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Abstract— The Internet and the way people use it are con-
stantly changing. Knowing traffic is crucial for operating the
network, understanding users’ needs, and ultimately improving
applications. Here, we provide an in-depth longitudinal view of
Internet traffic during 5 years (from 2013 to 2017). We take
the point of the view of a national-wide ISP and analyze
rich flow-level measurements to pinpoint and quantify changes.
We observe the traffic, both from a point of view of users
and services. We show that an ordinary broadband subscriber
downloaded in 2017 more than twice as much as they used
to do 5 years before. Bandwidth hungry video services drove
this change at the beginning, while recently social messag-
ing applications contribute to increase of data consumption.
We study how protocols and service infrastructures evolve over
time, highlighting events that may challenge traffic management
policies. In the rush to bring servers closer and closer to
users, we witness the birth of the sub-millisecond Internet, with
caches located directly at ISP edges. The picture we take shows
a lively Internet that always evolves and suddenly changes.
To support new analyses, we make anonymized data available
at https://smartdata.polito.it/five-years-at-the-edge/.

Index Terms— Passive measurements, broadband characteri-
zation, longitudinal traffic analysis, service usage.

I. INTRODUCTION

NETWORK measurements are the key means to gather
information about the overall status of the Internet,

identify eventual issues, and ultimately understand how the
network is evolving [34], [41], [47]. However, having a long-
term picture on the Internet evolution is a rather challenging
task. Continuous efforts on monitoring such trends from mea-
surements are rare [7], and understandably limited in coverage,
duration and location (e.g., see [6], [15], [18], [19], [31]).
In addition we need different prespectives to maintain and
complement our understanding of the Internet ecosystem.

In this paper,1 we offer a longitudinal view on the
Internet usage and evolution, covering a 5-year long
interval (2013–2017). We rely on a humongous amount of
data collected from a nation-wide Internet Service Provider
(ISP) infrastructure. We instrument some of the ISP aggre-
gation links with passive monitoring probes. By observing
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packets flowing on links, our probes extract detailed per flow
information, that we collect and store on a centralized data
lake. Keeping the pace with Internet evolution during 5 years
is per se a challenging task. We rely on custom software
(Tstat [44]) that have been constantly updated during the
monitoring period to account for and report information about
new protocols and services.

Technically, we follow a well-established approach
(Section II). Passive measurements are popular among
researchers since early 2000 [3], [13], with current tools able
to process several tens of Gb/s on commodity hardware [35].
Extracting information from packets is possible thanks to Deep
Packet Inspection (DPI) techniques [1], while the availability
of big data solutions [14], [48] makes it possible to store
and process large volumes of traffic with unprecedented paral-
lelism. Here, we dive into this data, depicting trends, highlight-
ing changes and observing sudden infrastructure upgrades.

First we offer an overview of users’ habits over 5 years,
describing the traffic consumption posed by broadband cus-
tomers to the ISP (Section III). Next, we turn our attention to
traffic generated by individual services. We quantify the rise
(and death) of services considering traffic volume as well as
popularity among customers (Section IV). We analyze protocol
usage and episodes of changes in services that result on unpre-
dictable traffic (Section V). Finally we study how changes in
the infrastructure impact the ISP network (Section VI).

Our analysis leads to new insights, confirms well known
trends and quantifies interesting aspects about Internet traffic in
a broadband edge network, summarized in Section VII. Some
highlights are as follows:

• The traffic per broadband customer has increased at a
constant rate over the years (2013–2017), with a growth
of heavy users, who exchange tens of GB per day;

• Compared to ADSL customers, the larger capacity
offered to FTTH customers has a moderate impact on
data consumption;

• We witness the (slow) migration of services to new
protocols (e.g., HTTPS) and several sudden changes
performed by over-the-top Internet companies. We report
some cases that required the ISP to act promptly with
traffic engineering and troubleshooting;

• We quantify well known Internet trends: video content
still drives bandwidth demands; peer-to-peer traffic, while
heading to insignificance, persists with few loyal users;
traffic from mobile devices connected via WiFi is promi-
nent at home networks;

• We observe the rise of new “elephant” services, in par-
ticular social networks such as Instagram, accessed from
mobile phones at home. We find that Instagram traffic
is comparable to video-on-demand services, such as Net-
flix or YouTube.
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Fig. 1. Measurement infrastructure and processing steps.

• We testify the infrastructure growth of popular services,
and show how their servers are getting closer to users.
In the most extreme case, we identify the deployment of
caches at the first aggregation point at the ISP to reduce
the latency to reach contents.

To foster new analyses beyond what is presented here,
we make anonymized data available to the community.
Monthly snapshots are available online. Other snapshots can
be accessed following instructions found at the our website.2

Despite our dataset being limited to one country and focused
on broadband Internet connections (thus missing mobile access
networks), we believe the information we offer is key to under-
stand trends and inform researchers and practitioners about
recent changes on Internet infrastructure and users’ behavior.

II. MEASUREMENT METHODOLOGY

We next describe the monitoring architecture, measurement
methodology and tools we use to collect the data.

A. Measurement Architecture

We build on data collected by the passive monitoring
infrastructure of a nation-wide ISP in Italy. It operates a
backbone tier-2 network, connected to hundreds of customer
and peering ASes and a handful of provider ASes.

The passive monitoring infrastructure captures and analyses
in real-time traffic from vantage points located at the edge
of the ISP network. A schematic view of the infrastruc-
ture is depicted in Figure 1. We process traffic directly in
the ISP Points-of-Presence (PoPs). Exploiting router span
ports or optical splitters (depending on the link rates), the traf-
fic is mirrored to the monitoring probes. Both uplink and
downlink streams are processed by the probes. Since probes
are deployed in the first level of aggregation of the ISP,
no traffic sampling is performed. Customers are assigned fixed
IP addresses, that the probes immediately anonymize in a
consistent way.

Each probe is equipped with multiple high-end network
interfaces. Packets are captured using the Intel Data Plane
Development Kit (DPDK) [25] that guarantees line-rate cap-
ture even for multiple 10 Gbit/s links. Traffic is then processed
by our custom-made passive traffic analyzer, called Tstat [44].

Each probe exports only flow records, i.e., a single entry
for each TCP/UDP stream with per-flow statistics. Streams
are expired either by the observation of particular packets

2https://smartdata.polito.it/five-years-at-the-edge/

(e.g., TCP packets with RST flag set) or by the default
Tstat timeouts [44]. Each record contains classical fields on
flow monitoring [23], such as IP addresses, port numbers,
packet- and byte-wise counters. Advanced analyzers extract
some few fields from packet payloads, such as information
seen in the Application-Layer Protocol Negotiation (ALPN)
fields of TLS handshakes, which allows us to identify
HTTP/2 and SPDY flows, and fields from QUIC public
headers.

Tstat exports the domain name of contacted servers, which
is essential for service identification [43]. Tstat first searches
the information in HTTP Host: headers and in the TLS
Server Name Indication (SNI) within TLS Client Hello mes-
sages. For HTTP/TLS flows missing such fields and for other
protocols, Tstat exports the hostname the client resolved via
DNS queries prior to open the flow. This is achieved by
caching DNS traffic directed to any DNS resolver. Once a
flow without SNI or HTTP Host: is observed, tstat searches
for the last query performed by the same client that resulted
in the contacted server IP address. This mechanism, called
DN-Hunter, is explained in details in [5], where it is shown
that the association is correct for more than 90% of the flows.

B. Characteristics of the Dataset

Among the vantage points, here we consider the traffic of
two PoPs, covering more than 10 000 ADSL and 5 000 Fiber-
To-The-Home (FTTH) subscribers, all located in the same city
in Italy. ADSL downlink capacity varies from 4Mbit/s up to
20Mbit/s, with uplink limited to 1Mb/s. FTTH subscribers
enjoy 100Mb/s downlink, and 10Mbit/s uplink. Each subscrip-
tion refers to an ADSL or FTTH installation, where users’
devices (PCs, smartphones, tablets, smart TVs, etc.) reach the
Internet via WiFi and Ethernet through a home gateway. ADSL
customers are mainly residential customers (i.e., households),
whereas a small but significant number of business customers
exist among the FTTH customers.

During the 5 years of measurements we observed a steady
reduction on the number of active ADSL subscribers and
an increase in FTTH installations. The ISP has confirmed
these trends are due to churning and technology upgrades.
To compensate for such changes, we will report statistics
aggregating measurements and normalizing numbers accord-
ing to the number of active subscribers per day.

C. Data Storage and Processing

Flow records are created, anonymized and stored on the
probe local disks. Daily, logs are copied into a long-term
storage in a centralized data center and discarded from the
probes.

The considered dataset covers 5 years of measurements,
totaling 31.9 TB of compressed and anonymized flow logs
(around 247 billion flow records). To process this data, we use
a Hadoop-based cluster running Apache Spark. This structure
allows us both to continuously run predefined analytics, as well
as to run specific queries on historical collections.

Our methodology follows a two-stage approach: First, data
is aggregated on a per day basis; Second, advanced analytics
and visualizations are computed. In the aggregation stage,
queries compute per-day and per-subscription aggregates about
traffic consumption, protocol usage, and contacted services.

Special attention is needed to identify the services used
by subscribers. Content providers are known to rely on large
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TABLE I

EXAMPLES OF DOMAIN-TO-SERVICE ASSOCIATIONS

infrastructure and/or Content Delivery Networks (CDNs),
which make the association between flow records and ser-
vices tricky. We rely mostly on server hostname for this
step. Examples of the association domain-service are provided
in Table I. Flexible matching based on regular expressions are
used.3 Along the years, our team has continuously monitored
the most common server hostname seen in the network,
maintaining the list of domains associated with the services
of interest. For ambiguous cases [43], e.g., domains used by
multiple services, we rely on heuristics, mostly based on traffic
volumes, to decide whether a subscriber actually contacted a
particular service (see Section IV-A). This methodology allows
on-the-fly and historical classification of services.

D. Measuring the Distance to Servers

To analyze content placement and providers’ infrastructure
(Section VI), we rely on two sources.

First, we rely on the estimation of RTT provided by Tstat
for TCP flows [33]. It matches acknowledgements with TCP
data segments, registering the time from the observation of the
TCP segment and its acknowledgment. For each flow, Tstat
exports the minimum, average and maximum RTT estimation,
as well as the number of RTT samples. Notice that this metric
represents the RTT from the probe to servers, missing the delay
from clients to the probes. Thus, in our deployment we ignore
the access delay, since probes are deployed at the ISP’s PoPs.

Second, we rely on BGP measurements for (i) analyzing the
path taken by packets to reach the ISP from external sources,
and (ii) evaluating the traffic entering the ISP network from
customer, peer and provider ASes. We focus on incoming
traffic as it represents the majority of the volume for the
broadband customers.

We map external IP addresses to the corresponding ASes
using RouteViews [10]. Then, we determine the paths taken
by packets to reach the ISP.

We first rebuild the AS topology using CAIDA’s Rela-
tionship dataset [9]. This dataset determines the relationships
between ASes classified as customer-provider or peering.
We then apply the valley free rules [30] to obtain a list of
plausible paths reaching the ISP from the ASes hosting the
external IP addresses seen in our traces. This methodology is
always applicable, but since it is based on heuristics it may
report nonexistent paths. However, it follows standard BGP
practices of route selection.

To refine the paths we rebuild the AS topology using
BGPStream [37]. BGPStream provides fine-grained routing
information, but only for a subset of sources. We use
BGPStream to extract all Internet paths seen on the 15th day of

3The full list of regular expressions used to classify services are found at
https://smartdata.polito.it/five-years-at-the-edge/.

each month, using Routing Information Bases (RIBs) observed
from 380 vantage points from the Route Views and other
600 sources from RIPE’s Routing Information Service (RIS).
Then, we keep only paths having as destination the ISP AS.

Finally, we merge the two obtained topologies. We reexam-
ine all paths discovered through CAIDA’s Relationship dataset.
In case BGPStream data is available for an AS path (or part
of it), we discard CAIDA’s Relationship (sub-)path and use
BGPStream’s one. Again, we enforce the valley free rules [30].

For each external IP address, we calculate the shortest path
to the studied ISP. If multiple shortest paths are available,
we give priority to paths starting with a customer or peer AS,
rather than a provider AS. The rationale is that the AS would
not pay for such traffic. We save also the ingress AS, i.e., the
last hop before the studied ISP, to determine whether the traffic
reaches the ISP through customer, peer or provider ASes.
Again, if more than one shortest path is available, multiple
ingress points/relations might exist. Such ambiguous relations
are marked as Not Available (NA).

This methodology determines the shortest path and the AS
relation of the ingress point for each flow. Based on these
metrics, we study how far (in terms of AS path length) the
content is deployed from users, and whether this distance has
varied throughout years. Moreover it sheds some light on the
relationship between the ISP and content sources.

E. Challenges in Long-Term Measurements

Several challenges arise when handling a large-scale mea-
surement infrastructure. Network probes are the most likely
point of failure, as they are subject to a continuous and
high workload. During the period considered in the paper,
probes suffered some outages, lasting from few hours up to
some months (when severe hardware issues arose). As such,
the results we present have missing data for those periods. The
FTTH probe in particular has suffered outages in 2013. For
this reason, when comparing FTTH and ADSL customers we
will focus on the period from 2014 to 2017.

A second issue arises from the evolution of network proto-
cols and service infrastructure. Large content providers have
the power of suddenly deploying new protocols leaving passive
monitors and ISPs with few or no documentation to handle
them. We incurred several cases, and report our experience in
addressing them.

Third, the domain-to-service associations need to be con-
tinuously updated. Also in this case, there is no public infor-
mation to support this operation, so our team has to manually
define and update rules, often running active experiments to
observe new patterns.

At last, users’ privacy must be preserved. For this, we care-
fully limit the collected information and always consider
only aggregated statistics. Customers’ IP addresses and server
names are the most privacy-sensitive information being col-
lected. The former gets immediately anonymized by probes,
while the latter is used to derive aggregate statistics on per-
service basis. Importantly, all data collection is approved and
supervised by the responsible teams in the ISP.

III. SUBSCRIBER’S TRAFFIC CONSUMPTION

We first characterize the amount of traffic consumed by
subscribers. For the results that follow, we consider only active
subscribers. Subscribers are considered active in a given day
if they have generated at least 10 flows, downloaded more
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Fig. 2. Daily traffic per active customer for Apr 2014 and 2017.

than 15 kB and uploaded more than 5 kB. These thresholds
have been determined by inspecting the distributions of daily
traffic per subscriber, visually searching for knee points (see
Appendix A). This criterion lets us filter those cases where
only background traffic is present, e.g., generated by the access
gateway, or by incoming traffic (due to, e.g., port scans).
On average we observe about 80% subscribers are active in a
day with respect to the total number of subscribers observed
in the whole trace.

Notice that these percentages are actually a lower-bound
given churning (see Section II-A).

A. How Much You Eat: Consumption per Day

Figure 2 depicts the empirical Complementary Cumulative
Distribution Function (CCDF) of daily traffic consumption of
active subscribers. In other words, for each day, we compute
the overall traffic each active subscriber exchanges, and report
the CCDF of all measurements. We focus on April 2014 and
April 2017. Figure 2 depicts CCDFs separately per access-link
technology and down/up links. Notice the log scales.

Observe the bimodal shape of the distribution. In about
50% of days, subscribers download (upload) less than 100 MB
(10 MB) – i.e., days of light usage. However, a heavy tail
is present. For more than 10% of the days, subscribers
download (upload) more than 1 GB (100 MB) – i.e., days of
heavy usage. Manual inspection shows that many different
subscribers present days of heavy usage, often alternating
between days of light and heavy usage.

Comparing 2014 (dashed lines) with 2017 (solid lines),
we notice a general increase in daily traffic consumption. The
median values have increased by a factor 2 for both ADSL
and FTTH installations, and for both upload and download.
This behavior highlights an increasing trend in average per
subscriber traffic volume, that we examine more in depth later
in this section.

We observe no difference for the days of light usage when
contrasting ADSL (blue curves) and FTTH installations (red
curves). Instead, during heavy usage days, FTTH subscribers
download about 25% more data than ADSL subscribers – a
moderate increase given they enjoy 5-20 times higher capacity.
The differences are higher considering upload traffic: ADSL
subscribers are indeed bottlenecked by the 1 Mb/s uplink, thus
FTTH subscribers upload twice as much per day.

At last, we witness an interesting effect in upload traf-
fic: Even if traffic volume increases in median between
2014 and 2017, the tail of the distributions in Figure 2b
decreases. Notice the clearly visible bump in the tails present
in 2014, which disappeared in 2017. A deeper analysis on per-
subscriber traffic distribution is provided in Appendix B. This
trend is rooted in the decline of Peer-To-Peer (P2P) traffic,
both in volume and popularity, as we will show in Section IV.

B. Eager and Eager: Trends on Traffic Consumption

Figure 3 illustrates the per-subscriber traffic consumption
over time. The x-axis spans over the 54 months of the
dataset, while y-axis shows the average byte consumption over
monitored subscriptions, separately per access technology and
down/up link. We here show only average trends, with more
information (e.g., percentiles) provided in Appendix B.

Curves in the figure contain interruptions caused by outages
in the probes. Note in particular the outages in FTTH probe
in 2013. FTTH figures are noisier than the ADSL ones because
of the smaller numbers of FTTH customers. Some drops in
FTTH curves are visible during summer and holiday breaks,
due to the small number of customers and their usage profiles,
e.g., the presence of business customers who stop using the
network on holidays.

Considering the average amount of data daily downloaded,
illustrated by Figure 3a, a clear increasing trend emerges. For
ADSL subscribers, average daily traffic increased at a constant
rate – from 300MB per day in 2013 up to 700MB in late 2017.
FTTH subscribers consume on average 25% more traffic,
topping to 1GB per day on average in 2017. Interesting, very
similar slow increasing trends have been reported 10 years
ago [12].

When considering uploads (Figure 3b), we confirm that the
higher uplink capacity lets FTTH users upload more with
respect to ADSL. The latter are bottlenecked by the limited
upload capacity and thus the average amount of data remains
constant. FTTH subscribers show instead a modest increase
in average uploaded traffic over time. This increase is due to
two factors. At the one hand, P2P uploads have decreased
significantly in recent years. On the other hand, this decrease
has been compensated by a significant increase in the upload
of user-generated content to the cloud, including backups to
cloud storage services (e.g., iCloud or Dropbox) as well as
to social networks and video providers (e.g., YouTube and
Instagram).

To check whether the increase observed in Figure 3 is
homogeneous during the hours of the day, we consider the
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Fig. 3. Average per-subscription daily traffic.

Fig. 4. Ratio of download and upload traffic per hour of the day, considering
April 2017 and April 2014.

download and upload volumes in each 10 minute-long time
interval. We then average all values seen for the same time bin
in all days of a month. At last we compute the ratio between
days of April 2017 and April 2014.

Figure 4 shows results (curves are smoothed using a Bezier
interpolation). Observing first the downloads (Figure 4a),
we confirm that the average amount of traffic consumed
in 2017 is more than 2 times larger than 2014. More inter-
esting, the increase is higher during late night hours. Manual
inspection suggests that the increase in late night traffic
is a consequence of diverse factors, such as the automatic
download of updates of smartphone apps and other machine-
generated traffic, such as from home IoT devices. FTTH
subscribers exhibit a higher increase also during prime time,

Fig. 5. Popularity for selected services over time.

which we confirm to be associated to the consumption of video
streaming content.

When considering uploads (Figure 4b), we again see sig-
nificant differences throughout the day, even if the overall
figure has remained almost constant. Observe how the upload
volume has actually decreased during daytime for both FTTH
and ADSL subscribers, whereas night traffic has increased.
The former can be associated to the decline of P2P, whereas
the latter is partly driven by automatic backups performed
by some applications – e.g., WhatsApp, performing backups
at 2AM.

IV. EVOLUTION ON THE USAGE OF SERVICES

A. Give Me That: Service Popularity

The changes in the per-subscriber traffic volume can be due
to changes in the users’ habits (e.g., people using different
services), or changes in the services (e.g., high definition
videos being automatically served). In this section, we analyze
in details how popular and bandwidth demanding services
evolved throughout years. We again focus on active sub-
scribers, observing the fraction of them that accessed a given
service on a daily basis. In the analysis that follows, we focus
on downloaded volume only.

Notice that selecting those subscribers that contacted
a service is not trivial. Indeed popular services may be
unintentionally contacted by users. Consider for example
Facebook. Its social buttons are embedded in websites and
generate traffic to the same Facebook domains as an intentional
access to facebook.com services. To coarsely distinguish
these cases, we have inspected the distribution of daily traffic
per subscriber for each considered service, setting per-service
thresholds to separate (i) subscribers with at least one
intentional visit to the target service (moderate to large traffic
volumes), and (ii) subscribers which unintentional contacted
domains due third party objects (negligible volumes).

We first provide a coarse picture about service popularity
over time. Figure 5 shows per-day percentage of active sub-
scribers that access popular services. We show the ADSL data
only, since FTTH results in similar figures. Similar figure for
downloaded bytes is reported in Appendix A. The multi-color
palette highlights changes in the popularity of services, which
are coarsely sorted by type. For instance, Google Search is
accessed regularly by about 60% of active subscribers, and
this pattern is rather constant over time.4 On the contrary, Bing

4Some fluctuations are due to changes in Google domains that took time to
be identified and updated in the probes.

Authorized licensed use limited to: Universita degli Studi di Trieste. Downloaded on August 02,2022 at 09:58:26 UTC from IEEE Xplore.  Restrictions apply. 

5



566 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 2, APRIL 2020

Fig. 6. Popularity (top) and volumes (bottom) for P2P and 2 popular video streaming services.

shows a constant growth, moving from less than 15% to about
45% of active subscribers that contacted it at least one time per
day in 2017. This pattern is likely a consequence of Windows
telemetry which uses bing.com domains. DuckDuckGo,
a privacy respecting search engine, is used only by few tens
of subscribers (less than 0.3% of population).

Overall, we observe a continuously changing picture, with
services showing increase in popularity, some of which with
remarkable growth, while others that struggle to gain grounds.
Next, we dive into some interesting cases.

B. The Downfall of Peer-to-Peer – Finally

It is no news that P2P is no longer among the preferred
means to download content. Here we quantify this phenom-
enon showing the popularity of P2P applications over the
years. Figure 6a details the percentage of active subscribers
using a P2P service (Bittorrent, eMule and variants) (top plot)
and the average P2P traffic volume per subscriber (bottom
plot). We still observe a hardcore group of subscribers that
exchange about 400 MB of P2P data daily. At end of 2016 the
traffic volume they generate starts to decrease. Interestingly,
FTTH subscribers start abandoning P2P applications ear-
lier in terms of volume. Based on findings of previous
studies [21], [31], a conjecture to explain this decline is that
the availability of cheap, easy and legal platforms to access
content is finally contributing to the downfall of P2P. In the
following we explore this conjecture.

C. The Usual Suspects: YouTube and Netflix

We consider popular video streaming services. Figure 6b
shows the percentage of active subscribers accessing Netflix
(top) and the average per-subscriber daily traffic (bottom).
Netflix has gained momentum since the day it started operating
in Italy. FTTH subscribers have been eager to adopt it, with
about 10% of the ISP customers using it on a daily basis at the
end of 2017. Considering weekly statistics (not shown in the
figure), more than 18% (12%) of FTTH (ADSL) subscribers
access Netflix at least once in 2017.

Considering the amount of traffic they consume (bottom
plot), we see no major differences between ADSL and FTTH
subscribers up to end of 2016. Since October 2016, Netflix
started offering Ultra HD content. This is reflected into each

active FTTH subscriber downloading close to 1 GB of content
on average per day. Such a high traffic volume well justifies the
large scale content delivery infrastructure of Netflix [8]. ADSL
subscribers instead cannot enjoy Ultra HD content, or are not
willing to pay the extra fee.

Next, we focus on YouTube (Figure 6c). The figure shows
a consolidated service, accessed regularly by users, who are
consuming more and more content: more than 40% of active
subscribers access it daily, and download more than 400 MB
(about half of Netflix volume per subscriber). Interestingly,
no differences are observed between ADSL and FTTH sub-
scribers – hinting that YouTube video works similarly on
FTTH and ADSL.

D. New Elephants in the Room: Social Messaging
Applications

We now study usage patterns for social messaging appli-
cations, namely SnapChat, WhatsApp and Instagram. All
are popular applications accessed mostly from smartphones,
whose traffic we observe once connected via WiFi from
home. As before, we consider popularity and daily download
traffic consumption per active subscriber (recall Section IV-A).
Results are depicted in top and bottom plots in Figure 7.

Interesting trends emerge in the rise and fall of social net-
working apps. Observe first Snapchat (Figure 7a). It enjoyed a
period of notoriety starting from 2015, topping in 2016 when
it was adopted by around 8% of subscribers. Each active
subscriber used to download up to 100 MB of data daily!
Starting from 2017, the volume of data starts to decrease, with
active subscribers that nowadays download less than 20 MB
per day. Popularity is mostly unaffected, suggesting that people
keep having the Snapchat app, but seldom use it.

The decline of SnapChat coincides with the growth of
other social apps. See WhatsApp in Figure 7b: Its popularity
is indisputable, with a steady growth in adopters that has
almost reached saturation. Observe instead the growth in
daily volume per active subscriber. Each subscriber downloads
around 10 MB daily, pointing to the intensive use of the app for
sharing multimedia content. Note also the large peaks in the
figure, corresponding to Christmas and New Year’s Eve, when
people exchange wishes using WhatsApp.

Finally, consider Instagram (Figure 7c). We see a constant
growth in popularity and, more impressive, a massive growth
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Fig. 7. Popularity (top) and volumes (bottom) for 3 popular social messaging services.

in download traffic volumes. Each active subscriber downloads
on average 200 MB and 120 MB per day, for FTTH and ADSL
respectively. This is almost a quarter of the traffic of the
active customers contacting Netflix. Recalling that Instagram,
Snapchat and WhatsApp are predominantly used from mobile
terminals, these figures point to a shift on traffic of broadband
users, with mobile terminals taking a predominant role even
when people are at home. This is confirmed in [46].

V. WEB TRENDS, AND SURPRISES

We next study how protocol usage varied across 5 years.
We show events associated with the slow migration of services
towards standard protocols, and sudden relevant changes on
the traffic caused by experiments of big players with custom
protocols.

In its early life, the Internet was predominantly plain Hyper
Text Transfer Protocol (HTTP) and P2P traffic. It is by now
known that most of the Internet traffic is running on encrypted
web protocols [36], first with the deployment of HTTPS,
followed by the push towards HTTP/2 [4] (which is always
carried over TLS) and more recently QUIC [28]. We here
document to what extent these protocols have been adopted.

Figure 8 answers this question by summarizing the ADSL
data, with the omitted FTTH figures showing similar trends.
Figure 8a shows the download traffic share of protocols
over time. In 2013, only the three “classic” protocols were
observed: The majority of the traffic was served by plain-text
HTTP, around 10% of the traffic was due to TLS/HTTPS and
the remaining 20% of the traffic was due to P2P applications.
In subsequent months, while P2P was showing its steady
decline, several other notable changes happened, which are
marked with letters in the figure:5

A) January 2014: YouTube starts serving video streams over
HTTPS. The migration has taken Google several months
during 2014, in which we can see a steady change in the
mix of HTTP and HTTPS traffic. HTTPS share tops to
around 40% at the end of 2014, and it is mainly driven
by YouTube traffic.

B) October 2014: After announcing it in 2013, Google starts
testing QUIC in the wild by deploying it on Chrome

5These events have been confirmed manually throughout the years while
upgrading the software of our probes to keep-up with protocols evolution.

Browser. Web traffic carried by QUIC (over UDP) starts
growing steadily.

C) June 2015: We update our probes to explicitly report
SPDY protocol (previously generically labeled as
HTTPS). We discover 10% of the traffic carried by an
experimental protocol.

D) December 2015: Google disables QUIC for security
issues [28]. Suddenly 8% of the traffic falls back to TCP
and HTTPS/SPDY. Around a month after, the bug is fixed
and QUIC is suddenly back.

E) February 2016: Google migrates traffic from SPDY to
HTTP/2, slowly followed by other players.

F) November 2016: Facebook suddenly deploys “FB-Zero”,
a protocol with a custom 0-RTT modification of TLS,
used by the Facebook mobile app only. Zero protocol
would be announced only in Jan 2017.6 Suddenly, 8%
of the traffic moves to the new protocol. More than a
half of Facebook traffic is carried by Zero, showing that
its mobile app traffic surpassed website access, even for
fixed ADSL installations.

At the end of 2017, HTTP traffic is down to around 25%,
and HTTP/2 is slowly gaining momentum. QUIC and Zero
together carry 20–25% of the traffic. Both were yet to be
standardized protocols, showing how giants like Google and
Facebook are free to deploy experiments on the Internet, since
they own both server and client applications. Such experiments
may create issues for ISP network administrators, e.g., making
network proxies and firewalls suddenly inefficient, or creating
issues with home gateways.

Figure 8b complements the analysis showing upload traffic.
Recall that the overall upload volume has remained mostly
constant in this network throughout the years. Here we confirm
and quantify the impact of the P2P decline in upload traffic.
Observe how the traffic share of P2P has been replaced by
HTTPS, and later on by HTTP/2 too. These two protocols are
used to carry user-generated content in e.g., social networks,
backups in cloud storage, etc.

A. Notable Episodes

Here we report episodes that demonstrate how the traffic
due to specific services can dramatically change in short time
challenging traffic management at the ISP. We show (i) a

6https://goo.gl/vuQ1Jy
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Fig. 8. Protocol breakdown over 5 years. Sudden changes and custom protocols deployment in the wild are highlighted.

sudden change in service setup with huge impact on bandwidth
consumption; (ii) programmed software updates; (iii) services
driving growth on late night traffic.

1) Facebook Video Autoplay: We illustrate an episode of
sudden traffic changes. Around March/April 2014, Facebook
started enabling video auto-play for its applications. The
immediate effect on ISP traffic is striking. Figure 9 illustrates
the daily average traffic per subscriber towards Facebook.
Starting in March 2014 traffic has grown from around 35 MB
to around 70 MB in a month. After an apparent stop in
the deployment of the feature during May, Facebook enabled
video auto-play again. In July, the daily traffic per subscriber
was around 90 MB on average, 2.5 times higher than the rate
observed in March 2014. This figure illustrates once more how
the big players controlling client and server software can freely
deploy changes in the Internet, complicating the planning and
management of networks.

2) Scheduled Elephants – iOS Updates: Modern operating
systems and mobile apps perform automatic updates to keep
users’ device safe. When updates are rolled out, a potentially
large number of devices would trigger the download of new
software. Here we report an example of the impact of such
events on ISP networks: The release of Apple iOS updates.

Figure 10 reports the relative variation of the Apple traffic
during September 2014, 2016 and 2017, when iOS updates
have been released. The figure is built taking as reference
the average traffic to Apple’s servers in the first week of the
respective months. It shows the relative variation of the daily
traffic volume when compared to the reference week.

Notice how the traffic to Apple’s servers increases during
the update release periods. During the iOS 8 release in 2014,
for example, we observe a five-fold increase in traffic, which
lasted for a couple of days. Considering that the amount of

Fig. 9. Facebook average daily per-user traffic before and after automatic
video play.

traffic to Apple is already high (hundreds of GBs per day, e.g.,
due to iTunes and iCloud), the potential impact of such events
in ISP networks is remarkable.

3) Night Elephants – WhatsApp Backups on Google Drive:
The WhatsApp app offers users to perform automatic backups.
It uses Google Drive for storing data, scheduling backups at
2 AM by default, and only performs the backup when the
device is connected to WiFi.

Figure 11 shows the overall upload traffic to Google Drive
during 1-hour intervals starting at 2 AM for the five years of
capture. Notice how Google Drive’s upload traffic used to be
irrelevant before August 2015. Since then, it starts to grow
steadily. By the end of 2017, Google Drive upload traffic at
2 AM was already over 5 GB.

These numbers point to a change on night Internet traffic.
While such traffic used to be dominated by P2P, night elephant
flows are now observed towards cloud infrastructure.

VI. WHERE ARE MY SERVERS?

In the previous section we have reported both slow and
sudden changes due to overall trends, and big players migra-
tion policies. Here we go deeper into showing the impact of
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Fig. 10. Daily relative traffic to Apple’s servers. The average traffic in the
1st week of each month is taken as reference.

Fig. 11. Nightly Google Drive upload traffic.

big players infrastructure changes over the years, focusing in
particular on the distance of servers from customers.

A. The Birth of the Sub-Millisecond Internet

CDNs were born in the ’90s to reduce both the load
on centralized servers and the delay to access the content.
Shared and private CDNs make it possible to scale Internet
content distribution, allowing users to fetch content from
nearby servers. Since delay is a main parameter affecting
users’ experience, we focus on how it changed over years.

We first consider the Round Trip Time (RTT) as a perfor-
mance index. Remind that probes measure RTT by matching
client TCP segments with corresponding server TCP ACKs.
We focus on the RTT from the probe to the server, thus
excluding the access network delay. For all TCP connections to
a given service in a long interval, we extract the minimum per-
flow RTT, and compute the distribution of the number of flows
according to RTT. We focus on the body of the distribution
of minimum RTT per-flow, ignoring tails of the distribution,
which may be caused by queuing and processing delays.

Figure 12 shows results, comparing measurements from
April 2014 and April 2017. We focus on Facebook’s and
Google’s services, since they are known for optimizing content
delivery. Consider Instagram traffic (red curves) on Figure 12a.
Dashed line refers to 2014, when there were already CDN
nodes at 3 ms RTT from the ISP PoP. However, they served
only 10% of the flows. Other traffic was served by CDN
nodes further away, with RTT of 10, 20 and 30 ms.7 About
7% of the flows was served by servers with RTT higher than
100 ms – a sign of intercontinental paths. Facebook caches
(blue curves) follow a similar placement, with different share
of traffic served by the caches.

Moving to 2017 (solid lines), results clearly show that
many more requests are now served by close servers, with
80 % of both Instagram and Facebook traffic served by 3 ms
far CDN nodes. As we will see later, this change is due

7Fraction oscillates during the days. These figures refer to statistics collected
on the whole month.

Fig. 12. Distribution of round trip times.

to two factors: (i) Facebook deployed its own CDN; and
(ii) Instagram infrastructure has been integrated into Facebook.

Figure 12b depicts the RTT CDF for Google web search and
YouTube streaming servers. In 2014, 80 % of YouTube traffic
(dashed blue curve) was already served by nodes that were just
3 ms far away from the ISP PoP. In 2017, the already marginal
RTT figure decreased more – with the YouTube video cache
now breaking the sub millisecond RTT from the ISP PoP. That
is, YouTube now directly places video servers inside the PoP,
at the first level of aggregation, going further towards a very
distributed and pervasive infrastructure. Interestingly, Google
search servers (red curves) have not yet reached such a fine
grained penetration, which is likely due its more diverse traffic
when compared to YouTube video.

We have confirmed these findings by directly contacting the
ISP staff, who reported the deployment of third-party CDN
nodes at the ISP first aggregation points.

B. How Far Is My Content?

To generalize the above results, we study how the RTT
distribution has changed over the years and the paths taken
by packets to reach the ISP network.

1) RTT Distance: We evaluate the RTT of all TCP flows
(considering all customers and services), calculating the daily
distribution of the minimum RTT over all flows. Results are
in Figure 13, which shows the temporal evolution of the
median, 15th and 75th percentiles of the daily distributions.

In the left hand side of the figure we can see that 75% of
connections were served from servers at most 60 ms away
in 2013. The median RTT in 2013 was around 20 ms. A clear
decreasing trend is then observed. The median and the 15th
percentile are already under 1 ms in 2017, thanks to the
deployment of caches of popular services in the ISP PoPs.
Notice the clear decrease in median RTT, which coincides
with the deployment of the YouTube caches in this PoP. The
tail of the distribution is also decreasing. In 2017, 75% of the
flows go to servers closer than 25 ms RTT from customers.
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Fig. 13. Median, 15th and 75th percentile of bytes served from servers at a
given RTT.

Fig. 14. Breakdown of incoming traffic at the AS-level.

We have also evaluated RTT variability, i.e., the RTT span
defined as the difference between the maximum and minimum
RTT per flow. Our results confirm findings of [24], showing
a decreasing trend from 2013 to 2015. Results are reported in
Appendix B.

2) AS Path Distance: We analyze the paths of packets in
terms of traversed ASes, computing the daily distribution of
incoming bytes per AS path length. Figure 14a depicts the
share of bytes served within the ISP (i.e., internal), networks
directly connected to the ISP (AS path length equals to 1) and
other networks (path length greater than 1).

We observe short-term fluctuations due to measurement
artifacts, such as temporary changes in the paths reported
by the CAIDA’s Relations dataset. Despite these fluctuations,
the AS path length shows a clear decreasing trend over time.
In 2013 around 50% of the traffic arrived from internal servers
(e.g., CDN nodes) or from ASes directly connected to the
ISP. Less than 1% of the traffic arrived from ASes more than
3 hops away. The percentage of internal traffic and traffic from
directly connected ASes has grown to 67% in 2017, while the
share of traffic from distant ASes remained negligible.

To complete the analysis, we compute the relations of
ASes delivering traffic to this ISP. Figure 14b shows how
much traffic enters the ISP from customer, peer, or provider
ASes. Notice that the share of traffic for which we cannot
classify the ingress AS (NA) is generally less than 10%. The
figure confirms the increase of internal traffic served by servers
directly hosted in the ISP network. More interestingly, it shows

an increase in traffic coming from peer ASes. Traffic from
provider ASes has decreased, representing less than 20% of
the incoming traffic for this ISP in 2017.

We confirmed with the ISP that the shifts between “peering”
and “internal” were mainly due to YouTube service. Moreover,
in November 2017, 90% of Netflix traffic shifted from peering
to internal due to the deployment of Netflix caches in ISP
premises too.

On the one hand, the proliferation of edge caches and the
short delay of FTTH access networks are leading to the sub-
millisecond Internet [42], This necessary to serve particular
content, such as video [8] or advertisements [2]. On the other
hand, this poses new burdens on the ISPs, which have to host
(and in some cases manage) infrastructure of different content
and CDN providers in their networks.

C. The Internet of Few Giants

We finally analyze the infrastructure of popular services.
Figure 15 depicts the evolution of the infrastructure of
Facebook (left), Instagram (center), and YouTube (right) as
seen from the ISP. Top plots show the server IP addresses
active in each day for the considered service. The y-axis rep-
resents a single server IP address sorted in order of appearance.
A red dot is present if the IP address was used only for traffic
of the considered service in that day. A blue dot is present if
the IP address served also content for other services. Finally,
no dot is present if the IP address is not contacted in that day.

In all cases, we see new IP addresses appearing over time,
counting several tens of thousands unique IP addresses. Com-
pare Facebook and Instagram in Figure 15a and Figure 15b,
respectively. During 2013 and 2014, a good fraction of
addresses were shared with other services. During the second
half of 2015, we notice major changes, with (i) a decrease in
the number of contacted IP addresses, and (ii) an isolation of
IP addresses, which are no longer shared with other services.
The total number of IP addresses daily used by Facebook
dropped from 3 800 to less than 1 000, out of which 700 are
still shared. Since July 2016, shared IP addresses dropped
further.

To better understand these changes, we analyze the ASes
hosting the external IP addresses.8 Bottom plots in Figure 15
show the daily traffic breakdown per AS for the services.
Figure 15d and Figure 15e show a clear migration from generic
CDNs to the Facebook private CDN. For Facebook, the migra-
tion started before 2013 and was completed in 2015. For
Instagram, the integration with Facebook started in 2014 and
was completed in 2015. This migration has two major effects:
(i) IP addresses are dedicated to either Facebook or Instagram;
(ii) the number of IP addresses contacted per day decreased.
Contrasting these figures with Figure 12a, we notice that this
change also benefited the RTT, which was reduced signifi-
cantly.

Similarly, we depict the YouTube infrastructure evolution.
From Figure 15c, it is already possible to see how it is different
from the previous two cases. Indeed, YouTube always used a
dedicated infrastructure. Its infrastructure keeps growing, with
40 000 IP addresses contacted daily in 2017.

These results confirm the trend towards a consolidation of
large services, which deploy their own infrastructure in a more
and more capillary way.

8We use the RIB for each month from a major vantage point in the
RouteViews to map IP addresses to ASNs
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Fig. 15. Facebook (left), Instagram (center) and YouTube (right) infrastructure evolution over time.

VII. RELATED WORK AND DISCUSSION

Our work contributes with a new longitudinal dataset of
traffic logs, highlighting major trends in Internet usage during
a recent 5-year period. We are not the first to perform such
an analysis, though. Here we discuss how trends seen in our
data compare to previous measurements.

A. Internet Usage Evolution Over the Years

A number of measurement campaigns have been performed
throughout the years [6], [7], [18]–[20], [22], [31]. While each
study has its peculiarities, our work shares general goals and
parts of the methodology with these previous efforts.

For example, authors of [19], [31] monitored traffic close
to end users in the search for trends in traffic consumption.
In [18] authors present a longitudinal study of Internet traffic
covering the period of 1998–2003. Authors of [7] evaluated
7 years of MAWI traces, summarizing the evolution of Internet
traffic in Japan. In [6], authors evaluated 23 months of data
collected from 53 thousand broadband installations, highlight-
ing the relation between capacity and demand.

Compared to previous works, we reassess trends and con-
firm most of their findings, while also highlighting new facts.
Among key insights we can mention:
• The slow increase on average traffic per user [12]: We not

only confirm it but also identify a relevant reduction in the tail
of the distribution of upload traffic per broadband user;
• The latency reduction due to closer CDN nodes [24]:

We identify interesting extreme cases, reporting the effect of
providers deploying caches directly in ISP PoPs;
• We find that the decline of P2P traffic [21], [31] has

reached a plateau with a small but persistent volume of traffic;
• We confirm the predominance of video

traffic [1], [16], [32]. With the arrival of Ultra HD,
we highlight large differences on video consumption among
Fiber and ADSL customers;
• We could not find a clear relation between the capacity

offered to customers and their demands, as in [6]. However,
for customers relying on particular services (like Netflix, see
above) these conclusions seem to hold;
• We quantify for the first time the impact of new social

networks, such as Instagram and Snapchat, on ISP networks,
finding that in some cases their traffic is comparable to video-
on-demand services;

• We witness the fast increase in HTTPS deployment [17]
and document experiments with new protocols such as
HTTP/2, SPDY, QUIC and FB-ZERO. We observe sudden
changes in traffic mix due to bugs and private tests by
large companies [26], [28], [39]. We find that these new and
experimental protocols account for almost 40% of the web
traffic in 2017;
• We confirm and quantify the concentration of Internet traf-

fic around a few big players [27], [32]. Moreover, we observe
an increase on the share of traffic served within the ISP or from
AS peers, in part due to the deployment of caches and CDN
nodes from such players inside ISP premises.

B. Other Measurement Perspectives

Several works perform an analysis similar to ours, but taking
different points of view. These works include those measuring
from different locations [7], in mobile networks [29], [32],
[40], in core networks [27], [38], among others.

Liu et al. [29] designed a large-scale measurement
infrastructure and deployed it in the core network of a cellular
operator. Muhammad et al. [40] analyze traffic trace from a
tier-1 cellular operator. Authors of [32] analyze traffic logs
collected in a 3G/4G network deployed in a major European
country. This work is particularly interesting since data has
been collected geographically close to our monitoring points
and in a period overlapping with our measurements.

Our work is complementary to these efforts. Indeed,
we claim that the type of customers under study still impact
traffic profiles strongly. For example, authors of [40] show
how machine-to-machine traffic in mobile networks is different
from human-generated traffic. Marquez et al. [32] show the
mix of applications dominating download traffic in a 3G/4G
network, which is largely dissimilar from what we observe
in broadband networks. Nevertheless, our measurements show
that the use of mobile devices connected to WiFi at home
is reducing such differences, e.g., with mobile apps such as
Instagram and Facebook among the top applications in both
scenarios.

Given the difficulties of obtaining relevant measurements,
different efforts are needed to have a comprehensive pic-
ture of the Internet. We believe the figures we presented
in this paper are vital to researchers, ISPs and even web
service providers to better understand the liveliness of the
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Internet, which continuously evolves, mixing slow and unpre-
dictable changes. To broaden the impact of our contributions,
we make anonymized data available to the community at
https://smartdata.polito.it/five-years-at-the-edge/.

APPENDIX A
ACTIVE CUSTOMERS THRESHOLD SETTING

We discuss and detail some methodological choices we
made for our analysis. Consider the active customer definition.
We consider a customers as active during a given day if it
generated at least 10 flows, and downloaded at least 15 kB and
uploaded at least 5 kB. We set these threshold based both on
domain knowledge, and on the distributions of those metrics.
For instance, a complete TLS handshake typically takes 5 to
10 kB to download certificates and negotiate keys. Hence,
an active user surfing the web should produce more data.

Figure 16 details the ECDFs of downloaded (16a) and
uploaded (16b) bytes per customer per day. The Download
figure shows a clear knee at about 15 kB which allows us
to filters out a large number of households with very low
downloaded volume. We take a more conservative threshold
on the upload data (bottom plot) since we expect customers to
upload less. Cross checking the filters, we confirm that most
of the customers removed by the download threshold are the
same uploading negligible volume of data. After removing
these inactive customers, we obtain Figure2 in the paper.

APPENDIX B
SUPPLEMENTARY RESULTS

In this appendix we report supplementary results left out
for the sake of brevity.

A. Subscriber’s Traffic Consumption in Detail

Here we briefly offer more details about the distribu-
tion of daily per-subscriber traffic. As already stated in
Section III-A, the average per-subscriber traffic volume
increased for download while remained almost constant for
upload (for both ADSL and FTTH subscribers). However,
analyzing more in depth traffic distributions, further con-
siderations hold. Figure 2 already suggests changes in the
tails of the distributions, i.e., heavy-consuming uploaders
are less frequent. We further quantify this phenomenon in
Figure 17, where we report both average (red curve) and the
75th percentile (blue dashed curve) of per-subscription daily
traffic. The figure only depicts ADSL users, as a similar pic-
ture emerges for FTTH. Considering download (Figure 17a),
on 2013 average and 75th percentile assumed similar values,
in the range of [250-270] MB/day. Similar values happen
due to the heavy tail of the distribution, meaning that heavy-
consuming subscribers are sizable. As years pass, the 75th

percentile increases at a higher pace than the average (red solid
line), pinpointing to fewer heavy-consuming subscribers. Sim-
ilar considerations hold for upload (Figure 17b). On 2013 aver-
age was no less than three times the 75th percentile. While the
average shows a flat trend over the years, the 75th percentile
constantly increases, leading to similar conclusions.

B. Traffic Volume of Popular Services

Figure 18 complements Figure 5, and depicts a similar
picture for the percentage of downloaded bytes for each

Fig. 16. ECDFs of downloaded and uploaded volumes per customer per day.

Fig. 17. Average and 75th percentile of per-subscription daily traffic (ADSL).

service. The multi-color palette is set to 10% to improve
the visualization. We can observe how services have changed
their contributions to the traffic mix during the monitored
period. Notice, for instance, how services such as Facebook,
Instagram, WhatsApp and Netflix have increased traffic share
throughout the years. Others, such as SnapChat have gained
momentum only during a limited period.

C. RTT Span

Figure 19 shows the trend of RTT variability over time,
detailing the 25th, 50th and 75th percentiles of the RTT
span (Figure 19a) and RTT standard deviation (Figure 19b).

Authorized licensed use limited to: Universita degli Studi di Trieste. Downloaded on August 02,2022 at 09:58:26 UTC from IEEE Xplore.  Restrictions apply. 

12



TREVISAN et al.: FIVE YEARS AT THE EDGE: WATCHING INTERNET FROM THE ISP NETWORK 573

Fig. 18. Percentage of downloaded bytes for selected services over time.

Fig. 19. Median, 15th and 75th percentile of the Span and Standard Deviation
of RTT.

Fig. 20. Median, 15th and 75th percentile of RTT toward a Peering
destination.

Recall that the RTT Span is the difference between maximum
and minimum RTT observed within a TCP connection [24].
As stated in Section VI, we observe a consistent reduction of
both metrics during 2014, followed by a more flat picture.

D. Remote Peering

To reinforce results in [11] we analyze the RTT for flows
originated by servers located in peering ASes according to the
CAIDA Relationship Dataset [9]. We aim at quantifying the
impact of remote peering – i.e., the practice of establishing
remote or indirect peering connections either over a “long

cable” (owned or leased) or over resellers. Figure 20 reports
median and percentiles of the RTT for flows towards peering
ASes. Although we do not provide a per-peer in-depth analy-
sis, this result again shows a reduction of RTT percentiles over
the years, which lets us conjecture that remote peering is being
reduced, if present.
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