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A B S T R A C T

We propose a procedure for the interpretation of horizons in seismic reflection data based on a Neural Network
(NN) approach, which can be at the same time fast, accurate and able to reduce the intrinsic subjectivity of
manual or control-points based methods. The training is based on a Long Short Term Memory architecture
and is performed on synthetic data obtained from a convolutional model-based scheme, while the extraction
step can be applied to any type of field seismic dataset. Synthetic data are contaminated with different types
of noise to improve the performance of the NN in a large variety of field conditions. We tested the proposed
procedure on 2-D and 3-D synthetic and field seismic datasets. We have successfully applied the procedure
also to Ground Penetrating Radar data, verifying its versatility and potential. The proposed algorithm is based
on a fully 1-D approach and does not require the input of any interpreter, because the necessary thresholds
are automatically estimated. An added benefit is that the prediction has an associated probability, which
automatically quantifies the reliability of the results.
1. Introduction

With the increase of 3-D seismic surveys, the quantity of geophysical
data used in the interpretation has grown at a phenomenal rate (Dorn,
1998). Therefore, new picking strategies and algorithms have been
implemented in order to make data interpretation faster, less subjective
and more accurate at the same time.

There is a plethora of different methods used to interpret seismic
horizons and their classification is almost impossible since they are
intrinsically different in terms of adopted strategy, type of data ap-
plication (e.g. 2-D or 3-D), expected results (line drawing, horizon
extraction, simple geometrical definition of the structures). Typical
approaches include manual picking, interpolation, auto-picking, voxel
tracking, or surface slicing (Dorn, 1998), often starting on the manual
picking of a few control points (a.k.a. seeds) then connected by means
of different interpolation algorithms across selected portions of the
analyzed data set.

Such an approach is not so trivial especially for 3-D seismic data
due to several issues and critical steps including, among the others:
erroneous and not coherent control points selection; autopicking of
data having low reflection coherence and/or limited signal-to-noise
ratio (S/N); intrinsic directivity of data and/or of the selected al-
gorithm; complex geology preventing effective autotracking (Herron,
2014). Multiples, lateral amplitude variations, lateral phase disconti-
nuities related or not to actual geological features, and overall low
S/N ratios are further challenges (Hoyes and Cheret, 2011). Most of
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the existing picking strategies exploit reflection amplitudes and are
as a consequence very sensitive to S/N but also to lateral amplitude
variations, not always related to acoustic impedance changes. The
applied processing flow represents another potential issue because it
can introduce both distortions in the horizon’s continuity and not real
coherencies, which lead to erroneous results.

Recently, different strategies have been suggested in order to ex-
tract the horizons directly from the seismic dataset without manual
picking (Cubizolle et al., 2015). These new algorithms track surfaces
throughout the entire data volume (or within selected portions of
it) and are global in nature because they do not need any previous
definition of seeds (Stark, 2004; Lomask and Guitton, 2007). In fact,
they are able to simultaneously define multiple horizons exploiting
the full dimensionality of the data thus offering, at least in favorable
conditions faster and less subjective results (Hoyes and Cheret, 2011).
Different approaches have been tested: dip-driven algorithms exploit
continuity/variations of dips, global optimization methods focus on
the entire available dataset, while horizon patching solutions divide
the problem into two different steps i.e. the picking and the horizon
grouping or definition. They are based on different assumptions and
strategies but are generally time consuming due to their computational
cost. A comprehensive review with their pros and cons is provided, for
instance, in Hoyes and Cheret (2011).

We use a Neural Network (NN) approach to interpret seismic hori-
zons and to reduce the subjectivity of the control points-based pro-
cedures, while assuring accurate and robust horizon extraction. This
 Accepted 3 July 2022

1

http://www.elsevier.com/locate/cageo
http://www.elsevier.com/locate/cageo
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
https://github.com/Giacomo-Roncoroni/Efficient_horizons_extraction
mailto:groncoroni@units.it
https://doi.org/10.1016/j.cageo.2022.105190
https://doi.org/10.1016/j.cageo.2022.105190
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2022.105190&domain=pdf


Computers and Geosciences 166 (2022) 105190

2

G. Roncoroni et al.

can be done by a preliminary training on a large synthetic dataset
(100,000 traces with 256 timesteps, i.e. samples each). The Long Short
Term Memory (LSTM) architecture fits well the problem because it

• Noise 2: it represents an ‘‘anisotropic noise’’ and it is a noise
added before the convolution with the reflection coefficient se-
ries.
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can handle causality and can be applied to input data of different
dimensions. The preliminary subdivision of the input into patches
of predefined dimension, commonly required by Convolutive Neural
Network, is not necessary in the case of LSTM.

Training the NN with synthetic seismograms offers additional ben-
efits, such as the ability to introduce arbitrarily predefined characteris-
tics that are difficult to find in a single seismic dataset. They can also
reproduce different levels of resolution and can be generated at a low
computational cost. Last but not least, they overcome the implicit limit
of an unknown underground model, as in the case of field datasets,
thus providing complete control over the position of the reflectors. We
present and critically discuss all the phases of the new proposed flow,
namely: the data generation, the training, and the application to both
synthetic and field data.

2. Methods

2.1. Generation of the data for the NN training

We train the NN on synthetic data to avoid any link to the field
dataset to be interpreted and to have a complete control over the
NN performance through the knowledge of the subsurface model that
generated the training data. We start from the classical convolutional
model of the seismic trace (Yilmaz, 2001) to generate the data:

𝑓 (𝑡) = 𝑤(𝑡) ∗ 𝑟(𝑡) + 𝑛(𝑡) (1)

where f(t) is the seismic trace, w(t) is the wavelet produced by the seis-
mic source, r(t) is the reflectivity function (i.e. the series of reflection
coefficients) and n(t) is the noise.

We modified the terms in Eq. (1) to generate a variety of syn-
thetic data that may effectively represent that a wide range of condi-
tions commonly encountered in field datasets, in terms of signal and
signal-to-noise characteristics.

Number of samples and sampling interval are 256 and 0.002s
respectively: we have chosen 256 as the dimension of the data vector
representing each seismic trace to reduce the training time and the
computational load, without limiting the effectiveness of the training
phase.

Reflectivity (r(t)) takes as random values in the range ±[0.04, 1] to
avoid reflection coefficient labeled with unrealistic signal-to-noise ra-
tio. Each trace can have a maximum of 7 (seven) reflection coefficients
in different and random positions in time ranging from sample 10 to
246.

w(t) is a Ricker wavelet (Wang, 2015), defined in the time domain
as:

𝑟(𝜏) =
(

1 − 1
2
𝜔2
𝑝𝜏

2
)

exp
(

−1
4
𝜔2
𝑝𝜏

2
)

(2)

where 𝜏 is time (in seconds) and 𝜔𝑝 is the most energetic (or dominant)
frequency in radiant per second.

The dominant frequency is chosen between [30 Hz and 70 Hz] with
a random uniform distribution, in order to cover the common seismic
source frequencies.

To better approximate a real seismic acquisition we need to add
noise n(t), as seen in Eq. (1).

We added the noise component n(t) in (1) to better reproduce
realistic field datasets and introduced different types of noise with
different random magnitudes, as shown Fig. 1. Testing of the NN on
field data was performed after introduction of the following types of
noise, see Fig. 3:

• Noise 1: defined as a pure random noise that is added to the
convolved trace. It is n(t) defined in Eq. (3)

𝑓 (𝑡) = 𝑤(𝑡) ∗ 𝑟(𝑡) + 𝑛1(𝑡) (3)
𝑓 (𝑡) = 𝑤(𝑡) ∗ ( 𝑛2(𝑡) + 𝑟(𝑡) ) (4)

• Noise 3: use of both Noise 1 and Noise 2 in order to simulta-
neously reproduce the effects that could affect a seismic trace,
namely random noise and anisotropic noise.

𝑓 (𝑡) = 𝑤(𝑡) ∗ ( 𝑛2(𝑡) + 𝑟(𝑡) ) + 𝑛1(𝑡) (5)

he reference output is defined by a binary indicator (1,0) used to label
ach sample as reflection/no reflection respectively.

We used the following algorithm to generate the input seismic trace
nd the reference output for the NN training:
for i in range(number of desired data:)
n = generate a casual number of horizons
generate n reflectivity values
generate a random wavelet
generate n random depth values
sort depth values
build the reflection coefficient series with depth and reflectivity values
build seismic trace by convolving the reflection coefficient series and

he wavelet
Build the categorical reference output with the depth values
This algorithm is very fast and can be iterated to generate large

umbers of seismic traces and reference outputs.

.2. Neural network geometry

We chose the network geometry in Fig. 2 after a grid search to
stimate NN hyperparameters, e.g. number of neurons and depth of the
N.

LSTM maintains the causality and the Long-Term memory better fits
he physics behind the wave propagation (Hughes et al., 2019).

The Bi-Directional LSTM is able to improve the accuracy of NN
lassification (Guo et al., 2019): in the present study, it can in particular
educe false positives in the final layer by improving the identification
f the correct shape of the wavelet.

The output is driven by a Dense layer with a Softmax activation
unction that outputs a probability value equal to 1 on the phase with
he maximum amplitude of a reflection.

We used the CuDNNLSTM (Hochreiter and Schmidhuber, 1997)
mplemented in Keras (Chollet et al., 2015), a fast approximation of
STM on Nvidia CUDA (Chetlur et al., 2014): this means that both the
raining and the model must be used on a CUDA-compatible GPU.

As optimizer we used AdaMax (Kingma and Ba, 2014), a modified
ersion of Adam with infinity norm, because it performs better on this
roblem compared to Adam and SGD (Kingma and Ba, 2014).

As loss function we used Categorical Crossentropy (Mannor et al.,
005), defined as:

𝑜𝑠𝑠 = −
𝐶
∑

𝑖=0
𝑡𝑖𝑙𝑜𝑔(𝑠𝑖) (6)

here 𝑡𝑖 and 𝑠𝑖 are the expected classes and the NN score for each class
in C, respectively summed on the time steps: in this work 𝐶 = 2.

.3. Training

The training phase was split in two steps (Kavzoglu, 2009): an initial
raining on a noiseless dataset and a subsequent training on a noisy
ataset. This choice was due to the unbalanced output solutions: a
irect training on the noisy trace would led to a huge local minimum
here the NN outputs only 0s. To avoid this, we initially train the NN
n a noiseless dataset. We got good results from such training, as shown
n the additional materials: the training phase lasts 2 h and it reaches
n accuracy of 0.9995 in test and 0.980 in validation.
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Fig. 1. Three different types of noise (orange) superimposed on a synthetic seismic trace with four reflections (light blue) [a.1, a.2, a.3]; seismic traces resulting from the sum of
synthetic trace and noise [b.1, b.2, b.3] (see text for details). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 2. NN geometry: we set a layer with 2 LSTM (blue, second block from left), 8 BiDirectional LSTM (orange, third block), 2 layers with 8 and 4 neurons each (blue, fourth and
fifth blocks) and a final Dense layer with 2 neurons. On the left the input seismic trace and on the right the corresponding reference output. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Noisy traces (blue; see Fig. 1 for the different types of noise) and expected output (orange); (b.1-2-3): results of the NN prediction. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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We trained the NN with Adamax optimizer with a learning rate of
0.01, categorical crossentropy as loss function and batch size of 512.
(See Figs. 3 and 7.)

exactly the same used in Forte et al. (2016) (Fig. 5a therein) to test
an automated picking and phase assessment approach based on phase
seismic attributes. The NN is able to properly extract all the main
After the training on the noiseless dataset, we retrained this model
3 times on 3 different datasets with the noise levels and the noise types
described in the previous section. The main objective of this training
phase is to evaluate the performances of the trained NN on synthetic
and field datasets to infer the optimum solution to generate synthetic
data for the application of NN on field seismic data.

2.4. Prediction

A 1-D approach can be adversely affected by a high level of random
noise, although the prediction method is quite robust.

We use the ensemble learning technique to reduce the prediction
uncertainty: this technique uses multiple learning algorithms to obtain
better predictive inferences (Mendes-Moreira et al., 2009).

In detail, we tested two solutions, namely prediction with different
NNs trained on a dataset with the same characteristics and prediction
with the same NN on a single trace and on its inverted version in time.

The two approaches produced similar results and we thus decided
to use a single NN to reduce the required training effort.

This methodology generates 2 different predictions, and we com-
bined them with the geometric mean, as it gives better results than the
arithmetic mean.

This can be explained by the nature of the prediction: we predict
values of probability [0-1], so if NN1 predicts 0.5 (a mid value due to
a noisy area) and NN2 0.001 (a very low value), the arithmetic mean
would produce a value of ≃ 0.25, while the geometric approach would
penalize more this prediction (≃ 0.02). An example is shown in Fig. 4.
We can see how two wrong peaks at 25 ms and at 780 ms, in the first
prediction, are muted by the geometric mean. We further normalized
the maximum value of the first reflection to one to avoid exceedingly
large values that can affect the NN performance.

3. Results

3.1. Test on 2-D synthetic data

The first test of the NN performances on 2-D datasets generated
with the same workflow as the training dataset produced almost perfect
results, as expected. So we moved onto a more complicated example
using the Marmousi model (Martin, 2004). Fig. 5 shows part of the data
and the prediction, which is given as a probability set that associates a
probability value to each point in the section: the value indicates the
probability of the point to be a reflector, i.e. to belong to a reflecting
surface. Therefore a threshold above which the point is labeled as a
reflector has to be set. We directly estimate the optimum threshold by
evaluating the number of points classified as reflectors vs the thresh-
old (Fig. 6). We perform this task by using the algorithm described
in Satopaa et al. (2011). The threshold is set at the sharp inflection
point clearly visible in the resulting curve, thus limiting the subjectivity
of the choice (Fig. 6).

3.2. Test on 2-D field data

In order to test the proposed methodology we use at first a 2-D
marine seismic profile of the WS10 exploration project, obtained in
autumn 2010 in the west Mediterranean Sea by the Istituto Nazionale
di Oceanografia e Geofisica Sperimentale (OGS), which also performed
the data processing (Geletti et al., 2014). The selected portion of the
seismic profile images a rifted margin of the eastern Sardo-Provençal
Basin characterized by a faulted salt dome and by a portion of an
almost undisturbed sedimentary sequence (Fig. 8). For such reason,
the analyzed data represent an interesting and complex test for the
proposed procedure. We focused on this portion also because it is
horizons, both where they are sub-horizontal (i.e. in the shallow part)
and where they exhibit a significant dip (i.e. along the flanks of the salt
dome). As desired, horizons interrupt at the fault location (f labels in
Fig. 8),while correctly no horizons are detected within the salt dome
(sd labels in Fig. 8). The latter result is definitely not easily achievable
with traditional picking methods based on 1-D, 2-D or 3-D approaches,
because some lateral coherent events can be detected even if they are
not actually related to real reflectors (see results in Fig. 5a in Forte et al.
(2016)).

NN is also able to extract the high amplitude reflector below the salt
dome, while no significant features are detected in the deepest part of
the section below the salt dome where reflectors are not continuous
also because of some coherent noise due to over-migration effects. We
point out that the above described prediction procedure can be applied
to automatically extract the reflectors from any kind of dataset after
the training phase is concluded on a set of randomly generated data
containing various types and levels of noise.

In order to verify this capability and evaluate the performances, we
tested the NN on totally different data, i.e. a Ground Penetrating Radar
(GPR) dataset collected in a Glacier in the Eastern Alps (for further de-
tails about this data please refer to Colucci et al. (2014)). Although GPR
and reflection seismic techniques differ radically concerning sources
characteristics and physical parameters, they are both based on the
same physical wave theory (Ursin, 1983). Therefore, processing and
analysis techniques used for seismic data may be adapted, at least from
the theoretical point of view, also to GPR datasets.

The test data have 802 samples per trace with a 0.454 ns sampling
interval, while the spatial sampling interval (0.15 m) is not relevant in
a 1-D procedure.

In the example provided in Fig. 8 the NN is able to extract all the
relevant reflectors, which are related, from top to bottom to completely
different glaciological and geomorphological units, namely: snow and
firn (sf), firn (f), debris (d) ice (i) and bedrock (b). The procedure
performs quite well on continuous reflectors (like for instance sf-f
contact) but also on highly scattered levels (like d). The extraction of
the bedrock is much more difficult mainly because it is not continuous,
it is characterized by diffuse scattering and it has a lower signal-to-noise
ratio than the shallower units.

3.3. Test on 3-D synthetic data

We also tested the approach on 3-D synthetic datasets to deepen the
analysis of the proposed method.

The datasets used are taken from Wu et al. (2019, 2020) and were
originally generated to train a Convolutive Neural Network for fault
recognition (Wu et al., 2019), and for paleokarst detection (Wu et al.,
2020). We chose these datasets to test our methodology because they
are a good approximation to field data.

In order to test the flexibility of our methodology we directly
applied our method to the datasets without preliminary processing or
additional training to check its flexibility and robustness. The dataset
taken from Wu et al. (2019) has been generated with a convolutive
approach to simulate a faulted environment (Wu et al., 2019).

We tested the NN on a 128 × 128 × 128 samples seismic volume
obtained by random selection from this dataset, The results are quite
good, despite the huge number of close reflections; as shown in Fig. 9
we can see the continuity of the horizons in the 3 dimensions and also
easily identify the main faults. The second dataset was also generated
with a convolutive approach to simulate a paleokarst environment (Wu
et al., 2020). From this dataset, we extracted a 256 × 256 × 256 seismic
volume. The prediction is fast and quite accurate (see Fig. 10) and
we can identify the collapsing structures as high noise area, the 3-D
continuity of the horizons and their interruptions in the karstified areas.
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Fig. 4. (a): Input data and expected output, (b): results of the NN prediction, (c): results of the prediction performed on the input trace reversed in time, (d): geometric mean of
the two predictions.
Fig. 5. Results of the horizon extraction (green) performed by the NN on the Marmousi Dataset, (green), superimposed on the input data. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

4. Discussion choose the convolutive approach, which has the added advantage of
better handling different types of superimposed noise (see Section 2.1).
5

The proposed methodology substantially reduces the computational Another key factor is using fully synthetic datasets for the training

costs of the generation process compared to other approaches. The
use of Finite Differences methods for the forward modeling typically
requires huge amounts of memory and computational time for the
generation of datasets like the ones here considered. We therefore
phase: avoiding field data at this stage prevents possible bias due to
manual selection of horizons and implicit limitations in data character-
istics due to the fact that field data can only include a limited range of
possible geological situations. Furthermore, the more classic approach,
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Fig. 6. Number of points classified as reflectors (vertical axis) vs. Threshold value: optimal threshold indicated in red at the knee point. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Example of application of the NN to field seismic data: the data are part of a seismic line from the western Sardinian margin of the WS10 exploration project [see text
and Geletti et al. (2014) for details]. The prediction results are shown in green: ‘‘sd’’, salt dome; ‘‘f’’, main fault. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 8. Example of application of the NN to field GPR data: the GPR profile crosses a glacier in the Eastern Alps [see text and Colucci et al. (2014) for details]. The results of
the prediction are shown in green: ‘‘sf’’, snow and firn; ‘‘f’’, firn; ‘‘d’’, debris; ‘‘i’’, ice; ‘‘b’’, bedrock. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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Fig. 9. Example of results of NN prediction on a 3-D synthetic dataset generated from a subsurface model corresponding to a faulted environment (Wu et al., 2019): the color
scale is associated to the probability level (1 = reflection, see text for details). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
Fig. 10. Example of results of NN prediction on a 3-D synthetic dataset generated from a subsurface model corresponding to a paleokarst environment (Wu et al., 2020): the
color scale is associated to the probability level (1 = reflection, see text for details). (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

in which a portion of the available data is used to train the NN and
subsequently applied to the entire data set, has the obvious inherent

reflections, which appear more and more at increasing depths. This is
particularly evident within the wedge located between 2250–2500 m
7

constraint that the previous data is excluded from the extraction pro- and 4000–7000 m in vertical and horizontal coordinates, respectively.

cedure. An example of such an approach can be found in Tschannen
et al. (2020), where the authors trained a Convolutive Neural Network
on a small portion of the dataset after a manual interpretation, then
applying the trained model on the remaining data.

For validation purposes, we tested the proposed procedure on the
synthetic Marmousi dataset from Martin (2004). For this dataset all the
model details are known, including reflector’s geometry, velocity model
and seismic wavelet. We can evaluate our results considering both the
seismic section (Fig. 11a) and the real velocity model (Fig. 11b).

The shallowest part of the profile, from 0 to about 1500 m, is
well predicted and matches very well both the seismic section and the
velocity model; also the faults are correctly identified.

The analysis of the results of prediction in the deep part of the
section gives useful indications about the performance of the network
as a function also of the noise level. The complexity of Marmousi’s ve-
locity model gives rise to several non-primary events, such as multiple
The comparison between the seismic velocity model and the seis-
mic section reveals that several coherent events (similar to reflectors)
occur in the section although the wedge is actually homogeneous and
characterized by a single velocity value. Despite the increasing number
of primary and non-primary interfering events, the NN makes accurate
predictions and correctly retrieves the main elements of the structural
model.

A remarkable result of the proposed approach is that the NN is able
to deal also with the wavelet stretching due to the well known low-
pass filtering effect of the geological materials (Yilmaz, 2001). The data
about the computational load and performance of the NN refers to a
machine with a 2 core Intel(R) Xeon(R) CPU, 2.20 GHz, 12 Gb Ram
and a Nvidia Tesla T4 GPU.

We performed 100 tests to test the generation time of the algorithm:
each test produced a dataset of 10,000 traces 256 samples long. The
total time for each test was 2.80 s ± 0.13 s.
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Fig. 11. Marmousi dataset: example of prediction (a) on the seismic profile and (b) on the true velocity model.

Training time is not an issue, as the NN does not need to be retrained
for each specific task, as above highlighted, but can be applied directly

task for velocity estimation. In particular, in the field of velocity
modeling it may offer soft constrains for velocity model geometry in
8

to most field datasets. all the inversion methodologies that require an accurate input model,

The first training, without noise, lasts 100 epochs on a training

dataset of 100,000 × 256 samples and this takes less than 1 h. The
training with noise is longer, due to the increasing complexity of the
task: it lasts 4000 epochs for a total training time of about 26 h.

A great strength of this method is the significantly shorter prediction
time than traditional approaches. We tested it on 1000 datasets with
variable time dimensions from 4 to 4096 samples.

LSTM is able to predict any temporal length and we analyzed also
the change in prediction time depending on the record length, resulting,
as expected, in a linear relationship between temporal length and time
of prediction.

5. Conclusions

We propose a Deep Learning-based methodology that is fast and
accurate in extracting different types of reflectors from reflection seis-
mic dataset. The results obtained from its application to synthetic and
field datasets show that it can be an effective tool for applications that
require accurate automated recovery of reflection signals from large
datasets, such as e.g. velocity analysis, tomography, interpretation.

One of the main advantages introduced is the prediction with a
correlated probability: this is crucial in the recovery of horizons (i.e. re-
flecting surfaces) from both 2-D and 3-D data because this parameter
can weigh the estimate of the optimum surface, decreasing the level of
subjectivity of the whole procedure.

Other possible applications of this methodology could be the phase
assessment of reflections, which in turn represents a very important
like for instance Full Waveform inversion.
The proposed algorithm is fast, versatile, and does not require any

input from the user, as the threshold is estimated automatically using
a Knee function (see Section 3.1 for details) while the training phase
is done on synthetic data thus avoiding possible bias due to manual
horizons picking and intrinsic limitations and peculiarities of a specific
field dataset. Further researches will focus on horizons patching and
automated phase recognition.
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