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ABSTRACT	 We propose a procedure for the polarity assessment in reflection seismic data based 
on a Neural Network approach. The algorithm is based on a fully 1D approach, which 
does not require any input besides the seismic data since the necessary parameters are 
all automatically estimated. An added benefit is that the prediction has an associated 
probability, which automatically quantifies the reliability of the results. We tested the 
proposed procedure on synthetic and real reflection seismic data sets. The algorithm is 
able to correctly extract the seismic horizons also in case of complex conditions, such as 
along the flanks of salt domes, and is able to track polarity inversions.
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1. Introduction

The time delay of a reflected event between adjacent traces is a crucial parameter in the 
interpretation of seismic reflection data. Several seismic attributes help to analyse the lateral 
continuity of the reflected events, for instance coherency and phase-based attributes. Polarity 
is a further crucial element in this analysis and attributes, such as apparent polarity, can help 
in tracking reflections and variations related to fluid substitutions. Polarity is related to the 
reflection coefficient values, which are in turn related to the contrasts of acoustic impedance and 
also to the petrophysical parameters of the subsurface materials. Therefore, polarity changes 
with depth and polarity reversals along a reflector are essential indicators in the quantitative 
analysis of seismic data.

Besides the well-known problems related to phase distortions due to both seismic data 
acquisition, analysis and processing (Brown, 2009), the polarity assessment (a.k.a. phase 
detection) is often far from a trivial step during reflection seismic data interpretation. In fact, 
phase assessment is a common problem affecting autopicking methods (Forte et al., 2016). In 
the ideal case, the final interpretation objective is to pick (and extract) the first phase of each 
reflection and the related peak amplitude. In this way, the subsurface geometries and the seismic 
impedance contrasts can be extracted and inversion procedures can be properly performed. 
Picking of reflected events can be somehow related to techniques applied in seismology, in 
particular first-break picking (Sabbione and Velis, 2010). The phase assessment is a generalisation 
of such an issue, with the main difference related to the extremely high number of reflections 
and records (i.e. traces) typical of reflection seismic data.

While in recent years several phase picking techniques have been developed and implemented 
that exploit machine learning techniques for both seismological (e.g. Cano et al., 2021) and 
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reflection seismic applications (e.g. Tschannen et al., 2020), less effort has been specifically 
addressed to the polarity assessment.

In this paper, we describe and test a procedure for the polarity assessment of reflection seismic 
data based on a fully 1D Neural Network (NN) approach, requiring in input only the seismic data, 
thus minimising the subjectivity level and the intervention of the interpreter. The procedure is 
at first tested on 1D and 2D synthetic data, with various noise levels. We successively apply it on 
real cases previously used for testing other published methods, for an objective assessment of 
the effectiveness of the proposed procedure. In particular, we thoroughly analyse the benefits 
of using a 1D strategy, which can be applied to any type of seismic data set, including large 3D 
volumes thanks to its moderate computational load.

2. Methods

The algorithm is based on a Long Short-Term Memory (LSTM) architecture because 
we wish to ensure the causality of the data and the long-term memory fits the physics 
better behind the wave propagation (Hughes et al., 2019). In fact, the bi-directional LSTM 
is a strategy able to improve the accuracy of NN classification (Guo et al., 2019) and in the 
present case it can help the NN to find the correct shape of the wavelet by working on both 
sides of it (Fig. 1).

Fig. 1 - Example of NN architecture of the proposed algorithm. From left to right: input, hidden layers, and output with 
three possible categories: no reflection, positive reflection, negative reflection.

The output is driven by a dense layer with 3 neurons and a SoftMax activation function that 
outputs a probability value equal to 1 on the maximum phase of a reflection in time: the three 
classes represent negative polarity, no reflection, and positive polarity.

We use the CuDNNLSTM, a fast approximation of LSTM (Hochreiter and Schmidhuber, 1997) 
that works on Nvidia CUDA (Chetlur et al., 2014) and AdaMax as optimiser (Kingma and Ba, 
2014), a modified version of Adam with infinity norm and categorical cross-entropy as loss 
function (Mannor et al., 2005).
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We adopt a double input, namely synthetic data and its cosine of the instantaneous phase, 
which should give more information to the algorithm and exploits the possibility given by the 
NNs to deal with layered information.

The training is fully performed on synthetic data obtained from a convolutional model-based 
scheme, while the subsequent horizon extraction step can be applied to any type of field seismic 
data set.

The training data set is often a crucial issue for the performances of the algorithm on field 
data sets: we train the NN on synthetic data to avoid any link to a specific field data set and to 
have a complete control over the NN performance through the knowledge of the subsurface 
model that generates the training data. 

After tests, we found that the best way to simulate field data for NN is to add pure random 
noise to the convolved trace and also to the reflection coefficient series before the convolution:

(1)

where r(t) is a randomly uniform distributed coefficient series with random values, while n1(t) 
and n2(t) are noise series randomly generated for each data. n1(t) has been added to simulate 
realistic cases. While n2(t) could represent an instrumental or environmental noise, n1(t) is a 
noise linked to the nature of the material and can be seen in the seismic trace as random noise 
convoluted to the seismic wavelet. The other term is the wavelet: we use different frequency 
ranges to generate the wavelet in order to simulate the stretching, spectral variations, and 
variability that occur under natural conditions.

We do not need to train on a previously defined wavelet since by feeding a NN with a recorded 
signal, the link between its temporal discretisation and the actual recording time is unknown for 
the NN, unless specified, as the NN takes as input only amplitude information. This allows us 
to define the temporal discretisation of the desired wavelet and just resample our data to the 
desired discretisation value, equal to 36 in this training.

In order to reduce the prediction uncertainty, we use the ensemble learning technique 
that exploits multiple learning algorithms to obtain better predictive inferences. In particular, 
we tested two solutions, namely: prediction with different NNs trained on a data set with the 
same characteristics, and prediction with the same NN on a single trace and on its time-inverted 
version. The two approaches produced similar results; we thus decided to use a single NN to 
reduce the required training effort.

With the application of ensemble learning, we obtain two different predictions: one on the 
single trace and the other on its inverted version in time. We successively combine them with 
the geometric mean, as it gives better results than, for instance, the arithmetic mean.

The prediction is given as a probability set that associates a probability value to each point: 
the value indicates the probability of the point to be a reflector, i.e. to belong to a reflecting 
surface. A minimum threshold above which a point is labelled as a reflector can be set.

The optimum threshold is estimated by evaluating the number of points classified as 
reflectors vs. the threshold. We perform this task by using the algorithm described in Satopaa et 
al. (2011). The threshold is set at the sharp inflection point clearly visible in the resulting curve, 
thus limiting the subjectivity of the choice. We apply this methodology both for positive and 
negative values (Fig. 2).
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3. Results and discussion

In this section, we present the application of the method to both synthetic and real 
data.

In Fig. 3 we can see a synthetic 1D test. It shows the performances of the NN on a data set, 
which is similar to training data. As we can see, the NN performs very well and the output, 
expressed as a probability in range [0, 1] for positive and negative classes, shows very high values 

Fig. 2 - Example of the proposed workflow: 1) input data; 2) normal and reversed-in-time version of the input, reshaped 
as trace-by-trace matrix; 3) NN prediction; 4) ensemble learning, i.e. a geometrical mean of the input; 5) final results.
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in almost all cases. At time step 590, the approach is able to predict a very close overlapping 
between positive and negative reflections and it correctly predicts a very low probability value 
for a wrong negative polarity signal at 596 time step.

In order to test the 2D potentiality of our trace-by-trace approach we generated some random 
2D models. Fig. 4 shows the target data (left) and the NN prediction (right). As can be seen, here 
we applied a threshold to the data to decide if one point should be considered a reflection or 
not: in this case the minimum threshold was set to 0.9 probability.

The algorithm performances are quite good since it is able to spot reflection events with the 
right polarity and it just misses some points on low amplitude horizons, in which continuity is not 
complete, e.g. along the event marked with A in Fig. 4. In the prediction we can also spot some 
erroneous randomly distributed predictions, which could easily be deleted in a post processing 
step, since they do not show any lateral coherency.

In order to test the proposed methodology, we use a 2D marine seismic profile of the WS10 
exploration project, acquired in autumn 2010 in the west Mediterranean Sea by the Istituto 
Nazionale di Oceanografia e Geofisica Sperimentale (OGS), which also performed the data 
processing (Geletti et al., 2014). The selected portion of the seismic profile crosses a rifted margin 

Fig. 3 - Synthetic example of prediction: from left to right we have the input trace, the real output and the NN prediction.
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of the eastern Sardo-Provençal Basin characterised by a faulted salt dome and by a portion of an 
almost undisturbed sedimentary sequence (Fig. 5). For this reason, the analysed data represent an 

Fig. 4 - Prediction on a 2D synthetic 
seismic profile generated with a 
convolutive approach. Real polarity, 
on the left, and related prediction, on 
the right. With A we marked horizon 
with a low amplitude that was not 
continuously reconstructed by the 
methodology.

Fig. 5 - Prediction on a 2D 
marine seismic profile of the 
WS10 exploration project in 
the west Mediterranean Sea 
acquired by OGS, a salt dome 
with top at time step 300 is 
located between positions 
450 and 650. P and L mark the 
positive and negative polarity, 
respectively, at the top and at 
the bottom of the salt body.
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Fig. 6 - Example of prediction 
performed by the proposed 
NN on marine seismic data 
from the Ionian continental 
platform.

interesting and complex test for the proposed procedure. We focused on this portion also because 
it is exactly the same used in Forte et al. (2016) (Fig. 5a) to test an automated picking and phase 
assessment approach based on phase seismic attributes. The NN is able to properly extract all the 
main horizons, both where they are sub-horizontal (i.e. in the shallow part) and where they exhibit 
a significant dip (i.e. along the flanks of the salt dome), and is able to keep track of the inversion 
from positive to negative polarity under the salt dome (marked with P and L in Fig. 5, respectively).

The second test considers marine seismic data acquired on the Ionian continental platform 
(seismic source boomer). Over a total length of 25 km, the profile samples an extremely irregular 
sea bottom topography along with complex sub-bottom structures that include steep and 
conflicting dips, faulted horizons, thin layers, and sedimentary wedges. The algorithm correctly 
follows horizons and polarity reversals even in the steeply sloping parts (see A and B in Fig. 6).

4. Conclusions

Bi-directional LSTM architecture shows good prediction performance and is an effective 
solution for polarity assessment as demonstrated by synthetic and field data set testing. The double 
input strategy (amplitude data and cosine of instantaneous phase) apparently provides a further 
improvement in performance, probably related to the NN characteristic of exploiting the layering 
of information and benefitting from the relative insensitivity to variations in the amplitude of the 
instantaneous attribute. Training on synthetic data allows great flexibility as well as to prepare NNs 
for real data applications of any complexity. The training phase for the NN presented in this work 
required a total time of 6 hours on a machine with GPUs1 , which can be considered an acceptable 
computational cost when compared with the subsequent performance of the NN in the analysis of 
the field data. The training effort is further reduced by the solution of a single NN working on direct 
and reverse time data. The threshold for labelling the reflectors is set through a user-independent 
procedure, which greatly reduces the subjectivity of the whole process. The application of the 
algorithm to the seismic data of the eastern margin of the Sardinian-Provençal Basin and of 

1 On Cineca Marconi 100: 2×16 cores IBM POWER9 AC922 at 3.1 GHz, 4 x NVIDIA Volta V100 GPUs, 256 GB RAM.
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the Ionian continental platform shows that the performance of the NN is not influenced by the 
complexity of the structural conditions or by the topography of the seabed.

Further analysis is needed to test the proposed strategy on different types of data (land 
seismic, GPR), but the tests performed to date show that the 1D approach and the complete 
adaptability to different wavelets and time scales make the algorithm robust and able to cope 
with a virtually unlimited range of applications.

Acknowledgments. This This research was partially supported by PNRA projects IPECA (PNRA18_00186) 
and CRIOVEG (PNRA18_00288) and by the project “Dipartimento di Eccellenza” of the Department of 
Mathematics and Geosciences of the University of Trieste. We gratefully acknowledge the support of 
Shearwater and Halliburton Landmark through their academic grants. We further thank the anonymous 
reviewers for their fruitful comments and suggestions.

REFERENCES
Brown A.; 2009: Phase and polarity issues in modern seismic interpretation. Search and Discovery, #40397, 22 pp.
Cano E.V., Akram J. and Peter D.B.; 2021: Automatic seismic phase picking based on unsupervised machine-

learning classification and content information analysis. Geophys., 86, V299-V315, doi: 10.1190/geo2020-
0308.1.

Chetlur S., Woolley C., Vandermersch P., Cohen J., Tran J., Catanzaro B. and Shelhamer E.; 2014: cuDNN: efficient 
primitives for deep learning. Arxiv, 9 pp., doi: 10.48550/arXiv.1410.0759, < arxiv.org/abs/1410.0759 >.

Forte E., Dossi M., Pipan M. and Del Ben A.; 2016: Automated phase attribute-based picking applied to reflection 
seismics. Geophys., 81, V141-V150, doi: 10.1190/geo2015-0333.1.

Geletti R., Zgur F., Del Ben A., Buriola F., Fais S., Fedi M., Forte E., Mocnik A., Paoletti V., Pipan M., Ramella 
R., Romeo R. and Romi A.; 2014: The Messinian salinity crisis: new seismic evidence in the west-Sardinian 
Margin and eastern Sardo-Provençal Basin (west Mediterranean Sea). Mar. Geol., 351, 76-90, doi: 10.1016/j.
margeo.2014.03.019.

Guo Z., Tian Y., Zhang D., Wang T. and Wu M.; 2019: A novel stick-slip based linear actuator using bi-directional 
motion. Mech. Syst. Sig. Process., 128, 37-49, doi: 10.1016/j.ymssp.2019.03.025.

Hochreiter S. and Schmidhuber J.; 1997: Long short-term memory. Neural Comput., 9, 1735-1780, doi: 10.1162/
neco.1997.9.8.1735.

Hughes T.W., Williamson I.A.D., Minkov M. and Fan S.; 2019: Wave physics as an analog recurrent neural 
network. Sci. Adv., 5, eaay6946, doi: 10.1126/sciadv.aay6946.

Kingma D.P. and Ba J.; 2015: Adam: a method for stochastic optimization. In: Proc. 3rd International Conference 
for Learning Representations, San Diego, CA, USA, 15 pp., doi: 10.48550/arXiv.1412.6980, < arxiv.org/
abs/1412.6980 >.

Mannor S., Peleg D. and Rubinstein R.; 2005: The cross entropy method for classification. In: Proc. 22nd International 
Conference on Machine Learning - ICML ’05, Bonn, Germany, pp. 561-568, doi: 10.1145/1102351.1102422.

Sabbione J.I. and Velis D.; 2010: Automatic first-breaks picking: new strategies and algorithms. Geophys., 75, 
V67-V76, doi: 10.1190/1.3463703.

Satopaa V., Albrecht J., Irwin D. and Raghavan B.; 2011: Finding a “Kneedle” in a haystack: detecting knee points 
in system behavior. In: Proc. 31st International Conference on Distributed Computing Systems Workshops, 
Minneapolis, MN, USA, pp. 166-171, doi: 10.1109/ICDCSW.2011.20.

Tschannen V., Delescluse M., Ettrich N. and Keuper J.; 2020: Extracting horizon surfaces from 3D seismic data 
using deep learning. Geophysics, 85 (3), N17-N26, doi: 10.1190/geo2019-0569.1.

Corresponding author:	 Giacomo Roncoroni
	 University of Trieste, Department of Mathematics and Geosciences
	 Via Weiss 1, Trieste, Italy
	 Phone: +39 040 5582287; e-mail: groncoroni@units.it


