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Several countries worldwide are experiencing a continuous increase in life expectancy, extending the challenges of life actuaries
and demographers in forecasting mortality. Although several stochastic mortality models have been proposed in the literature,
mortality forecasting research remains a crucial task. Recently, various research works have encouraged the use of deep learning
models to extrapolate suitable patterns within mortality data. Such learning models allow achieving accurate point predictions,
though uncertainty measures are also necessary to support both model estimate reliability and risk evaluation. As a new advance
in mortality forecasting, we formalize the deep neural network integration within the Lee-Carter framework, as a first bridge
between the deep learning and the mortality density forecasts. We test our model proposal in a numerical application considering
three representative countries worldwide and for both genders, scrutinizing two different fitting periods. Exploiting the meaning
of both biological reasonableness and plausibility of forecasts, as well as performance metrics, our findings confirm the suitability
of deep learning models to improve the predictive capacity of the Lee-Carter model, providing more reliable mortality boundaries
in the long run.

1. INTRODUCTION
Since the second half of the 20th century, mortality has exhibited notable improvements, despite country-specific behavior

experienced in industrialized regions (Levantesi, Nigri, and Piscopo 2021; Nigri, Barbi, and Levantesi 2021), engaging atten-
tion from life insurers and pension systems, as well as from actuarial and demographic researchers. Principally, mortality
reductions in modern populations arise from a continuous flow of social progress (Oeppen and Vaupel 2006). In fact, industri-
alized countries have made efforts to improve the socioeconomic development, health system, and lifestyle of their popula-
tions, impacting how mortality will vary in the future. Various factors move human longevity trends, and different mortality
scenarios should be anticipated through predictive analysis. The need for accurate forecasting to address longevity risk and
adequately price annuity products has led actuaries towards more sophisticated extrapolative methods; in a stochastic environ-
ment, see, for instance, Lee and Carter (1992), Brouhns, Denuit, and Vermunt (2002), Renshaw and Haberman (2006), Cairns,
Blake, and Dowd (2006), Booth and Tickle (2008), Cairns et al. (2009), Plat (2009), Hunt and Blake (2014), and
Currie (2017).

Demographers and actuaries have concentrated their efforts on a model’s functional form and its parameterization in order
to better explain the mortality structure. In most of these models, mortality projections arise from time-dependent parameters,
modeled by time series analysis techniques, the class of autoregressive integrated moving average (ARIMA) processes among
all. However, alternative mortality forecasting methods have been suggested in past literature. For instance, a P-spline based
approach is proposed in Currie, Durban, and Eilers (2004), where forthcoming values are interpreted as missing values through
smoothing procedures. A development of this model was presented in Camarda (2019), overcoming robustness forecasting
problems. An innovative proposal was introduced in Mitchell et al. (2013), wherein the Lee-Carter (henceforth LC) time index
was predicted through a normal inverse Gaussian distribution, attaining accuracy in the approximation of the observed force of
mortality. Furthermore, new advances in mortality modeling, grounded in machine and deep learning models, have recently
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appeared in the literature. The first insight based on machine learning tools was offered in Deprez , Shevchenko, and W€uthrich
(2021), where regression trees algorithms were adopted to improve the estimation of death rates from canonical models, such
as the LC and the Renshaw-Haberman models. These findings were extended in Levantesi and Pizzorusso (2019) and
Levantesi and Nigri (2020) for predictive purposes. A neural network (henceforth NN) design for mortality analysis was ini-
tially scrutinized by Hainaut (2018), profitably aiming to extrapolate suitable non-linearity in the observed force of mortality.
An NN vision within the LC framework was presented in Nigri et al. (2019), Perla et al. (2021), and Richman and W€uthrich
(2021). The former employs a recurrent NN architecture, namely, long short-term memory (henceforth LSTM), to model the
future LC time-dependent parameter values. For each country investigated and both genders, numerical experiments performed
confirm greater LSTM accuracy w.r.t. the best ARIMA process. The latter proposed an NN representation for the multi popu-
lation LC model, overcoming parameter optimization problems and achieving reliable forecasting performances. Following
this, Perla et al. (2021) showed the remarkable accuracy achieved in a large-scale prediction of mortality. In particular, differ-
ent NN structures were tested, such as LSTM and convolutional NN, engaging each of them to produce point forecasts of mor-
tality rates simultaneously for many countries. Given the suitability of the recurrent network in forecasting, Nigri, Levantesi,
and Marino (2020) considered an LSTM model to predict both life expectancy and life span disparity measures for various
countries and both genders.

Deep learning models, especially recurrent NNs (RNNs), are gaining confidence in many forecasting tasks, as well as in
mortality. They are dynamic systems stemming from the composition and superposition of non-linear functions, earning not-
able accuracy gains in predictive issues. Wanting to exploit the latter feature, we aim to investigate the suitability of deep NNs
models within the LC framework to extrapolate the future mortality realizations. Contextualizing suggestions expressed in
Makridakis, Spiliotis, and Assimakopoulos (2020), our approach pursues a model integrating deep learning techniques in the
spirit of Nigri et al. (2019), representing an appropriate compromise between the interpretation of the mortality model and
high accuracy in projections. Therefore, we freeze the LC age–period mortality representation, forecasting the mortality profile
employing an RNN model.

It is worth to recalling that a proper forecasting model provides robust point predictions, outlining the future mortality trend,
as well as confidence ranges of variability. Uncertainty measures associated with the expected values are necessary to suffi-
ciently inspect the phenomenon and to judge both the model adequacy and the reliability of the results. As in actuarial assess-
ments, uncertainty measures, such as prediction intervals, are imperative. This is a compelling topic, because learning models
such as NNs furnish only point predictions. To this end, Khosravi et al. (2011) provided an extensive methodological review
of the main approaches for calculating confidence and prediction intervals, concluding that no method beats other ones in each
considered comparison metric. Procedures based on structural assumptions, such as the delta method (Wild and Seber 1989),
mean–variance estimation (Nix and Weigend 1994), and the Bayesian approach (MacKay 1992), are relevant solutions but suf-
fer computational problems that could be prohibitive. At the state of the art, the prevailing approach to forecast prediction
intervals for NNs is based on coherent sampling techniques, favoring the estimation of a theoretical probability distribution
through an empirical one; see, for instance, Tibshirani (1996), Heskes (1997), Khosravi et al. (2015), Mazloumi et al. (2011),
Kasiviswanathan, Sudheer (2014), and K. Li et al. (2018). In particular, bootstrap procedures seem to represent the more
tempting alternative because they do not require stringent sampling assumptions, allowing for accurate plug-in estimates
(Efron and Tibshirani 1993). In fact, such an approach has become a common practice to measure uncertainty in stochastic
mortality models, as emerged in Brouhns, Denuit, and van Keilegom (2005), Koissi, Shapiro, and Hognas (2006), Li et al.
(2009), D’Amato et al. (2011), D'Amato, Haberman, and Russolillo (2012), and D'Amato, Haberman, Piscopo, and Russolillo
(2012). In the framework of mortality uncertainty forecasting based on NNs, Schn€urch and Korn (2021) adapted the boostrap
procedure of Heskes (1997) and Carney, Cunningham, and Bhagwan (1999) to estimate prediction intervals for a two-dimen-
sional convolutional NN representation of death rates.

The present work formalizes the integration of deep learning techniques in the LC model framework, in terms of both point
estimates and prediction intervals for future mortality rates. We use an RNN with LSTM architecture to forecast the LC time
index. The resulting integrated model, namely, LC-LSTM, and mortality boundaries it provides fill the gap between deep
learning integrated mortality models and uncertainty estimation, obtaining suitable ranges of variability. This is a step forward
in mortality forecasting.

We test the proposed model in a numerical application considering three countries worldwide, Australia, Japan, and Spain,
for both genders, scrutinizing two different learning periods to deepen how they could affect the forecasting performances.
Our results are assessed considering both qualitative and quantitative criteria. The former were well established in Cairns et al.
(2011) and concern (a) the biological reasonableness of mortality forecasts, (b) the plausibility of projected uncertainty at dif-
ferent ages, (c) the robustness of predictions w.r.t. the historical mortality trend. The latter, like performance metrics, are used
to assess the resulting mortality forecasts with a back-testing approach. Our findings confirm the LC-LSTMs ability to produce
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plausible mortality projections, improving the LC predictive capacity, in particular in the long run. The proposed framework
might represent a prominent practice in the field of longevity forecasting, as for actuarial business tasks.

The remainder of the article is structured as follow. Section 2 presents the RNN model with LSTM architecture. Section 3
illustrates the LC-LSTM model formalization. Section 4 discusses the uncertainty framework within the LC-LSTM, highlight-
ing the methodology to estimate prediction intervals. Section 5 describes the performance metrics to evaluate both point and
interval forecasts. Section 6 collects the results and related comments on the LC-LSTMs application to mortality data. Finally,
Section 7 provides concluding remarks.

2. THE NEURAL NETWORK MODEL
An NN model is a computational graph consisting of connected nodes, or neurons, located in consecutive layers.

Connections among neurons are pondered by parameters, whose values are learned from data implementing efficient optimiza-
tion procedures (Rumelhart, Hinton, and Williams 1986). Each neuron receives weighted information, namely, activation, and
transforms it employing a differentiable function, the activation function. As a consequence, NN outputs descend from com-
position and superposition of differentiable functions, providing flexible data-driven tools that deeply gather data features and
generalize them.

For forecasting purposes, RNNs are used to handle sequential data such as time series. In RNNs recurrent connections
between neurons are added, so that the network processes data creating a dynamic memory. However, RNN learning optimiza-
tion is tricky because of the vanishing or exploding gradient problems (Pascanu, Mikolov, and Bengio 2013). To address such
a problem, Hocreiter and Schmidhuber (1997) proposed the LSTM architecture, whose more engineered structure relies both
on a memory block and gates, essentials for controlling data elaborations. In the following, we will consider the RNN with
LSTM architecture, referring the interested reader to Goodfellow, Bengio, and Courville (2016), Aggarwal (2018), and referen-
ces therein for further details on RNNs and LSTM.

2.1. RNNs with LSTM Architecture
In order to define the general structure of the RNN with LSTM architecture, let N0 be the number of neurons within the

input layer, Np the number of neurons of the pth hidden layer with p 2 1, :::,Pf g, and NPþ1 the number of neurons of the out-
put layer. We have P,N0,Np,NPþ1 2 N: Let AðpÞ : RNp�1 ! RNp be an affine map defining the pth hidden layer activation,
given the output produced by the ðp�1Þth hidden layer, and let / : RNp ! RNp be a differentiable activation function.

Definition 1. The output of an LSTM neuron at time t in the pth hidden layer is:

HðpÞ
t ¼ oðpÞt � tanh cðpÞt

� �
, (1)

where the components of the element-wise product stem from the LSTM neuron internal forward flow described by the fol-
lowing equations:

Forget gate : f ðpÞt ¼ rf � AðpÞ ¼ r hWðpÞ
f ,Hðp�1Þ

t i þ hUðpÞ
f ,HðpÞ

t�1i þ bðpÞf

� �
,

Input gate : iðpÞt ¼ ri � AðpÞ ¼ r hWðpÞ
i ,Hðp�1Þ

t i þ hUðpÞ
i ,HðpÞ

t�1i þ bðpÞi

� �
,

Output gate : oðpÞt ¼ ro � AðpÞ ¼ r hWðpÞ
o ,Hðp�1Þ

t i þ hUðpÞ
o ,HðpÞ

t�1i þ bðpÞo

� �
,

Memory state : cðpÞt ¼ f ðpÞt � cðpÞt�1 þ iðpÞt � tanh hWðpÞ
c ,Hðp�1Þ

t i þ hUðpÞ
c ,HðpÞ

t�1i þ bðpÞc

� �
,

(2)

where rðxÞ ¼ 1þ exð Þ�1 is the sigmoid function, tanhðxÞ ¼ ex � e�xð Þ ex þ e�xð Þ�1 is the hyperbolic tangent function,
WðpÞ

l , l ¼ f , i, o, c
� �

are the weight matrices for gates, feedforward connections, UðpÞ
l , l ¼ f , i, o, c

� �
are the weight matrices

for gates, recurrent connections, and bðpÞl , l ¼ f , i, o, c
� �

are the bias terms.

Definition 2. Let D ¼ xt, ytð Þ, xt 2 RN0 , yt 2 RNPþ1

n o
be a dataset wherein xt is the input variable at time t and yt the

associated response. An RNN with LSTM architecture is a function fLSTM : RN0 ! RNPþ1 such that

yt ¼ fLSTM xt;Wð Þ þ ct ¼ w � HðPÞ
t � HðP�1Þ

t � � � � � Hð1Þ
t

� �
xt;Wð Þ þ ct, (3)
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where w : RNP ! RNPþ1 is the output layer activation function, W is the set of all NN parameters, and ct is a noise term,
with zero mean and variance r2c and independent of fLSTM.

Starting from Equation (3), our proposal aims at creating a bridge between deep learning and mortality forecasting struc-
tured on the LC model. The following sections formalize such a proposal, in terms of both point and interval forecasts.

3. THE LC-LSTM MODEL
Let us consider the LC Poisson model proposed in Brouhns, Denuit, and Vermunt (2002) as the reference model describing

the behavior of the age–period mortality rates. Hence, for ages x 2 X ¼ 0, 1, :::,xf g and calendar years t 2 T ¼
t0, t1, :::, tnf g, we assume that the observed number of deaths, Dx, t, follows a Poisson distribution:

Dx, t�PoiðEc
x, tmx, tÞ, (4)

where Ec
x, t is the central exposure to the death risk and mx, t ¼ E

Dx, t
Ec
x, t

� �
is the central death rate. The LC model structure

associated to assumption (4) is defined by following log-bilinear equation:

logmx, t ¼ ax þ bxkt, (5)

where ax and bx are age-dependent parameters illustrating the mortality age patterns and kt is the time index parameter rep-
resenting the mortality behavior over time. To calibrate such a model, parameters constraints must be satisfied to ensure
model identification—that is,

Ptn
t¼t0

kt ¼ 0 and
Px

x¼0 bx ¼ 1—and the maximum likelihood procedure is employed to
achieve the estimates âx, b̂x, and k̂ t (Brouhns, Denuit, and Vermunt 2002). To introduce the network model for forecasting
purposes, let jT ¼ ðkt�1, kt�2, :::, kt�jÞ be the time lagged kt series, where j 2 N is the time lag. According to Equation (3),
we model the LC time index as follows:

kt ¼ fLSTM jT ;Wð Þ þ ct ¼ w � HðPÞ
t � HðP�1Þ

t � � � � � Hð1Þ
t

� �
jT ;Wð Þ þ ct: (6)

Integrating Equation (6) within the LC structure in Equation (5), the LSTM will act as a predictor over the forecasting hori-
zon T 0 ¼ tn þ 1, tn þ 2, :::, tn þ sf g, so that the LC-LSTM model expression is

logmx, t ¼ âx þ b̂x fLSTM jT ;Wð Þ þ ctð Þ, 8t 2 T 0: (7)

The meaning of the proposed model integration is the following. Because the mortality dynamic over time stems from a
continuous evolution of various social and demographic factors (Oeppen and Vaupel 2006), a coherent mortality profile inves-
tigation suggests an autoregressive approach to the time index modeling. From a general perspective, the LC time index values
should be interpreted as the realization of the following process:

kt ¼ u jTð Þ þ ct, (8)

where the unknown function u : Rj ! R maps the series jT to kt, without considering the noise component. Referring to
RNNs’ universal functional approximation property (Sch€afer and Zimmermann 2007), the proposed model integration is
based on the approximation of the unknown map u jTð Þ through an RNN with LSTM architecture, whose functional form
is shaped according to the available time index history. As the RNN model approximates the map u jTð Þ, it also estimates
the conditional mean of response variable (Geman, Bienenstock, and Doursat 1992); that is,

k̂ t ¼ f̂ LSTM jT ; Ŵ
� �

¼ Ê ktjjTð Þ, (9)

where f̂ LSTM is the fitted function composition and Ŵ is the NN parameters estimate. Consequently, the LC-LSTM model
provides the following point predictions:
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log m̂x, t ¼ âx þ b̂xf̂ LSTM jT ; Ŵ
� �

, 8t 2 T 0: (10)

We stress that point predictions do not describe the uncertainty arising from the estimates of mortality rates. Therefore, a
methodology for building prediction intervals is necessary in order to provide a measure of prediction uncertainty.

4. PREDICTION INTERVALS FOR THE LC-LSTM MODEL
Prediction intervals (henceforth PIs) outline a probabilistic range suitable for incorporating various forecasting scenarios

and then probing uncertainty on the future mortality realizations. Stochastic mortality models forecast PIs, whose estimates act
as uncertainty measures linked to the expected future mortality (see, for instance, Booth and Tickle 2008; Cairns et al. 2009,
2011; Dowd et al. 2010). Thus, in a proper forecasting process, PIs are meaningful in supporting both risk evaluation and the
model estimate’s reliability. Referring to NNs, the construction of PIs is a challenging task because different uncertainty sour-
ces impact the learning process and conditioning the NN generalization performance. From a broader perspective, NN models
are exposed to a learning uncertainty depending on both the data and the NN functioning. Because the data employed in the
learning process are realizations of an underlying stochastic process, a training data uncertainty looms. Indeed, an input vari-
ation could involve different function compositions. In addition, a certain variability could arise from the optimization proced-
ure necessary to learn NN parameter values from data. Because the cost function could exhibit many local minima, the NN
parameters take on different values entailing variability in estimates. In this case, a parameter uncertainty emerges.
Nevertheless, also model uncertainty could occur for possible structural model misspecification.

Addressing the measurement of uncertainty sources separately is a complex problem, because they are closely connected
and no information is available about the input–output relation. However, PIs account for all uncertainty sources, embracing
the overall variability around NN point predictions. Therefore, we proceed to define PIs for the LC-LSTM mortality rates in
order to estimate the total uncertainty produced by the proposed model integration. More specifically, the uncertainty in death
rates over time concerns the time index dynamic described in Equation (6), wherein jT follows some distribution K: Because
the network model draws a predictor f̂ LSTM for the purpose of approximating the future kt values, a natural way to approach the
PI construction involves the bias–variance trade-off principle. According to Geman, Bienenstock, and Doursat (1992), a meas-
ure to depict both accuracy and variability of f̂ LSTM as a predictor of the (unseen) kt is given by the mean squared error of pre-
diction, defined in terms of bias–variance decomposition (see Appendix A for the proof):

E kt � k̂ t
� �2h i

¼ E E k̂t
� �

� k̂ t
� �2h i

þ E u jTð Þ � E k̂ t
� �� �2� �

þ r2ct , (11)

where r2
k̂ t
:¼ E E k̂ t

� �
� k̂t

� �2h i
and E BIAS2 k̂ t

� �� 	
:¼ E u jTð Þ � E k̂ t

� �� �2� �
are, respectively, the variance and the expected

squared bias related to the LSTM. The former stems from the network calibration process, hence including uncertainty due
to both training data and learned weights; the latter summarizes the effectiveness of f̂ LSTM in approximating the true (regres-
sion) function u in Equation (8). In compliance with the bias–variance principle, both bias and variance contribute to the
NN prediction error and the NN model suitability is based on the balancing of both. Finally, the variance r2c constitutes an
irreducible term of uncertainty, because it refers to the random noise component. We emphasize that expectations in
Equation (11) range over different realizations of jT by the virtue of the unknow distribution K:

4.1. Estimating r2
k̂ t

To compute the variance related to the NN output, the conditional distribution Pðk̂tjjT Þ should be known. However, it is
not available, and we could either hypothesize some distribution or extract it from the data grasped. Considering the latter, our
approach to estimate the variance r2

k̂ t
refers to the NN ensemble paradigm, which is based on the joint use of multiple NNs

(Zhou, Wu, and Tang 2002). Exploiting a bootstrap procedure, multiple training data samples are generated in order to develop
an empirical distribution constitute by different NN point predictions. The final estimates are then obtained by aggregating the
average of various NN projections. Such a procedure, namely, bootstrap aggregating or bagging (Breiman 1996), is an ensem-
ble technique producing an unbiased estimation and favoring an adequate variance measurement. Therefore, the expected bias
in Equation (11) is seen as a negligible component affecting the overall time index uncertainty (Geman, Bienenstock, and
Doursat 1992; Khosravi et al. 2011). The bagging scheme proposed in the present work is described in the following steps:
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Step 1.Conforming to Equation (9), we firstly train the LSTM model on the training data, jT , to obtain the point estimates
f̂ LSTM jT ; Ŵ

� �
over the forecast horizon T 0:

Step 2.We generate B 2 N samples of the training data through a proper bootstrap procedure, getting j
ðbÞ
T , b ¼ 1, :::,B

� �
: In

particular, we consider the residual bootstrap strategy proposed in Koissi, Shapiro, and Hognas (2006), whose technical
details are reported in Appendix B.

Step 3.For each sample j
ðbÞ
T , we re-optimize the weights of the function composition f̂ LSTM defined in Step 1, so that only

the NN weights will change given the new training data. Hence, the created NN ensemble will include uncertainty for
both training data and parameters.

Step 4.For each retrained NN in Step 3, we predict the associate point estimate on T 0, producing a bootstrap distribution
consisting of B point predictions; that is,

P̂ k̂tjjT
� �

¼ k̂
ðbÞ
t ¼ f̂ LSTM j

ðbÞ
T , Ŵ ðbÞ

� �
, b ¼ 1, :::,B

� �
: (12)

Step 5.From P̂ k̂ tjjT
� �

, we can determine the bagged estimate for the variance r2
k̂ t
; that is,

r̂2
k̂ t
¼ 1

B� 1

XB
b¼1

f̂ LSTM j
ðbÞ
T , Ŵ ðbÞ

� �
� �kt

� �
, (13)

where �kt ¼ 1
B

PB
b¼1 f̂ LSTM j

ðbÞ
T , Ŵ ðbÞ

� �
is the bagged estimate for the conditional expectation E k̂ tjjT

� �
:

We emphasize that when using an ensemble technique for estimating the NN output variance, the expected bias component
is irrelevant. Thus, the ensemble technique could associate high uncertainty to the NN predictions, as the bias–variance trade-
off states. However, if the employed bootstrap technique fits the density estimation problem and the trained NN model is
robust, then the estimated variance does not induce explosive prediction intervals behavior over time.

4.2. Estimating r2c
The noise variance represents an irreducible risk, reflecting the randomness in predicting kt values through a deterministic

function (the LSTM) applied to the past realizations. Thus, the mortality profile incorporates an intrinsic randomness not taken
into account by the network model, although such noise does not affect, on average, the point predictions (see Equation [9]).
Indeed, properly trained NNs learn the key input–output data schemes, skimming noisy examples and avoiding overfitting
occurrences. Considering the training set interval T , we can observe both the available time index values and the predictions
provided by the network. Hence, dealing with the series ĉt ¼ ðkt�k̂t, t 2 T Þ as realization of the unwrapped noise by NN, we
consider the sample variance, r̂2

c ¼ 1
ðtn�t0Þ�1

Ptn
t¼t0

ĉt, as an estimate of the time index irreducible uncertainty over T : For the
purposes of PI construction, we can finally set the variance estimate for the time index as r̂2

kt ¼ r̂2
k̂ t
þ r̂2

c , because of the inde-
pendence between the network function and the noise. It worth noting that if ĉt shows gaussianity features, we can spread the
noise component over the forecast horizon through a Gaussian random walk, and the estimated PI boundaries for a confidence
level a are

k̂t � za
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2
k̂ t
þ r̂2

c

q
, k̂t þ za

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2
k̂ t
þ r̂2

c

q� �
(14)

where za is the a-quantile of a standard normal distribution.

5. PERFORMANCE METRICS OF FORECASTING
To quantitatively assess the LC-LSTM projections over the forecast horizon, we refer to performance metrics for both point

and interval forecasts. In the former case, the root mean square error (henceforth RMSE) is acknowledged as an accuracy
measure for both the time index and mortality rates, respectively, as
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RMSEðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPtnþs
t¼tnþ1

kt � k̂ t
� �2

s� 1

vuut
, RMSEðmÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPtnþs
t¼tnþ1

logmx, t � log m̂x, tð Þ2

s� 1

s
: (15)

To judge the PI quality and effectiveness, we jointly examine PI coverage probability and PI width. In analytical terms, we
consider two indicators, namely, the prediction interval coverage probability (henceforth PICP) and the mean prediction inter-
val width (henceforth MPIW). The former inspects the PI coverage counting how many values are wrapped in the probabilistic
range, given a confidence level. In other words, the PICP estimates the probability that the mortality rate values fall within the
PI provided by the mortality model. Let k̂

L
t be the estimated time-index lower bound and k̂

U
t the estimated time index upper

bound. Then, the PICP for the kt series is defined as follows:

PICPðkÞ ¼
1

s� 1

Xtnþs

t¼tnþ1

1
k̂ t 2 k̂

L
t , k̂

U
t½ �

� �, (16)

where 1 �f g is the indicator function such that 1 �f g ¼ 1 if k̂ t 2 ½k̂Lt , k̂
U
t �, and 1 �f g ¼ 0 otherwise.

The MPIW indicates the PI mean width over the forecasting horizon; that is,

MPIWðkÞ ¼
1

s� 1

Xtnþs

t¼tnþ1

k̂
U
t �k̂

L
t : (17)

We also calculate PICP and MPIW on the log-mortality rates by a given age x. Let log m̂L
x, t be the estimated mortality rates’

lower bound and be log m̂U
x, t the estimated mortality rates’ upper bound. Then, we specify the PICP and MPIW as follows:

PICPðmÞ ¼
1

s� 1

Xtnþs

t¼tnþ1

1
log m̂x, t 2 log m̂L

x, t , log m̂
U
x, t½ �

� �, (18)

where 1 �f g ¼ 1 if log m̂x, t 2 ½log m̂L
x, t, log m̂

U
x, t� and 1 �f g ¼ 0 otherwise, and

MPIWðmÞ ¼
1

s� 1

Xtnþs

t¼tnþ1

log m̂U
x, t� log m̂L

x, t: (19)

A higher PICP value indicates PIs having a greater probability to cover the true mortality realizations. High MPIW values
are desirable in order to provide a suitable uncertainty portrayal. Nonetheless, an explosive demeanor in variability is reflected
by greater MPIW levels, jeopardizing the biological plausibility of mortality forecasts. The latter qualitative criterion is valu-
able because it concerns the predicted uncertainty levels consistency w.r.t. the historical volatility at different ages (Cairns
et al. (2011)).

6. EMPIRICAL INVESTIGATION AND RESULTS
In the following, we illustrate the empirical analysis carried out to test our model proposal. The results and considerations

presented will also take into account the forecasts obtained from the LC Poisson model (Brouhns, Denuit, and Vermunt 2002)
as a term of comparison. The equations defining the LC Poisson predictions are reported in Appendix C. Our analysis was per-
formed using R software (R Core Team 2020, version 3.6.3) and the packages StMoMo (Villegas, Kaishev, and Millossovich
2018, version 0.4.1), forecast (Hyndman and Khandakar 2008, version 8.13), Keras (Chollet 2017, version 2.2.5), and
Tensorflow (Abadi et al. 2015, version 1.13.1).

6.1. Data
Aiming to portray heterogeneous longevity scenarios, we performed our numerical experiment for three countries world-

wide, Australia, Japan, and Spain, analyzed by gender. We consider such countries representative in terms of both demo-
graphic transition and population structure. Data were downloaded from the Human Mortality Database (2018) and refer to the

7



age range X ¼ 0, 1, :::, 99f g: We consider two calendar year sets, 1950–2018 and 1960–2018, to assess both accuracy and
variability of the LC-LSTM outcomes with respect to the historical time chunks. This allows us to verify the effect on the
learning process of shortening the NN training set; that is, the network’s robustness to changes in the training set length.

6.2. Neural Network Tuning, Training, and Ensembling
To apply the LSTM model, we first need to calibrate the LC structure in Equation (5) on the age–period mortality data, esti-

mating both age-dependent and time-dependent parameters. The latter constitutes the series kt, t ¼ t0, :::, 2018ð Þ, with t0 ¼
1950, 1960f g, to implement the network learning process. We tune and train the LSTM model splitting the time index series

into distinct datasets by a hierarchical procedure. In particular, setting T¼ 2000 as the forecasting year for all countries investi-
gated, we define the training set and the testing set as follows

TRAINING SET : T R ¼ kt, t ¼ t0, :::, 2000ð Þ
TESTING SET : T S ¼ kt, t ¼ 2001, :::, 2018ð Þ: (20)

In addition, to validate the LSTM model, we divide the training set into a training subset and a validation set, considering
the splitting rule 80%�20%: Hence, denoting by Tsub the last year in the training subset we set:

TRAINING SUBSET : T Rsub ¼ kt, t ¼ t0, :::,Tsub
� �

VALIDATION SET : VS ¼ kt, t ¼ Tsub þ 1, :::, 2000ð Þ : (21)

According to Equation (6), we consider a lag j¼ 1 so that kt ¼ fLSTM kt�1;Wð Þ þ ct; that is, the LSTM network sifts the mor-
tality profile at annual paces.

We use the sets T Rsub and VS to tune the NN structure through a grid search technique. Thus, we set a bounded discrete
parametric space whose possible values are arbitrarily chosen, acting as network hyperparameter. Fixing a hyper-parameters
combination, the learning process begins minimizing the mean square error cost function over the set T Rsub: We select as an
optimal NN structure the one identified by the hyperparameter combination returning the minimum error on the validation set
VS: In doing so, the function composition, f̂ LSTM, is built according to the data. Such an NN architecture is then employed on
the training set, T R, to generate point predictions over the testing set horizon. Therefore, we compare the NN forecasts, k̂ t,
with the available time index values in T S as a back-testing exercise. We highlight that, for each country and for both genders,
the LSTM model is characterized by p¼ 1 hidden layer, considering the ReLu function (Nair and Hinton 2010) as a feed-
forward activation function, the tangent hyperbolic function as a recurrent activation function, and the linear function as the
output layer activation function w. The number Np of hidden neurons varies depending on both country and gender. The
depicted learning process suggests the minimum learning period length to produce robust predictions. Shortening the training
dataset, our experiment highlights that training periods beginning after the 1960s generate predictions sensitive to small varia-
tions in the data. Therefore, we need at least 40 observations to adequately tune the network model.

For the purposes of PI construction, the tuned network architecture acts as reference model in Step 1 of the proposed bag-
ging scheme in Subsection 4.1. Consequently, following the bootstrap strategy proposed in Koissi, Shapiro, and Hognas
(2006), we generate B¼ 1000 bootstrap samples of the training set T R: Maintaining the tuned network function composition,
f̂ LSTM, we re-optimize its weights on the bth training set producing the related forecasts over the testing horizon. Therefore,
the bootstrap distribution is obtained allowing for the bagged variance calculation as in Equation (13).

6.3. Results
In the following, we provide the results of our numerical application, recalling the performance metrics presented in

Section 5. We first refer to the RMSE metric to evaluate the point forecast accuracy, considering the error of the LC projec-
tions as benchmark. To appreciate the PIs’ quality by PICP and MPIW indicators, after the bagging scheme, we assess the
noise variance in order to estimate PI boundaries. We consider the sample variance of ĉt ¼ ðkt�k̂ t, t 2 T RÞ as the noise vari-
ance estimate over the training set. To project the noise and its uncertainty over the testing horizon, we inspect its possible ran-
dom walk behavior. To this end, the augmented Dickey-Fuller (ADF) test is implemented. In addition, we test normality
features of the noise realizations through statistical tests, such as Shapiro-Wilk, D’Agostino-Pearson, and Jarque-Bera. For all
investigated countries and for both genders, the noise analysis confirms the ability of a random walk representation with
Gaussian innovations for the noise component (see Appendix D). Therefore, the LC-LSTM time index values are embedded
within the following PI, for a confidence level a:
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where za is the a-quantile of a standard normal distribution.
We then calculate the performance metrics for the LC-LSTM and the LC model. Their values for the time index are pro-

vided in Table 1, comparing the LSTM performances in the LC-LSTM, with the ARIMA in the LC model.
For all countries considered, the time index series observed since the 1960s exhibits a markable linear decline over time. In

particular, mortality reductions accelerated over the period 1950–1960, and an approximately constant rate of degrowth charac-
terized the interval 1960–2000. Such a behavior was driven by a decline in infant mortality, as well as reductions in mortality
at older ages after World War II (see, for instance, Rau et al. (2008)).

As a general statement about prediction accuracy, our analysis confirms the ability of the ARIMA to represent linear evolu-
tion in mortality. On the other hand, the LSTM seems to be advisable for linear, noisy, or non-linear series. Scrutinizing the
uncertainty results, the LSTM always offers greater probability coverage, in most cases due to the PI width. Because the
LSTM point predictions present low bias, their variance tends to be increasing and to be higher than those of ARIMA.

The majority of cases promote the LSTM model’s usefulness in affording a more accurate mortality trend, as well as for
uncertainty estimation. The best example concerns Australian males, presenting the lower RMSE for the period 1960–2000.
Considering the training period 1950–2000, the NN allows the simultaneous presence of total coverage of the future kt realiza-
tions and a proper PI width. This situation appears also when reducing the training set length; that is, considering the interval
1960–2000. A suitable mortality dynamic for the ARIMA model is offered by Japanese females. In fact, their mortality behav-
ior presents a strong linear decrease over time, also when observed from 1950. In this circumstance, the LSTM learns a too
steep trend of mortality reductions, as opposed to ARIMA. However, switching to the training period 1960–2000, the network
performance improves significantly. We observe a gain of 67.7% in RMSE terms, maintaining at the same time both a total
probability coverage and a coherent MPIW value. On the other hands the ARIMA model does not favor a reliable uncertainty
estimation in both periods. Its coverage probability is around 50%, indicating that the predictive model fails to anticipate, on
average, half of the future realizations. An analogous result holds for Spanish males, whose time index dynamic shows a nois-
ier series over both training periods. Indeed, the ARIMA coverage probability for Spanish males remains stable around 33%.

We also depict the mortality profile for both genders considering ages 45, 65, and 85. To explore these results, we display
the performance metrics in Table 2 and the PI graphs in Figure 1 and Figure 2. We can highlight the estimated PIs for the LC-
LSTM model in terms of both point and interval estimates. Looking at the Japanese population, we endorse the findings in
Table 1 for ages 45 and 65. The LC-LSTM provides boundaries properly shaped according to death rates, whereas the LC
model presents the narrowest ranges of variability lacking uncertainty information. For example, over the training period
1960–2000 for Japanese females age 65, the PIs for the LC model show a coverage probability around 33%, whereas the LC-
LSTM provides PICPðmÞ ¼ 1 with a similar interval width. For age 85, where mortality reductions present slower linear
changes over time, the LC fits the future mortality profile. For the Spanish population, the LC-LCTM seems to be the best-fit-
ting model for predictive purposes. As reported in Table 1, for this country, as the training period shifts, the MPIW value for kt
identifies a significant reduction in the PI width (–20.56% for males and –53.38% for females), although full probability cover-
age is maintained. Such a reduction affects the uncertainty measurement in the LC-LSTM model, although the PI width wider
than that of the LC model. Finally, we stress how both the LC and the LC-LSTM model fail to catch the non-linear mortality

TABLE 1
kt Performance Metrics Values for Each Training Period. Forecasting Years: 2001–2018

Country Model
Training period 1950–2000 Training period 1960–2000

Male Female Male Female

RMSE PICPðkÞ MPIWðkÞ RMSE PICPðkÞ MPIWðkÞ RMSE PICPðkÞ MPIWðkÞ RMSE PICPðkÞ MPIWðkÞ

Australia ARIMA 9.514 1 53.503 3.861 1 25.195 5.138 1 47.485 3.637 1 25.089
LSTM 4.280 1 32.865 3.790 1 39.478 1.970 1 28.143 2.659 1 37.433

Japan ARIMA 3.743 1 21.503 10.084 0.556 20.767 4.647 1 17.392 9.790 0.500 12.409
LSTM 2.228 1 43.784 18.014 1 53.431 2.069 1 28.209 5.818 1 30.701

Spain ARIMA 14.038 0.333 19.354 6.215 1 21.394 13.071 0.333 17.343 5.805 1 20.747
LSTM 8.625 1 35.424 7.471 1 60.373 9.983 0.778 23.340 4.357 1 28.141
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pattern characterizing age 45 over the testing horizon. Starting from the 2000s, Spanish males aged 45 have experienced a not-
able acceleration in the rate of mortality reduction. Because we use T¼ 2000 as the forecasting year, the extrapolation
approach underlying both the LC and the LC-LSTM induces misleading projections. Finally, we appreciate the LC model's
uncertainty estimation performance for Australian males. We highlight the LC model’s greatest probability coverage and inter-
val width. Nevertheless, the latter hints at some questions about the LC model prediction’s suitability in the long run. See, for
instance, Figure 3, which displays a 50-year prediction for the Australian males aged 65 for both training periods.

Given the observed mortality up to the forecasting year, the LC model seems to propose uncertainty levels not consistent
with the historical mortality dynamics. Looking at the training period 1960–2000, we observe an overall reduction in death
rates of about 61%. In the following 40 years of projection, the LC model estimates a further reduction in death rates of around
96% in the case of the PI lower bound or a possible increase of 68% for the PI upper bound. For the training period
1950–2000, this evidence is strengthened. Referring to the LC-LSTM model, the mortality estimates assume greater consist-
ency with historical observations. In particular, the LC-LSTM produces a 40-year decrease in mortality between 82% for the
PI lower bound and 46% for the PI upper bound.

Moreover, inspecting Figure 3, we stress how the learning period length impacts the long-run network forecasts. As afore-
mentioned, the two learning periods considered show different accelerations in mortality decline. Fitting the LSTM model on

TABLE 2
logmx, t Performance Metrics Values for each Training Period, Forecasting Years: 2001–2018

x ¼ 45

Country Model Training period 1950-2000 Training period 1960-2000

Male Female Male Female

RMSEðmÞ PICPðmÞ MPIWðmÞ RMSEðmÞ PICPðmÞ MPIWðmÞ RMSEðmÞ PICPðmÞ MPIWðmÞ RMSEðmÞ PICPðmÞ MPIWðmÞ

Australia LC 0.227 1 0:534 0:091 0.944 0.267 0.175 1 0:478 0:084 0.944 0.265
LC-LSTM 0:110 0.944 0.295 0.142 0.944 0:407 0:116 0.944 0.280 0.097 1 0:394

Japan LC 0.071 0.667 0:180 0.255 0 0.173 0:063 0.722 0.150 0.155 0.056 0.105
LC-LSTM 0:062 0:722 0.143 0:077 0:444 0:254 0.073 0.944 0.243 0:061 0:667 0:115

Spain LC 0.200 0.333 0.153 0:104 0.611 0.179 0.228 0:333 0.136 0:067 0.722 0.174
LC-LSTM 0:161 0:556 0:276 0.502 0:944 0:489 0:205 0.278 0:215 0.073 0:944 0:259

x ¼ 65

Country Model Training period 1950-2000 Training period 1960-2000

Male Female Male Female

RMSEðmÞ PICPðmÞ MPIWðmÞ RMSEðmÞ PICPðmÞ MPIWðmÞ RMSEðmÞ PICPðmÞ MPIWðmÞ RMSEðmÞ PICPðmÞ MPIWðmÞ

Australia LC 0.157 1 0:672 0.061 0.944 0.283 0.106 1 0.623 0.058 1 0.293
LC-LSTM 0:056 1 0.371 0.061 1 0:431 0:043 1 0.365 0.052 1 0.436

Japan LC 0.054 1 0:177 0.160 0.444 0.178 0.063 0.833 0.161 0.151 0.333 0.128
LC-LSTM 0:035 0.944 0.141 0.077 1 0.262 0.029 1 0.261 0.028 1 0.141

Spain LC 0.097 0.278 0.157 0.079 0.778 0.206 0.106 0.222 0.158 0.073 0.889 0.229
LC-LSTM 0:060 1 0:285 0.066 1 0.568 0.080 0.889 0.249 0.068 0.944 0.340

x ¼ 85

Country Model Training period 1950-2000 Training period 1960-2000

Male Female Male Female

RMSEðmÞ PICPðmÞ MPIWðmÞ RMSEðmÞ PICPðmÞ MPIWðmÞ RMSEðmÞ PICPðmÞ MPIWðmÞ RMSEðmÞ PICPðmÞ MPIWðmÞ

Australia LC 0.053 0.944 0.344 0.032 1 0.191 0.039 0.944 0.319 0.033 1 0.194
LC-LSTM 0.056 0.944 0.190 0.033 1 0.292 0.049 0.944 0.187 0.026 1 0.289

Japan LC 0.030 0.889 0.134 0.050 0.778 0.142 0.040 0.944 0.133 0.071 0.444 0.115
LC-LSTM 0.034 0.778 0.107 0.171 0.500 0.209 0.029 0.944 0.215 0.080 0.444 0.126

Spain LC 0.082 0.333 0.113 0.059 0.611 0.122 0.086 0.278 0.116 0.057 0.833 0.150
LC-LSTM 0.052 1 0.204 0.447 1 0.335 0.066 0.944 0.183 0.048 1 0.223
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FIGURE 1. Male PI (a ¼ 5%). Forecasting Period: 2001–2018. Note: Training period: 1950–2000 (left), 1960–2000 (right).
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FIGURE 2. Female PI (a ¼ 5%). Forecasting Period: 2001–2018. Note: Training period: 1950–2000 (left), 1960–2000 (right).
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the interval 1960–2000, the network learns the fundamental linear decrease of mortality such that a coherent PI shape is pre-
dicted over the forecasting horizon. In contrast the interval 1950–2000 points to a nonlinear behavior due to the longevity
accelerations in the period 1950–1960. In this case, the LSTM is able to extrapolate a coherent mortality range with the histor-
ical observation, allowing for biological plausibility but a more marked increase in longevity. In light of this, we do not ques-
tion the robustness of the model; rather, we emphasize its ability to extrapolate the fundamental pattern from the observed
data. The selection of the historical sample on which to fit the mortality model depends on the aware modeler’s expert judg-
ment, given the population under investigation. As suggested by Cairns et al. (2011), it is crucial to evaluate qualitative ex
ante criteria, such as biological reasonableness, the plausibility of predicted levels of uncertainty, and model robustness. At the
same time, ex post quantitative criteria, such as performance metrics in Section 5, are indispensable to address forecasts in a
back-testing exercise (see, for instance, Dowd et al. 2010). Following both qualitative and quantitative criteria, our analyses
demonstrate how, overall, both models are biologically regular in projecting mortality. The discriminating factor between the
two models is the plausibility of foreseen uncertainty levels, especially for long-term forecasts. Hence, our model improves the
prediction level of the LC model, as proven in most cases by the performance indicators. Finally, we suggest the interval
1960–2000 as the most proper training period for the LSTM calibration on mortality data. In fact, it is plausible to believe that
the reduction in mortality will continue to occur in a fairly linear way over time and at different ages, properly reflecting the
demographic trend observed since the 1960s.

7. CONCLUSIONS
Mortality forecasting is still a major challenge for actuaries and demographers. Obviously, different populations might

show diverse mortality scenarios, and a well-performing mortality model for one population might be not adequate for another
one. Not surprising, the collection of mortality models in the literature is extensive. Recently, new methodological advances in
mortality forecasting have been proposed, grounded on machine and deep learning techniques, mainly based on NN models.
The present work formalizes a deep learning integration of the LC model, in terms of both point prediction and prediction
interval. Our proposal allows representing the mortality surface through a canonical age–period model and predicting the
future mortality realizations by extrapolating the temporal mortality dynamics from data. The resulting LC-LSTM model pro-
vides a compromise between the interpretation of the mortality phenomenon and high precision in anticipating its future real-
izations. Moreover, exploiting both the NN ensemble paradigm and noise analysis, we are able to produce a mortality density
forecast. From our empirical investigation, we highlight the LC-LSTMs capacity to produce forecasts both biologically con-
sistent and plausible in uncertainty levels w.r.t. the historical observations, also in the long run. The latter feature is crucial in
actuarial assessments, especially in the evaluation of annuity products or to appraise pension systems sustainability. Therefore,
our proposal establishes a reliable improvement of the LC model in terms of predictive ability posing an innovative approach
within mortality literature. The proposed framework might represent a prominent practice in the field of longevity forecasting
and for actuarial business tasks.

FIGURE 3. Australian Males. PI (a ¼ 5%) for x¼ 65, Forecasting Period: 2001–2050. Note: Training period: 1950–2000 (left), 1960–2000 (right).
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APPENDIX A
To prove Equation (11), we recall the following set of assumptions:

kt ¼ u jTð Þ þ ct
E ctð Þ ¼ 0
r2c ¼ E c2t

� �
k̂ t ¼ f̂ jT ; Ŵ

� �
ct ╨ kt, ct ╨ k̂t

8>>>>><
>>>>>:

(A.1)

It is straightforward to define the bias–variance decomposition for the mean squared error as:

E kt � k̂t
� �2h i

¼ E u jTð Þ þ ct6E k̂ t
� �� �2� �

¼

¼ E u jTð Þ � E k̂ t
� �� �2� �

þ E c2t
� �

þ E E k̂ t
� �

� k̂t
� �2h i

þ 2E ct u jTð Þ � E k̂t
� �� �h i

þ 2E ct E k̂ t
� �

� k̂t
� �h i

þ 2E E k̂ t
� �

� k̂ t
� �

u jTð Þ � E k̂ t
� �� �h i

¼

¼ E E k̂ t
� �

� k̂ t
� �2h i

þ E u jTð Þ � E k̂t
� �� �2� �

þ r2ct ,

(A.2)

where r2
k̂ t
:¼ E E k̂ t

� �
� k̂t

� �2h i
and E BIAS2 k̂t

� �� 	
:¼ E u jTð Þ � E k̂t

� �� �2� �
, completing the proof.

APPENDIX B
We summarize the residual bootstrap procedure proposed by Koissi, Shapiro, and Hognas (2006), to which we refer in

our bagging scheme. For the sake of clarity, in the following we indicate by k̂ t the maximum likelihood estimate for the
time index. Given such an estimate and a lag j, we built the training data jT for the LSTM model. Thus, to obtain the boot-
strap samples of the training data—that is, jðbÞT —we need to sample the k̂t estimates. To this end, the following steps
are performed:

i. Compute the matrix of Poisson deviance residuals:

rD ¼ sign Dx, t � D̂x, t

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx, t ln

Dx, t

D̂x, t
� Dx, t � D̂x, t

� � �s
, x 2 X , t 2 T , (B.1)

where D̂x, t ¼ Ec
x, t exp âx þ b̂xk̂t

� �
are the fitted number of deaths.

ii. Sample with replacement the elements of rD to generate B replications; that is, rðbÞD , b ¼ 1, :::,B
� �

:
iii. Invert each bth residual matrix to define the corresponding matrix of death counts. To this end, it is necessary to find

the matrix D̂
ðbÞ
x, t solving the following equation:

D̂
ðbÞ
x, t�Dx, t ln D̂

ðbÞ
x, t

� �
� rðbÞD

� �2
�Dx, t þ Dx, t lnDx, t ¼ 0, (B.2)

whose solutions are numerically obtained through the Newton-Raphson method.
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iv. Given the matrices of death counts, D̂
ðbÞ
x, t , b ¼ 1, :::,B

� �
, the maximum likelihood procedure is executed B times to re-

estimate the LC model parameters, so that is possible to get the bootstrap samples of the time index; that

is, k̂
ðbÞ
t , b ¼ 1, :::,B

� �
:

v. Considering the lag j, from each bootstrap sample k̂
ðbÞ
t it is straightforward to derive the bootstrapped training data

employed in the bagging scheme; that is, jðbÞT :

APPENDIX C
For the sake of comparison, we briefly recall the fundamental forecasting equations concerning the LC model. According

to the LC structure in Equation (5), the time index is usually projected through a random walk with drift. Generalizing, in
our experiment we consider an ARIMA(p,d,q) process, so that the realizations of kt over T 0 originate from the following
equation:

�dktnþh ¼ hdþ
Xp
i¼1

/i�
dkðtnþhÞ�i þ

Xq
j¼1

hj�ðtnþhÞ�j þ
Xh
k¼1

�tnþk, h ¼ 1, :::, s, (C.1)

where d is the drift parameter and / and h are the coefficients for the autoregressive terms and for the moving average
terms, respectively. In addition, the sum of errors are normally distributed; that is,

Ph
k¼1 �tnþk�N 0, h2r2�

� �
: Under this mod-

eling framework, the LC model point predictions are

log m̂x, tnþh ¼ âx þ b̂x hd̂ þ
Xp
i¼1

/̂i�
dkðtnþhÞ�i þ

Xq
j¼1

ĥj�ðtnþhÞ�j

!
: (C.2)

Because errors are Gaussian, the estimated prediction interval boundaries at a fixed confidence level a 2 ð0, 1Þ are
given by

log m̂U,L
x, tnþh ¼ log m̂x, tnþh6b̂x

ffiffiffi
h

p
r̂�za2, (C.3)

where r̂� is the error’s variance estimate, and za is the a-quantile of a standard normal distribution. In Table C.1 we
show the best ARIMA(p,d,q) models applied in our emprical investigation, for each country and for both genders, where
such models are calibrated according to the Hyndman-Khandakar algorithm (Hyndman and Khandakar 2008).

TABLE C.1
Best Selected ARIMA(p,d,q) Models for kt.

Country Gender Training period 1950–2000 Training period 1960–2000

Australia Male ARIMA (0,2,2) ARIMA (1,2,1)
Female ARIMA (1,1,0) ARIMA (1,1,0)

Japan Male ARIMA (2,1,0) ARIMA (0,1,1)
Female ARIMA (0,1,1) ARIMA (0,1,1)

Spain Male ARIMA (0,1,1) ARIMA (1,1,0)
Female ARIMA (0,1,3) ARIMA (1,1,0)
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APPENDIX D

TABLE D.1
Statistical Tests for Noise in the Training Set: Males

Country Test
Training period 1950–2000 Training period 1960–2000

Statistics value p value Statistics value p value

Australia Shapiro-Wilk .96352 .12489??? 0.98379 .82539???

D’Agostino-Pearson 1.62692 .44332??? 0.85534 .65203???

Jarque-Bera 1.55177 .46030??? 0.64381 .72477???

ADF –3.05447 .15132??? –2.58739 .34294???

Japan Shapiro-Wilk 0.96193 .10710??? 0.97511 .51356???

D’Agostino-Pearson 8.05556 .01781? 1.45996 .48192???

Jarque-Bera 7.35771 .02525? 1.20406 .54770???

ADF –3.49574 .05128?? –2.73088 .28662???

Spain Shapiro-Wilk 0.97654 .41696??? 0.95790 .14191???

D’Agostino-Pearson 1.83229 .40006??? 2.82652 .24335???

Jarque-Bera 1.05350 .59052??? 2.31446 .31436???

ADF –7.55942 .01000 –4.11879 .01516?

Note: Significant at �p > .01, ��p > .05, ���p > .1.

TABLE D.2
Statistical Tests for Noise in the Training Set. Females

Country Test
Training period 1950–2000 Training period 1960–2000

Statistics value p value Statistics value p value

Australia Shapiro-Wilk 0.96907 .21209??? 0.96724 .29319???

D’Agostino-Pearson 2.52531 .28290??? 0.78319 .67598???

Jarque-Bera 1.78204 .41024??? 0.60740 .73808???

ADF –3.07190 .14432??? –2.50033 .37711???

Japan Shapiro-Wilk 0.97452 .34985??? 0.98888 .95815???

D’Agostino-Pearson 3.12195 .20993 ??? 0.79814 .67094???

Jarque-Bera 2.09605 .35063??? 0.62112 .73303???

ADF –5.14239 .01000 –3.89596 .02383?

Spain Shapiro-Wilk 0.93640 .02619? 0.97970 .67844???

D’Agostino-Pearson 8.69754 .01292? 1.74855 .41716???

Jarque-Bera 7.56206 .02280? 1.20753 .54675???

ADF –5.80177 .01000 –3.46488 .06172???

Note: Significant at �p > .01, ��p > .05, ���p > .1.

18


	Abstract
	INTRODUCTION
	THE NEURAL NETWORK MODEL
	RNNs with LSTM Architecture

	THE LC-LSTM MODEL
	PREDICTION INTERVALS FOR THE LC-LSTM MODEL
	Estimating σk̂t2
	Estimating σγ2

	PERFORMANCE METRICS OF FORECASTING
	EMPIRICAL INVESTIGATION AND RESULTS
	Data
	Neural Network Tuning, Training, and Ensembling
	Results

	CONCLUSIONS
	ACKNOWLEDGMENTS
	FUNDING
	Orcid
	REFERENCES
	mkchapUAAJ__sec




