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Abstract
The Gulf of Trieste (Northern Adriatic Sea, Italy) is the coastal area of the Mediterranean Sea most highly contaminated 
by mercury (Hg) due to fluvial inputs from the Isonzo/Soča River system, draining over 500 years’ worth of cinnabar 
extraction activity from the Idrija mining district (Western Slovenia). The aim of this research is to investigate the con-
centration of Hg in hair samples taken from the general population of the Friuli Venezia Giulia (FVG) Region coastal 
area, as a marker of chronic exposure to Hg. Three hundred and one individuals — 119 males and 182 females — were 
recruited by convenience sampling in Trieste in September 2021. An amount of approximately 100 mg of hair was 
collected from the occipital scalp of each participant to measure the respective Hg concentrations (expressed as mg/
kg). Moreover, participants completed a self-report questionnaire collecting extensive socio-demographic and life-style 
information. A multiple linear regression analysis was employed to investigate factors associated with increased levels 
of Hg concentration in hair. A mean Hg concentration in hair of 1.63 mg/kg was found, slightly above the 1.0 mg/
kg threshold recommended by the WHO for pregnant women and children, although still well below the no observed 
adverse effects level (NOAEL) of 10 mg/kg. Among respondents, 55.6% showed a Hg concentration in hair > 1 mg/
kg, 22.9% > 2 mg/kg, and 2 participants exhibited Hg levels > 10 mg/kg. The adjusted mean hair Hg level increased in 
those subjects who reported a preference for shellfish/crayfish/mollusks (RC = 0.35; 95%CI: 0.16; 0.55), whereas it 
decreased in those who reported a preference for frozen fish (RC = -0.23; 95%CI: − 0.39; − 0.06). Though a risk alert 
for Hg exposure for coastal residents from FVG is deemed unnecessary at this time, it is recommended that pregnant 
women limit their ingestion of locally caught fish to < 4 servings/month.
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Introduction

The health effects of mercury (Hg), a heavy metal in use for 
more than 3000 years, became an issue of global importance 
following the 1956 Minamata disaster in Japan, when meth-
ylmercury (CH3Hg+ or MeHg), the most toxic organic form 
of Hg, was released in the surrounding area for a consider-
able period of time, polluting the nearby sea and severely 
intoxicating more than 5000 local residents, some of whom 
eventually died (Ye et al. 2016). Another serious incident 
occurred in Iraq in 1971–1972, with 6500 cases of intoxica-
tion and 459 deaths following the ingestion of bread con-
taminated by MeHg as a result of a Hg-containing fungicide 
used to treat seed grain (Guzzi and La Porta 2008).

Methylmercury is a strong neurotoxin (Grandjean et al. 
2010) and an endocrine disrupting chemical (Tan et al. 
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2009), highly toxic to the liver and the reproductive system 
of humans and other organisms (Crespo-López et al. 2009). 
Since it is highly soluble in lipids, MeHg is also detrimen-
tal to the central and peripheral nervous system (Rice et al. 
2014).

Mercury is a global health concern, with dietary intake 
and occupational risks being the main exposure routes 
(Wang et al. 2021). The ingestion of fish is the dominant 
mode of exposure to MeHg for humans, which can bioac-
cumulate and biomagnify through the food chain in aquatic 
systems (NRC 2000).

After being ingested, MeHg is rapidly absorbed by red 
blood cells (RBC), bound to hemoglobin and distributed to 
various organs (Clarkson and Magos 2006; Guzzi and La 
Porta 2008). Elimination of Hg from the human body pre-
dominantly occurs via demethylation and fecal excretion of 
its inorganic form (Guzzi and La Porta 2008).

Since Hg tends to increase with fish intake (Castaño et al. 
2015), its concentration in blood is used as an established 
marker of Hg exposure (Wilhelm et al. 2004; Castaño et al. 
2019). Nevertheless, long-standing human exposure to Hg 
is typically assessed using urine and hair specimens (Airey 
1983; WHO 2003; Barregard et al. 2006; Ye et al. 2016; 
Basu et al.2018). Whilst Hg in urine reflects the exposure to 
its inorganic form (IHg) originated from food-borne MeHg 
de-methylated in the human body (Castaño et al. 2015), 
MeHg increases its concentration in hair from blood flow 
by forming MeHg–cysteine complexes with the average 
hair-blood ratio in humans estimated to be approximately 
250:1 μg/g-mg Hg/L (WHO 1990). However, in absence of 
acute exposure, Hg concentrations are much higher in hair 
than in blood (estimated ratios of 370:1) (Phelps et al. 1980; 
Shrestha and Fornerino 1982).

Although MeHg in the body combines with sulfur atoms 
of thiol ligands to form water soluble complexes, urinary 
excretion of MeHg is negligible (Guzzi and La Porta 2008), 
and it is considered a reliable qualitative biomarker for Hg 
exposure only when measuring the levels in hair is not pos-
sible (Esteban-López et al. 2022). Human hair is in fact the 
ideal biomarker of chronic exposure to MeHg (Thompson 
et al. 2014; Koenigsmark et al. 2021; Esteban-López et al. 
2022) also taking into consideration the relatively low cost 
of sampling and the non-invasive nature of the procedure 
(Wang et al. 2021).

Once incorporated into the hair, Hg stabilises by irrevers-
ibly tying with sulfhydryl groups of cheratin, which con-
stitutes up to 80–90% of hair, thus providing a continuous 
record of the duration of Hg exposure based on the typical 
rate of human hair growth of approximately 1 cm per month 
(Koenigsmark et al. 2021). Hg levels in hair reduce only 
with hair loss (Nielsen and Andersen 1991; Ye et al. 2016).

The Gulf of Trieste (Northern Adriatic Sea, Italy) 
is the most highly Hg contaminated coastal area of the 

Mediterranean due to fluvial inputs from the Isonzo/Soča river 
system. Indeed, over 500 years of cinnabar (HgS) extraction 
activity from the Idrija mining district (western Slovenia) 
caused the contamination of water, soil, and sediments from 
the Isonzo/Soča River drainage basin (Horvat et al. 2002; Kot-
nik et al. 2005; Gosar and Žibret 2011; Kocman et al. 2011; 
Baptista-Salazar et al. 2017) as well as the marine-coastal 
environment (Horvat et al. 1999; Covelli et al. 2001) (Fig. 1). 
However, local contamination from the city of Trieste cannot 
be excluded since Hg in sediments was found in the old port 
area (Furlan et al. 1999) likely connected to urban sewage and 
local stream inputs which travel across the city and flows out 
into the port (Covelli et al. 2001).

The occurrence of Hg in the Gulf of Trieste has been 
investigated in several studies focused on coastal sediment 
contamination (Covelli et al. 2001, 2021), transport, and dis-
tribution of Hg associated with suspended particulate matter 
at the mouth of the Isonzo River (Covelli et al. 2006; 2007), 
as well as Hg cycling at the sediment–water interface (Emili 
et al. 2011; 2012). Nevertheless, few studies have investi-
gated Hg concentrations in fish and shellfish in this coastal 
marine area (Kosta et al. 1978; Horvat et al. 1999).

Efficient trophic transfer of MeHg through aquatic food 
webs (biomagnification) results in Hg concentrations in 
predator species millions of times higher than those observed 
in surface water (Lavoie et al. 2013). More recently, inter-
actions between Hg concentrations in seawater, sediments, 
plankton and the benthic rays — apex predators found in 
the Gulf of Trieste — were investigated as markers of Hg 
marine environmental contamination (Faganeli et al. 2018). 
The weight and age of benthic ray species were found to 
be correlated with Hg muscle concentration reaching up to 
4.40 μg/g dw (Faganeli et al. 2018). However, it seems likely 
that efficient sedimentary MeHg demethylation and water 
column Hg(II) reduction are important factors preventing 
extensive contamination of marine biota in the Gulf of Tri-
este (Faganeli et al. 2014).

In view of the above, the aim of this study was to inves-
tigate Hg concentrations in human hair from volunteers 
recruited in Trieste, predominantly residents along the coast 
of the Friuli Venezia Giulia (FVG) Region.

Methods

In this research study, 301 individuals — 119 males and 182 
females — were recruited using convenience sampling from 
September 24 to 26, in 2021, at an outdoor gazebo located 
in the main square (Piazza Unità d’Italia) of Trieste, the 
capital city of the FVG Region. Participants were recruited 
during the celebration of the 10th anniversary of “Trieste 
Next” Festival of Scientific Research, a long-standing event 
dedicated to research dissemination.
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All participants gave their written informed consent after 
reading a form and receiving an explanation regarding the 
objectives of the study.

An amount of approximately 100 mg of hair was col-
lected with stainless steel scissors from the occipital scalp of 
each participant. Hair samples were then labeled and stored 
separately in individual polyethylene bags until analysis.

All participants also filled out a self-administered ques-
tionnaire which took approximately 5 min to complete, 
containing extensive information on the socio-demographic 
profile of respondents and their lifestyles and general habits, 
especially related to diet and fish consumption (Table S1).

In addition to participation are of residence and par-
ticipation to in hobbies and free time activities which may 
increase the risk of Hg exposure, the questionnaire also 
included questions on smoking, alcohol consumption, 
number of dental amalgams, bruxism, nasal dyspnea, con-
sumption of chewing gum, dietary supplements, and use of 
protective creams, contact lenses use and history of kidney 
disease.

Furthermore, the questionnaire delved into water intake 
(amount consumed per day), source of drinking water (mineral, 

aqueduct, filtered aqueduct, well, filtered well), number of 
meals containing fish eaten per week, type (fresh, frozen, 
canned) and size of fish preferred. Three main categories of 
fish were considered: large fish (swordfish, tuna, cod); small/
medium size (anchovies, sardines, herring, sea bass, mullet, 
flounder, bream, eel), and shellfish/crayfish/mollusks (squid, 
crab, shrimp, clam, octopus, mussel, lobster, crayfish).

Total Hg in hair samples was measured using a Direct 
Mercury Analyzer (DMA-80, Milestone, Sorisole, Italy), 
according to the EPA Method 7473 (USEPA 1998). The 
limit of detection (LOD) was equal to 0.004 mg/kg, cal-
culated multiplying the standard deviation coming from 
the average of 10 blanks by three and dividing the result 
obtained by the slope of the calibration curve. The accu-
racy of the method for the analytical determination of Hg 
was verified by analyzing a certified reference material 
(CRM) for a better representation of the results:

•	 ERM-DB001 (0.365 ± 0.028 mg/kg; Human Hair CRM, 
European Reference Materials).

•	 Acceptable recoveries were obtained, ranging between 
98 and 106%.

Fig. 1   The Gulf of Trieste, 
where the participants, mainly 
residents, were recruited
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Statistical analysis

Statistical descriptive analysis was performed, calculating 
frequencies, percentages, mean, standard deviation, median, 
and inter-quartile range. Since Hg in hair was not normally 
distributed (Figure S1a), a log-transformation of the out-
come measure was performed (Figure S2b).

A univariate linear regression analysis was employed to 
investigate the association of each factor with the outcome (log-
transformed Hg concentration). A backward stepwise selec-
tion procedure was used to fit a multivariable linear regression 
model from explanatory factors displayed in Table 1 (excluding 
water intake, due to a high number of missing values).

Results of linear regression were expressed as 
adjusted regression coefficients (aRC) with a 95% confi-
dence interval (CI).

Missing data were excluded, and a complete case analysis 
was performed. The Stata 14.2 software (Stata Corporation, 
College Station, TX, USA) was used for the analysis.

Results

Three hundred and one individuals agreed to participate 
in this study. The majority of participants were females 
(59.8%=180/301), with a median age of 30 years (IQR: 
21–49; range: 3–79) (Table 1).

Most participants (70.2%) reported living along the coast of 
the Gulf of Trieste — including the municipalities of Trieste, 
Sistiana, Duino Aurisina, Monfalcone, and Grado — whereas 
23.8% were residents in coastal sites off the Gulf. Two hundred 
and twenty individuals (73.6%) reported living in an urban area, 
whereas 22.4% (=67/299) were residents in a rural area and only 
4% (=12/299) in an industrial area or nearby (Table 1).

Overweight individuals (BMI > 30 kg/m2) accounted for 
5.4% (=16/296) of the total number of participants, whereas 
75% (=222/296)  of the studied population exhibited a 
BMI < 25 kg/m2. Respondents suffering from nasal dysp-
nea were 20.1% (= 60/297) and 4.6% (= 14 /301) had hob-
bies posing a risk of Hg exposure. Water consumption was 
rather balanced, as 34.1% (=63/185) of participants reported 
drinking < 1 L/day, 27.0% (=50/185) between 1 and 2 L/day, 
and 38.9% (=72/185) > 2 L/day. The majority of the study 
population drank tap water (68.5% = 113/165), whereas only 
24.9% (= 41/165) consumed mineral water (Table 1).

Most individuals, 88.6% (=264/298) were non-smokers or ex-
smokers whereas 10.4% (=31/298) and 1.0% (=3/298) reported 
smoking < and > 15 cigarettes per day, respectively. The major-
ity of respondents (61.8% = 183/296) reported that they did not 
drink wine, and 35.5% (= 105/296) drank < 0.5 L of wine per day. 
Thirty-nine out of 295 (13.2%) respondents consumed chewing 
gum, and 19.6% (=57/291) suffered from bruxism. Seventy-six 
out of 296 (25.6%) respondents used dietary supplements, 55.4% 

(= 164 / 297) used protective skin creams, 15.5% (= 46/296) were 
contact lenses users, and only 3.4% (= 10/296) reported being 
affected by any type of kidney disease (Table 1).

Two hundred and sixteen participants (71.8%) had no den-
tal amalgams; 14.3% (=43/301) had 4 amalgams and 14.0% 
(=42/301) > 4 amalgams. Twenty-seven (9.3%) of the participants 
reported having undergone dental procedures involving insertion or 
removal of dental amalgams in the previous 2 months (Table 1).

Figure 2 shows the box plots for the distribution of Hg 
concentration in hair by sex of respondents. The median 
and mean values for Hg hair concentration in males were 
1.29 mg/kg (IQR: 0.87; 2.06) and 1.85 ± 1.79 mg/kg respec-
tively, whereas in females they were 1.16 mg/kg (IQR: 0.72; 
1.75) and 1.48 ± 1.23 mg/kg respectively. As can be seen 
in Table 1, at a univariate analysis Hg concentration in hair 
slightly increased with age (RC = 0.01; 95% CI: 0.00; 0.02).

Fish consumption was evenly distributed, as 39.3% 
(=116/295) participants reported eating fish < 4 times 
a month, 38.3% (=113/295) at least 4 times a month and 
22.4% (=66/295) > 4 times a month. Fresh fish was pre-
ferred by 56.5% (= 170/301) respondents, followed by frozen 
(34.9%=105/301) and canned fish (19.6%= 59/301). The 
distribution of the type of fish consumed was also rather 
balanced, as (87.6%=261/298) respondents reported eating 
large fishes, (75.0%=225/298) small-medium size fishes, and 
(79.2%= 236/298) shellfish/crayfish/mollusks (Table 2). Fig-
ure 3a–d shows the box plots for Hg distribution in hair by 
fish consumption (monthly meals and type of fish preferred).

The median Hg concentration in hair was 1.2 mg/kg (IQR: 0.78; 
1.86), with a mean of 1.63 ± 1.50 mg/kg (Table 1). One hundred 
and thirteen participants (37.5%) exhibited Hg hair concentra-
tion < 1.1 mg/kg, 39.5% (=119/301) between 1.1 and 2.1 mg/kg, 
22.3% (=67/301) within the range 2.1–10 mg/kg, and only 2 peo-
ple (0.7%) exhibited hair Hg concentrations > 10.1 mg/kg.

Table 2 shows the mean distribution of Hg concentra-
tion in hair by size and monthly consumption of fish. As 
can be noted, almost 80% of participants exhibited Hg lev-
els < 2 mg/kg, and Hg concentrations increased with the 
amount of fish eaten per month and the ingestion of small/
medium size fish or shellfish/crayfish/mollusks.

Participants who reported consuming fish < 4 times 
monthly revealed a mean concentration of Hg in hair equal to 
1.40 ± 1.24 mg/kg and a median of 1.08 (IQR: 0.70; 1.70) mg/
kg. Those who reported eating fish 4 times per month exhib-
ited 1.65 ± 1.36 mg/kg mean Hg levels in hair, with a median 
of 1.34 (IQR = 0.87; 2.00) mg/kg. The respective estimates for 
participants consuming > 4 monthly fish servings increased to 
2.04 ± 2.00 mg/kg and 1.34 (IQR: 0.86; 2.24) mg/kg (Table 2).

Table 3 displays the results of multivariable linear regression 
analysis. A preference for the consumption of shellfish/crayfish/
mollusks was significantly associated with higher mean levels of 
Hg concentration in hair (RC = 0.35; 95%CI: 0.16; 0.55). In contrast, 
the preferred ingestion of frozen fish was correlated to a decreased 
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Table 1   Frequency distribution of factors and univariable linear 
regression analysis (ordinary vs. log-transformed outcome). Number 
(N), column percentages (%), regression coefficients  unadjusted (RC) 

and adjusted (aRC) with 95% confidence intervals  with 95% confi-
dence intervals. Mean (M) ± standard deviation (SD); IQR: interquar-
tile range. M: missing information

Variables Strata N (Col %) Univariable linear regression analysis

Ordinary outcome RC 
(95%CI)

Outcome log-
transformed aRC 
(95%CI)

Mercury concentration in hair (mg/kg) (M: 1) Median (IQR) 1.20 (0.78; 1.86)
M ± SD 1.63 ± 1.50
 < 1.00 113 (37.5)
1.01–2.00 119 (39.5)
2.01–10.00 67 (22.3)
 > 10.00 2 (0.7)

Sex (M: 1) Females 180 (59.8) Reference Reference
Males 121 (40.2) 0.37 (0.03; 0.71) 0.16 (0.00; 0.32)

Age (years) (M: 3) Median (IQR) 29.5 (21; 49)
M ± SD 34.7 ± 18.8 0.01 (− 0.00; 0.02) 0.01 (0.00; 0.02)

Domicile (M: 11) Inland/off Trieste gulf 11 (3.8) Reference Reference
Coastal (off Trieste gulf) 69 (23.8) 1.24 (0.28; 2.19) 0.38 (− 0.07; 0.83)
Trieste 210 (72.4) 0.25 (− 0.15; 0.66) 0.13 (− 0.06; 0.33)

Residence area (M: 3) Industrial 12 (4.0) 0.20 (− 0.68; 1.08)  − 0.12 (− 0.53; 0.30)
Urban 220 (73.6)  − 0.21 (− 0.62; 0.20)  − 0.06 (− 0.25; 0.13)
Rural 67 (22.4) Reference Reference

BMI (kg/m2) (M: 5) Median (IQR) 22 (20; 24.5)
M ± SD 22.5 ± 4.9
 < 25 222 (75.0) Reference Reference
25–29 58 (19.6) 0.04 (− 0.39; 0.48) 0.12 (− 0.08; 0.33)
30 +  16 (5.4) 0.14 (− 0.63; 0.90) 0.07 (− 0.29; 0.43)

Nasal dyspnea (M: 4) No 238 (79.3) Reference Reference
Yes 60 (20.1) 0.03 (− 0.40; 0.45) 0.06 (− 0.14; 0.26)

Seniority of work (M: 126) Median (IQR) 168 (48; 324)
M ± SD 199.4 ± 168.7
 < 48 42 (24.0) Reference Reference
48–155 43 (24.6)  − 0–11 (− 0.71; 0.50) 0.05 (− 0.25; 0.35)
156–299 38 (21.7) 0.05 (− 0.58: 0.67) 0.17 (− 0.14; 0.48)
300 +  52 (29.7) 0.36 (− 0.22; 0.95) 0.15 (− 0.14; 0.44)

Hobbies at risk for Hg exposure No 287 (95.4) Reference Reference
Yes 14 (4.6)  − 0.02 (− 0.82; 0.78) 0.04 (− 0.34; 0.41)

Water intake (liters/day) (M: 136) Median (IQR) 1.5 (1; 2)
M ± SD 1.6 ± 0.6
 < 1 63 (34.1) 0.05 (− 0.43; 0.53) 0.07 (− 0.17; 0.30)
1–2 50 (27.0)  − 0.23 (− 0.75; 0.30)  − 0.05 (− 0.30; 0.20)
2 +  72 (38.9) Reference Reference

Water source (M: 136) Mineral 41 (24.9) Reference Reference
Aqueduct 113 (68.5)  − 0.06 (− 0.60; 0.47)  − 0.02 (− 0.27; 0.23)
Aqueduct (filtered) 9 (5.5) 0.27 (− 0.81; 1.35) 0.17 (− 0.34; 0.67)
Well 1 (0.6)  − 0.27 (− 3.25; 2.70) 0.09 (− 1.30; 1.47)
Well (filtered) 1 (0.6)  − 0.22 (− 3.20; 2.75) 0.13 (− 1.26; 1.51)

Smoking habit (N. cigarettes/day) (M: 4) Non (or ex) smoker 264 (88.6) Reference Reference
 < 15 31 (10.4) 0.04 (− 0.52; 0.60)  − 0.01 (− 0.27; 0.25)
15 +  3 (1.0)  − 0.68 (− 2.40; 1.04)  − 0.36 (− 1.16; 0.45)

Wine intake (liters/day) (M: 6) 0 183 (61.8) Reference Reference
 ≤ 0.5 105 (35.5) 0.16 (− 0.21; 0.53) 0.13 (− 0.04; 0.31)
 > 0.5 8 (2.7) 0.23 (− 0.85; 1.30) 0.30 (− 0.20; 0.80)

Chewing gum consumption (M: 6) No 257 (86.8) Reference Reference
Yes 39 (13.2)  − 0.09 (− 0 − 60; 0.41)  − 0.03 (− 0.27; 0.20)
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mean level of Hg concentration in hair samples (RC =  − 0.23; 
95%CI: − 0.39; − 0.06).

Figure S2 shows that the distribution of residuals for log-
transformed Hg was approximately linear.

Discussion

The mean Hg concentration in hair (1.63 ± 1.50 mg/kg) 
found in this study exceeded the 1.0 mg/kg threshold rec-
ommended by the WHO for pregnant women and children, 
although it was still well below the no observed adverse 
effects level (NOAEL) of 10 mg/kg (UNEP 2008).

Since fish from contaminated aquatic, marine, or freshwa-
ter systems is the main source of MeHg exposure in the gen-
eral population, WHO recommends levels of 1 mg/kg and 
0.5 mg/kg wet weight (w/w) for predatory and non-predatory 
fish, respectively (WHO 2007). In Europe, the current Hg 
limits in food items is 0.5 mg/kg, with an exception of 1 mg/
kg for top predators (e.g., tuna, swordfish, and related spe-
cies, EC 1881/2006) and other benthic species.

Whilst the US Food and Drug Administration (FDA 
2022) estimates that most people have a daily food-related 
Hg exposure of 50 ng/kg, a dose not thought to be harm-
ful to humans (Aprea et al. 2021; FDA 2022), high Hg 
(605 ± 210  ng/g) as well as MeHg (147 ± 37  ng/g ww) 

Table 1   (continued)

Variables Strata N (Col %) Univariable linear regression analysis

Ordinary outcome RC 
(95%CI)

Outcome log-
transformed aRC 
(95%CI)

Bruxism (M: 11) No 234 (80.4) Reference Reference

Yes 57 (19.6) 0.03 (− 0.41; 0.47)  − 0.00 (− 0.20; 0.21)
Supplements (M: 5) No 221 (74.4) Reference Reference

Yes 76 (25.6) 0.08 (− 0.31; 0.47) 0.09 (− 0.09; 0.28)
History of kidney disease (M: 5) No 287 (96.6) Reference Reference

Yes 10 (3.4)  − 0.08 (− 1.03; 0.87) 0.11 (− 0.34; 0.55)
Protective skin creams (M: 4) No 133 (44.8) Reference Reference

Yes 164 (55.2) 0.03 (− 0.32; 0.37) 0.08 (− 0.08; 0.24)
Dental filling amalgams (N) 0 216 (71.8) Reference Reference

1–3 43 (14.0) 0.10 (− 0.39; 0.59) 0.15 (− 0.08; 0.38)
4 +  42 (14.0) 0.13 (− 0.37; 0.62) 0.13 (− 0.10; 0.36)

Amalgams fillings removed/placed in the past 2 months 
(M: 12)

No 262 (90.7) Reference Reference
Yes 27 (9.3)  − 0.15 (− 0.75; 0.45)  − 0.10 (− 0.38; 0.18)

Contact lenses (M: 5) No 250 (84.5) Reference Reference
Yes 46 (15.5)  − 0.01 (− 0.49; 0.46) 0.05 (− 0.17; 0.28)

Fish intake (N. meals/months) (M: 6)  < 4 116 (39.3) Reference Reference
4 113 (38.3) 0.26 (− 0.13; 0.64) 0.19 (0.01; 0.37)
 > 4 66 (22.4) 0.64 (0.19; 1.09) 0.28 (0.07; 0.49)

Preferred fish provenance Fresh No 131 (43.5) Reference Reference
Yes 170 (56.5) 0.34 (− 0.00; 0.68) 0.15 (− 0.01; 0.31)

Frozen No 196 (65.1) Reference Reference
Yes 105 (34.9)  − 0.23 (− 0.40; − 0.05)  − 0.10 

(− 0.18; − 0.01)
Canned No 242 (80.4) Reference Reference

Yes 59 (19.6)  − 0.32 (− 0.75; 0.10)  − 0.13 (− 0.33; 0.07)
Fish size intake Big * No 37 (12.4) Reference Reference

Yes 261 (87.6)  − 0.11 (− 0.62; 0.41)  − 0.03 (− 0.27; 0.21)
Small/medium** No 73 (24.5) Reference Reference

Yes 225 (75.5) 0.65 (0.26; 1.03) 0.35 (0.17; 0.53)
Shell/crayfish/mollusks’ $ No 62 (20.8) Reference Reference

Yes 236 (79.2) 0.44 (0.02; 0.86) 0.34 (0.15; 0.53)

* Sword fish, tuna, cod
** Anchovies, sardines, sea bass, sea bream, ribon, gilt-head bream, grey mullet, mullet, plaice, conger
$ Scampi, prawn, shrimp, sea cicada, crab, lobster, sea crayfish, clams, mussel, squids, calamary, octopus
Bold: risk factor; Italics: protective factor
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contents were found in Manila clams from the Marano 
and Grado Lagoon, which is adjacent to the Gulf of Tri-
este (Giani et al. 2012). The Lagoon is also subject to Hg 
contamination, primarily due to suspended sediment par-
ticles originating from the Soča/Isonzo River drainage 
basin (Covelli et al. 2007). In addition, Hg was used as a 
catalyst in a chlor-alkali plant (CAP) and discharged in an 
unregulated manner into the Aussa-Corno River system from 
1949 to 1984, after which cleaner technologies were report-
edly adopted (Piani et al. 2005). This river system flows 
to the central sector of the Lagoon where it is estimated 
that approximately 186 t of Hg of industrial origin have 
been deposited. Previous studies revealed high Hg levels 
in sediments (Acquavita et al. 2012), as well as evidence of 
bioaccumulation of metal along the trophic chain (Bram-
bati 2001). Since almost all the participants in the present 
survey were residents of Trieste and the surrounding areas, 
it can be argued that the majority of the fresh fish and shell-
fish purchased and consumed were from the Adriatic Sea. 
However, we cannot exclude that fresh products may also 
reach Trieste and the neighboring coastal areas from the 
above lagoon environment.

Marine (fresh, canned, or frozen) fish is considered a 
more relevant source of Hg exposure than freshwater fish 
(Morrissette et al. 2004). Despite large fish being preda-
tors occupying the top-level of the aquatic trophic network, 
featuring the highest Hg content following biomagnification 
(De Almeida Rodrigues et al. 2019), the lack of association 
between Hg levels in hair samples and the consumption of 
large fish (swordfish, tuna, cod) in the present study is likely 

due to the ban on tuna fishing in the Gulf of Trieste. Indeed, 
edible tuna is imported to FVG Region from foreign coun-
tries, and ingestion of local fish is limited to other fish spe-
cies. Nonetheless, overseas provenance of the other two fish 
categories shall not be ruled out. The significantly lower Hg 
levels in hair in relation to the consumption of frozen fish 
may be attributable to the overseas provenance and/or fish 
processing since a substantial reduction in bioaccessible Hg 
fractions in fish has been observed after cooking compared 
to raw fillets (Costa et al. 2022).

Mercury exposure and fish consumption

Mercury concentration in scalp hair varies as a function of 
geographical areas and fish intake, both in Italy and else-
where (Okati and Esmaili-sari 2018, Kirichuck et al. 2020). 
For instance, among 606 pregnant women delivering in Tri-
este during the period from 2007 to 2009, the mean con-
centration of hair Hg was lower (1.06 mg/kg) than the pre-
sent study and only moderately correlated with fish intake 
(Valent et al. 2013b). Likewise, in another study conducted 
on residents of Naples (Campania region, Southern Italy) 
including both sexes, 115 females vs. 122 males, the mean 
Hg concentration in hair was 0.6 mg/kg, ranging between 
0.22 and 3.40 mg/kg (Diez et al. 2008).

In a larger sample of 224 residents from 3 munici-
palities from the same bay (Eastern Sicily), the pooled 
median Hg content in hair was 1.47 mg/kg, 1.90 mg/kg in 
Augusta, 1.24 mg/kg in Melilli and 1.00 mg/kg in Priolo 
(Bonsignore et al. 2016). Again, increasing concentrations 

Fig. 2   Box plot displaying the 
distribution of Hg concentration 
in hair (mg/kg) by sex



	 Environmental Science and Pollution Research

1 3

of Hg from both blood and hair specimens were detected 
among respondents who reported ingesting higher quanti-
ties of locally caught fish. In particular, the highest value 
of Hg in blood (33.6 μg/L) was found in a subject eating 
locally caught fish 3–4 times/week, whereas a respond-
ent who reported seldom ingesting locally caught seafood 
revealed the lowest blood concentration of Hg (0.10 μg/L) 
(Bonsignore 2016).

A further study found a mean hair Hg concentration of 
6.45 ± 7.03 mg/kg among 96 fishermen without dental prob-
lems aged 35–45 years sampled from 6 different coastal areas 
of Sicily (Italy), significantly higher (p < 0.001) than 96 controls 
not employed in the maritime sector (Giangrosso et al. 2016).

In summary, the concentrations of Hg in hair found in the 
present study were comparable to those found in residents 
of Sicily (Bonsignore 2016) but higher than those found for 
residents of Naples (Diez et al. 2008) and lower than those 
found in Sicilian fishermen (Giangrosso et al. 2016), sug-
gesting that in high risk occupational categories or geo-
graphical areas Hg levels should be closely monitored.

Other risk factors for mercury exposure

In line with other studies, the Hg concentration in hair found 
in this study was not influenced by age (Szynkowska and 
Pawlaczyk 2007; Karabedian et al. 2009; Michalak et al. 
2014; Kirichuk et al. 2020; Munir et al. 2021). However, 
this is in contrast to other studies which report a correlation 
between increasing levels of Hg concentration in hair and 
age (Shah et al. 2016; Esteban-López et al. 2022), particu-
larly in males (Wyatt et al. 2017).

Amalgam dental fillings are considered a potential source 
of IHg exposure for the human organism (Factor-Litvak et al. 
2003; Bates 2006), since elemental Hg vapour (Hg0) may be 
released as a result of mastication (Sallsten et al. 1996), noctur-
nal bruxism (Isacsson et al. 1997), or teeth whitening products 
(Robertello et al. 1999) and subsequently oxidized into inorganic 
divalent Hg (Hg2+) and then absorbed (Clarkson 1997).

Nonetheless, hair Hg concentration was not influenced 
by number of dental fillings amalgams or amalgam fill-
ings removed/replaced in the past 2 months. Whilst the 
latter finding is consistent with some other studies (Diez 
et al. 2008; Esteban-López et al. 2022), an investigation of 
60 children reported higher Hg levels in urine those with 
amalgam fillings (Levy et al. 2004).

Mercury exposure and human health

Neuro-developmental effects have reportedly been associated 
with in utero exposure and a maternal hair Hg concentration 
of 1.0 mg/kg or higher (NRC 2000). Consequently, the WHO 
recommends mean Hg concentrations of < 1.0 mg/kg in scalp 
hair of pregnant women and children (WHO 2007, 2008) and Ta
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the US Environmental Protection Agency (EPA) fixed a ref-
erence daily exposure of 0.1 μg/kg for MeHg (USEPA 2001, 
2010, 2021).

A prospective multi-center cohort study (NAC-II) is 
ongoing in four Adriatic countries (Italy, Slovenia, Croa-
tia, and Greece) to investigate the association between 

prenatal Hg exposure from maternal fish consumption and 
childhood neuro-development (Valent et al. 2013b). In a 
single center study from the latter cohort focusing on 606 
children and mother dyads delivering at the Institute for 
Maternal & Child Health in Trieste from 2007 to 2009 and 
residing in the coastal area of the FVG region, children’s 
cognitive development at 18 months of age increased with 
fish intake and the intelligence quotient of the respective 
mothers (Valent et al. 2013a, b), but not with pre-natal 
Hg exposure, regardless the specimen analyzed (hair, 
blood, or umbilical cord). A subsequent pooled analy-
sis from the above multi-center NAC-II cohort, examin-
ing 1308 mother–child pairs, reported weak yet partially 
inconsistent evidence of an inverse relationship between 
Hg maternal concentrations (0.70  mg/kg in maternal 
hair; 2.4 ng/g in maternal blood; 3.6 ng/g in cord blood; 
0.6 ng/g in breast milk) and the motor score of their chil-
dren at 18 months, with cognitive and language functions 
not being affected (Barbone et al. 2019). An update follow-
up study at 7 years of age is ongoing in the Gulf of Trieste 

Fig. 3   a Distribution of Hg concentration in hair (mg/kg) by number 
of monthly fish servings; b distribution of Hg concentration in hair 
(mg/kg) by preferred consumption of large-sized fish (No vs. yes); 
c distribution of Hg concentration in hair (mg/kg) by preferred con-

sumption of small/medium sized fish (No vs. yes); d distribution of 
Hg concentration in hair (mg/kg) by preferred consumption of shell-
fish/cray fish/mollusks (Noyes vs. yesno)

Table 3   Multivariable linear regression (outcome measure log-trans-
formed). Regression coefficients (RC) with 95% confidence interval 
(95%CI). Model fitted on 296 complete (case analysis) observations

Factors Strata RC (95%CI)

Frozen fish preferred No Reference
Yes  − 0.23 (− 0.39; − 0.06)

Shell/crayfish/molluscs No Reference
Yes 0.35 (0.16; 0.55)

Residence Industrial  − 0.10 (− 0.52; 0.32)
Urban 0.07 (− 0.12; 0.26)
Rural Reference
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to clarify whether low levels of Hg exposure may still 
have a detrimental effect on children’s neurodevelopment 
(Brumatti et al. 2021).

Strengths and limitations

In line with most open literature on this topic, this study also 
relies on a convenience sampling strategy, which could be a 
potential source of selection bias influencing the generalis-
ability of the findings. Nonetheless, this study fills a gap in 
the literature by providing evidence of environmental expo-
sure to mercury among the general population of a coastal 
area that has been historically contaminated by this metal. 
Furthermore, the study population is relatively large as com-
pared to other published studies.

Conclusions

In the present study, higher mean concentrations of Hg in 
hair were found in subjects who reported a preference for 
consuming shellfish/crayfish/mollusks, largely fished in the 
Gulf of Trieste.

Whilst the mean levels of Hg in hair (1.63  mg/kg) 
detected in the present study sample are not alarming, a great 
proportion (56%) of participants showed concentrations of 
Hg higher than the threshold exposure recommended by the 
WHO for scalp hair in pregnant women and children (1 mg/
kg). The evidence on health effect of newborns in relation 
to low dose maternal exposure to Hg in coastal areas of the 
FVG Region is still inconclusive. Furthermore, a debate 
is ongoing as to whether the beneficial effects of selenium 
(Se) from fish could offset the detrimental effect of Hg in 
children’s neurodevelopment, also considering its antago-
nist effect against Hg. Moreover, the evaluation of the effect 
of fish consumption on human health should also take into 
account the different ratio of Se/Hg concentration by fish 
species.

In conclusion, although a risk alert for Hg exposure 
seems inappropriate for coastal residents of the FVG Region, 
it appears prudent for pregnant women and children to limit 
the ingestion of local fish to < 4 servings/month.

Further studies are recommended on larger samples, 
using a stronger study design, also collecting information 
Hg levels in blood and cross-checking Hg exposure with 
follow-up health data.
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