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Abstract—Network monitoring is fundamental to understand
network evolution and behavior. However, monitoring studies
have the main limitation of running new experiments when the
phenomenon under analysis is over e.g., congestion. To overcome
this limitation, network emulation is of vital importance for
network testing and research experiments either in wired and
mobile networks. When it comes to mobile networks, the variety
of technical characteristics, coupled with the opaque network
configurations, make realistic network emulation a challenging
task.

In this paper, we address this issue leveraging a large scale
dataset composed of 500M network latency measurements in
Mobile BroadBand networks. By using this dataset, we create 51
different network latency profiles based on the Mobile Broad-
Band operator, the radio access technology and signal strength.
These profiles are then processed to make them compatible with
the tc-netem emulation tool. Finally, we show that, despite
the limitation of current tc-netem emulation tool, Generative
Adversarial Networks are a promising solution used to create
realistic temporal emulation.

We believe that this work could be the first step toward a
comprehensive data-driven network emulation. For this, we make
our profiles and codes available to foster further studies in these
directions.

|. INTRODUCTION

Mobile devices dramatically revolutionized the way we in-
teract with the Internet offering access to the web video, and
messaging applications in mobility with a capacity comparable
with the wired network [1]. As a result, nowadays a huge
amount of the internet traffic is generated in mobility.

In this scenario, Mobile BroadBand (MBB) network opera-
tors have to face severe challenges to catch up with the rapid
evolution of the network condition location and technologies.

For these reasons monitoring the network became a fun-
damental task needed to understand the network behavior.
By monitoring and measuring, researchers can quantify the
evolution of technologies, protocols, setups and website de-
sign. Not surprisingly over the years, the research community
has put a lot of effort into measuring the benefits of new
technologies [2], [3], [4]. Previous studies focused on different
aspects, and often addressing specific angles of this complex
ecosystem [5], [6], [7], [8], [9], [10].

However, despite monitoring is a perfect solution to profile
and understand specific measurements, e.g., network latency,
it does not allow per se to run repeatable experiments. Once a
particular phenomenon, e.g., congestion, is over, running new
experiments on the same condition is impossible. To overcome
this limitation, a specific phenomenon can be modeled, and
then the model can be used in an emulated environment to
run new experiments with the same condition. As a result,

new experiments can be performed without the needs of a
particular phenomenon happening.

In this work, we address this problem by using an open
dataset collected by the MONROE platform1 The MONROE
platform consists of 96 nodes in four European countries. Each
node is equipped with MBB subscription that continuously
(i.e., every 1 second) measures network latency towards ded-
icated servers by using ICMP pings. In addition to network
latency, the MONROE nodes collect different physical-layer
information such as frequency, radio access technology (RAT),
signal strength, etc.

By using this dataset, we first create MBB network latency
profiles separately for each operator, RAT (i.e., 3G and 4G),
signal strength quality, and roaming condition. By leveraging
more than 500 M latency measurements from 11 different
service providers, in 96 different locations, from 4 different
countries, we created 51 latency profiles. Secondly, we feed
each profile into the tc-netem Linux tool2 creating an
emulated environment where we can run further experiments
under specific network latency conditions, e.g., evaluating the
users’ experience accessing the network with the poor 4G
connection.

Finally, we explore more sophisticated techniques to achieve
a realistic temporal emulation. We extract time series from
latency measurement, and use them to train Generative Adver-
sarial Neural Network (GAN) [11] models. GANs have been
proved to be powerful generative models, able to understand
complex distributions behind e.g., images and text. We show
that GANs can model the time dimension of latency mea-
surement, generating e.g., peaks, following the same latency
distribution of the training data i.e., offering realistic profiles.
Despite the promising capabiliies of GANs, the de facto
standard tool (tc-netem) lacks the capability of using user-
defined time series.

Our work poses itself as preliminary work to emphasize the
challenges and the importance of latency profiling and emula-
tion in operational mobile networks. We make our tc-netem
distribution tables available to the community [12] to allow
other researchers to replicate our results and practitioners to
benefit from this data.

The rest of this paper is organized as follows. In Section Il,
we briefly discuss the related work. In Section Ill, we describe
the measurement setup in which the data is collected, while
in Section 1V we discuss our methodology to generate latency
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profiles. In Section V, we present time series generation using
GANSs. Finally, Section VI concludes the paper and discusses
future work.

II RELATEDWORK

Monitoring performance is fundamental for regulators to
ensure transparency and the general quality level of the basic
Internet access service [13]. Some of them responded to
this issue with ongoing nationwide efforts [14]. Continuous
measurements are crucial to understanding the latency and
performance of mobile networks. Network latency plays a
key role when it comes to the users’ Quality of Experience
(QoE) [15], [16]. Balachandran et al. [17] highlight the
impact of low-level measurable radio network characteris-
tics on the user QoE during web browsing. A survey of
end-to-end delay prediction methods is offered by authors
of [18]. They show several methodologies to estimate latency,
e.g., Queuing Network Modelling, System Identification, Time
Series Approach, and Neural Networks. Nunes et al. [19]
focus on TCP performance in a Mobile Ad Hoc network
and propose a machine learning technique called Experts
Framework. Mandalari et al. [20] show that a roaming user
in Europe suffers an additional latency of ~60 ms or more,
depending on geographical distance. Safari et al. [21] illustrate
accurate mobile network latency prediction is not effective
by using the common machine learning algorithms. However,
while performing monitoring studies the problem of online
privacy should not be overlooked. Many parties can collect
and access these kind of data other than researchers. In [22],
the authors highlight what are the privacy and ethical issues
that arise for users, companies, scientists and governments and
presenting the current legislation.

Network emulation is of crucial importance for network
testing, and it is a well-studied topic in the literature. The
Linux operating system includes tc-netem, a tool for this
purpose since more than 20 years. Considering emulation of
mobile networks, many works aimed at achieving realism with
fine-grained models of network devices. For instance, NIST
Net [23] is a flexible and powerful emulator for WANSs, while
authors of [24] exploit advanced modeling methods to build a
mobile network emulation environment. More recently, mobile
network emulation followed the general trends of research in
networking, and has been used to mimic real deployments
of e.g., Software Defined Networks [25] or flying vehicles
networks [26]. There are few research studies building on a
data-driven approach to obtain a realistic emulation. Seminal
work [27] proposes a pure trace-driven network emulation
that re-creates the observed end-to-end characteristics of a
real wireless network. More recently, KauNet [28] provides
pattern-based emulation with a higher level of detail, con-
trolling the behavior of each individual packet. In contrast
to previous works, we build on a large measurement dataset
of operational mobile networks and make our latency pro-
files available to the community and compatible with the
tc-netem.
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Fig. 1: The experimental setup for ping measurement in the
MONROE platform.

Machine learning has not yet been used in the context
of mobile network emulation, but the recent advances in
neural networks make it a promising technique for modeling
complex phenomena. Recently, GANs have been proposed
as generative models. Introduced in 2014 [11], GANs are
used for image generation [29] and recognition [30], text-
to-photo synthesis [31] and URL generation [32]. In this
paper, we show that GANs are able to model MBB network
latency, even though the real applicability of this approach is
limited by inflexibility of the current de facto standard tool,
namely tc-netem.

”I MEASUREMENTS SETUP

In this section, we briefly describe the measurement setup
and the employed dataset.

A. Measurement Infrastructure

Systematic repeatable measurements are crucial for evalu-
ating network performance and assessing the quality experi-
enced by end-users. As such, researchers have built platforms
dedicated to broadband networks, e.g., RIPE Atlas 3, CAIDA
Ark 4, or PlanetLab 5. In contrast to them, MONROE [33] is a
unique platform that enables controlled experimentation with
different commercial mobile carriers. It enables users to run
custom experiments and to schedule experimental campaigns
to collect data from operational MBB and Wi-Fi networks,
together with full context information (metadata). It covers 4
countries in Europe (Italy, Norway, Spain, and Sweden) with
more than 100 nodes equipped with Ethernet, WIFI and 3G/4G
interfaces with commercial subscriptions.

The MONROE platform allows us to access the information
about network, time and location of experiments, as well as
metadata from the mobile modems, including, e.g., signal
strength, RAT, cell identifier for each network provider6. Each
node performs a set of predefined experiments (e.g., ping,
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Fig. 22 ECDFs for different operators and scenarios.

TABLE I; Statistics on the dataset collected during 2018 by
the MONROE platform.

Country Nodes Operators Latency samples

Italy 27 3 1122 M
Norway 18 3 1224 M
Spain 19 2 804 M
Sweden 32 3 1914 M
Total % 1 506.4 M

passive monitoring, etc.) continuously. Experiment results are
collected in the central database, and stored in a Hadoop
based cluster. In the following, we provide details about the
experimental setup and describe the considered metrics.

Figure 1 shows the experiment setup we consider in this pa-
per. The leftmost element is the MONROE node. It is equipped
with three different mobile modems, each equipped with a
SIM card of a different operator. Traffic (e.g., ping- red
curve) flows through the specified operator and the Internet,
toward the selected server - on the rightmost part of the figure.
This allows us to measure up to three operators at the same
location and time, and using identical device and software,
thus, limiting potential sources of bias. This allows one to
understand the coverage, and all the time-varying parameters
that may impact the latency.

ICMP ping (84 Byte payload) experiments run regularly
every second to measure the latency (round-trip time) from
nodes toward a dedicated server. The system logs collected
data to the central repository after the experiments. Beside
latency, we analyze a set of meta-data that characterize the
specific context in which each experiments run. Especially,
we consider access network parameters: They include param-
eters from the physical layer such as radio status during the
experiment (RSSI, RSRQ, and RSRP).

B Dataset Description

In this work, we present the data collected on the MONROE
platform during the whole year of 2018. It contains measure-

TABLE I1I: Binning boundaries for 3G and 4G. Values are
expressed in dB.

Quality 3G 4G
Poor rssi < —100 rssi < —85
Ordinary -100 < rssi < -85 —85<rssi<—5
Good rssi > —85 rssi > —5

ments from 96 MONROE nodes, measuring 11 operators in 4
European countries, i.e., Italy, Norway, Spain, and Sweden.
Nodes operate in a different scenario such as university
campuses, urban areas, countryside, aboard buses, and trains.
This dataset focuses on latency measurements. In total, we
collected latency for about 500 M samples, as detailed in
Table I.

|V EMULATING MOBILE ACCESS NETWORK LATENCY

In this section, we describe the proposed approach to
emulate mobile access network latency.

A. Data processing and cleaning

Provided the dataset described in the previous section, we
process it to extract clean latency profiles for scenarios that
differ for the SIM card operator, RAT, etc. Given the large
size of data, all processing is done using Apache Spark for
scalability reasons.

We first join the ping samples with physical layer infor-
mation. As such, separately for each node, we join the two
datasets on the time dimension. we then get rid of those time
intervals where few or no ping sample is observed due to
e.g., network failures or power outages. At this point, we
sort ping samples by time and extract sequences of fixed
length /| = 60.7 We then exclude those sequences where
physical layer conditions are not stable due to e.g., intra-RAT
or inter-RAT handovers, strong variations in signal strength,
etc. This step is necessary to obtain clean data and allows us

7The node sends a ping every second. As such sequences are 60 seconds
long.



to remove most of the measurement artifacts. We finally group
the obtained sequences to build the sample set composing each
latency profile. We group sequences according to:

* SIM card operator

* Radio Access Technology: 3G or 4G

* Signal Quality: we binned signal strength values to

three levels, poor, ordinary and good. Binning boundaries
are reported in Table Il. However, very few samples are
observed with Jow signal quality and thus few profiles
are finally included.

- Roaming: whether the SIM card was roaming on another

a country at the moment. Remind that the widespread
deployment of Home Routing by operator significantly
increases the latency of this configuration [20].

This said, we obtain 51 latency profiles for which we
observe more than 10000 samples. They include data from
4 countries and 11 operators for a total of more than 500 M
ping samples. They also differ for the observed signal quality,
for which we have 2 profiles with bad, 22 with ordinary and 27
with good quality. Considering RAT, we have 16 profiles for
3G and 35 for 4G, and, overall, 15 are collected while SIM was
roaming. Figure 2 shows three examples of latency profiles.
Results report the Empirical Cumulative Distribution Function
(ECDF) of the latency. The x-axis in each plot of Figure 2
gives the latency in ms and the y-axis gives the probability of
the latency being less than the x-axis value. Figure 2a indicates
the latency distributions for three classes of signal quality
for 3G technology using TIM operator (Italy). There is clear
separation for good signal quality (i.e., lower latency) but the
latency distributions for ordinary and bad qualities have some
similarities. Figure 2b shows the latency distribution for 3G
and 4G of TIM (ltaly) and H3G (Sweden). There is a clear
difference between the two countries for the same scenario
(i.e., same technology and same signal quality). Obviously,
the 4G experiences lower latency. Figure 2c presents the
differences between four operators using 4G with good signal
quality. These visual presentations show some examples of
generated profiles for multiple operators and technologies.

B. Latency Emulation

We use the obtained latency samples together with the
tc-netem Linux tool to impose the selected latency profile
on the desired network interfaces. We first create a netem
delay distribution table for each profile. Besides, we compute
average and standard deviation for further use, as netem
requires delay tables to be normalized with respect to such
metrics. We then use the delay tables to enforce an latency
profile on the selected network interface: the delay table is
first copied on the proper system directory, and we then add
a netem queuing using the corresponding table, and with the
values of average and standard deviation computed before.
Initial verification confirms that netem correctly handles our
latency table and the resulting latency is perfectly consistent
with the expected outcome. The obtained latency profiles are
made public and available to researchers and practitioners [12].
We provide each profile in the form of a custom netem

delay distribution. We also implemented simple convenience
scripts that allow the user to easily install such profiles in the
proper system directory and start delay emulation on a selected
interface.

V. EXPERIMENTS USING GENERATIVE ADVERSARIAL

NETWORKS

Our approach based on the mere sample distribution has
drawbacks that limit the realism of the emulation. Whereas
the overall distribution of the emulated and real samples is
the same, the approach does not model the time dimension.
As such, there is no temporal correlation among the generated
samples, and we cannot model time-based events, such as
a temporary increase in the latency caused by a short-term
network failure.

To overcome such limitation, we propose the use of GANSs,
that have been proven able to model (and generate) complex
data such as images [29] and network data [32]. A GAN is
composed of a generator and a discriminator model. Provided
with random noise and feedback from the discriminator, the
generator task is to produce samples that are similar to the
real data, trying to make up artificial samples that cannot
be distinguished by the discriminator. The discriminator task
instead is to distinguish between real samples in the training
set and the artificial ones produced by the generator. As the
two models compete to win their adversarial tasks, artificial
samples become more and more realistic, whereas the discrim-
inator becomes robust to noise.

In our experiments, we train a GAN for each latency
profiles. Figure 4 sketches the building blocks of our GAN
during training. We feed them with sequences of length / = 60
of latency samples. in the original data, Pings are performed
each second, and we remove all sequences with missing
data to obtain a fully-formed time series. We tested different
architectures for both generator and discriminator models, and
we obtained the best results using two stacked LSTMs [34] in
both. Examples of real and generated sequences are depicted
in Figure 3. The two generated sequences (right) correctly
show temporal correlation across samples, and we can identify
short-term peaks in which latency increases. Moreover, the
generated samples have absolute values consistent with the
original, as shown in Figure 5 for two examples. Real and
generated distributions mostly overlap, even if they do not
perfectly match. Indeed, Kolmogorov-Smirnov tests provide
KS statistics in the order of [0.1 0.4] for the considered
profiles.

Our results show that using GANs to emulate latency
profiles is a promising approach, but technical issues limit the
applicability to real cases. in particular, widespread network
emulation tools (e.g., netem) cannot emulate time-series
based latency profiles, and as such require the design and
implementation of ad-hoc tools.

V1.

Mobile devices have become one of the main tool used for
accessing the Internet and web services. However, the diversity

CONCLUSIONANDFUTUREWORK
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Fig. 4: The architecture of the deployed GANs. They are fed
with ping sequences of fixed length, i.e., 60 second.

of devices, technologies, and mobility makes it highly dynamic
and utterly difficult to predict. As such, network emulation is
of fundamental importance for testing new applications, new
protocols, or performing research experiments.

In this paper, we exploit alarge and one-of-the-kind dataset
collected in 4 countries from 11 operational operators. We
presented two different approaches for emulating MBB net-
work latency. Firstly, we obtained 51 latency profiles, for
different operators, RAT, and signal quality. They can be used
in tc-netem as distribution tables and they are available
to the community. Secondly, we explored to use GANs to
generate realistic latency time series and found that they fit
for the purpose.

This work is the first step toward a comprehensive data-
driven network emulation. Firstly, we created latency profiles,
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Fig. 5: An example of ECDFs for real and generated samples
(good 4G).

as our experiments do not yet include bandwidth and packet
loss measurements. Secondly, GANs are promising as genera-
tive models to achieve high realism, but a big effort is required
to fit them in the current network emulation tools.

ACKNOWLEDGEMENTS

The research leading to these results has been funded by
the European Union’s Horizon 2020 research and innovation
program under grant agreement No. 644399 (MONROE) and
the Smart-Data@PoliTO center for Big Data technologies.

REFERENCES

[1] L. Vassio, I. Drago, M. Mellia, Z. B. Houidi, and M. L. Lamali, “You,
the web, and your device: Longitudinal characterization of browsing



[2

3

[4

[5]
[6]

[71

[8]
[0]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[21]

habits,” ACM Transactions
2018.

J. Sommers and P. Barford, “Cell vs. wifi: on the performance of metro
area mobile connections,” in Proceedings of the 2012 ACM conference
on Internet measurement conference, pp. 301-314, ACM, 2012.

J. Huang, F. Qian, Y. Guo, Y. Zhou, Q. Xu, Z. M. Mao, S. Sen, and
0. Spatscheck, “An In-depth Study of LTE: Effect of Network Protocol
and Application Behavior on Performance,” in Proc. of SIGCOMM,
2013.

0. Fagbohun, “Comparative studies on 3g,4g and 5g wireless technol-
ogy,” vol. 9, pp. 133-139, 01 2014.

U. Goel, M. Steiner, M. P. Wittie, M. Flack, and S. Ludin, “Http/2
performance in cellular networks,” in ACM MobiCom, 2016.

D. Baltrunas, A. Elmokashfi, A. Kvalbein, and O. Alay, “Investigating
packet loss in mobile broadband networks under mobility,” in 20716/FIP
Networking Conference (IFIP Networking) and Workshops, pp. 225-233,
May 2016.

M. Trevisan, I. Drago, and M. Mellia, “Impact of access speed on
adaptive video streaming quality: A passive perspective,” in Proceedings
of the 2016 workshop on QoE-based Analysis and Management of Data
Communication Networks, pp. 7-12, ACM, 2016.

M. Trevisan, I. Drago, and M. Mellia, “Pain: A passive web performance
indicator for isps,” Computer Networks, vol. 149, pp. 115-126, 2019.
L. Vassio, D. Giordano, M. Trevisan, M. Mellia, and A. P. C. da Silva,
“Users’ fingerprinting techniques from tcp traffic,” in Proceedings of
the Workshop on Big Data Analytics and Machine Learning for Data
Communication Networks, pp. 49-54, ACM, 2017.

D. Giordano, S. Traverso, L. Grimaudo, M. Mellia, E. Baralis, A. Ton-
gaonkar, and S. Saha, “Youlighter: An unsupervised methodology to
unveil youtube cdn changes,” in 2015 27th International Teletraffic
Congress, pp. 19-27, Sep. 2015.

. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
in Advances in neural information processing systems, pp. 2672-2680,
2014.

M. Trevisan, A. Safari Khatouni, and D. Giordano, “https://github.com/
marty90/mobile-latency-emulator.”

networld2020, “Service level awareness and open multi-service internet-
working - principles and potentials of an evolved internet ecosystem,”
2016.

FCC, “2013 Measuring Broadband America February Report,” tech.
rep., FCC’s Office of Engineering and Technology and Consumer and
Governmental Affairs Bureau, 2013.

S. Souders, “The performance of web applications - one-second wonders
for winning or losing pcustomers..” https://goo.gl/ErNLcm, Nov 2008.
[Online; accessed 07-Aug-2018].

E. S. (Bing) and J. B. (Google), “Performance related changes and their
user impact.” https://goo.gl/hCr7ka, Jul 2009. [Online; accessed 07-Aug-
2018].

A. Balachandran, V. Aggarwal, E. Halepovic, J. Pang, S. Seshan,
S. Venkataraman, and H. Yan, “Modeling web-quality of experience on
cellular networks,” in Proceedings of the 20th annual international con-
ference on Mobile computing and networking, MobiCom’14, pp. 213-
224, ACM, 2014.

A. S. Khatouni, F. Soro, and D. Giordano, “A machine learning
application for latency prediction in operational 4g networks,” in 20719
IFIP/IEEE Symposium on Integrated Network and Service Management
(IM), pp. 71-74, April 2019.

the Web (TWEB), vol. 12, no. 4, p. 24,

[18]

[19]

[20]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]1

M. Yang, X. R. Li, H. Chen, and N. S. Rao, “Predicting internet end-
to-end delay: an overview,” in System Theory, 2004. Proceedings of the
Thirty-Sixth Southeastern Symposium on, IEEE, 2004.

B. A. Nunes, K. Veenstra, W. Ballenthin, S. Lukin, and K. Obraczka,
“A machine learning approach to end-to-end rtt estimation and its ap-
plication to tcp,” in Computer Communications and Networks (ICCCN),
2011 Proceedings of 20th International Conference on, pp. 1-6, IEEE,
2011.

A. M. Mandalari, A. Lutu, A. Custura, A. Safari Khatouni, O. Alay,
M. Bagnulo, V. Bajpai, A. Brunstrom, J. Ott, M. Mellia, and G. Fairhurst,
“Experience: Implications of roaming in europe,” in Proceedings of
the 24th Annual International Conference on Mobile Computing and
Networking, MobiCom’18, (New York, NY, USA), pp. 179-189, ACM,
2018.

L. Vassio, H. Metwalley, and D. Giordano, “The exploitation of web
navigation data: Ethical issues and alternative scenarios,” in Blurring the
Boundaries Through Digital Innovation, pp. 119-129, Springer, 2016.
M. Carson and D. Santay, “Nist net: a linux-based network emulation
tool,” ACM SIGCOMM Computer Communication Review, vol. 33, no. 3,
pp. 111-126, 2003.

N. Ivanic, B. Rivera, and B. Adamson, “Mobile ad hoc network
emulation environment,” in MILCOM 2009-2009 IEEE Military Com-
munications Conference, pp. 1-6, IEEE, 2009.

R. R. Fontes, S. Afzal, S. H. Brito, M. A. Santos, and C. E. Rothenberg,
“Mininet-wifi: Emulating software-defined wireless networks,” in 2015
11th International Conference on Network and Service Management
(CNSM), pp. 384-389, IEEE, 2015.

S. Rosati, K. KruZelecki, G. Heitz, D. Floreano, and B. Rimoldi,
“Dynamic routing for flying ad hoc networks,” IEEE Transactions on
Vehicular Technology, vol. 65, no. 3, pp. 1690-1700, 2015.

B. D. Noble, M. Satyanarayanan, G. T. Nguyen, and R. H. Katz,
“Trace-based mobile network emulation,” in ACM SIGCOMM Computer
Communication Review, vol. 27, pp. 51-61, ACM, 1997.

J. Garcia, E. Conchon, T. Perennou, and A. Brunstrom, “Kaunet: im-
proving reproducibility for wireless and mobile research,” in MobiEval
2007, pp. p-21, 2007.

E. L. Denton, S. Chintala, R. Fergus, et al., “Deep generative image
models using a laplacian pyramid of adversarial networks,” in Advances
in neural information processing systems, pp. 1486-1494, 2015.

A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” arXiv
preprint arXiv:1511.06434, 2015.

H. Zhang, T. Xu, H. Li, S. Zhang, X. Huang, X. Wang, and D. Metaxas,
“Stackgan: Text to photo-realistic image synthesis with stacked genera-
tive adversarial networks,” arXiv preprint, 2017.

M. Trevisan and |. Drago, “Robust url classification with generative
adversarial networks,” ACM SIGMETRICS Performance Evaluation Re-
view, vol. 46, no. 3, pp. 143-146, 2019.

O. Alay, A. Lutu, M. Peon-Quiros, V. Mancuso, T. Hirsch, K. Evensen,
A. Hansen, S. Alfredsson, J. Karlsson, A. Brunstrom, A. Safari Kha-
touni, M. Mellia, and M. Ajmone Marsan, “Experience: An Open
Platform for Experimentation with Commercial Mobile Broadband Net-
works,” Proc. ACM MobiCom '17, pp. 70-78, 2017.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

computation, vol. 9, no. 8, pp. 1735-1780, 1997.





