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Abstract. Time-to-flood is a key parameter during a flooding emergency. Espe-

cially in complex geometries, it is important to know the time needed to fill the

first flooded room, i.e., the damaged one. Here, a fast solution for the assessment

of the time-to-flood of one or two parallelepiped rooms is proposed. The progres-

sive flooding of the rooms is first simulated employing a linearised simulation tech-

nique that defines a database of damage cases covering a wide range of geometries.

Explicit equations are then defined based on the main non-dimensional parameters

governing the phenomenon. The work highlights the relationship between the ge-

ometry of a room, the damage opening, the connection opening, and the time to fill

the first damaged room. The application of the equations is very fast and provides

an instantaneous estimation of the time-to-flood. This makes them particularly suit-

able for direct application on board or when creating large datasets of flooding sim-

ulations.

Keywords. progressive flooding, time-to-flood, linearised simulation, explicit

equations

1. Introduction

As a consequence of a collision or grounding, the ship’s integrity might be compromised

leading to progressive flooding. Due to the dimension and location of the damage and

the complexity of the internal subdivision, the progressive flooding might last from a few

seconds up to several hours. During a flooding emergency, the knowledge of the time-

to-flood, i.e. the duration of the progressive flooding is widely recognised as key infor-

mation for the crew [1]. In the recent past, several studies addressed the fast progres-

sive flooding simulation in the time domain, e.g. [2,3,4,5], with the purpose to provide

decision support on a damaged ship [6,7,8,9,10].

Besides the duration of the whole progressive flooding of a damaged ship, which

is essential for emergency decision support purposes [11], it might be very useful to

predict the time required to fill the damaged rooms that constitute the first item of the

flooding chain. For instance, such a kind of information might be used to detect the

damage dimension onboard [12] or to allow the definition of boundaries in the databases

generation of progressive flooding simulations [13].
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To address these problems, in the present paper, the time frame is studied considering

the progressive flooding of simple geometries. In detail, explicit equations are derived to

predict the filling time of a parallelepiped room based on a large number of progressive

flooding simulations. Then, a correction factor is defied to consider the effect of a second

room connected to the first one. This approach might be easily applicable to modern

ships such as cruise vessels, bulk carriers or tankers, where most of the internal rooms

are shaped as parallelepipeds except for aft and fore slender bodies.

2. Material and Methods

In the present section, the mathematical formulation of the studied problems is defined

distinguishing the one-room case and the two-rooms case. Both the problems are treated

in a non-dimensional form to make the results independent from the scale of the con-

sidered geometries and enable a wider application of the results. Then, the adopted pro-

gressive flooding simulation technique is briefly outlined, along with the adopted opti-

misation method used to assess the coefficients of the explicit equations that best fits the

results of the progressive flooding simulations.

2.1. Problem Definition

Considering a parallelepiped room in upright position (Fig. 1) and assuming that its

position does not change during flooding process, it can be defined a non-dimensional

time-to-flood ta to make the progressive flooding process independent from the room

dimension as:

ta = t f

√

g

zb
= f

(

z

zb
,
A

S

)

(1)

where t f is the time-to-flood measured in seconds, g is the gravity constant and zb is

the draught of the room bottom measured in earth fixed reference system having vertical

axes z orthogonal to the free surface and positive upwards. The non-dimensional time-

to-flood can be expressed as a function of two non-dimensional quantities: z/zb and A/S,
where z is the draught of damage centre, A its effective area including the reduction due

to discharge coefficient Cd and S is the waterplane area in the flooded room, which is

constant when considering a fixed parallelepiped room.

In the present study, the two-rooms case (Fig. 1) is composed of two parallelepiped

rooms having the bottom at the same level. The first flooded room is connected with the

S

R

z

 

 

zb

S

z

 

zb  1

R R1

S 1

Figure 1. Sketch of the adopted one-room (R0) and two-rooms (R0, R1) geometries
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second one through an opening having area A1 and being located on the floor of the first

flooded room. Moreover, It is assumed that the second room has a constant free surface

area equal to S1.

With these assumptions, the Equation (1) can be used to evaluate the time-to-flood

tamin of the first room volume and tamax , i.e. the one related to the sum of the two rooms

volumes. The filling time of the first room ta in the two-rooms case cannot be lower than

the time-to-flood tamax related to the single room and cannot be lower than one-room case

one tamin and cannot be larger than the one required to fill a parallelepiped room having

free surface equal to S+S1. Thus, the following equation shall be satisfied:

tamin = f

(

z

zb
,
A

S

)

≤ ta ≤ tamax = f

(

z

zb
,

A

S+S1

)

(2)

Hence, a correction factor ct can be defined as:

ct =
tamin
ta
= f1

(

A1

A
,
S1

S

)

(3)

where ta is related to the time-to-flood of the first room connected to the second room.

The correction factor has unitary value if one of the two parameters is null, otherwise it

assumes values within the range [1,0[. Finally, if A1/A→ ∞, the correction factor is:

ct∞ = tamin/tamax (4)

2.2. Simulation Method

In the present work, the simulations on the considered simple geometries are carried out

using a linearised method [14] applying an adaptive integration time step [15]. In the

following, the method is briefly described. The progressive flooding process is governed

by the conservation of mass applied to each room and the steady Bernoulli equation

applied on all the openings connecting two rooms or a room to the sea. Considering an

i-th room connected to other j rooms by Ni openings the governing equations are:

żiSi ≈ V̇i =
Ni

∑
j=1

Q ji (5a)

Q ji = K ji sgn(z j− zi)
√

|z j− zi| (5b)

where Q ji is the volumetric flowrate through an opening connecting j-th to i-th rooms, V̇i
is the time derivative of the floodwater volume inside the i-th room, Si its waterplane area,

zi the level of floodwater in the earth-fixed reference system, K ji = A ji

√
2g is a constant

depending upon opening geometry and Ai j is the effective opening area (properly reduced

via discharge coefficient).

Considering a generic time instant t∗, when n rooms are partially filled with levels z∗

and combining the equations (5a) and (5b), a system of non-linear ordinary differential

equations can be written as:
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ż= f (z) (6)

As a level perturbation z
′

= z− z∗ is defined, the system can be linearised in z∗:

ż
′

= J(z∗)z
′

+ f (z∗) (7)

where J is the Jacobean matrix of f (z) evaluated in z∗. According to [14], the Jacobean

matrix can be decomposed through the single value decomposition as J(z∗) = V×D×

V−1. Thus, introducing u= V−1z
′

, the Equation 7 becomes:

u̇= Du+V
−1 f (z∗) (8)

where D is a diagonal matrix. Therefore, the differential equations of the system (8) are

decoupled obtaining an algebraic solution in the form:

zi = z∗i +
n

∑
j=1

Vi jv j

(

eD j j(t−t∗)
−1

)

D j j

(9)

The solution can be used to estimate the floodwater levels at the next time step dt, which

is adapted at each step according to:

dt = kdt

zb

max ż∗
(10)

where kdt is a constant quantity governing the integration accuracy. Here, it is assumed

equal to 0.01 based on an experimental tuning [15].

2.3. Definition of Coefficients

The explicit equations have been defined in order to reproduce the shape of the ta and ct

obtained through the flooding simulations carried out on the tested geometries. Given an

equation under investigation, it can be defined according to some coefficients a. For each

set of coefficients, it can be assessed the Sum of Squared Errors SSE as:

SSE(a) =
N

∑
i=1

(yi − y∗

i (a))
2

(11)

where N is the number of progressive flooding simulations, yi is the value of ta or ct esti-

mated according to the i-th progressive flooding simulation and y∗

i is the value estimated

with the explicit equation under analysis.

The coefficients are, then, defined as the ones minimising the SSE. The minimum

is found using the Nelder-Mead simplex algorithm in the form defined by [16] assum-

ing 10000 maximum iterations number and a proper set of initial guess values for the

coefficients of the explicit equation.

The overall quality of the obtained equations is also reported in terms of coefficient

of determination R2, defined as:
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R2 = 1−
SSE

∑
N
i=1 (yi− ȳ)

2
(12)

where ȳ is the data point mean value.

3. Application

In the following, the obtained explicit equations for the one- and two-rooms cases are

presented along with the obtained values of the coefficients. The form of the equations

has been inferred from a preliminary analysis of the progressive flooding simulations

results, in order to best fit the simulated values. Then, coefficients values have been

defined according to Section 2.3.

3.1. One-Room Case

To define the explicit equation for ta in the one-room case, 10000 progressive flooding

simulations have been carried out with z/zb and A/S randomly selected in ]0,1[ range

through the Monte Carlo method. The equation that best fits the records reads:

1

ta
=a0 +a1 ln

z

zb
+a2

(

ln
z

zb

)2

+a3

(

ln
z

zb

)3

+a4

(

ln
z

zb

)4

+
A

S

[

a5 +a6 ln
z

zb
+a7

(

ln
z

zb

)2

+a8

(

ln
z

zb

)3
] (13)

Using the coefficients provided in Table 1, an R2 = 0.9999 has been obtained. Figure 2

shows the results of the explicit equation for the one-room case.

Table 1. Coefficients of multivariate regression for single room geometry

a0 a1 a2 a3 a4

-3.21E-03 -2.45E-02 -3.10E-02 -1.28E-02 -1.64E-03

a5 a6 a7 a8

7.88E-01 3.75E-02 -8.39E-02 -1.40E-02

3.2. Two-Rooms Case

Considering the two-rooms case, in a preliminary analysis it was observed that, taken a

generic S1/S value, ct = 1 for A1/A = 0. As A1/A = 0 grows, ct decreases fast reaching

a local minimum, than ct slightly increases up to an horizontal asymptote. As previously

mentioned, for A1/A→ ∞, ct → ct∞ .

It is worth noticing that, for the considered two-room geometry, the position of the

minimum is independent by the value of S1/S. Thus, two different approaches have been

adopted to mimic the ct before and after the minimum. To define the explicit equations,

20 values of S1/S have been separately investigated ranging between 0 and 40. For each

value 10000 progressive flooding simulations have been carried out. The damage cases
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Figure 2. Comparison of the surface resulting from the equation and the simulated points in the one-room

case

have been generated with Monte Carlo sampling assuming z/zb and A/S in ]0,1[ range
and A1/A in ]0,2] range. As the simulated ct values have been defined, the position of the

minimum of ct as been computed as (A1/A)min = 0.2024. Furthermore, the value of the

minimum can be estimated with the following explicit equation (coefficients provided in

Table 2) based on the 20 values of S1/S, having SSE = 2.39E−04 and R2 = 0.9998:

ctmin = 1+a1 exp

[

−b1

(

S1

S

)c1
]

+a2 exp

[

−b2

(

S1

S

)c2
]

−a1−a2 (14)

Table 2. Coefficients of multivariate regression for ctmin

a1 b1 c1 a2 b2 c2

5.38E-01 2.02E+00 1.27E+00 4.46E-01 6.80E-01 6.87E-01

In the range A1/A =]0,(A1/A)min], considering the Equations (4) and (14), the cor-

rection factor has been estimated with a 7th-order Fourier expansion passing through
(0,1) and the minimum point:

ct

(

A1

A
,
S1

S

)

= 1− (1− ctmin )

[

a1 sin

(

ω

A1

A

)

+a2 sin

(

3ω

A1

A

)

+

+a3 sin

(

5ω

A1

A

)

+a4 sin

(

7ω

A1

A

)]

(15a)
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a1

(

S1

S

)

= a11 exp

[

−a12

(

S1

S

)]

+1−a11+a13

(

S1

S

)a14−1

exp

[

−a15

(

S1

S

)a14
]

a2

(

S1

S

)

= a21 exp

[

−a22

(

S1

S

)a23
]

−a21

a3

(

S1

S

)

= min

(

0, a31 exp

[

−a32

(

S1

S
−a33

)]

−a31

)

a4

(

S1

S

)

= a1

(

S1

S

)

−a2

(

S1

S

)

+a3

(

S1

S

)

−1

ω =
π

2
(

A1
A

)

min

(15b)

The values of the coefficients have been defined with a two-step approach. First, the

coefficients a1,a2,a3 have been evaluated to fit the simulated values of ct at each constant

value of S1/S. Then, the methodology described in Section 2.3 has been again applied to

obtain explicit equations to compute the coefficients a1,a2,a3 as a function of S1/S. The
results are provided in Table 3 along with the obtained SSE and R2.

Table 3. Coefficients of multivariate regression up to (A1/A)min

i ai1 ai2 ai3 ai4 ai5 SSE R2

1 3.46E-02 2.76E+00 -1.65E-01 1.32E+00 3.90E-01 0.0018 0.971

2 2.07E-01 2.24E+00 1.45E+00 - - 0.0007 0.9850

3 1.15E-01 3.71E-01 9.01E-01 - - 0.0013 0.9311

In the range A1/A=](A1/A)min,2], a process has been applied similar to the previous
one. In this region the following formulation of the explicit equation has been defined:

ct

(

A1

A
,
S1

S

)

= (ct∞ − ctmin )arctan

(

2a

π

A1

A

)

− ctmin

a

(

S1

S

)

= a1

(

S1

S

)

−a2

+a3

(

S1

S

)

−a4

+a5

(16)

Such a formulation imposes the passage through the minimum point with a horizon-

tal tangent, assuring the continuity of the function and its first derivative, and presents

the horizontal asymptote at ct∞ value. The explicit equation, assuming the coefficients

provided in Table 4, lead to SSE = 0.8644, R2 = 0.9998.

Table 4. Coefficients of multivariate regression above (A1/A)min

a1 a2 a3 a4 b5

1.34E-06 1.22E+01 9.79E+00 9.57E-01 1.67E+00

3.3. Discussion

Considering the one-room case, the proposed equation captures very well the behaviour

of the non-dimensional time-to-flood. In detail, 1/ta is a linear function of A/S. The
slope and intercept of this linear relation is a function of the natural logarithm of the

z/zb. In detail, third- and fourth-order polynomials provide good results for the slope

and intercept respectively. The ranges of the equation’s parameters cover all the possible

configurations that might arise in a real environment.
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Regarding the two-rooms case, it has been studied in terms of correction coefficient

ct . In Figure 3, the results from the simulations and derived equations are compared for

three different values of S1/S. It is worth noticing that the proposed equations reproduce
well the simulated values of ct . Considering the corrected ta obtained by reversing Equa-

tion (3), the maximum value is always located at (A1/A)min. The relative dimension of

the rooms, expressed by the ration S1/S, only affects the magnitude of the maximum,

i.e. the non-dimensional time-to-flood increases with S1/S. Regarding the ranges of the

Figure 3. Comparison of the results from explicit equations and the simulated points in the two-rooms case

equations’ parameters, it is worth to notice that the considered range of A1/A up to 2

is sufficient to allow the function tail to converge towards ct∞ , as can be seen in Fig-

ure 3. The chosen range of S1/S up to 40 lead to a value of ctmin = 1.54E− 2, which is

very close to the theoretical limS1/S→∞ ctmin(S1/S) = 1.53E−2. It was observed that fur-

ther increasing S1/S does not change significantly the results of the progressive flooding
simulations.

4. Conclusions

This study provides a better understanding of the physical basis of the phenomenon of

progressive flooding. In the case of a single-room case, it is possible to understand the

connection between the main non-dimensional quantities describing the geometry and

the non-dimensional time-to-flood. This approach makes the developed model indepen-

dent from the scale of the studied problem.

Moreover, the applicability of the model in the case of two rooms can be extended in

a very simple way by considering only some additional parameters. Thus, the two models

together ensure instantaneous estimation of the time-to-flood for a very wide range of

cases, which are very common in the subdivision of real ships.

In the present work, the flooded rooms were assumed to extend vertically above

the waterline. Thus, it cannot deal with spaces that are vertically bounded by an upper
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deck below the waterline. Since this is the case on many cruise ships, future work could

address such cases by introducing a new correction coefficient. This could greatly ex-

tend the applicability of the explicit equations derived in this study to a wider range of

geometries.
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[13] Braidotti L, Prpić-Oršić J, Valčić M. Effect of Database Generation on Damage Consequences Assess-

ment Based on Random Forests. Journal of Marine Science and Engineering. 2021;9(11):1303.

[14] Braidotti L, Mauro F. A New Calculation Technique for Onboard Progressive Flooding Simulation.

Ship Technology Research. 2019;66(3):150-62.

[15] Braidotti L, Mauro F. A Fast Algorithm for Onboard Progressive Flooding Simulation. Journal of

Maritime Science and Engineering. 2020;8:369.

[16] Lagarias JC, Reeds JA, Wright MH, Wright PE. Convergence Properties of the Nelder-Mead Simplex

Method in Low Dimensions. SIAM Journal of Optimization. 1998;9(1):112-47.

L. Braidotti et al. / Fast Estimation of the Time-to-Flood on Simple Geometries 563

9




