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Abstract—Several multi-target regression methods were devel-
oped in the last years aiming at improving predictive performance
by exploring inter-target correlation within the problem. How-
ever, none of these methods outperforms the others for all prob-
lems. This motivates the development of automatic approaches
to recommend the most suitable multi-target regression method.
In this paper, we propose a meta-learning system to recommend
the best predictive method for a given multi-target regression
problem. We performed experiments with a meta-dataset gen-
erated by a total of 648 synthetic datasets. These datasets were
created to explore distinct inter-targets characteristics toward
recommending the most promising method. In experiments, we
evaluated four different algorithms with different biases as meta-
learners. Our meta-dataset is composed of 58 meta-features,
based on: statistical information, correlation characteristics, lin-
ear landmarking, from the distribution and smoothness of the
data, and has four different meta-labels. Results showed that
induced meta-models were able to recommend the best method
for different base level datasets with a balanced accuracy superior
to 70% using a Random Forest meta-model, which statistically
outperformed the meta-learning baselines.

Index Terms—Multi-target, Regression, Meta-learning

I. INTRODUCTION

Machine Learning (ML) approaches have been providing

significant advances in understanding and modeling problems

from the broadest knowledge fields. A considerable part of

the ML solutions takes advantage of supervised learning algo-

rithms which explore the information, i.e., input and prediction

target, from the problem data to learn a pattern. However, data

from several real problems present more than one target. In

this case, when a dataset presents multiple continuous targets,

we call it a multi-target regression problem.

Currently, there are several methods in the literature ad-

dressing this type of problem. The most straightforward ap-

proach, referred to as Single-target (ST) regression, is to create

a single model for each target disregarding the possible inter-

target correlation. Multi-target Regression (MTR) is an alter-

native approach that, besides using the original input features,

exploits the statistical correlation among the outputs. The MTR

methods have been applied to solve many problems [1]–[5],

leading to improvement in the predictive performance over ST

methods. However, each method has specific characteristics

and has been effective for different problems.

Selecting the most suitable algorithm for a given problem

requires extensive experimental evaluation, which demands

massive computational resources (particularly processing time)

and specialists [6], [7]. On the other hand, a MTR method

could be automatically selected when addressed as an output

in an algorithm selection (or recommendation) problem by

Meta-learning (MtL) [8].

The MtL core concept is to use the knowledge acquired

from previous similar problems to recommend the most suit-

able algorithm, for a new unseen dataset. In the last years,

MtL has been employed in different contexts, such as tasks to

select [9], rank [10] and predict [11] the performance of ML

algorithms and employing them on a new dataset.

Our hypothesis holds that MtL can be applied to MTR prob-

lems and recommend the most suitable method for new unseen

problems. Thus, in this study, we propose a recommendation

system able to predict the best MTR method for a new dataset.

For such, experiments were carried out with meta-datasets gen-

erated with a total of 648 synthetic regression problems, also

generated to explore the different inter-targets characteristics.

In the experiments, the ST approach and three MTR methods

were evaluated: Stacking Single Target (SST) [12], Multi-

output Tree Chaining (MOTC) [4] and Ensemble of Regressor

Chains (ERC) [12]. Thus, the meta-knowledge was gener-

ated with different datasets, with different biases, often used

for multi-target benchmarking [13]. In the experiments, we

compared Naive Bayes (NB), Random Forest (RF), Extreme

Gradient Boosting (XGBoost) and Support Vector Machine

(SVM) as meta-learners using their default hyperparameter

values.

This paper is structured as follows. Section II presents the

background on using MtL for MTR; section III describes the

experimental methodology; the results are discussed in sec-

tion IV; finally, the conclusions and future work are presented.

II. BACKGROUND

Many ML algorithms have been proposed for different

prediction tasks. However, the ’No free lunch’ theorem [14]

states there is no one algorithm suitable for every dataset. A

possible solution is to recommend the best algorithm for each

problem.

The notion of algorithm recommendation problems was

introduced in [15], grounded on selecting one algorithm from

a portfolio of options. Given a set of datasets P composed

of instances from a distribution Q; a set of algorithms A;
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and a performance measure M : P ×A → R; the algorithm

recommendation problem is to find a mapping m : P → A that

optimizes the expected performance measure for the instance

problems described in Q.

In practice, there are some alternatives to induce this map-

ping between algorithms and datasets/problems: one of them

is through the Meta-learning (MtL) [8]. The core concept of

MtL is to exploit past learning experiences in a particular type

of task and solutions by adapting learning algorithms and data

mining processes. This is done by extracting features from a

dataset, named as meta-features, to represent a dataset and

the performance of the ML algorithms when applied on it.

The relation between meta-features and the ML performance

provides information to select the most suitable algorithm for

new datasets. Thus, ML algorithms are applied to a meta-

dataset, whose examples are described in terms of meta-

features, to induce a meta-model.

In the last years, MtL has been used for: algorithm selec-

tion [16], segmentation algorithm recommendation [17], and

hyperparameter tuning [18].

A. Multi-target regression

Multi-target Regression (MTR) is related to the problems

with multiple continuous outputs. In this way, to solve these

problems a function or a collection of functions H that models

the relationship from input (X ) to output (Y) is created. If X
is composed of m input variables and Y has d targets, the

prediction problem can be stated as:

H : X1...m −→ Y1...d (1)

Then, for each vector that belongs to X , H is capable of

predicting an output vector that is the best approximation of

the true output vector [12].

MTR methods might use one of two main procedures: Al-

gorithm Adaptation or Problem Transformation [19]. The first

one adapts well-known algorithms, such as: Artificial Neural

Networks (ANNs); Random Forest (RF) and Support Vector

Machines (SVMs), to deal with multiple outputs, modeling the

problem at once. On the other hand, problem transformation

methods modify the original input task aiming at exploring the

correlation among the targets. Spyromitros-Xioufis et al. [12]

proposed two problem transformation methods that contributed

notably to the area: Stacking Single Target (SST) and Ensem-

ble of Regressor Chains (ERC). The SST method builds one

model for each target d, which are iteratively stacked to the

input, and induced new d models over the augmented input.

The prediction of these last models are the final predictions.

Differently, the ERC method creates regressors based on

a different order of the targets. For each order, models are

trained sequentially: the model that is trained for the second

response considers the model trained for the first one. Both

models are used in the induction of the third regressor, and so

forth. In the end, for each target, the prediction is the average

of the predictions of the trained regressors.

These both methods inspired the development of new MTR

methods [20]–[22]. One of them, the Multi-output Tree Chain-

ing (MOTC) [4], is a method that requires less memory and

training time than ERC, besides generating an interpretation of

the targets’ dependencies. It creates regressors from a tree built

based on correlation assessment of the targets. The training of

the models is performed from the leaves to the root, stacking

the models’ predictions as new inputs.

B. Meta-learning for Multi-target regression

During the literature research, we did not find any papers

employing MtL for MTR. However, in some studies, the

authors investigated similar problems, such as Multi-label

Classification (MLC) problems.

Considering L the set of labels, differently from Single-

label classification task, which there is just one label Li ∈ L to

predict for each dataset’s example, in MLC tasks the examples

are associated with more than one label, i.e., it is necessary

to learn how to associate the example with a subset of L.

Similarly to the problem investigated in this paper, many

MLC methods [23] were proposed, but there is few research

concerning when each method is more efficient.

To select a MLC method and configure their hyperparame-

ters for a given dataset, de Sá et al. [24] applied Evolutionary

Algorithms (EA). This study was carried using 31 MLC meth-

ods, in 3 different datasets. The EA selection outperformed or

at least draw the baselines in most of the cases. Also in this

direction, the pioneering research based on MtL was done by

Chekina et al. [25]. They evaluated 11 different multi-label

methods, grouping them into: Single-Classifier Algorithms and

Ensemble-Classifier Algorithms. They performed experiments

in 12 datasets of MLC from the literature. The results showed

that employing MtL to select one method in MLC tasks is

promising, since in most of the experimented cases, to apply

the recommendation through MtL was better than selecting

one method for all tasks or selecting it randomly.

MLC tasks are similar to MTR tasks, since both deal with

the prediction of multiple targets using a common set of

features. The main difference is the type of the predicted

variable: while in MLC the targets are binary, in MTR the

outputs are continuous. Indeed, both tasks can be seen as

a more general learning task of multi-target prediction with

different types of variables to predict [12]. Therefore, given

that MtL was successfully applied to select MLC methods, it

is significant to experiment MtL to select MTR methods.

III. MATERIAL AND METHODS

Fig 1 provides an overview of the adopted experimental

methodology. First, we performed exhaustive experiments

evaluating all the MTR methods in all available datasets. We

also identified the best method for each dataset, selecting the

one with the smallest Average Relative Root Mean Square

Error (aRRMSE). This information is used to define the meta-

label. At the same time, a set of measures, named meta-

features, are also extracted to describe each dataset. We then

unify the meta-feature values with the meta-labels to compose
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our meta-dataset. Then, we can employ ML algorithms to

predict the best MTR method for a new unseen dataset. The

next subsections describe each one of these processes with

details.

Meta-model

New
Dataset

Predicted
MTR methodm1 m2 m3 m4 ... mn

...

Prediction

MTR 1
MTR 2

MTR 3

MTR n

Performance Evaluation

aRRMSE

Meta-dataset

Meta-label

Meta-learner

Meta-feature Extraction

m1 m2 m3 m4 ... mn

...

Fig. 1. Overview of the procedure to select a Multi-target Regression method
through Meta-learning.

A. Datasets

In the experiments, the meta-dataset was composed of 648
benchmarking synthetic datasets1, generated by following

the procedure described in [13]. We used synthetic datasets

to overcome the lack of real datasets that meet specifics

scenarios of inter-targets dependencies, complexity levels

from the input to output relations, and cover a different

number of input features and targets. To create a wide

possibility of datasets, the parameters of the dataset generator

assumed the values presented in Table I. The numeric targets

were built upon math expressions of identity, quadratic, and

cubic functions, or their combination.

TABLE I
PARAMETERS USED TO GENERATE SYNTHETIC BASE LEVEL DATASETS.

Symbol Hyperparameter Values

N Number of instances {500, 1000}
m Number of features {15, 30, 45, 60, 75, 90}
d Number of targets {3, 6}
g Generating groups {1, 2}
η % Instances affected by noise {1, 5, 10}

B. Meta-features

Each base-level dataset is represented by a vector of char-

acteristics, the meta-features. In [8] the authors list some

requirements that a meta-features must follow: they need to

have good discriminative power, their extraction should not

be computational complex and the number of meta-features

should not be large to avoid overfitting.

1The generated datasets are available for download in:
http://www.uel.br/grupo-pesquisa/remid/?page id=145

In our meta-level experiments, a set of 58 meta-features

were explored. They included measures from different cate-

gories: statistical information about the dataset (STAT), cor-

relation between attributes and targets (COR), performance

metrics related to a linear regression (LIN), distribution of the

dataset (DIM) and smoothness of the data (SMO) [18], [26].
It is important to mention that some of these meta-features

were designed for problems with one single output. Since

we are dealing with multi-target problems, the real value of

the meta-features were aggregated, given that a meta-feature

is extracted for each target. To overcome this problem, the

meta-feature was extracted for each target, then the average,

standard deviation, maximum and minimum was added to the

set of meta-features [27]. Most of the meta-features values

were extracted using the R package ECoL [26]. A complete

list of the meta-features used in the experiments is presented

in Table II.

TABLE II
TYPE, ACRONYM, AGGREGATION FUNCTION (WHEN APPLIED) AND

DESCRIPTION OF META-FEATURES USED IN THE EXPERIMENTS.

Type Acronym Aggregation DescriptionFunctions

STAT

n.samples - Number of samples
n.attributes - Number of attributes

n.targets - Number of targets
target.ratio - Ratio between targets and attributes

pc[1-3] -
First three components of
the Principal Components Analysis

DIM

T2 - Average number of samples per dimension

T3 -
Average intrinsic dimensionality
per number of examples

T4 - Intrinsic dimensionality proportion

COR

cor.targets {avg,max,min,sd} Correlation between targets
C1 {avg,max,min,sd} Maximum feature correlation to the output
C2 {avg,max,min,sd} Average feature correlation to the output
C3 {avg,max,min,sd} Individual feature efficiency
C4 {avg,max,min,sd} Collective feature efficiency

LIN

regr.L1 {avg,max,min,sd} Distance of erroneous instances
to a linear classifier

regr.L2 {avg,max,min,sd} Training error of a linear classifier
regr.L3 {avg,max,min,sd} Nonlinearity of a linear classifier

SMO

S1 {avg,max,min,sd} Smoothness of the output distribution
S2 {avg,max,min,sd} Smoothness of the input distribution
S3 {avg,max,min,sd} Error of a k-nearest neighbor regressor
S4 {avg,max,min,sd} Non-linearity of nearest neighbor regressor

C. Meta-labels
ST approach and three MTR methods were explored in

experiment: SST, ERC [12] and MOTC [4]. Even being the

most simple, the ST approach was included in the experimental

setup because it can perform better than MTR methods in

problems with limited inter-target dependency. On the other

hand, the other three MTR methods were selected because

they offer a proper trade-off between performance and time

complexity, as concluded from [13].
These four different methods mentioned above were exe-

cuted for every single base-level dataset. Their induced models

were assessed in terms of Average Relative Root Mean Square

Error (aRRMSE) evaluation measure defined in Equation 2,

where N represents the number of instances, and y, ŷ and y
represent, respectively, the true, predicted and mean values of

the target.
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Support Vector Machine was used as base regressor, per-

forming a k-Fold Cross-Validation (CV) resampling strategy,

with k = 10. SVM was chosen as base regressor due

to its usage in the most of MTR Problem transformation

literature [1], [3], [4], [21], [28]. The method with the smallest

aRRMSE [19] was chosen as the best multi-target method

for every dataset. The experiments were performed using

the mtr-toolkit2, implemented in R. Thus, our meta-

dataset was a multi-class meta-label with four different levels

indicating the best MTR method or ST regression. The class

distribution (%) in the meta-dataset is also presented in Table

III.

aRRMSE =
1

d

d∑
t=1

√√√√
∑N

i=1(y
i
t − ŷit)

2

∑N
i=1(y

i
t − y)2

(2)

TABLE III
SPECIFICATION OF THE META-DATASET USED IN EXPERIMENTS

ERC MOTC SST ST Total

examples 166 89 362 31 648
% 25.6 13.7 55.8 4.9 100

D. Meta-learners

Four ML algorithms, with different learning biases, were

used as meta-learners: Naive Bayes (NB) [29], Random Forest

(RF) [30], Support Vector Machine (SVM) [31] and Extreme

Gradient Boosting (XGBoost) [32]. These algorithms were

selected due to their widespread use and capacity of high-

performance models induction. The k-Fold CV resampling

methodology was also adopted in the meta-level of the ex-

periments to assess the predictive performance of the meta-

learners, with k = 10 folds. All the ML algorithms were

implemented in R, using the mlr package and their corre-

spondent default hyperparameters.

E. Evaluation measures and baselines

Seven evaluation metrics were used to assess the predictive

performance of the induced models: Accuracy, Balanced per

class accuracy, Precision, Recall, F-score (f1), Sensitivity and

Specificity.

Besides, we used two different baselines from the MtL

literature for comparisons: a model that always recommends

the majority class for the whole dataset (Majority) and

a model that provides random recommendations (Random).

These baselines are widely used to endorse the need for a

recommendation system [8]. Also, we used an upper-bound

as the ground-truth (Truth).

IV. RESULTS AND DISCUSSION

The results were organized starting by exposing the results

regarding the predictive performance of meta-models from

2https://github.com/smastelini/mtr-toolkit

different ML algorithms. Afterward, based on the RF meta-

model performance, the meta-features were compared and

discussed. Finally, some contributions and open issues related

to MtL and MTR were presented.

A. Predictive Performance

The predictive performance obtained by the four meta-

learners and the baselines are presented as a radar chart in

Fig. 2. In this figure, each line represents a meta-model and

each vertex its related to a different performance measure. The

larger the area in the radar chart, the better the meta-model.
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f1

balancedAcc
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Fig. 2. Performance of the meta-models

Looking at the radar chart, it is possible to observe that

all meta-models had a superior performance than Random
baseline for all metrics. The same occurs for Majority,

except for accuracy with NB, since Majority has 55.8%

of accuracy, whereas the NB meta-model achieved 51.08%.

Still for this metric, RF obtained the best results with 70.83%

of accuracy. Following the RF, the SVM achieved 68.9% and

XGBoost was the third, with 66.51% of accuracy. The only

metric that RF meta-model did not obtain the higher value was

Sensitivity, when NB was the best with 0.49. Regarding the

other evaluation metrics, RF achieved the best results, with

0.86 of Specificity, 0.55 of Precision, 0.46 of Recall, 0.47 of

F1 and 66.59% of Balanced per class accuracy.

Although three of four meta-models overcame the baselines

for all metrics, the predictive performance did not achieve high

values, which might be related to the meta-dataset imbalance

problem. However, the superiority of the MtL recommending

system regarding the baselines was confirmed by statistical

tests. We used the Friedman test, with a significance level of

α = 0.05. The null hypothesis is that the recommendation by

the meta-models and by the baselines are similar. Anytime the

null hypothesis is rejected, the Nemenyi post hoc test can be

applied, stating that the performance of the two approaches

are significantly different if their corresponding average ranks

differ by at least a Critical Difference (CD) value. When

multiple algorithms are compared in this way, a graphic

representation can be used to represent the results with the

CD diagram, as proposed by Demšar [33].

4



The meta-models (RF, SVM, XGBoost, NB) were compared

with Truth (expected method), the Majority (which al-

ways predicts the SST) and Random (the random selection

of a method for each dataset), using the aRRMSE of the

prediction as performance metric. This analysis is shown in

Fig. 3, using the results from the Nemenyi test.

CD=0.35

0 1 2 3 4 5 6

Truth
RF

SVM

Random
Majority

NB

XGBoost

Fig. 3. Comparison of the aRRMSE values obtained by meta-models when
recommending MTR methods according to the Nemenyi test. Groups that are
not significantly different (α= 0.05 and CD = 0.35) are connected.

As exposed in Fig. 3, no solution was similar to the

Truth, which was expected due to the predictive perfor-

mance. However, the RF, SVM, XGBoost are connected,

which means they were similar and superior the baselines

Majority and Random. This fact supports the benefit of

using MtL recommending system in comparison to select a

specific algorithm for every dataset or select it randomly.

B. Relative importance of the meta-features

Random Forest meta-model was used to assess the impor-

tance of each meta-feature by using the RF Feature Importance

metric. This metric is calculated by permuting the values of

a feature in the Out-of-Bag (OOB) samples and recalculating

the OOB error in the whole ensemble. In other words, if sub-

stituting the values of a meta-feature by random values results

in error increase, this meta-feature is considered important.

Otherwise, if the error decreases, the resulting importance is

negative. Thus, the meta-feature is considered not important

and should be removed from modeling. This procedure could

be performed for each meta-feature toward explaining its

impact [30]. Fig. 4 shows the meta-feature importance for the

meta-dataset.

Correlation and Linearity meta-features achieved the higher

values of importance, especially the Minimum value of dis-

tance of erroneous instances to a linear classifier (12.54), Min-

imum value of non-linearity of a linear classifier (12.51) and

the Standard Deviation of the Maximum feature correlation to

the output (11.37). Once the MTR method tries to explore the

correlation between the features and the targets in different

ways, their selection makes sense. The number of targets,

attributes and samples had low importance. This might have

occurred because these meta-features did not influence in the

predictive performance, showing that the MTR methods used

in the experiments can deal with different numbers of targets,

attributes and samples in the same way.

C. Insights and open issues

It is important to highlight the meta-label attribution was

straightforward related to the highest predictive performance

(low aRRMSE) based on the ranking of methods. Differences

between the predictive performance of the MTR methods,

independent of their magnitude, were not considered while

building the meta-dataset.

Alternatively, the meta-label assessment could be performed

by indicating two or more methods suitable to solve a given

problem in the case of no statistical difference between their

performances. However, this scenario poses an additional

challenge to deal with a multi-label problem in the meta-level

of the recommending system.

Another important issue was the fact of meta-label assess-

ment was made regarding only low predictive error of MTR

methods. In some cases, e.g., Online Multi-target Regression

[34], the most proper method concerns to address a trade-

off among predictive performance, memory, and time cost

when predicting the output. This scenario demands additional

information, as well as complexity, toward identifying the best

MTR method to be learned by the recommending system.

V. CONCLUSIONS AND FUTURE WORK

In this study, a framework for recommending MTR methods

using meta-learning was presented. A meta-dataset, composed

with 648 datasets used for MTR methods benchmark, was

created for the induction of meta-models toward predicting the

best one for a given dataset. Experiments performed with the

meta-dataset and four meta-learners led to 70.83% of accuracy

with RF, the best recommender. Besides, it overcame the

baselines, and statistical tests showed that the recommendation

system was better than select one for every task or selecting

a method randomly. The analysis of meta-feature importance

revealed that correlation between targets and error of a linear

classifier were the most useful features to predict the perfor-

mance of a MTR method for a given unseen dataset.

As future work, besides implementing more meta-features,

we intend to use more MTR benchmarking datasets, in order

to improve the generalization capability of the meta-models.

Also, we expect to apply MLC to predict the MTR method and

its base regressor. Further information related to the memory

and time cost will be used to match the requirement of

different scenarios, e.g., Online MTR.
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