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Abstract 
We consider a Bayesian model-based clustering technique that directly accounts for network relations 
between territorial units and their position in a geographical space. This proposal is motivated by a practical 
problem: to design administrative structures that are intermediate between the municipality and the 
province within an Italian region based on the existence of a relatively (to population) high commuting flow. 
In our social network model, the commuting flows are explained by the distances between the 
municipalities, i.e., the nodes, in a 3-dimensional space, where the 2 actual geographical coordinates and 
the third latent variable are modelled through a Gaussian mixture.
Keywords: Bayesian model-based clustering, commuting flows, geographical partitioning, Gaussian mixture

1 Introduction
The need to deal with territorial units better reflecting the inherent structure of the social and eco
nomic reality than administrative divisions of countries and regions is not new in regional geog
raphy and policy planning (for example, see Openshaw, 1977). In order to improve the 
socio-economic organization of the territory, it is crucial to pursue policies at the right scale, es
pecially when it comes to issues such as service provision. In fact, social and economic activities 
unfold and affect areas that are not limited by administrative boundaries. On the contrary, they 
typically exert influence on neighbouring (administrative) areas. To elaborate, the latter may 
not be the most appropriate geographical scale to fully understand local economies and citizens’ 
behaviour in a number of policy domains.

A ‘functional’ approach in defining territorial units, which is able to account for the socio- 
economic trends across the space, can improve the effectiveness of public policies. Functional units 
should be regarded as additional and complementary to the established administrative units, al
lowing a better understanding of the dynamics insisting on a spatial scale not necessarily properly 
captured by—although small—administrative geographies (Casado-Diaz Coombes, 2011).

The demand for meaningful geographies based on a functional subdivision of the space, generally 
not following the known administrative borders of the territory, has been addressed with different 
approaches and definitions: many of these stem from the fact that the mobility of people and goods, 
inherently connecting different areas, is a manifestation of the existing relations, and also that the 
existence and temporal evolution of these flows have important effects on several topics such as 
housing, transport, and land use. In regional science, a main stream of research focuses on the ana
lysis of commuting flows observed between the smallest spatial units at which data are available (for 
example, municipalities, counties, and so on), leading to the various but similar concepts of metro
politan areas, labour market areas, daily urban systems, or more generally, functional areas 
(Eurostat, 2020; OECD, 2020). Commuting (usually travel-to-work) patterns are considered the 
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primary factors in defining and delineating functional areas, because the extent to which workers are 
willing to and are able to commute daily between two places is deemed to reflect the degree of eco
nomic integration between those places. The main methodology to obtain the functional territorial 
units, recently put forward by Eurostat (2020) as a comparative and harmonized framework for EU 
countries, follows the work of Coombes et al. (1986), Coombes Bond (2008), and Coombes et al. 
(2012). Further, it is based on an agglomerative clustering procedure, imposing several constraints 
on self-containment, size, and contiguity of the resulting subdivisions. A similar but more sophisti
cated approach is taken by Chakraborty et al. (2013) in that they model commuting flows using a 
hierarchical Bayesian model on individual data and then choose a partition based on self- 
containment as implied by model estimates. In gravity and spacial interactions models (Celik 
Guldmann, 2007; Haynes Fotheringham, 1985; Roy Thill, 2013), the focus is on the spatial struc
ture of the flows, integrating measures of size and measures of distance (highway distance, great cir
cle distance, and so on) among spatial units. As it is intuitive, the interaction between the origin and 
the destination locations decreases as the distance between them increases.

We address the problem of identifying functional areas inside a wider territory employing a 
model-based clustering technique that directly accounts for relations between units (municipalities 
in our case) and their position in the geographical space. This proposal is motivated by a practical 
issue, which arose when the ‘Regione Autonoma Friuli Venezia Giulia’ (one of the 20 Italian re
gions in the north-east of Italy) had to deal with the redaction of the territorial governance 
plan, mandated by the Regional Law n. 22 of 2009 and aimed at coordinating decisions at a supra- 
municipal level enhancing, at the same time, the role of local communities. One of the first steps of 
the plan was the redaction of the ‘regional strategic territorial document’ where the region had to 
identify the ‘local territorial systems’.

In the policy initiatives at the regional level, the local territorial systems are viewed as functional 
areas in which the strategic planning at the regional level is linked with more operational choices at 
the municipality level, in order to provide conditions for a balanced and effective local develop
ment. Among the criteria put forward to define such territorial systems, there was the relationship 
structure of the network of the 218 municipalities belonging to the region.

In order to shed light on this structure, we studied the mobility flows between municipalities with 
the aim of designing territorial structures intermediate between the municipality and province level, 
comprising contiguous municipalities that are, to some extent, self-contained. Data on the flows of 
commuters daily travelling between the 218 municipalities of Friuli Venezia Giulia region (see 
Figure 1 for the region roadmap) are used to determine geographically connected groups of 

Figure  1. Roadmap of the Friuli Venezia Giulia region (north-east of Italy).
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municipalities within which a high mobility exists. Two municipalities are strongly related if a high 
flow exists between them, where, high, means relative to the populations. The flows are clearly re
lated to the populations of the municipalities and to the distances between them.

The task of designing new districts based on the internal flows can be naturally tackled using a 
social network framework, where municipalities are the nodes of the network and the relation
ship between them is measured by the commuting flows. In doing this, geographical partition 
should also be taken into account. As Daraganova et al. (2012) point out, the geographical dis
tance between nodes in a network can have a powerful effect on the formation/intensity of a tie 
between them. Furthermore, spatial models have been used in analysing network data by Hoff 
et al. (2002), who proposed a latent space model for social network analysis, where the probabil
ity of a tie depends on the distance between actors in a latent Euclidean space. It is worth noting 
that network-based clustering techniques for community detection (Fortunato Hric, 2016) have 
been applied to commuting network, often adopting the concept of modularity (Newman 
Girvan, 2004) to drive the processes to delineate the resulting areas—e.g., see Farmer 
Fotheringham (2012) and Nelson Rae (2016). Handcock et al. (2007) used latent (unobserved) 
coordinates of nodes in the latent space to perform clustering by modelling them as a Gaussian 
mixture. More recent developments related to latent space models include their dynamic versions 
(Kim et al., 2018) or the possible use of nonEuclidean geometries for the space of latent variables 
(Smith et al., 2019).

The proposal by Handcock et al. (2007) is related to the stochastic blockmodels, which posit a 
latent membership vector for each node. Both approaches aim to achieve the same goal, i.e., de
tecting latent structures that explain the connectivity in an observed network. The former can 
be interpreted in terms of distances, where nodes are mapped to a Euclidean space. Conversely, 
the latter can be interpreted in terms of blocks of connectivity, or micro-communities, where 
the nodes are mapped to the space of cluster proportions (Goldenberg et al., 2010). As described 
in what follows, our approach coherently falls in the latent space field.

To this purpose, we modify the model by Handcock et al. (2007) in two main directions. First, 
the network we consider is undirected rather than directed, with valued (commuting flows) rather 
than binary ties. The second modification is a major (conceptual) extension, in that we allow for 
the actual spatial structure as well as a latent structure: nodes (municipalities) are positioned in a 
three-dimensional space structure, where two coordinates are the actual geographical coordinates 
of municipalities, and the third one is a latent variable.

The role of the latent variable is to allow for unaccounted features—such as the quality of 
the roads, the presence of railways, physical barriers (rivers, mountains), or socio-economic 
differences between the units—potentially affecting the relations among municipalities. The 
third dimension can be then interpreted as being a third coordinate; thus, its effect is to aug
ment the bi-dimensional space in which the network is embedded in such a way that the con
nections are better explained by the distances between nodes in the augmented space than 
they were by the distances in the original bi-dimensional space. Moreover, some simulations 
along the paper suggest that the latent variable is susceptible to capture the effect of unob
served features and include that information in clusters determination, thus improving the 
clustering procedure.

The procedure in Handcock et al. (2007) relies on the idea that if a fictitious spatial structure of 
the nodes that explains the network relation can be obtained, then it is reasonable to use such a 
spatial structure to cluster the nodes. In practice, this means that the issue of obtaining clusters 
based on the relationships between the nodes is solved by performing clustering in a Euclidean 
space, which is a (more) standard task. In particular, this is done by specifying a Gaussian mixture 
distribution for the coordinates, which will then be used to identify the clusters.

Our setting is different, in that our nodes, being geographical entities, have a spatial structure, 
which is relevant for explaining the connections. The idea, then, is to combine the actual spatial 
structure with a latent structure. The addition of the third dimension improves the fit of the mod
el: the distance in the three-dimensional space better describes the existing connections between 
the nodes. A linear component is also added to allow for the populations of the municipalities. 
Also, in our case, the model is completed by specifying a Gaussian mixture distribution for the 
coordinates: this model component allows us to obtain a clustering of the municipalities based on 
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the flows. The model is estimated on real data from the Friuli Venezia Giulia region using the 
Bayesian approach.

2 Data
We consider data on the number of commuters daily travelling either by train, bus, or private cars 
between municipalities in Friuli–Venezia Giulia. The flow between two municipalities is the result 
of combining direct observations on daily mobility patterns recorded in two different surveys car
ried out by the regional administration in 2010 (for railways and buses) and 2005 (for private 
cars). With respect to the more conventional data used in previous analyses, mainly referred to in
dividual travel-to-work mobility from Population Census data (Franconi et al., 2017), the ob
served flows represent multipurpose travels. As a consequence, these data provide information 
on geographical patterns related to flows originated by other socio-economic activities, such as 
health and education service provision, consumption, and so on.

In the data set provided by the Regione Friuli Venezia Giulia, flows are reported regardless of dir
ection, meaning that the total number of persons travelling between the two municipalities in a day is 
observed, and the origin and destination are not recorded. As there are 218 municipalities, we have 
an available sample of 23,653 (218 × 217/2) flows, whose empirical distribution function is repre
sented in Figure 2. A high number of zero flows (79%, 18,764 observations) and a relatively high 

Figure 2. Empirical distribution function of flows (on log scale).

Figure 3. Total flows referred to a municipality versus the population of that municipality.
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number of low values can be noted. The concentrations on some values, in particular the multiples of 
6, remain unexplained, but they are not relevant for the conclusions according to a sensitivity check. 
It is worth noting that the concentration on these values occurs only in the data for private cars. The 
flows are positively related to the population, as may be easily seen in Figure 3, where the total flow 
involving a municipality is plotted against the population of that municipality, as observed in 2010 
(coherently with the observation period of data on the commuting flows).

It is worthy to note that the distribution of the populations of the 218 municipalities is highly 
skewed (mean 5,669, median 2,398). The bigger municipalities are Trieste (205,535 inhabitants), 
Udine (99,627), Pordenone (51,723), Gorizia (35,798), Monfalcone (27,877), and Sacile 
(20,277), of the remaining 212, 47 have less than 1,000; 108 between 1,000 and 5,000. Thus, look
ing at the flows involving a municipality with a population of less than 1,000 (2,000) inhabitants, the 
percentage of zero flows is 92.2% (87.7%), while among the flows involving municipalities with 
both less than 1,000 (2,000) inhabitants, the share of zero flows is 94.2% (92.5%). In particular, 
there appears to be a linear relationship between the logarithms of the flow and of the population.

We consider a network whose nodes are geographical entities (municipalities), so a spatial struc
ture does in fact exist, and it is clear even from very preliminary analysis (see Figure 4) that geo
graphical distances are of great relevance in explaining the flows. As seen in the figure, the flows are 
also negatively related to the distance between the municipalities. Again, the trend appears to be 
reasonably well described by a straight line on the log-log scale.

3 Methods
3.1 Latent position models
Let us assume, we have a n × n sociomatrix Y, with entries yij denoting the value of the binary re
lation from node i to node j, along with other possible covariates X. Then, yij = 1 if this relation
ship exists; 0, otherwise. We can then follow a conditional independence approach as proposed by 
Hoff et al. (2002), assuming that the presence/absence of a tie between two nodes is independent of 
all the other ties, conditionally on the latent positions in the social space

P(Y |Z, X, ω) =
􏽙

i≠j

P(yij | zi, zj, xij, ω), (1) 

where xij are the observed pair-specific characteristics, whereas ω and (zi, zj) are a parameter- 
vector and the pair of unobserved latent positions in the latent social space, respectively: both these 
quantities need to be estimated. A typical choice is to assume a logistic regression model in which 
the probability of a tie depends on the Euclidean distance between nodes i and j and other relevant 
covariates as in Hoff et al. (2002) and Handcock et al. (2007)

Fig. 4. Flows versus distance, with flows involving the two biggest municipalities: Trieste (orange) and Udine (red).
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ηij = logit(P(Yij = 1 | zi, zj, xij, δ, θ)) = δT log xij − θ log ‖zi − zj‖
2( 􏼁
. (2) 

This specification is flexible and allows us to replace the Euclidean distances ‖zi − zj‖ by any other 
arbitrary distance satisfying the triangular inequality. To represent clustering, a common choice 
(Banfield Raftery, 1993; Handcock et al., 2007) is to assume the latent positions zis ∈ R2 as drawn 
from a mixture of multivariate Gaussian distributions

zi ∼
􏽘G

g=1

πgNd(μg, σ2
gId), (3) 

where πg is the mixing probability that a node belongs to group g, such that πg ≥ 0 and 
􏽐G

g=1 πg = 1, and Id is the d × d identity matrix. Equation (3) implies spherical covariance matrices
so that the likelihood is invariant to rotations of the latent social space.

3.2 Hybrid latent position model
In equations (2)–(3), the positions are unobserved in the social space and need to be estimated 
with suitable techniques. However, in many applications, the distances could be directly ob
served and plugged into a model specification similar to equation (2) as fixed quantities. Let 
us assume that equation (2) holds. In equation (3), the variable zi is a d-dimensional latent pro
cess modelled as a Gaussian mixture. Thus, there is no true spatial information; rather, each 
node is assigned a position in a fictitious space. For our purposes, the observed geographical 
information matters and could be worth including in the final model. However, a complete 
drop of latent features may have detrimental implications in the final solutions: Equations 
(2) and (3) with zi ∈ R2 equal to the longitude and latitude of the ith municipality would, in 
fact, constitute a reasonable model specification for the phenomenon we are studying; however, 
such a model would not help in determining clusters. Our proposal is to use then a hybrid latent 
position model, by using both actual and latent coordinates. In other words, we propose to 
combine the two approaches by specifying a space that is partially latent, partially observed. 
We assume zi ∈ R3 and that the first two components are the (observed) latitude and longitude, 
while the third one is a latent variable, which augments the spatial structure and accounts for 
hidden features other than latitude and longitude implicitly contained in the bi-dimensional 
space. The vector of latent variables considered by Handcock et al. (2007) is, then, substituted 
by a vector comprising the (true) geographical coordinates of the municipalities and a latent 
variable. The latter can be interpreted as being a third coordinate; thus, the effect of the model 
is to augment the bi-dimensional space in which the network is embedded in such a way that the 
connections are better explained by the distances between nodes in the augmented space than 
they were by the distances in the original bi-dimensional space. Then, equation (3) is replaced 
by the following:

zi ∼
􏽘G

g=1

πgNd(μg, Λd), (4) 

where Λd is a 3 × 3 diagonal matrix with diagonal elements equal to σ2
z for the first two compo

nents, and ψσ2
z for the latent variable, with ψ > 0 acting as a scaling parameter. Equation (4) is 

similar to (3), although it has a different interpretation, as it is partially a model for observed 
variables (first two components) and partially for an unobserved variable (the latent third com
ponent). In a sense, we can interpret this as if there was a third coordinate that is a missing value 
for all nodes and so it is estimated. Handcock et al. (2007) consider spherical covariance ma
trices for each group due to the invariance of their likelihood to rotations of the latent social 
space. In our framework, the Euclidean space is not latent anymore, since we have the geo
graphical dimensions clearly identified.
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3.3 Introducing count data relationship
To extend the binary-data relationships model (2) to a count-data relationship model, such as the 
number of commuting flows between two given municipalities, we assume a zero-inflated distri
bution for the response Yij and the flow between two municipalities i and j. Then, let Yij =
YijSij where the r.v. Sij follows a log-normal distribution:

log (Sij + 0.5) | zi, zj, xij, β, γ ∼ N (βT log xij−γ log ‖zi − zj‖
2( 􏼁

, σ2
y), (5) 

where i < j and xij is the vector (1, x(1)
ij , x(2)

ij ), where x(1)
ij (x(2)

ij ) is the smallest (biggest) observed 

population of the municipalities i and j; consequently, β, δ ∈ R3. From a substantial point of 
view, the magnitude of the flow between the municipalities i and j depends on their populations 
and on the distance in the z-space (one expects β2, β3 > 0 and δ2, δ3 > 0, and γ, θ > 0). In order 
to interpret the ‘third coordinate’ in the context of commuting flows, consider that even if we as
sume that, aside from populations, only the time to travel is relevant in explaining the flow inten
sity, the distance as calculated from longitudes and latitudes of the barycentres of the municipal 
territories would be an inadequate measure of distance. In fact, it would neglect unmeasured fac
tors, such as the quality of the roads, the presence of railways, physical barriers (rivers, moun
tains), or socio-economic differences between the units; these would, then, be allowed by the 
latent variable.

To complete the model, we specify scarcely informative priors for the other parameters, in particular 
π ∼ Dirichlet(1G); μg ∼ N 3(0, 103I3), g = 1, . . . , G; ψ ∼ N +(0, 10); σ2

z ∼ invGamma(10−3, 10−3); 
βj, δj ∼ N (0, 106), j = 1, 2, 3; γ, θ ∼ N +(0, 106), where N + denotes the half-normal distribution. 
Note that this is the standard choice for these kinds of models with a hierarchical structure, similar 
to what is presented by Handcock et al. (2007).

We introduce the new variable Ki, equal to g if the ith municipality belongs to the gth group. Let 
the symbol [ · ] denote parameters that are not explicitly specified in the following formulae. Then, 
the full conditional posterior distributions are

zi3 |Ki = g, [·] ∝ ϕ(zi3; μg3, ψσ2
z )P(Y, zi1, zi2 |X, β, δ, γ, θ, zi3), i = 1, . . . , n (6) 

βj | z, [·] ∝ ϕ(βj; 0, 106)P(Y, zi1, zi2 |X, β, δ, γ, θ, zi3), j = 1, . . . , 3 (7) 

π | [·] ∼ Dirichlet(1G + m) (8) 

μg|[·] ∼ N 3
mgz̅g

mg + ψσ2
z/103 ,

ψσ2
z

mg + ψσ2
z/103 I

􏼒 􏼓

, g = 1, . . . , G (9) 

σ2
z | [·] ∼ invGamma 10−3 +

3n
2

, 10−3 +
3n
2

􏼒 􏼓

(10) 

P(Ki = g | [·]) =
πgϕ(zi3; μg3, ψσ2

z )
􏽐G

r=1 πrϕd(zi3; μr, ψσ2
z )

, i = 1, . . . , n, g = 1, . . . , G, (11) 

where

mg =
􏽘n

i=1

I[Ki=g],

z̅g =
1

mg

􏽘n

i=1

ziI[Ki=g], 
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where I[A] is the event indicator, which equals 1 if A is true, and zero otherwise. In the formulae 
above, ϕ( · ; μ, σ2) is the one-dimensional normal density and P(Y, zi1, zi2|X, β, δ, γ, θ) is the joint 
density for the flows Y and the two observed geographical coordinates zi1, zi2.

4. Results
4.1 Bayesian estimation via Gibbs sampling
Estimates from the model defined by equations (2), (4), and (5) were obtained by Markov Chain 
Monte Carlo (MCMC) methods (Gelman et al., 2004) using JAGS (Plummer, 2003) in R (R Core 
Team, 2018) via the rjags package (Plummer, 2018)—it is to be noted that we did not use the 
dnormmix procedure in JAGS to define the mixture of normal distribution; we rather used an add
itional parameter for group membership.

We estimated our model’s parameters by running three chains, each consisting of K = 4000 iter
ations, and we monitored the chains’ convergence through Gelman–Rubin statistics (Gelman 
Rubin, 1992). The internal JAGS algorithm proceeds as follows to sample from the full condition
als (6)–(11): 

Step 1: An automatic simplification procedure to figure out if the two full conditional probabil
ities (6) and (7) for zi3 and βj, respectively, can be reduced to a known statistical distribution.

In the case, this reduction is not possible, and other techniques are used. A possibility is to code 
a Metropolis–Hastings step within the Gibbs sampling to sample z(t+1)

i3 and β(t+1)
j , respectively: 

(a) At step t + 1, propose z∗(t+1)
i3 ∼ ϕ(z(t)

i3 , ε2
z ) with probability equal to

ϕ(z∗(t+1)
i3 ; μg, ψσ2

z )P(Y, zi1, zi2 |X, β, δ, γ, θ, z∗(t+1)
i3 )

ϕ(z(t)
i3 ; μg, ψσ2

z )P(Y, zi1, zi2 |X, β, δ, γ, θ, z(t)
i3 )

, 

set z(t+1)
i3 = z∗(t+1)

i3 . Otherwise, z(t+1)
i3 = z(t)

i3 .
(b) At step t + 1, propose β∗(t+1) ∼ N d(β(t), ε2

βI3) with probability equal to

ϕ3(β∗(t+1); 0, 106I3)P(Y, zi1, zi2 |X, β∗(t+1), δ, γ, θ)

ϕ3(β(t); 0, 106I3)P(Y, zi1, zi2 |X, β(t), δ, γ, θ)
, 

set β(t+1) = β∗(t+1). Otherwise, β(t+1) = β(t) (ϕd( · ; μ, Σ) denotes the d-dimensional multivariate
Gaussian density distribution).

Step 2: Update π, μg, σ2
z , and Ki from expressions (8)–(11).

In the algorithm above, the values for the proposal variance parameters, ε2
z and ε2

β , should be
fixed to achieve good performance.

4.2 Posterior estimates
We obtained estimates for different values of G, ranging from 2 to 11. In this section, we illustrate 
the method presenting a partitioning in nine groups, which is the maximum number of groups ac
tually obtained by our model and has been judged as reasonable on substantive grounds by the 
regional planners involved in the redaction of the territorial plan of the ‘Regione Autonoma 
Friuli Venezia Giulia’. The discussion on the choice of G from a purely statistical viewpoint is de
layed to Section 5.1. It would suffice to note for now that we do not discuss the estimate of G with
in the model but only consider how model results can be used as a guide to choose a value for G.

It was already noted that the distribution of the flows has a particular form: specifically, the data 
for private car flows privilege the multiples of six. In order to assess whether this structure has an 
effect on the results, the model was re-estimated after adding noise to the preferred numbers (spe
cifically, a discrete uniform distribution in [ − 5, 0] was added). The results were not sensitive to 
such a manipulation.
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The likelihood of the model is invariant to relabelling of groups; thus, the label-switching prob
lem arises. There are various solutions to the label-switching problem; in the Bayesian-MCMC set
ting, those solutions that postprocess the chains are particularly convenient (since the issue can be 
ignored by performing the MCMC and then dealt with later). The postprocessing techniques try to 
identify groups based on the value of some parameters (for example, group means) so that the first 
group is the one with the highest mean (it is to be noted that the results may change if another par
ameter is used). We employ a postprocessing method that, starting from a preliminary clustering of 
the samples, performs a relabelling with the purpose of obtaining an MCMC sample suitable to 
infer on the characteristics of the clustering in terms of both probabilities of each unit being in 
each group and the group parameters. The method is thoroughly described and discussed in 
Egidi et al. (2018).

In Table 1, posterior summary statistics for the main parameters are shown. As expected, higher 
flows are associated with higher populations: δ2, δ3 are positive, so the probability of a zero is low
er, and β2, β3 are positive, so the intensity of the flow is higher on average. On the contrary, lower 
flows are associated with higher distances in the z space (θ, γ positive). The zis variance σ2

z is about 
0.16 for the latitude and longitude, whereas ψσ2

z = 0.04 for the latent variable: the precision for 
this component is estimated to be four times greater than for the geographical coordinates. 
Diagnostic measures reported in the table confirm that the MCMC sampling properly converged 
for all the parameters.

The role, according to the model, of the three variables—populations of the two municipalities 
and the distance between them—in determining the commuting flow between them is shown in 
Figure 5. The figure depicts the expected flow (left) and the probability of the flow being nonzero 
(right) for two hypothetical municipalities as a function of the population of one municipality 
(x-axis) for selected population sizes of the other municipality and selected distances. There is a 
very strong expectation of a nonzero flow up to a distance of 50–60 km, at greater distances the 
probability is appreciably below one.

We depict in Figure 6a the clustering obtained by assigning each municipality to the most likely 
group, while Figure 6b shows the posterior median value of the third coordinate in a geographical set
ting and Figure 6c shows its numerical values sorted from the lowest to the highest; additionally, the 
colours correspond to the groups as depicted in Figure 6a. Further, Figure 6d depicts instead the clus
tering obtained by assigning each municipality to the most likely group according to the model with no 
latent coordinate, assuming only the two geographical coordinates, the latitude and the longitude. It is 

Table 1. Summaries of the posterior distributions for the main parameters (G = 9). Four thousand Markov Chain 
Monte Carlo iterations, burn-in: 3,000 iterations, three parallel chains, Gibbs sampling with rjags software. The table
also reports the effective sample size (neff), the integrated autocorrelation time (ACT), and the Gelman–Rubin statistic 
R̂ for each parameter

HPD 95%

Mean Median SD Low High neff ACT R̂

Y δ1 2.11 2.11 0.07 1.97 2.24 866 13.85 1

δ2 1.30 1.30 0.04 1.22 1.37 7379 1.63 1

δ3 1.79 1.79 0.04 1.70 1.88 1524 7.87 1

θ 2.06 2.05 0.03 1.99 2.12 2019 5.94 1

S β1 3.72 3.72 0.02 3.67 3.77 914 13.12 1

β2 0.52 0.52 0.02 0.48 0.55 7043 1.70 1

β3 0.87 0.87 0.02 0.83 0.91 3059 3.92 1

γ 0.88 0.88 0.01 0.85 0.90 4237 2.83 1

σ2
y 0.99 0.99 0.02 0.95 1.03 10173 1.18 1

z σ2
z 0.16 0.16 0.01 0.14 0.18 5030 2.39 1

ψ 0.25 0.24 0.04 0.18 0.35 2036 5.89 1
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evident that this model does not capture the fixed number of groups and the whole clustering complex
ity. In Section 5.3, we confirm this intuition by computing some numerical comparisons through the 
deviance information criterion (DIC) proposed by Spiegelhalter et al. (2002).

The role of the third coordinate can be clarified looking at the three plots (a–c) in Figure 6. Recall 
that the third coordinate can amplify the distance between two municipalities: note the jumps in 
Figure 6c that occur between nearby municipalities reflecting a discontinuity despite their physical 
contiguity. This occurs in a particularly strong way between the group corresponding to the prov
ince of Trieste (light green) and the nearby group (light blue). Going from right to left, a second 
minor jump is seen, which does not lead to a separation (in the light blue group). Eventually, 
we notice a gap corresponding to the border of the province of Pordenone (dark blue and teal).

It is interesting to note that the geographical distribution of the third coordinate is broadly in 
agreement with administrative and physical borders, which are not included in the data (in par
ticular, the municipalities belonging to the provinces of Pordenone and Trieste have, in the three- 
dimensional space, a greater distance from nearby municipalities belonging to the province of 
Udine compared with their distance in the actual bi-dimensional space).

4.3 Evidence based on a simulation experiment
The geographical clustering techniques illustrated here could not be directly validated through simu
lation procedures, since the final clustering solution, which represents the main task of these methods, 

Fig. 5. Model estimates of the expected flow (left) and of the probability of the flow being nonzero (right) between 
two hypothetical municipalities as a function of the population of one of the two (x-axis) for a selection of distances 
between them (34, 63, 96, 137 km) and a selection of population sizes of the other municipality (2,398, 5,668, 
10,000, the first two values are, respectively, the median and the mean of the populations for the 218 
municipalities).
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is a latent feature determined on the ground of a proper statistical model. However, we could assess 
the impact on the final shape of the clusters arising from distinct input values for some model param
eters—in particular those related to the latent component and its relationship with the observed data. 
This could be another way to highlight how relevant the latent variable is in characterizing the clus
ters’ shape and describing the nodes’ connection in a three-dimensional space.

The goal of this simulation is to assess how latent features in a geographical region (for example, 
possibly, rivers, mountains, lakes, and so on) may have an impact on the commuting flows and on 
the final clusters’ allocation. To achieve this task, we split a bi-dimensional imaginary geograph
ical space in two sub-regions, each associated with a given value for the latent variable z3.

Thus, our simulation strategy proceeds as follows:
(a) Simulate the longitude and the latitude z·1, z·2 for n = 60 geographical units (we can consider 

them as municipalities) in a [0, 1] × [0, 1] bi-dimensional space.
(b) Simulate the commuting flows Sij for each pair of municipalities (i, j), i, j = 1, . . . , n, i ≠ j, 

from the following simplified model:

log (Sij + 0.5)|zi, zj ∼ N (β∗0−γ∗ ‖zi − zj‖
2( 􏼁

, σ2
y), 

assuming that γ∗may adopt distinct input values, whereas zi,3 = ω if z·1 + z·2 > 1, and zi,3 = −ω 
otherwise. The remaining parameters are set to σ2

y = 1, β∗0 = 1.
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Fig. 6. (a) Groups, determined as the most likely from the model with the latent coordinate; (b) values of the (latent) 
third coordinate; (c) sorted posterior medians of the third coordinate; (d) groups determined as the most likely 
according to the model with no latent coordinate.
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(c) Run the JAGS models with G = 3 for different combinations of (ω, γ∗), and determine the 
final clusters.

We would expect that the higher is ω, and the higher should be the ability of the line z·2 = 1 − z·1 

to act as a group’s discriminant, since points above the line are far away with respect to the third 
latent coordinate. Figure 7 depicts some clusters’ configurations obtained for distinct values of ω, 
with γ∗ set to 0.5. The blue line z·2 = 1 − z·1 separates the region where z·3 = ω (z·2 > 1 − z·1) from 
the region where z·3 = −ω (z·2 ≤ 1 − z·1). As may be noted, the higher is the value for ω, the better 
the ability of the latent variable to separate and define the final clusters: when ω is relatively high, 
the third variable is extremely helpful in determining G = 3 nonoverlapping groups. Figure 8
shows a similar experiment considering ω = 0.5 and letting γ∗ assume some input values. The ac
tual groups are discovered more easily if the value of γ is not too low.

The simulation exercise presented, although limited, suggests that the latent variable is suscep
tible to capture the effect of unobserved features and include that information in clusters determin
ation, thus improving the clustering procedure.

5 Model selection criteria and diagnostic checks
5.1 Number of groups
As suggested by Handcock et al. (2007), choosing the number of clusters may be framed as a model 
selection problem. One common measure to compare Bayesian models is the DIC, proposed by 
Spiegelhalter et al. (2002), and based on the trade-off between the fit of the data to the model 
and the corresponding complexity of the model. Denoted by D(θ) = −2 log L(θ; y), the deviance 
for a generic model with data y, parameter(s) θ, and likelihood L, the posterior mean deviance 
is D̅ = Eθ | y[D(θ)], while the ‘effective number of parameters’ is pD = D̅ − D(Eθ | y[θ]). Then, DIC 
is defined as a sum between a ‘goodness of fit’ measure and a ‘complexity’ measure

DIC = D̅ + pD.

Fig. 7. Simulation study: n = 60 simulated nodes in a bi-dimensional space, G = 3, ω = 0.5. Each colour represents 
the final cluster allocation. The solid line z·2 = 1 − z·1 separates the region where z·3 = ω (z·2 > 1 − z·1) from the region 
where z·3 = −ω (z·2 ≤ 1 − z·1).
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The lower the DIC, the better is the model supported by the data. It is difficult to say what would 
constitute an important difference in DIC; as a rule of thumb, differences of more than 10 might 
definitely rule out the model with the higher DIC. As a matter of interpretability, we rescaled the 
DIC values using the following rule: DIC∗ = DIC − 4.73 × 108, since the DIC values turned out to 
be extremely large—due to the enormous amount of parameters—and difficult to interpret: the val
ues for the above DIC∗ are plotted in Figure 9 for models with G ranging from 3 to 11. According to 
this plot, a nonnegligible support in favour of G = 9 is expressed. We note that the model never leads 
to more than 9 groups (if G > 9, some groups are empty). Even when G < 9 it may happen that less 
than G groups are actually filled.

However, the choice of the number of groups is not a (fully) data-driven procedure and this is a 
common feature in geographical partitioning methods. In Feldman et al. (2005), the number of 
groups (zones) strictly depends on the purpose of the subdivision (of exogenous nature), so the 

Fig. 8. Simulation study: n = 60 simulated nodes in a bi-dimensional space, G = 3, ω = 0.5. Each colour represents 
the final cluster allocation. The solid line z·2 = 1 − z·1 separates the region where z·3 = ω (z·2 > 1 − z·1) from the region 
where z·3 = −ω (z·2 ≤ 1 − z·1).

Fig. 9. Rescaled DIC values obtained by fitting the model (1)–(3) under different choices for the number of groups G.

13



choice cannot be purely based on the model fit. Constraints such as a minimum or maximum dimen
sion, a minimum or target group cohesion are commonly introduced (Coombes et al., 2012). While 
DIC can give a relevant guideline to select the models, some further indicators of group cohesion 
(such as those we introduce in Sections 5.4) may aid in choosing the number of groups.

5.2 Posterior predictive checks
To assess the quality of the model, the methodologies proposed by Gelman et al. (1996) extend 
classical goodness of fit procedures to the Bayesian settings. These are based on the posterior pre
dictive distribution of hypothetical observations yrep, whose general formulation is

π(yrep | y)= ∫ π(yrep | ϕ)π(ϕ | y) dϕ, (12) 

where y are the data, π(yrep | ϕ) is the distribution conditional on model parameter ϕ and π(ϕ | y) is 
the posterior distribution. Simulated values from π(yrep | y) are easily obtained using an MCMC 
sample from the posterior distribution.

For the model in Section 3, explicitly allowing for all involved variables, equation (12) becomes

π(yrep | y, X, z1, z2) = ∫ π(yrep | ϕ, X, z)π(ϕ, z3 | y, z1, z2, X) dϕ dz3, (13) 

where ϕ = (δ, θ, β, γ, μ, σ) and π(yrep | ϕ, X, z) represents the conditional distribution for the hypo
thetical flows as specified in equations (2), (4), and (5). The components of the variable z need to be 
dealt with separately due to their different nature, since the geographical coordinates z1, z2 are ob
served covariates, while z3 behaves like a parameter; then, the results of inference is expressed by 
the posterior π(ϕ, z3 | y, z1, z2, X).

Then, let (ϕ∗(k), z∗(k)
3 ), k = 1, . . . , K be the sample from the posterior distribution obtained 

through an MCMC procedure, a sample from (13) is obtained through simulations from equa
tions (2), (4), and (5) for each value (ϕ∗(k), z∗(k)

3 ) (conditional on X, z1, and z2). The simulated val
ues yrep(k), k = 1, . . . , K are then used to assess the quality of fit by comparing them with the 
observed values.

We now illustrate the goodness of fit of the model for G = 9, which turned out to be the model 
associated with the lowest DIC. The most obvious predictive check is to compare the predictions of 
the flows with their actual values. In Figure 10, we depict such a comparison for four municipal
ities, including the two cities with the largest populations. Posterior predictive 95% credibility 

Fig. 10. G = 9: posterior predictive 95% credibility intervals (light vertical segments) for each flow associated to the 
municipalities Trieste, Ruda, Udine, and Amaro, along with the observed values (dark blue dots). The red dots denote 
those observations falling outside the credibility intervals.
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intervals for each flow associated with the municipality are plotted against the distance between 
the two municipalities that the flow refers to. Overall, the number of observations falling outside 
the credibility intervals is lower than 5%; it is, however, to be said that independence is not 
guaranteed.

In Figure 11, we compare the observed total flows associated with each municipality and the 
corresponding flows implied by the model, which are calculated as follows:

f ∗(k)
c =

􏽘

j>c

yrep(k)
cj +

􏽘

i<c

yrep(k)
ic , c = 1, . . . , 218.

In particular, in Figure 11 we depict, for each municipality c, the mean value of f ∗(k)
c and its 95% 

credibility interval (obtained considering the 0.025 and 0.975 quantiles). In 27 out of 218 cases, 
the credibility interval does not cover the actual observation, which is slightly more than the ex
pected number (11). We also specifically consider the prediction of null flows: on average 86% 
are correctly predicted.

We also consider Bayesian predictive p-values for a number of statistics T, whose T(y) is the ob
served value computed on the data y: the mean, maximum, and standard deviation of flows, and 
the mean, median, and number of nonzero flows. The observed value of the statistic T(y) is com
pared with the predictive distribution

πT(t | y)= ∫yrep |T=t π(yrep | ϕ, z)p(ϕ, z | y) dϕ 

by means of simulated values trep(k) = T(yrep(k)). The comparison is made by graphical methods— 
for example, plotting the histogram of the simulated yrep(k)—or by synthesizing with the posterior 
predictive p-value

P(T(yrep) > T(y) | y), 

which is evaluated as

1
K

#{T(yrep(k)) > T(y)}.

In practice, with respect to the classical testing procedure, the sampling distribution of T is sub
stituted with its Bayesian predictive distribution.

We obtain satisfying results but for the maximum and the median of nonzero flows. In particu
lar, the predicted maximum is high with respect to the observed one (values between 0.94 and 
0.97) and the predicted median of nonzero flows is high with respect to observed ones (values be
tween 0.95 and 0.99).

Fig. 11. G = 9: posterior predictive 95% credibility intervals (light vertical segments) for the total flows for each 
municipality along with the observed values (dark blue dots). The red dots denote those observations falling outside 
the credibility intervals.
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5.3 Comparison with the model having no latent (only geographical coordinates)
A relevant simplification of the model entails using the spatial coordinates only to cluster the mu
nicipalities, assuming that this would also reflect the connections measured by the flows.

We then consider the comparison of the proposed model with a simplified model not involving 
the latent coordinate—that is, a model where equation (4) involves only the geographical coordi
nates zi ∈ R2. This comparison serves to unveil whether the addition of the latent third coordinate 
actually improves the model fit and is performed using models with G = 9 groups.

First of all, the model having no latent coordinate reports a DIC∗ of 2753.57, which is enormous 
if compared with the DIC∗ of the model with the third latent coordinate, 993.88. This result 

Fig. 12. Comparison of residuals from the model with no latent variable and the model with the latent variable (plots 
on the right are zoomed—in versions of plots on the left).
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constitutes strong evidence in favour of the model with the latent coordinate, adding a further jus
tification to the clustering provided by Figure 6a.

We compute ŷ = 1
K

􏽐K
k=1 yrep(k) for the model with the latent and the model with no latent: ŷ(L), 

ŷ(NL); in addition, in Figure 12, we compare residuals. In particular, the first row depicts

|ŷ(NL)
ij − yij|

yij + 1
,
|ŷ(L)

ij − yij|

yij + 1

􏼠 􏼡

.

The second row considers

|ŷ(NL)
ij − yij|

yij
,
|ŷ(L)

ij − yij|

yij

􏼠 􏼡

for i, j such that yij ≠ 0. The third row

|ŷ(NL)
ij − yij|, |ŷ

(L)
ij − yij|

􏼐 􏼑

for i, j such that yij = 0. It is then apparent that the model with the latent variable has smaller re
siduals on average.

This constitutes an empirical confirmation of the fact that the geographical distance does not 
fully reflect the determinants of the commuting flows of the network, thus making the inclusion 
of the third variable a relevant improvement to the model for the reasons outlined at the end of 
Section 3.

5.4 Groups’ cohesion
Let us then consider the cohesion of the groups, for which an overall measure is the ratio between 
the average internal flow to average flow depicted in Figure 13 for different MCMC runs indexed 
by the (effective) number of groups. This provides little help, perhaps advising against 2,3,4.

Finally, we consider the percentage of internal flows to total flows for each group for different 
MCMC runs indexed by the (effective) number of groups (Figure 14). We note that maximum co
hesion is high when G = 2, while minimum cohesion is about the same for each G.

6 Concluding remarks
Several approaches to obtain geographical partitions, which take into account the relationships 
between territorial units measured by the commuting flows, have been considered in the literature, 
ranging from classical deterministic methods based on, more or less, efficient agglomerative clus
tering procedures to proper (stochastic) statistical models.

Fig. 13. Ratio between the average internal flow to average flow for different Markov Chain Monte Carlo runs 
indexed by the (effective) number of groups.
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The approach presented here relies on a model-based procedure and seems very promising. It 
proves useful, since the fit which is obtained using geographical distance alone is improved by add
ing the third (latent) coordinate, thus obtaining a distance in a three-dimensional space that better 
describes the existing connections between the nodes.

It is worth noting that the ‘homegeneity’ or self-containment of the final groups suggested by the 
model with the latent variable represents a nice and desirable result. Although self-containment is 
not explicitly allowed for in the model, the groups that are formed are, on this respect, better than 
the groups obtained by self-containment measures. Moreover, the introduction of the latent vari
able, accounting for unmeasured factors (for example, the quality of the roads, the presence of rail
ways, physical barriers, and so on) which can explain the commuting flows among municipalities 
is useful to avoid partitions obtained by agglomerative procedure only based on flows that can be 
impractical from the perspective of service provision or accessibility. The quality of the results can 
be measured in terms of goodness of the fit of the model—through a pure Bayesian model selection 
procedure such as DIC— and the internal cohesion of the groups. Thus, the choice of the number 
of groups is less ambiguous and arbitrary with respect to a choice driven by a threshold or a tuning 
parameter (Casado-Dáaz et al., 2017). A relevant extension of the proposed model may be consid
ered to allow for directed flows.

It should also be mentioned that a possible drawback of the model rests in the computational 
complexity of the procedure, which is higher compared with methods based on agglomerative 
clustering. As the number of territorial units gets larger, the Bayesian computations involved could 
become unfeasible. Nonetheless, since the partitions identified by the model are geographically 
connected, a possible solution is to preliminarily work on sub-matrices of reasonable size ex
tracted from the main matrix of flows. In this first stage, partitions of subsets of units are obtained 
and a further analysis can be carried out on units that lie on the border of different areas obtained 
by analysing each sub-matrix.

With regard to the practical issue that inspired our work, the territorial governance plan of the region 
Friuli Venezia Giulia (delibera/ruling 1890, 31 October 2012) put forward a subdivision of the region
al territory in 11 functional areas—‘Sistemi territoriali locali (STL)’—combining (in an informal way) 
our model results and heuristic considerations on homogeneity among municipalities. Comparing the 
regional STL and the original groups identified by our procedure (Figure 15a), a substantial agreement 
in the areas identified in the north (mountain) and in the west (province of Pordenone) can be noted. 
The central area, which is highly interconnected, is where the two partitions are more differentiated 
and a finer partition to better address regional planning policies is proposed in the governance plan.

Moreover, in December 2014 (Regional law 26/2014), the Region Friuli Venezia Giulia also set 
up 18 ‘unioni territoriali intercomunali’ (UTI), or unions of municipalities delineated at hand ac
cording several and different criteria (contiguity of the municipalities included in each UTI, homo
geneity with respect to several socio-economic, cultural, environmental, among others aspects, the 
size of the resulting population, and so on). The UTI, which are meant to coordinate the admin
istrative functions of the municipalities are shown in Figure 15b, and compared with the nine 
groups determined in our analysis. It is noted that three UTI coincide with our groups; six of 
them are contained in one group; seven are almost contained in a group. The remaining two 

Fig. 14. Percentage of internal flows to total flows for each group for different MCMC runs indexed by the 
(effective) number of groups: each dash represents the cohesion in one of the groups; the dots represent the 
average cohesion.
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UTI, n and c, imply a markedly different subdivision as they are split in half according to our 
grouping. UTI were created in 2014 and were substituted from 1 December 2021 by four ‘Enti 
di decentramento regionale’, which coincide with the former provinces (abolished in 2017): 
Trieste (group 1), Pordenone (groups 7, 8), Udine (groups 4, 5, 6, 9, part of group 3), and 
Gorizia (group 2 and part of group 3).

These various subdivisions adopted by the regional government, although based on different 
criteria, underline the importance of functional geographies to complement the established system 
of the administrative boundaries in a territory as well as the proposal of novel methods to address 
the statistical problem.
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