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a b s t r a c t

State estimation for a class of linear time-invariant systems with distributed output measurements
(distributed sensors) and unknown inputs is addressed in this paper. The objective is to design a
network of observers such that the state vector of the entire system can be estimated, while each
observer has access to only local output measurements that may not be sufficient on their own to
reconstruct the entire system’s state. Existing results in the literature on distributed state estimation
assume either that the system does not have inputs, or that all the system’s inputs are globally known
to all the observers. Accordingly, we address this gap by proposing a distributed observer capable of
estimating the overall system’s state in the presence of inputs, while each observer only has limited
local information on inputs and outputs. We provide a design method that guarantees convergence
of the estimation errors to zero under joint detectability conditions. This design suits undirected
communication graphs that may have switching topologies and also applies to strongly connected
directed graphs. We also give existence conditions that are consistent with existing results on unknown
input observers. Finally, simulation results verify the effectiveness of the proposed estimation scheme
for various scenarios.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The increasing ubiquity of embedded systems has empow-
red sensing equipment with communication and computation
apabilities that allow complex algorithms to be deployed on
ensors themselves. This is especially beneficial for larger sys-
ems comprising many different components, whose state space
as a significant size or is spread over a large area. Systems
f this kind encompass smart buildings with many networked
ensing points (Casado-Vara et al., 2020) or water and power
etworks (Bartos et al., 2018; Fadel et al., 2015), where measure-
ents are taken over a vast area. In both cases, the centralized
omputation may result in additional complexity and coordina-
ion, hence running distributed algorithms is an effective design
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choice. Therefore, this paper addresses the state estimation prob-
lem for a linear time-invariant (LTI) dynamical system with N
sensor nodes. More generally, the distributed estimation problem
is to design a group of N observers co-located with the sensors
such that each observer computes an estimate of the state vector
of the entire system, while only having access to some local
measurements. In general, these local measurements may not be
sufficient to estimate the state, and to overcome this limitation,
each observer shares its own estimate with neighboring observers
over a communication network.

Many classical algorithms for state estimation, such as the
Luenberger observer and the Kalman filter, have been extended
in the literature in several ways for distributed state estimation.
For instance, the works of Olfati-Saber (2007) and Kamgarpour
and Tomlin (2008) extend the classical Kalman filter to dis-
tributed systems. In Wang and Morse (2018), a general linear
structure of a distributed observer is given, and no assumptions
are made on the detectability of the system with respect to
the individual node. In Kim et al. (2016) and Han et al. (2019),
Luenberger-like observers are designed for distributed state es-
timation. Such ideas also have been used for more complex
scenarios such as resilient distributed state estimation (Mitra
et al., 2019; Mitra & Sundaram, 2019), nonlinear distributed esti-
mation (He et al., 2020; Yang et al., 2020), distributed estimation
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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n the presence of switching topologies (Ugrinovskii, 2013; Xu
t al., 2020), H∞-based distributed estimation (Shen et al., 2010),
istributed moving horizon estimation (Farina et al., 2010), etc.
A limitation that existing works on distributed estimation

ave in common is the assumption that the global system is
utonomous (i.e., there are no external inputs) or that the input
nformation is available globally for all nodes. However, in prac-
ice, when a system is distributed and is driven by some inputs,
t may not be possible for each node to access all control signals.
nstead, each node may merely have access to its own part of
he system’s input, which is available locally. In this case, the
xisting distributed estimation schemes in the literature may not
e effective.
In particular, the problem of distributed state estimation is still

pen when unknown inputs at some nodes are considered. In the
entralized case, unknown input observers (UIOs) (Bhattacharyya,
978; Chen et al., 1996; Commault et al., 2001; Darouach et al.,
994; Guan & Saif, 1991; Hou & Muller, 1992; Pertew et al.,
005; Wang et al., 1975; Watanabe & Himmelblau, 1982) have
istorically been an effective tool for dealing with systems with
ompletely unknown exogenous disturbances, where these can
lso model coupling between subsystems (Hou & Müller, 1994).
ittle work exists where these observers are instead extended to
istributed cases, such as in Chakrabarty et al. (2016). In that
ork, however, the objective is for each system to estimate their
wn local state regardless of the neighboring interconnections. In
his paper, we aim to leverage the geometric decoupling capabil-
ties offered by the UIO design and devise a distributed version of
he algorithm that is capable of estimating the global system state
n the presence of locally unknown inputs. Therefore, compared to
he existing literature in the area of distributed estimation, the
ain contributions of this paper are listed below:

• The nodes of the distributed observer do not have access
to the entire input vector, but rather only subsets of it are
assumed to be available at each node.

• The nodes exchange with their neighbors the local estimates
of the whole state vector of the system, such that under cer-
tain conditions, the estimate of each node converges to the
state vector of the system via a suitably designed consensus
strategy.

• Under certain detectability conditions, the feasibility of the
design of the proposed distributed estimation scheme is
guaranteed.

ore precisely, we propose a distributed unknown input observer
DUIO) for an LTI system with unknown disturbances, where only
he information of local outputs and local inputs is accessible
t each node. We provide rigorous (necessary and sufficient)
onditions for the existence of such DUIO, depending on a rank
ondition and an appropriately defined detectability criterion. We
lso show that any feasible solution of a certain linear matrix
nequality (LMI) guarantees asymptotic convergence of the ob-
ervers’ estimates to the real state of the system. Therefore, such
MI condition can be constructively applied to compute the gains
f the DUIO, given that the existence conditions are satisfied.
urthermore, when the aforementioned detectability criterion is
atisfied, the feasibility of the LMI is always guaranteed. To the
est of the authors’ knowledge, it is the first time that a dis-
ributed consensus-based unknown-input observer architecture
s being proposed.

The paper is organized as follows. In Section 2, some notations
nd basic information on graph theory are provided. The prob-
em is formulated in Section 3. The distributed state estimation
cheme in the presence of unknown inputs at each node is pro-
osed in Section 4. Simulation results are provided in Section 5

nd concluding remarks and future work are stated in Section 6. i

2

2. Preliminaries

Notation and some concepts and definitions of graph theory
are presented in this section.

2.1. Notation

By considering C as the set of complex numbers, let C−
=

s ∈ C : Re s < 0} and C+
= {s ∈ C : Re s ≥ 0}. In stands

for the n × n identity matrix. 0n×m is an n × m all-zeros matrix.
1n is an n × 1 all-ones vector. | · | stands for the standard 2-no-
rm. ⊗ stands for the Kronecker product. For a matrix A ∈ Rn×m, A†

represents the pseudo inverse of A such that if A is full row rank,
A†

= A⊤(AA⊤)−1 and if A is full column rank, A†
= (A⊤A)−1A⊤.

We say M ≻ 0, if M is a symmetric positive definite matrix.
2(·) is the second smallest eigenvalue of a real symmetric matrix.
iag(M1,M2, . . . ,Mn) represents a block diagonal matrix com-

posed of the matrices M1,M2, . . . ,Mn. Similarly, diagi∈I(Mi) is a
short-hand notation when the matrices are indexed by a set I. A
nontrivial’ (sub)space V is such that dim(V ) > 0. Moreover, if
, S ⊆ X , we define the subspace R + S ⊆ X as R + S =

r+s : r ∈ R and s ∈ S }, and we define the subspace R∩S ⊆ X

s R ∩ S = {x : x ∈ R and x ∈ S }. Accordingly, the symbol
indicates that the subspaces being added are independent.

⊥ denotes the orthogonal complement of the subspace V . We
ndicate that two vector spaces V and W are isomorphic by V ≃

. αA(s) is the minimal polynomial of A, which is factored as
ollows:

A(s) = α+

A (s)α−

A (s),

here the roots of α+

A belong to C+, and the roots of α−

A be-
ong to C− (Wonham, 1985, Chap. 3.6). UO(C, A) denotes the
nobservable subspace of the pair (C, A) and is defined by

O(C, A) =

n⋂
k=1

Ker CAk−1.

oreover, UD(C, A) denotes the undetectable subspace of the
air (C, A) and is defined by

D(C, A) =

(
n⋂

k=1

Ker CAk−1

)⋂
Ker α+

A (A).

.2. Graph theory

Communication among the observers is described by an un-
eighted graph G = (N, E,A) where N = {1, 2, . . . ,N} is the
et of nodes (denoting N observers with local measurement),
⊆ N × N is the set of edges (denoting communication links),
nd A = [aij] ∈ RN×N denotes the adjacency matrix. We say that
ij = 1 if Node j is a neighbor of Node i, that is Node j sends
nformation to Node i, and aij = 0 otherwise (in the case of
ndirected graphs, aij = aji). An undirected graph is connected if
here exists a path of edges connecting each pair of its nodes.
oreover, a directed graph is strongly connected if there exists a
ath in each direction connecting each pair of its nodes.
The Laplacian matrix associated with the graph G is a matrix

= [ℓij] ∈ RN×N defined as

ij =

{ ∑N
j=1,i̸=j aij i = j

−aij i ̸= j,

hich always has a zero eigenvalue, and if G is connected or st-
ongly connected, all the other eigenvalues are on the open right
alf-plane. If the graph is undirected, L is also symmetric and all

ts eigenvalues are real (Ren et al., 2007). In such case, the second
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Fig. 1. A distributed observer consisting of five nodes: each local observer Oi
has available local inputs and measurements ui and yi . Furthermore, neighboring
estimates are exchanged over an undirected communication network (dashed
line).

smallest eigenvalue λ2(L) denotes the algebraic connectivity of the
graph (Olfati-Saber & Murray, 2004).

The graph G is called balanced, if for all i ∈ N,
∑N

i=1 aij =∑N
j=1 aji. If G is connected or strongly connected and balanced,

the right and left eigenvectors associated with the zero eigen-
value are 1N/

√
N (Ren et al., 2007). Moreover, the Laplacian

atrix associated with any balanced graph is positive semidef-
nite (Olfati-Saber & Murray, 2004).

. Problem statement

Consider the dynamical system described as

ẋ = Ax + Bu + Dw, (1)

where x ∈ Rn represents the state vector, u ∈ Rm is the control in-
put, w ∈ Rq is an unknown external disturbance, A ∈ Rn×n is the
state matrix, B ∈ Rn×m denotes the input matrix, and D ∈ Rn×q is
the disturbance matrix gain. We assume that the system outputs
are measured via a distributed measurement system comprising
a group of sensors distributed over N nodes, namely

yi = Cix, (2)

with Ci ∈ Rpi×n.
In order to further distinguish the locally available signals, we

partition the system’s inputs into a component ui, which is local
to and assumed to be known at Node i, and a component úi, which
is unknown and can instead be assimilated to an exogenous
disturbance. In symbols, we then have

Bu = Biui + B́iúi,

where ui ∈ Rri , Bi ∈ Rn×ri , úi ∈ Rdi , and B́i ∈ Rn×di , with ri + di
= m. Then, as w is also unknown, we define

ẃi =
[
ú⊤

i w⊤
]⊤

, B̄i =
[
B́i D

]
,

where ẃi is the locally unknown inputs and B̄i is the known gain
of the unknown terms.
3

Assumption 1. The matrix B̄i is full column rank for all i ∈ N.

Remark 1. Note that Assumption 1 does not cause any loss of
generality and is typically made in the literature of estimation
with unknown disturbances (Chen et al., 1996). In fact, it is always
possible (by means of singular value decomposition, for instance)
to decompose B̄i in a product B̄i = B̄′

iB̄
′′

i , where B̄′

i is full column
ank and w̄′

i = B̄′′

i ẃi constitutes the new unknown input.

As the objective is to reconstruct the state vector x, we con-
ider a distributed observer O = {Oi}i∈N comprising N local
odes (or observers) Oi located at each sensor node, where each
bserver has access to just its local outputs yi and local inputs ui.
urthermore, the local observers exchange their state estimates
hrough a communication network.

ssumption 2. The network communication graph is connected.

To provide a visual example of the proposed architecture, in
ig. 1, an undirected network of distributed observers with five
odes is shown, where the local information of each node inclu-
es the local output measurement vector yi and the local known
ontrol input vector ui.
We can finally characterize the distributed estimation prob-

em. Let x̂i denote the estimate of x produced by the local observer
Oi, then we define the estimation error as

ei = x − x̂i. (3)

A DUIO is hence defined as follows.

Definition 1. The set of observers {Oi}i∈N is a DUIO for system
(1) if for all i ∈ N,

lim
t→+∞

|ei(t)| = 0,

for all locally unknown inputs ẃi.

That is to say, a distributed observer is a DUIO if the local est-
imation error terms are decoupled from the disturbances and the
input components that are not locally available.

4. Distributed unknown input observer design

In this section, assuming that the communication graph is un-
directed and fixed, the proposed DUIO design is first presented.
Then, the results are extended to scenarios when the undirected
communication graph is switching over time, or the communica-
tion graph is directed.

4.1. Fundamental results for undirected networks

The basic principle to design an unknown input observer is
to derive some algebraic conditions that decouple the observer’s
error from the unknown disturbances and inputs (see e.g., Chen
et al. (1996)). Along this pattern, we propose the following full-
order local observer Oi, i ∈ N:

żi = Nizi + MiBiui + Liyi + χP−1
i

N∑
j=1

aij(x̂j − x̂i),

x̂i = zi + Hiyi,

(4)

where zi ∈ Rn is the state vector of the observer Oi, the matrices
Ni,Mi, Li, Pi, and Hi are defined in the following in order to gua-
rantee the convergence to zero of the error ei, and χ is a real-
valued design parameter.
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It can be shown (see Appendix A) that the estimation error of
observer (4) with respect to (1) is given by

ėi = [(In − HiCi)A − KiCi]ei

+ (In − HiCi − Mi)Biui + (In − HiCi)B̄iẃi

+ [(In − HiCi)A − KiCi − Ni]zi

+ [Ki + ((In − HiCi)A − KiCi)Hi − Li]yi

+ χP−1
i

N∑
j=1

aij(ej − ei).

(5)

Now, owing to (5), we set the following constraints on the ma-
trices Ni,Mi, Li, Pi, and Hi, followed by analysis that establishes
solvability conditions:

(In − HiCi)B̄i = 0n×1, (6a)

Mi = In − HiCi, (6b)

Ni = MiA − KiCi, (6c)

Li = Ki + NiHi. (6d)

Lemma 1. (Chen et al., 1996) Eq. (6a) is solvable if and only if

rank(CiB̄i) = rank(B̄i),

and the general solution is given by

Hi = Ui + YiVi, (7)

where Yi ∈ Rn×pi is an arbitrary matrix, and Ui and Vi are defined
as follows:

Ui = B̄i(CiB̄i)†, Vi = Ipi − CiB̄i(CiB̄i)†.

Remark 2. While Ui is a special solution to the decoupling
Eq. (6a), it may be beneficial to also consider Yi as a design para-
meter that provides additional degrees of freedom without af-
fecting the decoupling property. This enlarged solution space is
useful as it may provide better (e.g., with lower gains) solutions to
optimization problems such as the one of Theorem 1, or achieving
secondary objectives like noise attenuation (Mondal et al., 2010).

Lemma 1 provides a geometric condition that allows (6a) in
particular to be satisfied. Therefore, by obtaining Hi from (6a), and
by setting Mi, Ni, and Li respectively as (6b), (6c), and (6d), (5) can
be simplified as follows:

ėi = Niei + χP−1
i

N∑
j=1

aij(ej − ei). (8)

It should be noted that by virtue of (6) and (7), Ki and Yi are
the design parameters (to be characterized in Theorem 1). Fur-
thermore, under the condition (6a), B̄i will be in the null space of
In − HiCi, such that the term (In − HiCi)B̄iẃi appearing in (5) does
not enter (8). Therefore, any arbitrary w will not have any effect
on the estimation errors.

Before introducing the main results on the design and exis-
tence of the DUIO, we investigate the detectability properties of
the system. For convenience, we first introduce the following de-
finition.

Definition 2 (Extensive Joint Detectability). Let
Ai = (In − UiCi)A. (9)

4

System (1) is extensively jointly detectable from Node i if
N⋂
i=1

UD(Ci, Ai) = 0. (10)

By virtue of the definition of Ai in (9) and by recalling (7), we
define

Āi = (In − HiCi)A = Ai − YiViCiA, (11)

so that we can express Ni = Āi − KiCi. With this, the convergence
of the estimation errors in terms of the detectability properties
of the pair (Ci, Āi) will be investigated. Accordingly, we introduce
a similarity transformation matrix Ti ∈ Rn×n, i ∈ N, as Ti =[
Tid Tiu

]
in which Tiu ∈ Rn×vi is an orthonormal basis of the

undetectable subspace of
(
Ci, Āi

)
, where vi is the dimension of the

undetectable subspace of the pair (Ci, Āi), and Tid ∈ Rn×(n−vi) is an
orthonormal basis such that Im Tid is orthogonal to Im Tiu (Kim
et al., 2016). Note that by defining X ≃ Rn as the n-dimensional
state space of the system, we have X = Im Tid ⊕ Im Tiu. In the
following lemmas, we investigate such detectability properties
using a geometric approach. We first prove that the detectability
of the pairs (Ci, Āi) and (Ci, Ai) are equivalent, and then we pro-
vide a condition for which all the estimation errors can be steered
to zero.

Lemma 2. The undetectable subspace of the pairs (Ci, Āi) and (Ci,
Ai) are identical for all Yi ∈ Rn×pi .

Proof. By considering (11), for some Fi ∈ Rn×pi , one gets

Āi + FiCi = Ai − YiViCiAi + FiCi

= Ai +
[
Fi −YiVi

] [ Ci

CiAi

]
.

(12)

From (12), it follows that

UD
(
Ci, Āi

)
= UO

([
Ci

CiAi

]
, Ai

)⋂
Ker α+

Ai
(Ai). (13)

Meanwhile,

UD (Ci, Ai) = UO(Ci, Ai)
⋂

Ker α+

Ai
(Ai). (14)

By comparing (13) and (14), to show that UD
(
Ci, Āi

)
=UD (Ci, Ai),

we can show that the unobservable subspaces of
([

Ci

CiAi

]
, Ai

)
and (Ci, Ai) are identical. It can be said that

UO

([
Ci

CiAi

]
, Ai

)
=

n⋂
k=1

Ker
[

Ci

CiAi

]
Ak−1
i . (15)

One can observe that

Ker
[

Ci

CiAi

]
Ak−1
i = Ker CiAk−1

i

⋂
Ker CiAk

i ,

which implies that
n⋂

k=1

Ker
[

Ci

CiAi

]
Ak−1
i =

n+1⋂
k=1

Ker CiAk−1
i . (16)

Moreover, the unobservable subspace of the pair (Ci, Ai) is

UO (Ci, Ai) =

n⋂
k=1

Ker CiAk−1
i . (17)

Now, from (15), (16), and (17), it follows that

UO (Ci, Ai) = UO

([
Ci
]

, Ai

)
,

CiAi
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nd thus from (13) and (14), we have

D (Ci, Ai) = UD
(
Ci, Āi

)
,

hich completes the proof. ■

emma 3. Let system (1) be extensively jointly detectable. Then,
y letting

d =
[
T1d T2d . . . TNd

]
,

we have

Im Td = X .

Proof. The proof follows standard geometric arguments; how-
ever, it is provided in Appendix B for completeness. ■

The presented lemmas let us investigate the stability of the es-
imation errors, with the hypotheses that a solution to (6) exists.
n this case, we leverage standard Lyapunov arguments to obtain
n LMI condition that guarantees the stability of the (collective)
rror e, defined as the stacked vector of local observers’ errors as
ollows:

=
[
e⊤

1 e⊤

2 . . . e⊤

N

]⊤
. (18)

he stability of the proposed distributed estimation scheme is st-
died in the following theorem.

heorem 1 (Stability). Consider the DUIO described in (4) under
ssumption 2 and the conditions (6) and (7). Moreover, let

i = A⊤(In − C⊤

i U⊤

i )Pi + Pi(In − UiCi)A

− A⊤C⊤

i V⊤

i Ȳ⊤

i − ȲiViCiA

− C⊤

i K̄⊤

i − K̄iCi,

(19)

n which the matrices Pi ≻ 0, Ȳi, and K̄i are a feasible solution of the
ollowing LMI:
N∑
i=1

Λi ≺ 0. (20)

nder these conditions, by considering the DUIO parameters Yi and
i as Yi = P−1

i Ȳi, and Ki = P−1
i K̄i, the estimation error e (18) con-

erges to zero if the gain χ satisfies

>

⏐⏐⏐⏐Λ + Λ⊤

P

(∑N
i=1 Λi

)−1
ΛP

⏐⏐⏐⏐
2λ2(L)

, (21)

here
Λ = diag(Λ1, Λ2, . . . , ΛN ),

ΛP =
[
Λ1 Λ2 . . . ΛN

]
.

(22)

Proof. We show that along (8), the estimation errors converge to
zero. Accordingly, we consider the following Lyapunov candidate
of the estimation errors:

V =

N∑
i=1

e⊤

i Piei, (23)

hich is a positive definite function of the estimation errors. The
ime derivative of V along (8) can be stated as follows:

V̇ = e⊤ diag
i∈N

(N⊤

i Pi + PiNi)e − 2χe⊤(L ⊗ In)e. (24)

Based on the conditions on Mi and Ni in (6b) and (6c), it follows
that

N⊤

i Pi + PiNi =

(
(In − HiCi)A − KiCi

)⊤

Pi

+ P
(
(I − H C )A − K C

)
.

(25)

i n i i i i v

5

According to (25) and the definition of Hi in (7), one gets

N⊤

i Pi + PiNi =

A⊤Pi + PiA − A⊤C⊤

i U⊤

i Pi − PiUiCiA

− A⊤C⊤

i V⊤

i Y⊤

i Pi − PiYiViCiA − C⊤

i K⊤

i Pi − PiKiCi,

hich by considering (19) with Ȳi = PiYi and K̄i = PiKi, can be re-
written as

N⊤

i Pi + PiNi = Λi. (26)

Now, from (26), (24) can be restated as follows:

V̇ = e⊤Λe − 2χe⊤(L ⊗ In)e, (27)

where Λ is defined in (22). To analyze (27), we decompose the
error space into two subspaces. By defining the error space as
E ≃ RNn, one of these subspaces is denoted by Ec ⊆ E (dim (Ec) =

) which is the kernel of L⊗In and has the form of 1N⊗ω, ω ∈ Rn.
ccordingly, the other subspace is the orthogonal complement
ubspace of Ec which is denoted by Er ⊆ E (dim (Ec) = Nn − n)
such that Ec ⊕ Er = E . Thus, by considering ec ∈ Ec and er ∈ Er ,
(27) yields

V̇ = e⊤

c Λec + 2e⊤

r Λec + e⊤

r (Λ − 2χ (L ⊗ In))er ,

which since ec = 1N ⊗ ω can be restated as follows:

V̇ = ω⊤

( N∑
i=1

Λi

)
ω + 2e⊤

r Λ⊤

P ω

+ e⊤

r (Λ − 2χ (L ⊗ In))er .

(28)

Moreover, as er is orthogonal to the kernel of L ⊗ In, one gets
(Olfati-Saber & Murray, 2004)

− e⊤

r (L ⊗ In)er ≤ −λ2(L)e⊤

r er . (29)

Since the graph is connected from Assumption 2, λ2(L) ∈ R>0.
Hence, by considering (28) and (29), we have

V̇ ≤ −

[
ω

er

]⊤
[
−
∑N

i=1 Λi −ΛP

−Λ⊤

P 2χλ2(L)INn − Λ

][
ω

er

]
. (30)

rom the inequality (21), one gets:

χλ2(L)INn − Λ − Λ⊤

P

(
N∑
i=1

Λi

)−1

ΛP ≻ 0. (31)

inally, according to (31) and by invoking the Schur complement
Boyd et al., 1994), the negative definiteness of V̇ in (30) can be
concluded. Thus, V asymptotically converges to zero, which im-
lies that the estimation error e (and therefore all its components
i, ∀i ∈ N) converges to zero. ■

Remark 3. From (27), it follows that

V̇ = −e⊤ (2χ (L ⊗ In) − Λ) e,

where according to the proof of Theorem 1, 2χ (L ⊗ In) − Λ ≻ 0.
Now, by considering (23), one gets

V̇ ≤ −µV ,

where

µ =
λmin

(
2χ (L ⊗ In) − Λ

)
max
i∈N

(
λmax(Pi)

) . (32)

rom the comparison theorem for scalar ordinary differential eq-
ations (Khalil & Grizzle, 2002, Chap. 3), one obtains 0 ≤ V ≤ v
or all t ≥ 0, where v is given by

(t) = e−µtv(0),
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amely v converges to zero with time constant 1/µ, where since
≤ V ≤ v, 1/µ implies an upper bound for the time constant of

the convergence of V to zero as well.

heorem 2 (Feasibility). If system (1) is extensively jointly detec-
able, then the LMI (20) is always feasible for some Pi, Ȳi, and K̄i.

roof. From (9), (11), and (19), Λi can be written as

i = (Āi − KiCi)⊤Pi + Pi(Āi − KiCi). (33)

y considering the similarity transformation matrix Ti ∈ Rn×n,
ne can observe that Kim et al. (2016)

⊤

i ĀiTi =

[
Āid 0(n−vi)×vi

Āir Āiu

]
,

CiTi =
[
Cid 0pi×vi

]
,

(34)

here the pair (Cid, Āid) is detectable. Based on the aforementio-
ed formulation, without loss of generality, let the observer gains
i ∈ Rn×pi and Pi ∈ Rn×n be as follows:

i = Ti

[
Kid

0vi×pi

]
,

Pi = Ti

[
Pid 0(n−vi)×vi

0vi×(n−vi) Piu

]
T⊤

i ,

(35)

here Kid ∈ R(n−vi)×pi , Pid ∈ R(n−vi)×(n−vi) ≻ 0, and Piu ∈ Rvi×vi

0. From the definition of Λi in (33), the definition of Ki and
i in (35), and the decomposition performed in (34), we have

i = Ti

[
Λid Λ⊤

ir

Λir Λiu

]
T⊤

i , (36)

here Λid ∈ R(n−vi)×(n−vi), Λir ∈ Rvi×(n−vi), and Λiu ∈ Rvi×vi are as
ollows:

id = Γ ⊤

id Pid + PidΓid,

Λir = PiuĀir ,

Λiu = Ā⊤

iuPiu + PiuĀiu,

in which Γid = Āid − KidCid. Since Ti =
[
Tid Tiu

]
, one gets:

Ti

[
Λid Λ⊤

ir

Λir Λiu

]
T⊤

i = TidΛidT⊤

id +

+ TiuΛirT⊤

id + TidΛ⊤

ir T
⊤

iu + TiuΛiuT⊤

iu .

(37)

Now, from (37), and by defining

Td =
[
T1d T2d . . . TNd

]
,

Λd = diag(Λ1d, Λ2d, . . . , ΛNd),

it follows that
N∑
i=1

(
Ti

[
Λid Λ⊤

ir

Λir Λiu

]
T⊤

i

)
= TdΛdT⊤

d +

N∑
i=1

(
TiuΛirT⊤

id + TidΛ⊤

ir T
⊤

iu + TiuΛiuT⊤

iu

)
.

(38)

If the system is extensively jointly detectable it follows by
Lemma 3 that rank(Td) = n. Hence, from (36) and (38), we have

N∑
i=1

Λi = Td (Λd + S) T⊤

d , (39)

where

S = T †
d

N∑(
TiuΛirT⊤

id + TidΛ⊤

ir T
⊤

iu + TiuΛiuT⊤

iu

)
T †⊤
d .
i=1

6

Considering (39), since Td is row independent, the LMI (20) is
feasible if the following inequality has solution:

Λd + S ≺ 0. (40)

Let us recall that Λd = diag(Λ1d, Λ2d, . . . , ΛNd), where Λid =

Γ ⊤

id Pid + PidΓid and Γid = Āid − KidCid. Because of the detectabil-
ity of the pair (Cid, Āid), there exists Kid such that Γid is Hur-
witz. In this condition, according to the Lyapunov stability cri-
terion (Antsaklis & Michel, 2006, Chap. 6), for each β ∈ R>0
there exists Pid ≻ 0 such that Λid = Γ ⊤

id Pid + PidΓid = −βIn−vi .
n the other hand, there exists a large enough β such that (40)
as solution, which guarantees the feasibility of the LMI (20).
ence, by selecting Piu ≻ 0 and Yi arbitrarily, and according to the
efinition of Ki and Pi in (35), the LMI (20) always has solutions
or Pi, Ȳi, and K̄i. ■

Theorems 1 and 2 give constructive sufficient conditions which
an be effectively used to compute the design parameters that
chieve error convergence to zero. In the next theorem, we pro-
ide necessary and sufficient existence conditions for the pro-
osed observer to be a DUIO in the sense of Definition 1.

heorem 3 (Existence). Under Assumption 2 and the conditions (6),
he observer O = {Oi}i∈N comprising local observers in the form (4)
s a DUIO for the LTI system (1) if and only if the following conditions
old:

(i) rank(CiB̄i) = rank(B̄i), ∀i ∈ N,
(ii)

⋂N
i=1 UD(Ci, Ai) = 0.

roof. (Sufficiency)–If (i) holds, (6a) is solvable as stated in
emma 1. If (ii) is true, then by Theorem 2 we conclude that
he LMI (20) admits a solution. Therefore, we can also apply
heorem 1 and conclude that such solution renders e asymptoti-
ally stable, i.e., ∀i ∈ N,

lim
→+∞

|ei| = 0.

herefore, O is a DUIO for (1), according to Definition 1.
(Necessity) – Assume now that O = {Oi}i∈N is a DUIO for (1),

.e., ∀i ∈ N, limt→+∞ |ei(t)| = 0. This immediately implies that
6a) is solvable, since it is a necessary condition (see Chen et al.
1996)) for any arbitrary disturbance term ẃ in (5) to be exactly
anceled. Hence, according to Lemma 1, (i) holds. To prove the
ecessity of (ii), we proceed by contradiction and assume that
here exists a nontrivial subspace S ⊂ X such that
N

i=1

UD(Ci, Ai) = S ̸= 0,

hich, according to (14), indicates that

=

(
N⋂
i=1

UO(Ci, Ai)

)⋂(
N⋂
i=1

Ker α+

Ai
(Ai)

)
. (41)

e consider the factorization of α+

Ai
(s) as

+

Ai
(s) = α+

Ai,1
(s)α+

Ai,2
(s) · · · α+

Ai,qi
(s), (42)

or some positive qi ≤ n, where α+

Ai,k
(s), k ∈ {1, . . . , qi}, are real

rreducible polynomials and pairwise coprime (Wonham, 1985,
hap. 0.11). An analogous factorization also exists for α−

Ai
(s). By

pplying the modal decomposition, X is decomposed into lin-
arly independent subspaces as

≃ X −

i ⊕ X +

i = X −

i ⊕ X +

i,1 ⊕ · · · ⊕ X +

i,qi
, (43)

here X −

i = Ker α−

Ai
(Ai) and X +

i,k = Ker α+

Ai,k
(Ai). Therefore, th-

nks to the linear independence of the modes, we have

er α+(A )=Ker α+ (A ) ⊕ · · · ⊕ Ker α+ (A ), (44)
Ai i Ai,1 i Ai,qi i
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hus, the second term on the right-hand side of (41) expands as
ollows:
N

i=1

Ker α+

Ai
(Ai) =

N⋂
i=1

X +

i,1 ⊕ · · · ⊕ X +

i,qi
.

Since S ̸= 0, there exists X +

∩ ⊆ X +

i , ∀i ∈ N, whose intersec-
tion with the unobservable subspaces of the nodes is nontrivial.
Namely, X +

∩ ⊆ S is by construction an Ai-invariant subspace
(cf. Wonham (1985, Chap. 0.11)) of an undetectable mode of all
the nodes, that is ∀i ∈ N, there exists x ∈ X , x ̸= 0n×1, such that

α+

Ai
(Ai)x = 0n×1. (45)

By Lemma 2, (41)–(45) hold for Āi as well, thus we let v ∈ X +

∩ be
one of such common undetectable modes, and since S ⊆ Ker Ci
for all i ∈ N, it holds that

(Āi − KiCi)v = Āiv. (46)

By stacking the error components and from (8), we obtain

ė =

(
diag
i∈N

(Ni) − χ diag
i∈N

(
P−1
i

)
(L ⊗ In)

)
e

= (Φ − Π )e,
(47)

where the definitions of Φ and Π follow trivially from the equal-
ity. Let ē = 1N ⊗ v. Thanks to Assumption 2, ē ∈ KerΠ , that is
Π ē = 0Nn×1. Moreover, for each block of Φ , ē satisfies (46) with
v ∈ X +

∩ . Therefore, by considering (6) we have

(Φ − Π )ē = diag
i∈N

(Āi − KiCi)ē = diag
i∈N

(Āi)ē.

Now, choosing ē0 = 1N ⊗ v as the initial condition for (47)
produces an error along the direction of the unstable mode v. This
contradicts the asymptotic stability hypothesis, and therefore (ii)
must be true. ■

It should be noted that we have formulated Theorem 3 in a
way to express the similarities of the conditions derived in our
approach to the classical existence conditions (Chen et al., 1996,
Theorem 1) for the centralized case. We remark as well that (ii) is
a necessary and sufficient condition also appearing in Ugrinovskii
(2013).

In the following subsection, we show how the proposed DUIO
can be extended to more complex scenarios under some con-
ditions, such as graphs with switching topologies and directed
networks.

4.2. Extension to switching topologies or directed networks

The results presented in Theorem 1 are based on the assump-
tion that the communication graph is undirected and its links are
steady and not failing over time. However, by suitably modifying
χ , the obtained results can be extended to more general scenar-
ios such as distributed estimation in the presence of switching
topologies and distributed estimation in directed networks.

In the presence of switching topologies, let G(t) describe a
communication graph switching over time. Accordingly, the dis-
tributed observer proposed in (4) should be modified as follows:

żi = Nizi + MiBiui + Liyi + χP−1
i

N∑
j=1

aij(t)(x̂j − x̂i),

x̂i = zi + Hiyi,

(48)

where aij(t) = 1 if there exists a communication link between
Node i and Node j at time t , and it is zero otherwise. Accordingly,
we consider an infinite time sequence t , t , t , . . . starting at
0 1 2

7

t0 = 0, at which G(t) switches to Gk, k = 0, 1, 2, . . . , while
remaining fixed and connected during the time period [tk, tk+1).

Corollary 1. Consider the DUIO described in (48) under the con-
ditions (6) and a switching communication graph G(t), where G(t)
remains connected over time. By letting Λi as (19), the estimation
error e converges to zero if Yi = P−1

i Ȳi, and Ki = P−1
i K̄i, where the

matrices Pi ≻ 0, Ȳi, and K̄i are a feasible solution of the LMI (20),
and the gain χ satisfies

χ >

⏐⏐⏐⏐Λ + Λ⊤

P

(∑N
i=1 Λi

)−1
ΛP

⏐⏐⏐⏐
2C(N)

, (49)

here Λ and ΛP are defined in (22), and C(N) is a lower bound for
he algebraic connectivity of graphs with N nodes.

roof. By considering a common Lyapunov function for the set of
witching networks the same as in (23) and following the same
teps as in the proof of Theorem 1, for the time period [tk, tk+1)
one gets

V̇ ≤ −

[
ω

er

]⊤
[
−
∑N

i=1 Λi −ΛP

−Λ⊤

P 2χλ2(Lk)INn − Λ

][
ω

er

]
, (50)

here Lk is the Laplacian matrix associated with Gk. In this con-
ition, according to (50) and the Schur complement, V̇ is negative
efinite if

χλ2(Lk)INn − Λ − Λ⊤

P

(
N∑
i=1

Λi

)−1

ΛP ≻ 0,

hich (49) guarantees this. Therefore, as V̇ is negative definite, e
onverges to zero. ■

It should be noted that for any graph with N nodes there exists
a lower bound for the algebraic connectivity of the graph which
just depends on N (see Pirani and Sundaram (2016) and Chung
(1997)).

Now, let the network communication graph be fixed and di-
rected. When the graph is undirected, the Laplacian matrix as-
sociated with the communication graph is semidefinite, and this
property has been used in the proof of Theorem 1. However, if the
graph is strongly connected, it is possible to modify the proposed
DUIO in Theorem 1 such that the obtained results in Theorem 1
are extendable to directed networks as well. In this regard, we
first introduce the following lemma.

Lemma 4. (Li & Duan, 2017) Let G be a strongly connected di-
rected graph. Then, there exists a unique positive row vector r =

r1 r2 . . . rN
]
such that rL = 01×N and r1N = N, and by

efining R := diag(r1, . . . , rN ), the symmetric matrix L̂ := RL+L⊤R
s positive semidefinite. Furthermore, 1⊤

N L̂ = 01×N , L̂1N = 0N×1,
nd λ1 = 0 is an eigenvalue of L̂ while the other eigenvalues of L̂
re positive real.

Based on Lemma 4, to extend the result of Theorem 1 to st-
ongly connected directed networks, the DUIO (4) can be modi-
ied as follows:

żi = Nizi + MiBiui + Liyi + χriP−1
i

N∑
j=1

aij(x̂j − x̂i),

ˆi = zi + Hiyi.

(51)

orollary 2. Consider the DUIO described in (51) under the condi-
ions (6) and a strongly connected graph. By letting Λi as (19), the
stimation error e converges to zero if Y = P−1Ȳ , and K = P−1K̄ ,
i i i i i i
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here the matrices Pi ≻ 0, Yi, and Ki are a feasible solution of the
MI (20), and the gain χ satisfies

>

⏐⏐⏐⏐Λ + Λ⊤

P

(∑N
i=1 Λi

)−1
ΛP

⏐⏐⏐⏐
2λ2(L̂)

, (52)

here Λ and ΛP are defined in (22).

Proof. Based on the analytical procedure given in Section 4.1, al-
ong the DUIO (51), the estimation error takes the following form:

ėi = Niei + χP−1
i

N∑
j=1

riaij(ej − ei).

By considering the same Lyapunov function as in (23) and follow-
ing the same procedure as in the proof of Theorem 1, one gets

V̇ = e⊤Λe − 2χe⊤ (RL ⊗ In) e

= e⊤Λe − χe⊤
(
(RL + L⊤R) ⊗ In

)
e,

which after defining L̂ := RL + L⊤R can be restated as follows:

V̇ = e⊤Λe − χe⊤
(
L̂ ⊗ In

)
e. (53)

ince G is strongly connected, by considering Lemma 4, L̂ is
symmetric positive semidefinite, 1⊤

N L̂ = 01×N , L̂1N = 0N×1, and
L̂ has one zero eigenvalue and N −1 positive real eigenvalues. By
following the same procedure as in the proof of Theorem 1, from
(53) one gets

V̇ ≤ −

[
ω

er

]⊤
[
−
∑N

i=1 Λi −ΛP

−Λ⊤

P 2χλ2(L̂)INn − Λ

][
ω

er

]
. (54)

Based on (54) and the Schur complement, V̇ is negative definite if

2χλ2(L̂)INn − Λ − Λ⊤

P

(
N∑
i=1

Λi

)−1

ΛP ≻ 0,

which is guaranteed by (52). Hence, as V̇ is negative definite, e
converges to zero. ■

5. Simulation results

The effectiveness of the proposed DUIO is evaluated in this
section. We consider a simplified LTI system based on the heat
exchange model in multi-zone buildings (Witrant et al., 2009). In
this model, a building floor is divided into 9 zones (rooms) by
walls with distinct heat exchange rates. Heating, ventilation, and
air conditioning (HVAC) is placed only in three zones (Rooms 2, 5,
and 6), and one room is affected by an unpredictable temperature
disturbance (Room 9). Four observers are placed at different lo-
cations at the floor, and it is desired that each observer estimates
the temperature of all rooms. Moreover, the input signal of HVAC
in each room is assumed to be known to only one node/observer,
while the fourth node/observer does not have access to any of
the inputs. The schematic diagram in Fig. 2 depicts the described
system.

The system model is in the form of (1) where A, B, and D are
given in Appendix C. By decomposing u as u = [u1 u2 u3]

⊤, we
assume that B1, B2, and B3 are as given in Appendix C. Note that B4
is not defined since Node 4 is assumed to be without local inputs.
Accordingly, we have

B̄1 =
[
B2 B3 D

]
, B̄2 =

[
B1 B3 D

]
,

B̄3 =
[
B1 B2 D

]
, B̄4 =

[
B1 B2 B3 D

]
.

8

Fig. 2. Diagram of the simulated system. Each square represents a different bui-
lding zone, the arrows indicate which quantities are known from each subsystem
(cf. Fig. 1). Underneath, the measurements yi available to Node i are denoted
ased on the measurements yrk of Room k.

Fig. 3. True temperature of each room for all four scenarios.

Moreover, the output matrices are considered as given in
Appendix C. Without loss of generality, the control input is se-
lected as u = −F (x − xd), where F ∈ R3×9 is provided in
Appendix C and xd is the desired state that indicates the desired
temperature in each room, which is 18 ◦C in this case. Moreover,
w is set as the band-limited white noise with noise power set
to 2. The initial temperature of each room is chosen arbitrarily
between 7 ◦C and 32 ◦C, which is given by

x0 =
[
15.8 27.5 7.4 8.1 11.2 23.2 25.3 23.2 18.3

]⊤
.

In this condition, the states of the system are shown in Fig. 3.
The proposed distributed estimation strategies are first evalu-

ated in three scenarios corresponding to communication topolo-
gies being fixed and connected, fixed and strongly connected
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Fig. 4. Network communication topologies in Scenarios 1 and 2.

Fig. 5. Switching set of the network topologies in Scenario 3.

irected, and switching connected, as shown in Figs. 4–5, re-
pectively. The last scenario is designed to evaluate the effect of
arameter perturbations. Note that the initial conditions of all the
bservers are set as zero vectors for all four scenarios.

cenario 1 (Undirected Graph). In the first scenario, the nodes are
assumed to be connected via the unweighted undirected com-
munication graph depicted in Fig. 4(a) implying that λ2(L) = 2.
Distributed state estimation is based on the distributed observers
(4) where Ni, Mi, Li, Hi, and Pi are obtained from the solution of
he LMI (20) as provided in the supplementary document (see
ppendix C), computed using the CVX toolbox (Boyd & Vanden-
erghe, 2004). Moreover, following (21), χ is set to 41.31. Under
hese conditions, the estimation errors ei, i ∈ N, at all nodes are
hown in Fig. 6. According to the figure, the estimation error of
ll the states at all the nodes converges to zero asymptotically.
rom (32), the time constant is calculated as µ−1

= 3.889 s. In
his regard, the evolution of the Lyapunov function V along with
−µtV (0) is depicted in Fig. 7.

cenario 2 (Directed Graph). In the second scenario, the nodes are
assumed to be connected via the unbalanced directed communi-
cation graph depicted in Fig. 4(b). Distributed state estimation is
based on the distributed observers given in (51) where Ni, Mi, Li,

i, and Pi still are the same as Scenario 1. According to Lemma 4,
R = diag(0.5714, 1.714, 0.5714, 1.143), and following (52), χ is
set to 114.7. Under these conditions, the norm of the collective
estimation error e converges to zero asymptotically (since the plot
9

Fig. 6. Estimation error generated by the proposed distributed UIO in the
presence of unknown inputs for all the nodes in Scenario 1.

Fig. 7. Lyapunov function V generated by the proposed distributed observer in
cenario 1.

f the results for this scenario is almost the same as Fig. 8, it is
mitted to avoid repetition).

cenario 3 (Switching Undirected Graph). In the third scenario, the
odes are assumed to be connected under the switching com-
unication topology depicted in Fig. 5, such that the informa-

ion exchange starts from Topology 1 and switches to the next
opology every 0.1 s (after Topology 4 the graph switches back
o Topology 1). Distributed state estimation is based on the dis-
ributed observers given in (48) where Ni, Mi, Li, Hi, and Pi are the
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Fig. 8. Norm of the collective estimation error generated by the proposed dis-
ributed UIO in the presence of unknown inputs and parameter perturbation in
cenario 4.

ame as Scenario 1. Moreover, C(4) is calculated as 4.167×10−2,
nd χ is set to 1.978× 103 by following (49). Under these condi-
ions, the norm of the collective estimation error e converges to
ero asymptotically (since the plot of the results for this scenario
s almost the same as Fig. 8, it is omitted to avoid repetition).

cenario 4 (With Parameter Perturbation). In the fourth scenario,
he effect of system parameter perturbation is evaluated. The
ystem perturbation is formulated as in Chen et al. (1996) such
hat

w = ∆Ax + ∆Bu

or some w ∈ Rq, where ∆A and ∆B are given in Appendix C.
The topology of the nodes and the distributed state estimation

cheme are identical to those stated in Scenario 1. Under these
onditions, the collective estimation error e converges to zero
symptotically as shown in Fig. 8.

. Conclusions and future work

Distributed state estimation of a class of LTI systems was ad-
ressed, where the system outputs were measured via a network
f sensors distributed within N nodes, and the local measure-
ents at each node were not sufficient for local state estimation.
e proposed a DUIO consisting of N local observers co-located
ith the N nodes and connected via a communication network
uch that the full state vector of the system was estimated by
ach local observer. The proposed architecture allowed to account
or partial measurements, but more notably for inputs that may
ot be available locally at a node, together with other unknown
isturbances. The feasible solution of an LMI provided adequate
hoices of parameters that guaranteed convergence of the esti-
ation errors, under some joint detectability conditions. Further-
ore, we provided necessary and sufficient existence conditions

hat were in line with existing theorems for the centralized case.
inally, we extended our main result to include more complex
cenarios in our study, such as switching network topologies
nd directed communication links. It should be noted that this
tudy was a primary effort on DUIOs, and many problems such as
esigning DUIOs in the presence of measurement noise as well as
xpanding the obtained results to discrete-time domain remain
pen to be studied as future work.
 o

10
ppendix A. Derivation of Eq. (5)

The equation to be proved is obtained by expanding the error
efinition (3) along with the system dynamics (1), the output
q. (2), and the local observer (4). We start by noting that

i = x − zi − Hiyi = (In − HiCi)x − zi. (A.1)

aking the time derivative of (A.1) yields

˙i = (In − HiCi)(Ax + Biui + B̄iẃi)

− Nizi − MiBiui − Liyi − χP−1
i

N∑
j=1

aij(x̂j − x̂i),

hich by adding and subtracting the term (In − HiCi)Ax̂i to the
ight-hand side and since x̂i = zi+Hiyi, can be restated as follows:

˙i = (In − HiCi)Aei + (In − HiCi − Mi)Biui

+ (In − HiCi)B̄iẃi + (In − HiCi)A(zi + Hiyi)

− Nizi − Liyi − χP−1
i

N∑
j=1

aij(x̂j − x̂i).
(A.2)

ccording to the definition of ei, one gets

− KiCiei + KiCi(x − x̂i) = 0n×1. (A.3)

ince x̂i = zi + Hiyi, from (A.3), it follows that

− KiCiei + Kiyi − KiCizi − KiCiHiyi = 0n×1. (A.4)

e note that

ˆj − x̂i = x − x̂i − (x − x̂j) = ei − ej. (A.5)

ow, by adding the zero term (A.4) to the right-hand side of (A.2)
nd by considering (A.5), after grouping similar terms, we finally
btain (5). ■

ppendix B. Proof of Lemma 3

Since Tiu is an orthonormal basis of the undetectable subspace
f
(
Ci, Āi

)
, we have

m Tiu = UD(Ci, Āi). (B.1)

ccording to the analysis in the proof of Lemma 1 of Yang et al.
2020), one gets

m Td =

(
N⋂
i=1

UD(Ci, Āi)

)⊥

. (B.2)

rom Lemma 2, we have

D
(
Ci, Āi

)
= UD (Ci, Ai) .

ence from (B.2), it follows that

m Td =

(
N⋂
i=1

UD(Ci, Ai)

)⊥

. (B.3)

inally, by (B.3) and under the hypothesis of extensive joint det-
ctability (10), we have Im Td = 0⊥

= X (Wonham, 1985,
hap. 0.12), which completes the proof. ■

ppendix C. Simulation parameters in Section 5

The following system parameters are used for all four scenar-
os except ∆A and ∆B used only in Scenario 4. The parameters
f the proposed observers are provided in the supplementary
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ocument (available at the repository [https://github.com/ang-
/yang-distributed-uio]).

A = 10−2

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−30 25 0 5 0 0 0 0 0
25 −65 25 0 15 0 0 0 0
0 25 −65 0 0 40 0 0 0
5 0 0 −60 15 0 40 0 0
0 15 0 15 −75 10 0 35 0
0 0 40 0 10 −70 0 0 20
0 0 0 40 0 0 −50 10 0
0 0 0 0 35 0 10 −60 15
0 0 0 0 0 20 0 15 −35

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B =

⎡⎢⎣0 0.1 0 0 0 0 0 0 0
0 0 0 0 0.1 0 0 0 0
0 0 0 0 0 0.1 0 0 0

⎤⎥⎦
⊤

,

B1 =
[
0 0.1 01×7

]⊤ B2 =
[
01×4 0.1 01×4

]⊤
,

B3 =
[
01×5 0.1 01×3

]⊤
,D =

[
01×8 0.1

]⊤
,

C1 =

⎡⎣0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1

⎤⎦,
C2 =

⎡⎣0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1

⎤⎦ ,

C3 =

⎡⎣0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1

⎤⎦,

C4 =

⎡⎢⎢⎣
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1

⎤⎥⎥⎦ ,

∆A = 10−4
×

[
08×9

81 90 12 91 63 9 27 54 95

]
,

∆B = 10−3
×

⎡⎣ 03×8

15
97
95

⎤⎦⊤

.
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