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9.1 Introduction

The world’s demand for electricity has been steadily growing due to several aspects
of modern life, causing a push in industrial production and giving rise to new
electricity-dependent technologies. At the same time, society has refused the idea of
increasing the use of fossil fuels as power sources, given that they are responsible
for several environmental problems we have faced. To cope with these challenges,
power grids have been reshaped to become more resilient, reliable, and efficient.
Renewable and alternative power sources have been increasingly adopted to reduce
greenhouse gas emissions. The new power grids emerging from this modernisation
process are named smart grids [1–3].

To reach their goals, smart grids rely on advanced control and communication
technologies. Although these technologies have been used to make power grids
more reliable, they are also responsible for introducing new vulnerabilities. Smart
grids are complex and large-scale systems, composed of multiple domains involving
customers, utilities, operators, and service providers. Attackers can target any part
of these systems, from smart meters at customer premises to core devices at
transmission networks or power plants. As smart grids are highly interconnected,
an attack on a particular point, which at first sight does not seem to be significant,
can escalate quickly to a massive disruption of the whole system [3–5].
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Cybersecurity measures must be set over the entire smart grid to ensure its
reliability. Among all the available security solutions, attack detection systems
are particularly important. As smart grids are complex and large, it is impossible
to make sure that there are no security breaches in any part of the system.
Researchers discover new vulnerabilities on a daily basis even in long-used devices,
and well-known vulnerabilities may remain unpatched due to the lack of sufficient
resources to cover such a huge attack surface. Therefore, attack detection systems
are necessary to monitor the whole system continuously and alert the administrators
when needed.

Attackers have evolved along with the defence tools. They are usually able
to bypass or evade existing attack detection systems, and capable of developing
smarter attacks that can adapt to new security measures. Machine learning is a
promising solution for creating attack detection systems capable of dealing with
these advanced adversaries in smart grids, having been successfully applied to detect
attacks in other domains.

In this chapter, we present a survey about the application of machine learning
for attack detection in smart grids. Our goal is to enable a better understanding
of the attack types that affect smart grids, the aspects that drive detection systems
development (detection methods, data collection, and system distribution), and how
machine learning algorithms are employed in this context. Finally, we discuss open
issues related to the current usage of machine learning-based detection in smart
grids and point out some paths to address them.

The rest of the chapter is organised as follows. Section 9.2 presents an overview
of smart grids to build a foundation for the rest of the study. Section 9.3 discusses
the types of attacks that affect smart grids, while Sect. 9.4 shows the main aspects
of detection systems. Section 9.5 details the foundations of the machine learning
algorithms used for attack detection in smart grids. Section 9.6 presents the surveyed
solutions, and Sect. 9.7 discusses their open issues and possible improvements.
Finally, Sect. 9.8 presents the concluding remarks.

9.2 Smart Grids Overview

Smart grids are the convergence of power grids and Information and Communica-
tion Technology (ICT). They have been developed as a response to the growing
demand for electrical power and the rise of renewable energy sources. In this
context, ICT tools are used to improve the management and control of the whole
cycle of power generation, transmission, and distribution, making sure that multiple
power sources are explored and faults and outages are significantly reduced even
with the system under constant pressure [1–3].

Power grid operation is divided into generation, transmission, and distribution.
Energy is generated in power plants of different kinds (e.g. nuclear, thermal, wind,
hydroelectric, or solar) and transmitted over long distances through high-voltage
transmission lines to electrical substations. From electrical substations, energy is
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distributed to end customers, according to their demand. As these systems spread
over wide geographical areas, they are structured in a hierarchical fashion. A control
centre monitors the power grid activity to ensure that multiple parameters like
voltage, frequency, and current are within the expected range. Situational awareness
is a key term to define the central control mission. Additionally, the power grid
has some protection mechanisms, like breakers and relays, that take action when
a fault occurs to keep the system up and avoid significant damage. Protection
mechanisms can operate automatically or under the central control command.
Summing up, power grids are huge and complex systems that operate under strict
requirements and are monitored continuously to prevent outages that might have
serious consequences [6–9].

In smart grids, ICT is used to enable two-way communication between the
control centre and different parts of the power grid. Data about the power grid
state are collected in real-time from all over the system, providing controllers with
updated information that can be used to respond to unexpected behaviour, make
demand predictions, and coordinate multiple power sources, among other tasks
related to management and control. Most of these needs always existed in power
grids. However, the reality has changed in recent years, making more sophisticated
ICT solutions necessary to cope with rising challenges. For instance, renewable
energy sources like wind power or solar power may generate energy intermittently,
as less wind, cloudy weather or some other natural and unavoidable condition may
affect their generation potential. In this sense, ICT solutions can help to forecast
these occurrences and coordinate the use of these sources accordingly [6–9].

According to a conceptual model proposed by NIST (National Institute of Stan-
dards and Technology) [1], smart grids are organised into seven domains: customer,
markets, service provider, operations, generation, transmission, and distribution.
The customer domain encompasses electricity end-users. Smart grids include some
differentials, such as dynamic pricing and generation of electricity by end-users,
which add more complexity to the customer’s role. For this reason, customers need
a two-way communication interface with the grid, named ESI (Energy Services
Interface). This interface sets the boundary between the customer and the utility
and is usually deployed at the meter or local management system. Customers can
have smart devices, which interact with the smart grid to provide details of their
consumption and other energy parameters, while receiving commands from service
providers that deliver management services.

The market domain consists of the operators responsible for commercialising
grid assets, from bulk electricity suppliers to retailers that supply electricity to end-
users. Organisations that deliver services such as billing, account management,
and maintenance and installation to customers and utilities make up the service
provider domain. The operations domain encompasses those who are responsible
for ensuring that the smart grid’s operations run smoothly. Their activities include
grid monitoring and control, fault management, grid estimates calculation, analytics,
planning, and maintenance. All of these tasks are performed from a control centre,
which hosts some management systems, such as the EMS (Energy Management
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System), dedicated to generation and transmission processes, and the DMS (Distri-
bution Management System), responsible for distribution processes.

Electricity generation is the key process of the generation domain. Several energy
sources such as nuclear fission, flowing water, wind, and solar radiation can be used
to create electricity. The generation domain has a plant control system, which is used
to monitor and control the power generation. It must report performance measures
continuously, so the operators can predict possible issues and mitigate their effects.
The transmission domain encompasses all the actors and functions needed to
transmit the electrical power produced in the generation domain to the distribution
domain. The transmission domain has the essential responsibility of balancing
electricity generation and load. Any disturbance in this delicate balance can affect
the grid frequency, leading to power outages or other kinds of damages to the
system. The distribution domain is responsible for interconnecting the transmission
domain and the customer domain. It also informs the operations domain about the
power flow situation.

All of these domains have to interact and cooperate to reach their goals, and
several technologies are available to support this need. Smart meters are deployed
at the customers’ side to measure their energy consumption and gather other
management information in real-time (typically every 30 min) to report to other
domains. These meters are part of a communication infrastructure referred to as
AMI (Advanced Metering Infrastructure). In addition to smart meters, an AMI
includes data concentrators for aggregating data collected from smart meters,
and head-end systems, which are responsible for connecting smart meters and
data concentrators to management information systems. Together, smart meters
and AMIs behave as typical IoT (Internet of Things) systems, adding the many
particularities of this paradigm [10].

SCADA (Supervisory Control and Data Acquisition) systems are also used
to support data exchange among these domains. These systems are made up of
three main components, RTUs (Remote Terminal Unit), MTUs (Master Terminal
Unit), and HMI (Human Machine Interface). RTUs are deployed close to or at
devices that are remotely controlled. MTUs (Master Terminal Units) are responsible
for sending requests periodically to RTUs, asking for data about the monitored
device, in a process referred to as polling. The polling frequency can range from
multiple requests per second to one request every few minutes, depending on the
importance of the monitored device. MTUs can also send commands to RTUs
asking them to act over the controlled system. Human operators interact with these
components through HMIs. In smart grids, RTUs can be deployed in the generation,
transmission, and distribution domains. The control centre’s management systems
provide human operators with HMIs to monitor and control these RTUs.

Another solution to collect measurements from the transmission domain is
the PMU (Phasor Measurement Unit). In a smart grid, PMUs are deployed at
transmission substations to collect current and voltage phasor information. They
operate at very high sampling rates, and are, therefore, able to collect many
more measurements per second than a common RTU. All PMU measurements
are timestamped, and GPS (Global Positioning System) devices are needed to
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synchronise measurements from PMUs at different locations. PDCs (Phasor Data
Concentrators) aggregate data from PMUs, perform quality checks, and then
forward these measurements to EMSs, where the collected data is analysed for state
estimation, monitoring, control, and protection.

Although smart meters, RTUs, and PMUs have some particularities that make
them unlike one another, all of these devices share at least a common characteristic:
they generate continuous data streams. Therefore, management and control systems
for smart grids, which consume these data, have to be designed to handle continuous
streams. This means they have to be able to learn incrementally, to manage the
constant inflow of huge amounts of data, and to cope with real-time changes in the
statistical distributions underlying the collected data.

Communication networks underpin all of these domains. As smart grid networks
have to connect a great number of endpoints over wide geographical areas, they
are organised hierarchically. At the customer end, there are HANs (Home Area
Network), which connect smart devices within the customer’s premises to the smart
grid structure, enabling the energy usage management at the customer level. HANs
are connected to the distribution system’s networks, referred to as FAN (Field Area
Network). These networks connect components such as RTUs in the distribution
domain and smart meters to control centres. Networks in the distribution domain are
also named NAN (Neighbour Area Network). Finally, WANs (Wide Area Network)
connect distant sites, making up a backbone for the integration of the networks
that compose smart grids. They are responsible for connecting the transmission
and generation domains to the control centre and for transmitting information like
PMU measurements and RTU readings. Also, they establish a communication path
between FANs and control centres, which are usually separated by long distances.

Figure 9.1 presents an overview of the seven domains along with devices and
communication networks that compose a smart grid.
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Fig. 9.1 Overview of main smart grid components and their relationships

5



9.3 Smart Grid Attacks

Smart grids are complex systems consisting of various specialised components
working collaboratively to exchange sensitive data, process inputs, and make
decisions, all in real-time. This combined complexity and sensitivity produces many
vulnerabilities that can be exploited by malicious individuals. Furthermore, the
accurate and sustained functionality of power infrastructures are non-negotiable;
power is in constant demand. These issues are further exasperated by the vulnera-
bilities of wireless network technologies, and the presence of many potential access
points (i.e. smart meters) [8]. All of this makes the smart grid a highly attractive
target for those looking to cause large-scale disruption. A successful attack on the
grid hinders everything in the affected region, as experienced in Ivano-Frankivsk
in Ukraine in 2016, where thousands of people were left without electricity [11].
Despite the level of disruption caused in that incident, attacks on smart grids
theoretically and feasibly have much a larger damage potential.

This section provides a taxonomy of smart grid attacks, along with detailed
explanations of each category. In keeping with the basic principles of cybersecurity,
the CIA triad is used to divide attacks into three main categories based on what
they threaten: confidentiality, integrity, and availability. Each one is then further
divided to distinguish between attack aims and methods. It should be noted that
some categories inevitably have overlaps as attacks often interleave in complex
campaigns. The outline given here aims to highlight individual malicious actions
taken against the smart grid. In comparison to the taxonomy presented in [8], we
consider “data attacks” and “device attacks” to fall under the integrity category, as
the aim of both is to compromise the integrity of the grid network. Meanwhile,
privacy attacks are directly analogous to attacks on confidentiality, and network
availability attacks are captured in the same way.

Another important consideration is that attacks on smart grids can be considered
over two planes: the cyber and the physical [8, 12–14]. This is because the grid
is a digitised system that regulates and manages a physical utility. Hence, Cyber-
Physical Threats (CPTs) are defined as attacks where a malicious action in the cyber
plane has repercussions in the physical (and vice versa) [12, 13]. Examples of this
include acts of remote sabotage (like the Stuxnet incident [13]), manipulation of the
grid topology, and damage to hardware [13]. In [12], this idea is combined with big
data concepts to categorise attacks by (a) data on the cyber plane, (b) data on the
physical plane, and (c) metadata combining the cyber and physical planes. While
Wu et al. [13] focus on manufacturing systems and Wang et al. [12] only consider
false data injections (discussed in detailed in Sect. 9.3.2), the principles of CPTs can
be applied across the attack spectrum. Therefore, the cross-plane nature of smart
grid threats should be noted for the rest of the attacks discussed in this section.

Figure 9.2 presents the categories and attacks that are discussed in the rest of this
section.

6



Smart grid 
attacks

Confidentiality Integrity Availability

Snooping
Identity

spoofing

FDI

Device hi-
jacking

Energy
theft (D)DoS

Authentication
request
flooding

SYN flooding
Selective

forwarding
Jamming

Command
spoofing

Measurement
tampering

Load
forecast
attack

Aurora
attack

Trip
command
injection

Playback
attack

Timing
attack

Pulse
attack

Scaling
attack

Random
attack

Ramping
attack

Smooth
curve
attack

Fig. 9.2 Overview of the discussed attacks

9.3.1 Attacks on Confidentiality

Confidentiality is the quality of maintaining the privacy of data. By their nature,
smart grids collect vast quantities of data that must be transmitted and processed
in a secure manner. Recent regulations such as GDPR (General Data Protection
Regulation) enshrine the privacy rights of users in law. Furthermore, grid devices
generate very rich data, including user profiles, energy measurements, service spec-
ifications, telemetry details, and hardware information. Hence, the threat surface
against confidentiality covers the whole of the smart grid infrastructure.

An example of a privacy-targeting attack is snooping. This is where malicious
individuals aim to gain access to or visibility of data belonging to others. In the smart
grid context, the communications between appliances, smart meters, and controllers
are vulnerable to this. The power usage profiles of appliances are captured in
readings and measurements made by smart meters; collectively these readings form
a usage profile for the customers themselves [8]. An adversary may wish to capture
this information to infer the activities and behaviours of users [8], which they may
then use to plan intrusions or physical attacks on households/premises that appear to
be unoccupied [8]. Similarly, such user profiling may form the basis of energy theft
attacks (discussed in Sect. 9.3.3) to determine which accounts to steal electricity
from with the least risk of detection [15].

Meanwhile, similar methods may also be used to infer the current topology of
the smart grid. In their study of false data injections, Huang et al. [16] found that
intelligence regarding the grid’s structure could be mined from measurement data.
To achieve this, the adversary requires some understanding of the grid’s stochastic
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behaviour [4], and a length of time over which to observe readings—a single set of
measurements taken at one point in time is not sufficiently revealing [16]. However,
using linear Independent Component Analysis (ICA) techniques, Huang et al. [16]
were able to demonstrate that measurements collected over time can be used to build
a model of the grid. Their approach was based on the principle that the physical
topology and the load change independently. In other words, the variation in load
(which changes more frequently) can be analysed given the relative stability of the
topology (which changes less frequently) [4].

9.3.2 Attacks on Integrity

Integrity is the quality of maintaining the intended states of systems (and/or the data
within them) so that those systems can continue to serve their intended purposes. In
smart grids, the preservation of integrity ensures the timely and accurate exchange
of the data signals used to make decisions about delivery and distribution. It also
ensures that all grid components are truthful about their identities. This is crucial to
the correctness of measurements, given that meters and sensors are numerous and
distributed widely over geographic regions.

One way to damage integrity is to spoof the identities of grid components.
This is where someone other than the legitimate device fraudulently claims to
be that component, thus allowing an adversary to interact with the system under
false pretences. For example, smart meters may be spoofed to send fake data to
controllers [12, 15]. Similarly, spoofed devices can send incorrect timestamps to
PMUs, disrupting grid synchronisation [17]. Another method is device hi-jacking.
This is slightly different to spoofing because while the compromised device can be
wielded by a potential attacker, its identity is still intact. The primary version of
this attack is the recruitment of grid devices into a botnet. A bot binary is injected
into devices via a virus or a worm [18]. This binary then automatically executes and
connects to a remote command and control (C&C) network from which it receives
attack instructions. Adversaries may also harvest data from devices via the same
C&C network. Botnets, which provide foundations for other types of attack, are
a known threat to WSNs (Wireless Sensor Network) and IoT networks [11]. A
prominent example is the Mirai botnet, which hijacked IoT routers and cameras
and was used to launch massive-scale DDoS attacks in multiple countries [11].

The biggest threat to smart grid integrity comes from False Data Injection
(FDI) attacks. As the name suggests, this involves the introduction of maliciously
crafted data into sensitive communication streams, with the aim of manipulating
system outputs. Hence, FDI attacks are mainly targeted at data-reliant management
processes [2, 4, 19, 20]. They may be considered analogous to man-in-the-middle
attacks. Some possible scenarios explored in literature include attacks on state
estimation systems [19], the EMS [4], AMIs [21], SCADA systems [22], local
systems with clustered measurement hierarchies [23], and in wind farms [2].
Generally, attackers engaging in FDI will compromise a subset of grid components
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but will not have visibility of the whole grid given its complexity and size [4].
However, due to the hierarchical structure, an FDI at one point in the network is still
capable to causing widespread repercussions. Additionally, Anwar et al. [21] found
that the impact of an FDI changes based on the characteristics of the targeted nodes,
while Chen et al. [4] suggested that sophisticated script-based FDIs can learn the
best injection approach through trial and error. This shows that even with incomplete
information, this type of attack has great potential for damage and disruption.

FDI attacks are typically modelled using the formulation z = Hx + a + n
[2, 22, 24], where z is a set of measurements, x is the state vector (or bus voltage
phase [24]), n is the measurement error or environmental noise [2, 24], and H
is a Jacobian matrix of measurements that describe the current grid topology
[2, 22]. Together these values determine the state of the grid. Then the attack
vector a (describing the fake data and variables targeted) is added [2, 22, 24].
Attacks can be classified as normal or stealthy. For the latter, it is assumed that
adversaries have some visibility of H, which allows them to set up their attacks
intelligently so as to avoid threshold-based detection (i.e. residual test) mechanisms
[2, 16, 19, 20, 22, 25]. Additionally, they may aim to manipulate the state variables
corresponding to the targeted measurement variables to avoid noticeable anomalies
[21]. An alternative approach is given by Chen et al. [4], who modelled FDIs as
partially-observed Markov decision processes (POMDP), where the focus is on
attackers (who have limited target visibility) aiming to learn the optimal setup [4].

The rest of the integrity-based attacks discussed in this section is specific sub-
categories of FDI as identified in the smart grid literature.

Command spoofing is the intersection of identity spoofing and FDI attacks;
fake data—styled as commands—is injected into the network, claiming to come
from legitimate sources. Aurora is a type of command spoofing attack that targets
the circuit breakers used to determine grid topology and the generators that they
serve [26]. Specifically, fake control signals are sent to the breakers, instructing
them constantly open and close at a high speed [5, 17]. Eventually, this causes
the associated generators to desynchronise from the rest of the grid [17]. If a
critical level is reached, this attack can cause physical damage to the generators
[17], knocking them offline. Depending on the degree of physical damage and the
positions of the affected breakers and generators, Aurora attacks can result in a
significant drop in a smart grid’s functional capacity and efficiency.

Another example of command spoofing is trip command injection attacks. These
target protection relays (devices designed to respond to faults in power transmission
lines) with fake relay trip commands, causing circuit breakers at the ends of
transmission lines to open [5]. When this happens, additional strain is placed upon
secondary transmission lines, as the system tries to meet demand [5]. Given the
hierarchical nature of smart grid infrastructure, this can then result in cascading
failures [5] and large-scale power outages. An alternative involves the disabling
of relays so that faults do not trigger trip commands at all [5]. Meanwhile, fault
replay attacks combine fake trip commands with fake transmission line faults [5].
To achieve this, measurements are altered to look like real-life faults either via
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some hijacked devices or through data injections [5]. These false readings cause
controllers to make incorrect management and distribution decisions.

Attacks on integrity may be directed at specific devices in the grid. An example is
against PMUs, as explained by Wang et al. [12]. These devices are used to measure
and synchronise phasor values collected from distributed sensors and meters; these
measurements are then used to perform state estimations. FDIs can be applied
directly to PMU data to manipulate the resulting state estimations [12]. Examples of
how this may be achieved include playback attacks (where captured data is played
in reverse order, giving incorrect readings) [12] and time attacks (where captured
data is sampled at varying rates, distorting the true readings) [12].

Attacks may also target specific functionalities. For example, load forecast
attacks hinder the grid’s ability to determine where to distribute power and the
correct load [27]. This is achieved using data injections designed specifically to
distort these forecasts, applied continuously for the duration of the attack [27]. In
implementation, there are several variations defined by Cui et al. [27]. Pulse attacks
change the forecast values at regular intervals to be higher or lower than the true
reading [27]. Scaling attacks tamper with values by multiplying them by a scaler
[27]. Random attacks insert randomly-generated positive values [27]. Ramping
attacks use a ramping function to either increase values over time (“up-ramping”)
or increase and decrease values repeatedly (“up and down-ramping”) [27]. Finally,
smooth curve attacks change forecasts’ start and end points [27]. Given that each of
these approaches causes a different impact on controller behaviours, adversaries are
able to fine-tune attacks to suit their specific goals.

9.3.3 Attacks on Availability

Availability is the quality of maintaining the accessibility and functionality of a
system to a satisfactory degree at all times. Power is a basic utility, and so power
grids are fundamental parts of urban and rural infrastructure. Furthermore, smart
grids require efficient feeds of real-time data and a high level of responsiveness
from all components (e.g. controllers, synchronisers, smart meters, and sensors) for
accurate decision making. In other words, components must have high availability
for the grid’s internal functionality.

The primary attack against availability is Denial-of-Service (DoS). This is where
an attacker generates lots of traffic to overwhelm the capacity of target devices,
causing them to crash and hence, rendering the services they provide unavailable.
When this flood of traffic comes from multiple distributed sources, it is known as a
distributed DoS (DDoS). Smart grids are highly susceptible to such attacks because
they (a) house a large consumer device population [18], (b) consist of many low-
power devices, and (c) have a hierarchical infrastructure [11]. This indicates a large
potential attack surface of low-capacity devices, and many centralised control points
to target. Devices may be compromised physically, have their identities spoofed, or
engage in DDoS as part of a botnet [18]. As DoS attacks inject lots of malicious
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data into the network, they may also be considered a form of FDI [28]. Typically,
attacks take place between sensors and smart meters [18], or between smart meters
and system controllers [3].

For example, sensors may be manipulated to send streams of malicious authenti-
cation requests to meters [18]. In the process of trying to verify request details, the
capacity of the meter is exhausted, and so the authentication service is knocked
offline [18]. A similar attack between meters and controllers would disrupt the
collection of measurement data, causing controllers to make the wrong decisions
about power management and distribution [3]. Smart grids are also vulnerable
to typical application layer DDoS attacks like SYN flooding [29]. This is where
3-way TCP handshakes are intentionally left half-open (because the client never
responds the server’s SYN/ACK message), consuming server resources and causing
their backlog queues to fill up so that new, legitimate requests are automatically
dropped [29]. Choi et al. [29] demonstrated such an attack on the multicast-
based communications of smart grid IEDs (Intelligent Electronic Device). Other
documented examples of DDoS in the smart grid are those originating from
buffer overflow attacks (where program code is tampered with) [29] and selective
forwarding (where packets relating to a particular service are consistently dropped)
[28].

Smart grids are based on wireless sensor technology, which uses broadcasting
on open channels to enable the easy exchange of data between geographically
distributed devices [30, 31]. This makes grids vulnerable to a special type of DDoS
attack known as jamming, where attackers add random noise signals to wireless
channels to corrupt the traffic exchanged between grid components [3, 31]. As
with standard DDoS, this attack can disrupt traffic between appliances and meters
or between meters and controllers [31]. In both cases, the accurate gathering of
measurement data is denied, and where this causes controllers to make incorrect
calculations about load, large-scale outages and mismanagement may result [31].
Additionally, jamming attacks may be easier to perform than conventional DDoS
because they do not require a base of compromised devices to launch them [31].

To perform the attack, a jammer device or program selects a channel and then
injects it with random noise [3, 30]. This is similar to the injection of fake requests
into the network in DDoS. Generally, there are four jammer types identified in WSN
literature, sorted into two categories. In the first category are “oblivious” jammers,
i.e. those which operate only based on current channel availability [30]. These are
static jammers (which always use the same channel) and random jammers (which
switch channels randomly over time) [30, 31]. The second category consists of
“intelligent” jammers, i.e. those that use historical data to make complex decisions
[30]. These are myopic jammers (which learn users’ channel usage patterns)
and Multi-armed Bandits (MABs) (which use machine learning to predict user
behaviours) [30]. In some cases, myopic and MAB jammers may be considered
as one [31]. As suggested in [30], jamming attacks may be kept hidden by avoiding
the use of licensed channels.

The attacks discussed so far cause disruptions in power distribution services
by affecting particular functionalities provided or required by the grid. However,
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the availability of power can also be attacked directly through resource exhaustion
attacks and energy theft. In resource exhaustion, adversaries demand large quantities
of electricity by sending many requests in quick succession [28]. This maximises the
amount of power drawn from the grid and can eventually lead to the depletion of the
available energy [28]. Such an attack can feasibly be launched at the appliance level
by malicious “consumers” using energy-inefficient or high-consumption devices
[28]. Meanwhile, energy theft involves the consumption of power without providing
proper compensation for this service [15]. There are three types of energy theft:
those launched by malicious consumers, those launched by industry insiders, and
those conducted by organised criminals [15]. Malicious consumers may tamper with
their appliances and meters to avoid making payments as due [15]. Industry insiders
(i.e. utility company employees) may manipulate internal records and readings [15],
either for their own benefit or as part of a larger campaign. Lastly, organised crime
syndicates may use both of the previous methods to syphon energy from paying
customers to sell illegally [15] or for further criminal activity.

Resource exhaustion and energy theft tend to occur alongside attacks on integrity
(like FDI, tampering, and spoofing) and attacks on confidentiality (like user
profiling). For example, the energy theft process requires a disruption of the
communications to and from smart meters. This prevents the grid from learning
consumers’ energy usage levels. Then smart meters can be spoofed, and fake
readings be sent to controllers [15]. To prevent tracing, existing audit logs and
records may also be deleted from the meters [15]. Meanwhile, criminals targeting
other consumers can use profiling techniques to infer their usage patterns from
sensor data, allowing them to plan out their attacks.

9.4 Attack Detection

The area of attack detection has been driven by some core concepts that must be
considered when this kind of solution is developed or deployed. The first one is the
detection method, which is essential because it defines which situations the detection
system sees as an attack. Alongside this, the types of data collected and the system
distribution are also pillars of attack detection. They can impact various functions,
including the system’s processing performance and the attacks that can be detected.
Figure 9.3 outlines these concepts and the related techniques, which are discussed
in the context of smart grids in this section.

9.4.1 Detection Methods

Smart grid defence incorporates classical intrusion detection methods, broadly
categorised as signature-based and anomaly-based. In the former, systems use
templates derived from historic attack instances to recognise new instances of the
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Fig. 9.3 Overview of attack detection core concepts and related techniques for smart grids

same or similar attacks. Typically, each attack on a system or network consists
of a particular sequence of actions. These activities, observed in succession, can,
therefore, be used to identify malicious activity. Signatures may be stored in a
database and updated as new attacks are discovered. Popular attacks with generally
well-understood methodologies (such as DDoS and FDI) may have strong patterns
that make it easy and appropriate to model them [28]. Furthermore, one-to-one
matching makes signatures very effective at detecting particular attacks. However,
previously-unseen attacks will be missed, causing false negatives.

In contrast, anomaly-based detection observes the network or system for activity
that deviates from a pre-defined norm. These norms may be derived from empirical
baselines or heuristics. Given their malicious nature, many attacks fall outside
the standard behavioural profile for systems or services, which results in unusual
fluctuations in activity. Unlike the use of signatures, anomaly analysis is not limited
by knowledge of historic incidents and is, therefore, capable of identifying day-
zero attacks. Smart grids provide a wealth of data that can be used to generate
complex and detailed activity profiles. However, not every anomaly corresponds
to an attack attempt, and so a large number of false positives may be generated.
This is especially true for smart grid sensors which are influenced by environmental
factors. For example, high temperature readings may represent a sabotage attempt
or may simply be caused by hot weather [32].

Novelty detection methods may be particularly useful for anomaly-based sys-
tems, once they can make the detection system reliable against previously-unseen
attacks. The aim of these methods is to identify events that differ from the previously
available data. New attack patterns, which were not present in the model induction,
are placed out of the cluster of known patterns, and categorised as a novelty [33].
Novelty detection with multiple known classes is also widely applied in data stream
classification, meaning that new classes may appear and previously known classes
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may change [34]. The most traditional methods are based on clustering algorithms,
such as k-means [35].

A more recent addition is specification-based detection. This is similar to
anomaly-based approaches, but the baseline profile used is created to reflect the
expected behaviours of a particular application or protocol [11, 26]. Each is given
its own set of expected behaviours and the detection system flags up instances where
related activity deviates from this set. This overcomes the limitation of signature-
based detection because unknown attacks may be discovered. In addition to this,
the granular definition of expected behaviour can improve upon the false positive
rates of anomaly-based detection. This approach applies well to metering systems
in smart grids where state monitoring is an integral process and there are known
thresholds for safe operation [5, 11, 26]. Conversely, the need to generate multiple
specifications may make specification-based detection unscalable in larger grid
networks [5]. An alternative approach is to shift focus from expected behaviours
to the characteristics of a medium to determine the best attack vector [36]. This can
be difficult to achieve in complex cases but enables pre-emptive actions.

9.4.2 Data Collection

Attack detection is essentially a data-driven process. No matter which detection
method is followed (anomaly, signature or specification-based), the attack detection
system always gathers data from the protected system, analyses it, and determines
whether there is an ongoing attack. Smart grids offer several data sources that attack
detection systems can use.

Multiple features can be extracted from network traffic data [14, 29]. The
contents of protocol headers and payloads, rate of packets of a particular type,
number of malformed packets, time of packet round trips, average packet size, and
average volume of bytes per second are all examples of information that can reveal
some change as a consequence of an attack. Network packets can be gathered at
different points in the smart grid’s networks, but it is important to consider that this
choice will define which types of attacks can be detected. For instance, if the attack
detection system analyses the packets carrying measurements from smart meters
to the control centre, it will be certainly able to detect attacks involving the smart
meters or the AMI, like a DDoS. However, if only packet statistics are checked,
but not the payload content, an FDI will be hardly detected. As many smart grid
sites will be located in remote locations, wireless technologies are good candidates
to connect these sites to the rest of the network. With this in view, measuring
wireless channels’ conditions may be useful to detect some attacks like jamming.
A possible way of measuring a channel condition is to transmit control packets in
selected channels and wait for ACK packets to analyse the channel performance
[30]. Signal Strength Intensity (SSI) of smart meters and data concentrators can
also be checked to detect jamming attacks [28]. If the sensed SSI is much higher
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than an expected value, it can indicate a rogue or compromised device trying to jam
legitimate transmissions.

Data about the status and events related to different devices in the smart grids
can also be a good source of attack indicators. A power grid has several specialised
devices (e.g. breakers) deployed across the system to control its operation and make
sure that it is running correctly. Status flags collected periodically from these devices
can reveal unexpected behaviours linked to command spoofing attacks, for example
[26]. Several logs can also be processed to identify events that can help to uncover an
attack episode [5]. Relay logs provide information about events involving breakers,
while the control panel log can show whether there was scheduled maintenance for
a particular grid component. Logs from Snort, a signature-based intrusion detection
system for TCP/IP networks, can also be used to detect the presence of packets with
some particular characteristics in the system. For example, it is possible to create a
rule in Snort to trigger an alarm every time a packet carrying a command to change a
breaker status is detected. Lastly, utilisation of hardware resources such as memory
and CPU can also be monitored at the protected devices, as DoS/DDoS attacks may
cause sudden changes in these measurements [29].

The data sources presented so far are particularly related to the operation of
smart grids’ infrastructure, such as breakers, relays, and networking devices. They
encompass network packets, status flags, event logs, and resource utilisation data
related to the daily routine of these devices. Smart grids also have another rich
source of insights for attack detection: domain-specific data. Data about energy
consumption and electrical quantities are already collected in real-time at multiple
points of the grid for management and control purposes, and attacks (such as FDI
and energy theft) can cause subtle but detectable changes in their behaviour.

FDI attacks typically affect the system state estimation. Therefore, measurements
such as active and reactive power, current flow, voltage magnitude, and phase angles
that feed the state estimation are used to detect these attacks [2–5, 12, 16, 19, 20, 22–
26]. SCADA systems are usually employed to collect these measurements [4, 19,
22]. RTUs at different points in the power grid transmit these measurements every
2–5 s [19] to targets like the control centre. PMUs are also applied to collect this
kind of data and send it to the control centre [5, 12, 23, 26]. They are much more
precise than SCADA systems, reaching a sampling rate of 2880 samples per second
[12]. However, this precision comes with a high computational cost, which poses a
great challenge to management and control activities, including attack detection [5].

Alongside PMUs and SCADA systems, AMIs are also dedicated to collecting
domain-specific data from smart grids for management and control. The main
elements of AMIs are the smart meters, which are deployed at the customer end
to send data related to energy consumption, power quality, and pricing to the utility
provider [11]. Among them, energy consumption data has been used to detect energy
theft [15], DoS [11], and FDI attacks [21]. The latter case is of particular interest
here because it shows that AMI data improves state estimation, which usually
takes energy consumption forecasts as input, instead of real consumption data.
However, if the grid has an AMI, real-time energy consumption data is available
and, consequently, consumption forecasts can be replaced by real data during state
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estimation. It is worth noting that due to the huge number of customers and frequent
collections, control centres face significant difficulties in storing and processing
smart meter data [15].

There are yet other data sources that, despite being used infrequently, can also
be helpful in attack detection. Some attacks can be directed to load forecasting
data, which is important in enabling operators to foresee the system’s conditions
and get ready for upcoming events. Hence, data that is typically used by feed load
forecasting processes, such as historical load data, weather data (e.g. temperature
and humidity), and time data (e.g. time of the day and day of the week), becomes
useful for attack detection [27].

9.4.3 Detection System Distribution

Attack detection is a process composed of data collection, system profiling, detec-
tion, and response. As smart grids are huge and hierarchically-arranged systems,
data collection is usually distributed. In the case of detection based on network
traffic data, packets must be sniffed at multiple points of the several networks that
compose a smart grid communication infrastructure. Unlike traditional enterprise
networks, where there is often a single point of connection to an external network
(e.g. the Internet) which is monitored for attack detection, smart grid networks
present a wider attack surface with several points to monitor. Likewise, when system
logs are used as a data source, there are different critical systems to be monitored
and, hence, multiple data collection points. Approaches based on SCADA systems
or PMUs are naturally distributed in terms of data collection, as there are always
several RTUs and PMUs deployed over the power grid to perform their primary
function: controlling and monitoring the power grid.

The goal of system profiling changes according to the detection method. For
anomaly and specification-based approaches, system profiling is responsible for
building the notion of which activities are normal, while for signature-based ones
it specifies what defines an abnormal activity. Then, during the detection task, data
collected in real-time is analysed according to the knowledge built during the system
profiling, and the response takes place when an attack is detected. The response
can vary, from alerts that are presented in a management console to an action to
mitigate the attack, such as blocking the attacker’s access to the protected asset. For
simplicity’s sake, system profiling, detection, and response can be summarised with
a single term: decision making.

In smart grids, decision making in attack detection can be centralised, partially
(hierarchically) distributed, or fully distributed. For the rest of this chapter, when
used to classify a detection approach architecture, the terms centralised, hierar-
chically distributed and fully distributed will refer to how decision making is
performed.

In centralised architectures, all of the data collected is transmitted to the control
centre, where decision making is performed. Attack detection approaches based
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on data used for state estimation and event logs are usually centralised because
this data is already transmitted to the central control as part of other control and
management tasks [3, 12, 16, 19, 22, 26]. In these scenarios, data processing may
rely on tools such as Hadoop, which runs in distributed computing environments
[12]. Nevertheless, decision making is still centralised, meaning that there are no
multiple instances concurrently determining whether an attack is occurring. Indeed,
the main challenge for centralised architectures is to cope with the huge volume of
data to be stored and processed, as smart grids have multiple data collection points
operating at high sampling frequencies.

Hierarchically distributed architectures are directly linked to the hierarchical
topology of smart grids. As mentioned in Sect. 9.2, smart grid networks are organ-
ised in three levels: HAN, FAN (or NAN), and WAN. Hierarchically distributed
architectures seek to spread the decision-making process across network levels and,
at the same time, keep some degree of central coordination. In other words, they
transfer part of the burden of storing and analysing huge amounts of data from a
central point to multiple points, while ensuring that a central element supervises
attack detection. Hierarchically distributed solutions can rely on network traffic data
[14], as well as on domain-specific data [11, 28]. Detection system agents are placed
to monitor the communication traffic or the data collected from smart meters in
HANs, FANs, and the WAN. Attacks detected in a particular network level can be
checked in the next level up. For example, an attack detected in a smart meter after
analysing data collected in a HAN can trigger an alert, that is sent to the detection
system of the FAN where this HAN is connected. Then, that FAN’s detection system
analyses these alerts before confirming them [28]. Likewise, when a detection agent
cannot decide if an attack is occurring based on the data it has, the decision can be
passed up to the next level [14].

Alerts are not the only information that detection agents in lower levels send to
their counterparts in upper levels. In some cases, the lower level detection agent
can forward high-level statistics (e.g. a measure of anomaly evidence [11]) to the
upper level agent. It is important to note that devices in lower network levels
can face difficulties in hosting computationally costly processes because they are
usually resource-constrained. A smart meter, for instance, may not be able to host a
detection agent that runs a machine learning classifier. On the other hand, lower
level monitoring can offer more detailed data for attack detection, particularly
in situations where devices at the lower level are the targets. Therefore, those
responsible for designing hierarchically distributed architectures have to consider
this trade-off between computational capacity and data granularity.

Fully distributed architectures are not frequently proposed because the absence
of any central control is seen as incompatible with the level of reliability demanded
from smart grids. However, a fully distributed solution may be applicable in some
specific situations. For example, to defend jamming attacks, distributed agents can
be responsible for sensing communication channels and pointing out which ones
are free from jamming attacks and, consequently, more suitable for transmission
[30, 31].
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9.5 Machine Learning

Machine Learning (ML) is a field that emerged from artificial intelligence and
involves the use of algorithms belonging to different categories, such as supervised,
semi-supervised, and unsupervised learning. In this chapter, we use the term ML
to refer to algorithms where computers learn how to process their inputs, without
this being explicitly implemented. In other words, with ML, computers are able to
perform a task by making use of inference or based on observed patterns, and not
by relying only on instructions that specify clearly how it should be done. Due to
the vast number of ML algorithms, we focus on the widely used and most accurate
ones in the smart grid field.

An ML model is a mathematical model that receives the description of a given
problem as an input and delivers a generated solution as an output. This model is
constantly updated by a data-driven induction towards making reliable predictions
or decisions. Most ML models are induced using supervised algorithms, which
demand a dependent variable. In classification problems, the dependent variable,
commonly referred to as a label, is linked to the problem class of a given sample.
For instance, to induce a supervised classification model to be embedded into a
smart grid attack detection system, various examples of the attacks to be detected
are needed, alongside instances of non-malicious behaviour. These examples are
presented to the algorithm along with their respective labels, which inform the
example’s class. Examples and labels are then used to build a model capable of
classifying new instances.

In an attack detection scenario, the classification problem is usually modelled
as a binary classification task, as it supports two opposite classes: normal or
anomalous behaviour. However, in some cases, there are more than two classes
to be predicted, defining a multi-class problem. Multi-class detection systems are
generally focused on identifying specific cyberattacks (energy theft, jamming, DoS,
and FDI), supporting efficient countermeasures to minimise their damage and
to combat the attack source. The most widely used algorithms for cyberattack
detection in smart grids, for both binary and multi-class problems, are Support
Vector Machine (SVM) [37], Artificial Neural Networks (ANN) [38], k Nearest
Neighbours (kNN) [39], Naive Bayes (NB) [40], and Random Forest (RF) [41].

SVM is an algorithm developed to find a hyperplane in high-dimensional
space from training samples, while attempting to maximise the minimum distance
between that hyperplane and any training sample according to its class. The model
(hyperplane) obtained by SVM is used for predicting new unlabelled samples.
The default hyperparameters of SVM are the regularisation parameter (C) and the
kernel. Some kernels, such as radial basis function (RBF) and polynomial, require
additional hyperparameters.

The usage of ANN has been boosted by the advent of deep learning approaches.
Its inducing architecture is based on connected artificial neurons used to simulate the
learning process of a biological brain. From the shallow (Perceptron and Multilayer
Perceptron) to the deep learning structure (Long Short-term Memory and Convolu-
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tional Neural Networks), ANN has several architectures and hyperparameters to be
defined.

Unlike SVM and ANN, kNN is a simple machine learning method, which
predicts new samples based only on the distance between a given sample and the
training pattern. Using the k hyperparameter as the number of relevant neighbours,
kNN classifies a new sample based on its closest training examples in the feature
space. Another simple ML algorithm is NB, grounded on the assumption of
independence among features for modelling a classifier. Although the conditional
independence premise is rarely true in most real-life applications, NB generates
competitive models in practice. The reason for this is that an NB classifier will
be successful as long as the actual and estimated distributions agree on the most
probable class, regardless of feature independence.

RF is an algorithm based on classification trees. More precisely, it is an ensemble
of decision trees created through bagging strategy, which combines multiple random
predictors to generate its final result. RF presents some important advantages, such
as the ranking of features and the reduced possibility of overfitting. Furthermore, as
hyperparameters, it requires only the number of decision trees and the number of
variables available for splitting at each tree node.

In addition to classification, another important application of supervised ML
algorithms is grounded on regression problems. Instead of using categorical outputs
(i.e. dependent variables), regression problems require the prediction of continuous
values, e.g. power flow in smart grids. In this scenario, the attack detection relies
on a threshold-based strategy and statistical control techniques, such as Cumulative
Sum (CUSUM) [11, 16, 17]. CUSUM follows the premise that an attack modifies
the typical behaviour of the evaluated stream. Detection based on CUSUM is
usually performed by computing some stream signatures such as mean value, root
mean square value, peak values, amplitude probability density function, rate of
signal change variations, and zero crossings per unit time. When one or more
signatures are changed, the cumulative sum is computed for detecting an increase in
the mean value of a sequence of independent Gaussian random variables. If the
CUSUM’s value exceeds a threshold, an attack is characterised. The success of
attack detection depends on proper hyperparameters setup, which are related to the
tolerance interval, the probability of false alarms, and the detection delay from the
observed stream.

In several cases, the dependent variable is not completely available due to the
cost or complexity of its extraction. Attack detection in smart grids is an example,
as it typically suffers from scarcity of labelled data. In smart grid scenarios, there are
several security behaviours that should be simulated, studied, and stored to produce
labelled data for supervised learning. Thus, when it is challenging to obtain labelled
data, we can employ semi-supervised approaches [42].

Unsupervised clustering is a third category of machine learning approaches
applied to smart grid attack detection. More precisely, it is tailored for scenarios with
a total absence of labels [43]. The most used algorithm of this category is k-means,
which, coupled with a heuristic algorithm (e.g. Particle Swarm Optimisation or
PSO), is able to assume the likely number of clusters (k value) required to properly
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distinguish attacks from normal situations. The k-means algorithm follows the
premise that all evaluated instances can be associated with one of the k clusters. As
the instances are grouped according to their behaviour, attack and normal instances
will be clustered into different partitions. More recently, Bayesian clustering has
also been used to address smart grid problems. For instance, Dasgupta et al. [44]
made use of techniques from elastic shape analysis along with a Bayesian approach
to cluster and evaluate electricity consumption curves according to their shapes.

Supervised, semi-supervised, and unsupervised categories cover most of the
algorithms applied to cyberattack detection on smart grids. However, the current call
for real-time (online) detection and high predictive performance paves the way for
more recent paradigms of machine learning. On the one hand, dealing with real-time
detection, we have the Hoeffding Tree (HT), an incremental decision tree for high-
speed data streams classification [45]. On the other hand, focused on leveraging high
predictive performance, we have Deep Learning (DL) methods [46].

HT is a supervised ML algorithm designed to induce models online in an
incremental way (i.e. instance-by-instance) based on anytime learning as required
for data stream processing. Therefore, the usage of HT for attack detection consists
of the induction and classification of data flows from smart grids without apriori
knowledge, i.e. there is no offline phase to train a model. Unlike offline learning,
which assumes that all training data needed to create a model is already available,
online learning assumes that new data can arrive at any time, which can make a
model outdated [47]. Like in traditional ML processing, data stream mining can
be performed by supervised and unsupervised algorithms. Considering high-speed
stream scenarios, which may be the case for smart grids, unsupervised approaches
have been reported as more feasible. In [48], an online unsupervised clustering
algorithm was used for load profiling. The proposed approach takes advantage of the
stream structure of the data, keeping the identified profiles updated in accordance
with newly collected data. It is worth mentioning that the kernel of the proposed
solution is based on the k-means algorithm.

In recent years, DL methods have drawn academic and industrial attention.
These methods are grounded on discovering the intricate structure of inputs to learn
representations of data with various levels of abstraction. Among all DL methods,
some deep variants of multi-layer perceptron (MLP) were used to detect FDI. In
[19], deep MLP was applied to identify attacks on smart grids using active power-
flows, active power-injections, reactive power, and voltage measurements as features
to induce the DL model.

All the algorithms, methods, and categories mentioned so far in this section are
applied as unmixed or hybrid approaches when addressing attack detection in smart
grids. Most of the works surveyed are designed as a pipeline composed of steps such
as pre-processing, feature selection, and ML predictive algorithms. A hierarchical
overview of ML algorithms and their combination is presented in Fig. 9.4.
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9.6 Existing Solutions

Solutions proposed in the literature for cyberattack detection in smart grids are
diverse, which reveals the many decisions a researcher has to make when developing
a new approach. Which attacks will be addressed, which data will be collected,
how to distribute the system, and how to combine machine learning techniques are
among the questions that must be answered. This section presents a literature review
of proposals to tackle cyberattacks in smart grids using machine learning, providing
a discussion of how the different authors addressed these issues.

FDI is the most addressed threat in works on attack detection in smart grids.
Its high potential of disrupting smart grid operations is probably the leading cause
for this concern. To identify both standard and stealthy FDIs, Huang et al. [16]
contributed a centralised anomaly detection scheme applied to state estimation
data. They define Gaussian-based vectors for observation and for an unknown data
injection (commencing at a random time) with the aim of identifying the change in
the observation vector’s distribution from the idle state to the attack state. Based on
the time of detection, the average run length (ARL) is calculated. Then, the detection
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time and a threshold h are used in multi-thread processing (with a linear solver and
Rao tests) to solve the problem recursively. The alarm is raised when a cumulative
score reaches h. Based on tests on a 4-bus environment, the authors reported that
the best detection is achieved at higher ARLs, and that the value of h influences the
timeliness of detections.

Qiu et al. [49] addressed FDI attacks as part of their investigation into the appli-
cation of cognitive radio networks for smart grids. They proposed the centralised use
of Independent Component Analysis (ICA) to overcome FDI attacks, characterising
them as instances of high interference. A data transmission matrix Z is defined,
which contains a matrix X of source signals originating from smart meters. The
aim is to fill out X with signal estimations. To do so, the attacker’s signals must
first be filtered out. This is achieved using the statistical properties of signals, with
Principal Component Analysis (PCA) used to deal with differing power levels in
the interference. Through simulations, the authors were able to demonstrate that
ICA can effectively separate different signals.

Esmalifalak et al. [20] also used PCA to tackle FDI attacks but in a different
way. The authors proposed two methods to detect stealth FDI attacks. The data
used to detect the attacks consisted of measurements for state estimation, which
is collected from multiple points in the power grid. These data can present some
redundancies, and the number of dimensions in the detection problem is linked to
the power system size. For instance, a 118 bus system used in this work for tests
generated 304 dimensions. In the two methods, to avoid the curse of dimensionality,
the authors employed PCA. Their underlying assumption is that normal data is
generated according to physical laws, while tampered data is not, so these data
should be separated in the projected space. The first detection method was based
on a statistical anomaly detection technique, which made use of a threshold learnt
from historical data. It is centralised and relies on data sent to the control centre.
The second method was built upon distributed SVM, which, unlike the first method,
requires labelled data from both classes (normal and attack) for training. To test their
system, they used an IEEE 118-bus test system.

Ozay et al. made extensive use of machine learning classifiers to detect FDIs
in two different works [23, 24]. In the first one [24], they proposed a centralised
signature-based method for state estimation data. Supervised learning is used
to classify samples as either “secure” or “attacked”. Three machine learning
algorithms were used: kNN, SVM, and sparse logic regression (SPR). kNN sorts
feature vectors into neighbourhoods based on Euclidean distance. SVM identifies
hyperplanes for the binary splitting of samples. SPR uses Alternating Direction
Method of Multipliers (ADMM) with distributions for labels-to-samples matching.
Testing on IEEE 9-, 30-, 57-, and 118-bus systems revealed that both kNN and SVM
are negatively impacted by data sparsity, unlike SPR [24]. The authors suggested
that kNN is suited for smaller systems, and SVM and sparse logistic regression for
larger ones.

In [23], Ozai et al. presented a thorough study exploring multiple families of
machine learning algorithms, including supervised, semi-supervised, and online
machine learning. In their evaluations, the authors employed feature-level fusion
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and ensemble methods. IEEE 9-, 57-, and 118-bus test systems were used again
in the experiments. The authors pointed out that semi-supervised algorithms were
more robust against sparse data than supervised ones. Also, feature-level fusion and
ensemble methods were shown to be robust against changes in system size. Lastly,
the performance of online classifiers was comparable to batch ones.

Yan et al. [25] also presented a comparative study exploring multiple machine
learning classifiers. In their work, three supervised algorithms, namely SVM, kNN,
and eNN, were used to detect FDI attacks on measurements for state estimation.
The authors considered balanced and imbalanced cases, and analysed the impact of
the magnitude of false data in the detection performance. Tests were based on the
IEEE 30-bus test system, with the SVM classifier obtaining the best overall results.

In [12], the authors described the additional challenge of detecting FDIs in
the vast amounts of data collected in smart grids. Based on experiments using
a 6-bus power network in a wide area measurement system environment, these
authors proposed a Margin Setting Algorithm (MSA). The proposed algorithm was
compared to the SVM and ANN algorithms in a binary classification scenario for
detecting playback and time attacks. Results demonstrated that the MSA achieved
minimal errors and better accuracy than traditional machine learning algorithms
with conventional hyperparameters.

Unlike the works presented so far, Hink et al. [26] approached FDI detection
with three different classification schemes. They aimed to study the performance of
multiple machine learning algorithms in distinguishing power system disturbances
as malicious or natural. In the first classification scheme, each type of event
was modelled as a class, meaning that it was a multi-class problem with 37
distinct classes. The second scheme took into account three classes: malicious
event, non-malicious event, and no event; the latter corresponds to data related
to normal operations. The last classification scheme had two classes: attack or
normal. Seven machine learning algorithms were tested, namely OneR, NNge,
RF, NB, SVM, JRipper, and AdaBoost. Although the results varied significantly
for different classification schemes, the authors pointed out the combination of
Adaboost, JRipper, and the 3-class model as the best solution among the studied
ones.

Neural networks were also used as a feasible solution for FDI detection.
Hamedani et al. [2] made use of Reservoir Computing (RC), an energy-efficient
computing paradigm grounded on neural networks. The proposal was implemented
by combining DFN (Delayed Feedback Network) and MLP to support spatio-
temporal pattern recognition. Considering wind turbines as the major source of
electrical power generation, collected measurements (i.e. temporal data) were
encoded as feature vectors to be the input of the binary classification task, which
distinguished instances between normal or under attack. Simulation results showed
DFN+MLP could detect attacks under different conditions, such as different
magnitudes and number of compromised meters, overcoming the performance of
single MLP and SVM algorithms.

Another solution based on neural networks for detecting FDI was proposed by He
et al. [22]. In this work, CDBN (Conditional Deep Belief Network) was explored to
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extract high-dimensional temporal features for recognising the differences between
the patterns in data compromised by FDI attacks and in normal data. The system
architecture, composed of five hidden layers, obtained the best results when
comparing three different numbers of layers. In comparison with SVM (Gaussian
kernel) and ANN (MLP with a single hidden layer), CDBN achieved superior
accuracy, followed by MLP and SVM. The authors claimed that they performed
online attack detection, but it is important to mention that the training and updating
were performed offline.

Following a different path, the proposal by Adhikari et al. [5] is based on pure
online modelling. The authors proposed the use of the Hoeffding Tree coupled with
a mechanism to handle concept drift when classifying binary and multi-class power
system events and cyberattacks. A total of 45 classes of cyber-power issues were
addressed using a combination of attributes from power and network transactions
(such as voltage, current, and frequency), and logs from Snort. The authors put
effort into tuning all the algorithms and deployed real-time analysis with a high
level of accuracy. The main advantages of the proposed method are related to
consuming less memory than traditional batch processing, as well as providing
real-time analysis to classify a broad number of power system contingencies and
cyberattacks. However, HT is a supervised machine learning algorithm, which
depends on a labelling step. This becomes a pitfall for real-time applications.

Semi-supervised learning methods are an attractive alternative to ease the need
for the labelling step. In [50], cyber-physical attacks on power systems were
addressed using Reinforcement Learning (RL), more precisely a Q-learning semi-
supervised algorithm. A contingency analysis system was proposed to handle
sequential attacks in power transmission grids, such as blackout damage and hidden
line failures. Based on simulated study cases with IEEE 5-bus, RTS-79, and 300-bus,
it was possible to discover a more vulnerable target sequence in sequential attacks.
Furthermore, when varying the blackout size and topology of attacks, the proposed
solution was capable of reducing the number of successful attacks by excluding
failed attack sequences.

Chen et al. [4] improved on the usage of the Q-learning algorithm in their
proposal to enable the online learning of non-malicious and attack behaviour.
Focused on detecting FDI attacks that affect the normal operation of a power system
regulated by automatic voltage controls (AVCs), the authors proposed to model
the attacks as a POMDP. An FDI mitigation method was developed, consisting of
offline and online modules capable of detecting multiple attacks. The experiments
performed on an IEEE 118-bus system assessed the scalability of the proposed
solution and its ability to provide insights about attacks and their impact in the whole
power system. The main contribution was the study of the RL usage, providing
theoretical assumptions about scalability and feasibility of FDI detection, as well
as further results from a mitigation system. However, the paper lacks real-life cases
(very sparse attacks) and considers a naive virus spreading strategy.

Deep learning was the method used by Ashrafuzzaman et al. [19] to deal with
FDI attacks. The experiment was carried out using a simulated IEEE 14-bus system.
Four different architectures of deep learning models based on MLP were compared
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to Gradient Boosting Machines (GBM), Generalised Linear Models (GLM), and
Random Forest (RF). The authors explored 122 measurement features to find the 20
most important with RF importance. As an outcome, deep MLP structures obtained
the best accuracy results. Also, the use of a smaller set of selected features resulted
in training time speed-up. Lastly, the deep learning training cost was mentioned as
a challenge that needs to be handled for speeding up the process. To obtain more
confidence, the authors planned to use real-life datasets as future work.

Instead of detecting FDI attacks, Anwar et al. [21] just clustered AMI nodes
according to their vulnerability to such attacks. Their idea is that some nodes, due
to their inter-dependency to other ones, can cause more damage to the entire system
when attacked. Therefore, these nodes should be identified to be better protected. To
cluster the AMI nodes, the authors applied the k-means algorithm combined with
CF-PSO over the nodes’ voltage stability index. Three clusters were defined: one
for the least vulnerable nodes, other for the nodes with moderate vulnerability, and
the last one for the most vulnerable. Experiments were performed in a 33-bus and a
69-bus test systems.

Alongside FDI, DoS attacks are among the top concerns regarding smart grids
cybersecurity. Fadlullah et al. [18] proposed a centralised Bayesian approach for
early DoS detection. The DoS attack is modelled as an attacker with access to
one or more smart meters (via a worm), which they use to generate many fake
authentication requests to saturate the network and strain target devices. The system
uses Gaussian process regression to create an attack forecast based on the current
state of communications. A composite covariance function is used to analyse trends,
and samples are taken to create a set of real observations. The method was tested in
a simulated BAN (Building Area Network), with 50% of smart meters vulnerable
to worm infection. The authors found the forecasting system to be effective with
both long and short training times, noting that the BAN gateway can be impacted at
different times depending on attack particularities.

Comparative studies on machine learning algorithms were also carried out for
DoS detection. To achieve this, Choi et al. [29] simulated a SYN flood attack
and a buffer overflow attack on the bay and the station levels of the grid. PCs
were implemented to emulate IEDs, with the GOOSE protocol’s publisher-to-
subscriber multicast feature used to spread attack commands via a router. The data
generated was then collected, and a set of traffic-based metric attributes extracted
(consisting of both normal and attack state information). The authors used Weka’s
machine learning library to process the data using various algorithms including
Bayes classifiers, neural networks, SVM, lazy classifiers, Voting Feature Intervals
(VFI), rule-based classifiers, RF, and decisions trees. They reported that for both
attack types, the use of key attributes improved detection ratings, and that decision
trees produced the best results overall.

Yilmaz and Uludag [11] explored the online classification paradigm to develop
the MIAMI-DIL (Minimally Invasive Attack Mitigation via Detection Isolation
and Localization) approach. It focuses on detecting DoS attacks against nodes on
the distribution and customer domains such as data concentrators, smart meters,
and smart appliances. Their approach is based on an online and non-parametric
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detector named ODIT, which combines features from GEM (Geometric Entropy
Minimization) and CUSUM. ODIT is applied at different levels of the network,
so an anomaly evidence score is computed for smart appliances (HAN level), smart
meters, and data concentrators (FAN level). Anomaly evidence scores from different
levels are gathered to decide whether any node in the system is under attack. If so, a
mitigation procedure is carried out, which isolates the node involved in the detected
attack.

As smart grid networks rely on wireless networks due to their capacity of
covering long distances and reaching remote spots, jamming attacks are also a
significant threat. Su et al. [31] and Niu et al. [30] proposed a distributed jamming-
avoidance strategy where the efficient use of channels for secondary users (SU) is
defined as a POMDP. Each SU uses the MAB algorithm to generate a set of possible
strategies (i.e. channels it can sense), weighted by availability. It then selects a
random strategy to try, calculating the distribution for the channel set. Estimated and
actual success rates are then compared to update weightings. Simulations revealed
that the more sophisticated the jammer, the more difficult the problem. However, the
authors reported that over time, SUs could achieve a highly unified view of channel
availability and were less likely to be affected by jammed channels. It is important
to note that these works do not propose a jamming attack detection scheme, but a
solution to avoid channels under this kind of attack.

As load forecasting is helpful to improve the smart grid operation and planning,
attacks against this activity can lead operators to make wrong decisions. Cui et al.
[27] employed some classical machine learning algorithms in a three-stage anomaly
detection approach to address this issue. In the first stage, the data is reconstructed to
deliver a suitable forecast based on feature selection. Afterwards, the attack template
is detected via k-means clustering. Finally, in the third step, the identification of the
occurrence of a cyberattack is performed using Naive Bayes algorithm and dynamic
programming. Five different attack templates were studied: pulse attack, scaling
attack, ramping attack, random attack, and smooth curve attack, with the latter ones
being the more difficult to detect. The authors discussed the importance of feature
selection in enhancing the accuracy of attack prediction. They also discussed the
impact of adversaries in the anomaly detection model and detection performance,
highlighting this topic as an important challenge for future works in cybersecurity.

Some works proposed schemes to address multiple types of attacks. Kurt et al.
[3] explored RL and POMDP to detect FDI, DoS, and jamming attacks. They also
claimed that the proposed solution would allow new unknown attack types to be
detected. The authors implemented a framework to track slight deviations of mea-
surements from normal system operation. To evaluate the results, the proposal was
compared to a Euclidean detector and a Cosine-similarity detector. The best results
were achieved by the RL proposed detector, followed by the Euclidean detector and
the Cosine-similarity detector. The proposed solution achieved satisfactory results
but, throughout the experiments, the authors had to handle several hyperparameters
to tune the algorithms appropriately. This might present a challenge to this method’s
wide-scale adoption. Furthermore, when discussing the results, some concerns were
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raised about the memory cost, and the possibility of improving performance with a
DL algorithm was suggested.

Sedjelmaci and Senouci [28] also targeted multiple types of attack. They
proposed a hierarchically distributed system to detect FDI, DoS, and energy theft by
analysing data collected from smart meters. The system is composed of three agents,
with one for each hierarchy level. The LLIDS (Low Level IDS) is deployed at smart
meters, the MLIDS (Medium Level IDS) is embedded in data concentrators, and
the control centre hosts the HLIDS (High-Level IDS). Firstly, a rule-based system
analyses collected data. This system has a specific threshold for each kind of attack,
FDI, DoS, or energy theft. When the rule-based system detects a threshold violation,
it passes the analysis on to the IDS agent of the next upper level. Then, an SVM
classifier is used to confirm whether the anomaly is an attack.

Works such as [32] and [14] do not specify the types of attacks they are aiming
at. They build their approaches to detect anomalies or unusual behaviours that can
signal an attack, but do not focus on any specific threat. Kher et al. [32] developed
a hierarchical sensor model for anomaly detection using sensor data, covering both
the lower node and the upper cluster head levels. The proposed protocol initially
has all nodes in sleep mode (for synchronisation). Clusters are formed through the
exchange of “Hello” messages (at the lower level), a cluster head is selected, and
multiple cluster heads establish linear links with each other (at the upper level).
Data from each cluster is integrated before being sent up the chain. Data received
at towers is integrated again before being sent to the base station. This integrated
data can then be analysed for anomalies. The authors used Weka-implemented
supervised learning for this purpose, and reported that the decision tree classifier
(J48) achieved the best performance compared to other algorithms like ZeroR,
decision table, RF, and ADTree [32].

Zhang et al. [14] proposed a distributed IDS system that uses intelligent analysis
modules (AMs) sitting across HAN, NAN, and WAN layers. AMs at each level
work with other modules to form a self-contained IDS on that grid layer. At the
NAN and WAN levels, the lower level IDS is used together with the local IDS,
such that the overall system is formed hierarchically. For difficult decisions, data
may be sent to higher layers for further analysis. Either unsupervised SVM (with
a Gaussian radial basis function) or Artificial Immune System (AIS) algorithms
(with a focus on clustering) are used for detection. Clonal selection algorithms
CLONALG and AIRS2Parallel were tested, and the authors found that SVM had
better overall performance, especially for remote-to-user (R2L) and user-to-root
(U2R) attacks. They suggested that the detection accuracy of the AIS algorithms
could be improved with a larger sample of attack data.

Table 9.1 presents a summary of all the reviewed works and their main
characteristics in chronological order. In some cases, the reviewed work does not
define the data source used or how the solution would be distributed. In these cases,
the table presents “–” for the undefined feature.
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9.7 Open Issues

Considerable progress has been made in smart grids scenarios when applying
machine learning for cyberattack detection. However, several key issues need to be
handled to allow the development of feasible solutions capable of achieving suitable
performance in real-life scenarios.

The main challenges are related to the real-time nature of the problem, the need
for labels in supervised learning, demand for more comprehensive and human-
friendly models, and solution scalability. Additionally, some inherent challenges of
machine learning (such as hyperparameter tuning and the capacity of algorithms for
dealing with imbalanced data) open new paths for further research in applied smart
grid security.

Real-time classification algorithms are often demanded in the literature. This
type of algorithm could be implemented by an offline induction and online classifi-
cation, as in most of the current proposals. However, these solutions require some
additional effort to leverage reliable models since they become obsolete when the
smart grid behaviour changes, culminating in the concept drift problem. Also, the
cost of feature extraction needs to be suitable to support a real-time classification.
The algorithms that meet the real-time classification requirements are grounded on
stream mining. Stream mining algorithms are able to induce a model online, which
eliminates the offline step and keeps the model updated. Some algorithms such as
Very Fast Decision Tree [45] and Strict Very Fast Decision Tree [47] are important
examples of stream algorithms.

Even though online classification algorithms pave the way for more useful
solutions, their requirement for labelled instances is a hindrance. In other words,
it is impossible to label each instance on the smart grid data flow. Thus, it is
necessary to rely on semi-supervised approaches or unsupervised algorithms. The
DenStream algorithm [51] is an unsupervised algorithm for stream clustering. Based
on three types of clusters, DenStream can point out the core, potential, and outlier
behaviours, giving insights into the smart grid’s behaviour.

Changes are expected in smart grid behaviour during an attack, and consequently,
the recognition of these pattern deviations allows a machine learning model to detect
the attack. For this reason, the predictive performance of detection systems has
been the main focus of current systems, avoiding false positives and improving the
computational complexity of the designed solutions. However, some concerns on
how the attacks happen, the importance of features used to describe the event, and a
user-friendly model for supporting attack comprehension are also relevant demands
from industry. In addition to being highly accurate, a machine learning model needs
to produce meaningful results and help operators to make better decisions through
the usage of more descriptive modelling.

Meaningful results from descriptive models support suitable incident compre-
hension and mitigation. Thus, choosing an algorithm that matches certain model
legibility criteria is necessary. However, the amount of data collected from a smart
grid environment poses an additional constraint: scalability. A highly accurate
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algorithm that is able to output a user-friendly model considering the current smart
grid scenario also needs to be scalable to handle huge amounts of data. Scalability is
related to the parallelism inherent in an algorithm and can be measured according to
its speed-up on a particular architecture [52]. Most of the current works are limited
to experimental scenarios with controlled, finite, and synthetic data sets, which do
not offer a close-to-reality challenge in terms of data volume.

Another problem related to synthetically-produced data is that they usually result
in a balanced dataset, which promotes an unrealistically smooth model induction.
Attack detection problems are usually imbalanced, since deviations caused by
attacks are much less frequent than expected behaviour episodes. More precisely, the
attack-related samples provided by a smart grid to induce a machine learning model
are often much fewer than the non-malicious samples, making up an imbalanced
dataset. Highly imbalanced problems generally present high non-uniform error,
which compromises the overall performance when errors occur in the minority
classes. There are several approaches to work around this issue. The most commonly
used are based on undersampling the majority class or oversampling the minority
one. Considering the possibility of losing important samples with the former
approach, oversampling strategies, such as the Synthetic Minority Over-sampling
Technique (SMOTE) [53], can be used to balance the original dataset and provide a
reliable scenario for the machine learning algorithms.

However, if the synthetic data design is driven by simple constraints and
deterministic behaviour, the performance achieved during the experiments can be
biased by patterns that are easier to learn than they would be in real scenarios.
Therefore, when applied to real-life scenarios, the solutions can demand a more
complex pipeline or unfeasible modifications, which prevents their adoption. The
same reasoning applies to the adversarial model design. In some works, researchers
assume simple or very specific attack models, which can hinder the effective
application of the proposed solutions in production environments.

The open issues mentioned so far are related to the application of machine learn-
ing to the smart grid domain. Nevertheless, the machine learning area has its own
challenges, which are intrinsic to its algorithms and must be addressed regardless
of the application domain. Hyperparameters tuning [54], temporal vulnerabilities
[55], stream classification trade-offs [56], and more recent topics like adversarial
machine learning attacks [57] are examples of these issues and pave the way for
future studies.

Lastly, for some authors like [13, 17, 58], the use of multiple sources of data
leads to improvements in detection performance. For example, the amalgamation of
features extracted from computer network traffic and smart grid measurements can
form a more robust feature vector, which covers a wider range of attacks. Working
on the several possible combinations of smart grid data sources to assess how they
enhance the range of detected attacks is another possible subject for future work.
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9.8 Conclusion

As smart grids are critical infrastructures, cyberattacks against these systems have
a high potential for causing large-scale disruption to electricity supplies. To assist
in the fight against this threat, we have provided a study of how machine learning
algorithms can be applied to detect attacks on smart grids. We outlined the possible
attacks types, as well as the concepts that underpin the detection of such attacks.
Then, we presented the machine learning algorithms that have been employed in
proposed detection schemes. Following this discussion, a list of existing attack
detection approaches based on machine learning was given, detailing how each one
addressed the characteristics of this problem.

Some open issues were identified in the reviewed approaches, such as algorithms
depending on a labelling process, approaches not prepared to deal with imbalanced
datasets and real-time aspects of smart grids, algorithms producing poor descriptive
models, experiments relying on poorly designed synthetic data, and testing with a
limited range of attack behaviours. Among the recommendations for future work are
suggestions to use stream mining algorithms and oversampling techniques, multiple
data sources, and to invest more effort into producing more realistic data sets.
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55. J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, A. Bouchachia, A survey on concept drift
adaptation. ACM Comput. Surv. 46(4), 44 (2014)

56. V.G.T. da Costa, E.J. Santana, J.F. Lopes, S. Barbon, Evaluating the four-way performance
trade-off for stream classification, in International Conference on Green, Pervasive, and Cloud
Computing (Springer, Berlin, 2019), pp. 3–17

33



57. A. Kurakin, I. Goodfellow, S. Bengio, Adversarial machine learning at scale (2016). Preprint.
arXiv:1611.01236

58. R.S. de Carvalho, S. Mohagheghi, Analyzing impact of communication network topologies
on reconfiguration of networked microgrids, impact of communication system on smart grid
reliability, security and operation, in 2016 North American Power Symposium (NAPS) (IEEE,
Piscataway, 2016), pp. 1–6

34


	Contents
	Part II Artificial Intelligence for Reliable Smart Power Systems
	9 How Machine Learning Can Support Cyberattack Detection in Smart Grids
	9.1 Introduction
	9.2 Smart Grids Overview
	9.3 Smart Grid Attacks
	9.3.1 Attacks on Confidentiality
	9.3.2 Attacks on Integrity
	9.3.3 Attacks on Availability

	9.4 Attack Detection
	9.4.1 Detection Methods
	9.4.2 Data Collection
	9.4.3 Detection System Distribution

	9.5 Machine Learning
	9.6 Existing Solutions
	9.7 Open Issues
	9.8 Conclusion
	References





