capable of existing in water systems where elevated
concentrations of trace elements occurred, as well as in oligotro-
phic water with low organic content (Patterson, 1996; Kauppila
et al., 2006; Kihlman and Kauppila, 2009, 2012; Qin et al., 2016),
such those of Balma Lake.

4.3. Testate amoebae and other paleolimnological proxies

The results presented in this study were found to be consistent
with those obtained using other paleolimnological proxies, in
particular regarding the trophic condition of Balma Lake, which
could be considered an oligotrophic environment still unaffected
by acidification processes. Based on the chironomid assemblage
analysis, Perilli et al. (2020) reported that Balma Lake has main-
tained an oligotrophic status over the past 2000 years. Moreover,
Cantonati et al. (2021), based on a diatom assemblage study, stated
that slight alterations in the trophic level of Balma Lake might have
occurred or are still occurring, but it can still be considered an
oligotrophic environment. This is highlighted by the occurrence of
some testate amoeba species such asDifflugia pyriformis, which was
found all along the sediment core. D. pyriformis is characterized by a
large shell with a piriform shape (Fig. 4), commonly associated with
well oxygenated benthic habitats and oligotrophic conditions
(Gomaa et al., 2012; Lansac-Tôha et al., 2014; Lahr et al., 2019;
Krashevska et al., 2020). Another species observed in all the sedi-
ment core sections is Difflugia oblonga, commonly associated with
alkaline pH values, high oxygenation levels and oligotrophic envi-
ronments (Velho et al., 2003; Qin et al., 2013). The presence of other
species associated with alkaline pH levels such as D. acuminata
(Todorov and Bankov, 2019), L. modesta (Payne et al., 2008) and
D. oblonga suggest that Balma Lake generally maintained an alka-
line condition over time, in agreement with findings by Cantonati
et al. (2021).

Regarding the Chironomidae assemblages reported by Perilli
et al. (2020), the PERMANOVA did not show significant differ-
ences among the core Groups presented in this study, except for the
top core levels (Group 5). However, the factors involved in shaping
the assemblages seem to be slightly different: testate amoebae
seem to be more affected by nutrient loads and by trace element
concentrations than chironomid assemblages, as highlighted by the
RDA and VPA results. Chironomidae RDA seem to identify a gradient
related to the first RDA axis (Fig. 6b) and VPA analysis highlighted
that the presence of fish is the major factor influencing the vari-
ability observed in chironomid paleocommunities of Balma Lake
sediment core, whereas the contribution of this factor in shaping
testate amoeba assemblages is reduced. This could also be high-
lighted by the gradient observed in the chironomid RDA, related to
the taxa distribution along the first axis. Among these taxa,
Micropsectra, Corynocera oliveri and Heterotrissocladius marcidus
type take place on the left side of the graph, whereas Paratanytarsus
austriacus type, Psectrocladius, and Zavrelimyia can be found on the
right side. This trend reflects the changes chironomid assemblages
due to the presence of fish, described by Perilli et al. (2020), but an
indication due to the water temperature increase (related to
climate change) could also be noticed. Micropsectra, Corynocera
oliveri and Heterotrissocladius marcidus types are cold stenothermic
taxa, generally associated with oligotrophic conditions (Brooks
et al., 2007; Moller Pillot, 2009), whereas P. austriacus type is
often related to a macrophyte presence or non-vascular plant
vegetation (Buskens, 1987; Brodersen et al., 2001; Brooks et al.,
2007), and Psectrocladius is generally associated with macrophyte
presence and/or productive lakes (Brodersen et al., 2001; Langdon
et al., 2010; Axford et al., 2017). Finally, Zavrelimyia is adapted to
warmer temperatures and shallow habitats and its presence could



be related to an increase in lake productivity especially associated
with warm summers (Perilli et al., 2020). The effect of fish intro-
duction as a source of impact on lakes is well known (S�anchez-
Hern�andez et al., 2015; Milardi et al., 2016; Raposeiro et al.,
2017), and it likely contributes to shaping the chironomid assem-
blages in Balma Lake. On the other hand, it may also be considered a
complementary factor with other environmental impacts, in
particular with climate change which has heavily affected chiron-
omid assemblages in alpine lakes (Perilli et al., 2020). However, this
feature seemed to have less effect on testate amoeba assemblages
in Balma Lake, which appeared to be more affected by other factors
such as nutrients and trace element occurrence.

5. Conclusions

The present study reports the results of paleolimnological
analysis carried out using testate amoebae in Balma Lake, an alpine
high altitude lotic environment in the Western Italian Alps and
represents the first attempt to investigate temporal changes in
testate amoeba assemblages in the European Alps, since little in-
formation regarding changes of testate amoeba assemblages in
high altitude lakes is currently available. Results from this research
confirmed the trends previously observed in Balma Lake through
the study of other paleolimnological proxies, but also highlighted
that the testate amoebae could be used as an integrating proxy, as a
useful tool to detect some effects caused by pollution and/or
nutrient alterations in paleolimnological reconstructions.
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