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"I sing the body electric..." — W. Whitman, from "Leaves of grass"

My Work in a Nutshell

Radiation from free-electron-lasers seeded by poissonian light (laser seeded FELs) shows a higher degree
of longitudinal (temporal) coherence versus the radiation from self-amplified spontaneous emission free-
electron lasers (SASE FELs). Nonetheless, energy and density modulations in the electron bunch may
reduce the coherence of FEL light. In this scenario, we show that good agreement between theory and
experiment requires considering intrabeam scattering mechanism. This finding raises the conjecture about
how to observe the interplay between electron beam dynamics and decoherence phenomena, along with
the measure of the quantum statistics of the seeded FEL light. To address the latter issue, we propose a
novel method for detecting the degree of "poissonianity" of the distribution of photons under the constraint
imposed by the multi-photon FEL pulses. At the same time, the question concerning the electron beam
dynamics and decoherence phenomena is boosting interest in a new theory based on the Dirac equation in a
quantized electromagnetic field. Such a theory must be suitable to predict the behavior of the FEL photons
related to the laser-seeded electron bunch.
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Abstract

Nowadays the possibility of generating ultrashort laser-like pulses from the TeraHertz (THz) to the X-ray
spectral region stands at the frontier of the physics of light-matter interactions. For this reason, light-sources
like inverse Compton scattering, high harmonic generation in gases (HHG) and laser-seeded free electron
lasers (FELs) are important tools of research in several areas of the modern science.
In particular, they have in common the exploitation of the radiating process resulting from the acceleration
of electrons under the influence of an electromagnetic field.
Interestingly, it is often stated that, when the emission is stimulated by an external laser, the coherence of
the laser field is imprinted, at least to a certain degree, into the outgoing light. This is the case, for instance,
of HHG and externally seeded FELs.
Aim of this thesis is to explore the impact of the electron dynamics on the coherent behavior of FELs seeded
by an external laser. We demonstrate that the electron dynamics plays a major role in the conversion and
transformation of the features of the light generated by these sources, such as coherence, which can be
transmitted to electrons and "inherited" from the re-emitted light. To fulfill this purpose, both theoretical
and experimental approaches have been used. Most of the models presented, derived or extended in this
work, are supported by experimental evidence. Experiments has been conducted at the FERMI FEL of
Elettra Sincrotrone Trieste, Italy.
The interplay between electrons and light properties is then investigated using both classical and quantum
dynamics. While the former is routinely adopted to describe the FEL dynamics and collective phenomena
in an electron bunch, the latter becomes mandatory to fully achieve an overall description of the phenomena
involving the emission of photons.
The first chapter serves as an introduction to the concept of FEL mechanism and seeding from laser. In
the second chapter the degree of coherence of seeded and unseeded Free-Electron Lasers in the classical
regime is explored. Coherence is determined via first- and second-order correlation function measurements,
demonstrating the higher second-order longitudinal coherence of the laser seeded FELs.
In the third chapter, a novel and comprehensive analytical model for electron beam longitudinal dynamics
is described. This includes a phenomenon first observed in electron linacs, known as intrabeam scattering,
which has been unveiled by us for the first time by investigating its impact on the electrons distribution.
The predictions of this model are directly compared with beam and FEL measurements, showing good
agreement. Various experimental evidences of the collective phenomenon in the electron bunch, known as
microbunching instability, are supported by our model. These results include the commissioning of a novel
experimental station installed at the FERMI FEL of Elettra Sincrotrone Trieste, Italy.
Our investigations offer some useful models for the prediction and characterization of the electron beam
parameters, allowing to observe the correlations between coherence and instabilities originating in the elec-
tron bunch.
In the last chapter, we attempted to address the question concerning the capability to introduce quantum fea-
tures, such as quantum coherence, in any process of harmonic generation driven by a coherent light pulse.
In order to answer this question, we focus our attention on the characterization of quantum coherence via
photon number distribution and the quantum electrodynamics of an electron in a laser field. Although the
conclusions and discussions regard FELs, some of the theoretical results can be extended to describe any
process of light-electron interaction.
The work reported in this thesis is the result of multi-task research, while my contribution is highlighted at
the end of the introduction and at the beginning of each chapter.
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Chapter 1

Introduction

Free-electron lasers (FELs) were originally proposed as a novel type of light-source, engineered to maxim-
ize the brightness of X-ray electromagnetic radiation pulses in the femtosecond time regime. Nowadays,
FEL facilities can provide radiation pulses from the THz to the hard X-rays, with repetition rates from a
few tens of Hz to MHz, depending on the linear accelerator (linac) energy and technology, i.e. conventional
linac versus superconducting linac.
Mostly used as users’ facilities, in these last years several FELs facilities have been designed and upgraded
to achieve a significant continuous photon energy tunability along with the control of the polarization from
linear to circular. This has been the landscape for several years where the FEL designs have been driven
by the brightness (peak and average), the transversal coherence (spatial coherence) and the pulse dura-
tion. These photon parameters were dictated by science cases where the FELs have been seen as super-
microscopes in the direct space and reciprocal space for imaging nano-objects or performing elastic and
scattering experiments respectively, both out of equilibrium.
Nowadays, this paradigm fails when considering other properties of the photon that might be associated
with an FEL light pulse. These include, first and foremost, quantum coherence. If this would be possible,
one could extend quantum optics, and with them relative spectroscopy, beyond the spectral domain typical
of conventional laser systems. Of course, a quantum FEL has been the subject of theoretical studies in
recent years. Physics does not preclude quantum FELs from being designed and built, but the stringent
properties required for the electron "bunch" are such that they are unrealistic for the time being.
An alternative, to generate quantum coherent light in the extended X-ray spectral range, is to transfer the
quantum coherence characteristics of a laser pulse used as a trigger of the FEL process, laser seeded FEL,
and test whether theoretically and then experimentally this scheme is realistic or not. In this thesis I try to
give an answer, albeit partial, to this question as well.
The purpose of this introduction is also to lay the conceptual and formal foundation for what I will then
develop in subsequent chapters. This is in order to make clear the course of study I have followed during
my doctorate and, at the same time, to make evident what results, in terms of novelty and scientific merit,
I have achieved. Finally, I will give, in the last part of the thesis, a possible realistic scenario and an initial
theoretical frame for measuring and controlling quantum states in laser seeded FEL pulses.

1.1 FEL dynamics
Light generation and amplification in free-electron lasers is a nonlinear process developed from the con-
structive interference of radiation emitted from a bunch of electrons in an undulator. The phenomenon
builds up because of a positive feedback: the emission leads to the formation of microbunches ( i.e. dens-
ity modulation), that in turn increases the intensity of the former. The "magnetic lattice" of the undulator
triggers the emission of photons, while the high-energetic electron beam is the active medium. As we are
going to see, the similarities with traditional lasers end here.
One dimensional analysis has the incredible benefit to allow for an analytical formulation of the high-gain
FEL dynamics, while still being able to cover most of the fundamental aspects of the process, despite its
simplifications. For this reason, we use it as a primer to introduce the main features of FEL dynamics. In
the following paragraph, we refer to the notation proposed in [1, 2].
Let us assume that the electrons are traveling along the z-direction through a linearly polarized undulator,
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described by the vector potential

Au = Au(eikuzx̂+ c.c.), Au =
mcK

e
, (1.1)

where m is the electron mass, e is the electron charge, ku is the wave number of the magnetic field of the
undulator andK is the undulator strength parameter. In what follows, we are going to discard the transverse
effects such as radiation divergence. The only information about the transverse plane that we are going to
keep is the characterization electron motion. Without it, no coupling with the FEL radiation could exist. As
a matter of fact, the coupling between electromagnetic fields and electrons is amplified by a factor

[JJ ] = J0

[
K2

2(1 +K2)

]
− J1

[
K2

2(1 +K2)

]
(1.2)

because of the wiggling path followed by charged particle in the magnetic lattice. In (1.2), Jn(x) are the
Bessel functions. In the high-energy approximation, the electron velocity is

vz ≈ c
(

1− 1 +K2

2γ2

)
and v⊥ ≈ −

eAu

mγ
[JJ ] (1.3)

in which γ is the Lorentz factor. The standard choice for the electron coordinates in this system is given by
the so-called electron phase θ

θ = (ks + ku)z − ωst (1.4)

and longitudinal coordinate τ = ωut and ks = ωs/c is the wave number of the radiation field. Such phase
entails the dependence of the ponderomotive force given by the superposition of the two electromagnetic
field. In place of the linear momentum along z, it is customary to use the electron Lorentz factor γ, since
pz ≈ mc2γ.
The radiation field is decomposed, following the prescription of the slowly varying envelope approximation,
into a fast oscillatory factor and a slowly varying one

E(z, t) = ε(z, t)e(ksz−ωst) + c.c., ε(z, t) = ε(z, t)x̂ (1.5)

Considering the electromagnetic bath in which the electron bunch is submersed, it is reasonable to assume
that also the electron phase space distribution ρ can be written in terms of the slowly varying envelope

ρ(z, t, γ) = en0f(τ, θ, γ) = en0

(
F (τ, θ, γ)eiθ + c.c.

)
. (1.6)

However, since the electron bunch is moving with velocity vz , the fast modulating term in (1.6), must also
be equal to eikr(z−vzt). Hence, to be equal, the following relations have to be satisfied

krz = (ks + ku)z (1.7)
krvzt = ωst = ksct (1.8)

which lead to the resonant condition

λs =
2π

ks
=

λu
2γ2

(
1 +

K2

2

)
, with λu =

2π

ku
. (1.9)

This wavelength is the only one that, for a fixed energy, will benefit from constructive interference of in-
phase wavefront and is, therefore, the FEL emission wavelength. The time evolution of ρ under the effect
of the magnetic and radiation fields obeys the Vlasov equation

d

dt
ρ(z, t, γ) = en0

d

dt
f(z, t, γ) = 0, (1.10)

and is coupled to the Maxwell equations for the FEL electric field(
d2

dz2
− 1

c2
d2

dt2

)
E(z, t) = µ0

∂

∂t
j(z, t), j(z, t) = en0

∫
dγv⊥f(z, t, γ). (1.11)
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We can simplify these expressions. Recalling the definition (1.22), in the paraxial approximation, we can
write the d’Alembert operator (

∂2

∂z2
− 1

c2
∂2

∂t2

)
≈ 2iks

(
∂

∂z
+

1

c

∂

∂t

)
(1.12)

and recalling equations (1.1), (1.3), (1.6) and the fact that ∂tf ≈ −iωsf , we get(
∂

∂z
+

1

c

∂

∂t

)
ε(z, t) =

n0µ0e
2cAu

2m
[JJ ]

∫
dγ

γ
F (1.13)

and finally, passing from the coordinates (z, t) to (τ, θ),(
∂

∂τ
+

∂

∂θ

)
ε(τ, θ) = D1

∫
dγ

γ
F (τ, θ, γ), where D1 =

n0µ0ec
2K√

2ku
[JJ ]. (1.14)

For simplicity, we assume that the beam is mono-energetic with all electrons having energy γ0 and velocity
vz(γ0) = v0. In this way we also fix the resonant wavelength and the envelope frequency ωs. [1, 2]
The Vlasov equation can become tractable once linearized. In fact, it displays a nonlinearity in the last term
of the total derivative

∂f

∂t
+ vz(γ)

∂f

∂z
+
dpz(f)

dt

∂f

∂pz
= 0 (1.15)

since the momentum is modified by the electromagnetic field, which in turn is dependent on the distribution
f itself. The linearized version, instead, reads

∂f

∂t
+ vz(γ)

∂f

∂z
+
dpz(f)

dt

∂f0

∂pz
= 0 (1.16)

where f0 is the initial electron distribution. In doing so, we are basically neglecting the development of
energy spread due to the interaction with the radiation field. Passing from pz to γ,

dpz
dt

=
d

dt
mc2γ = ev⊥ ·E = −e

2c2Au[JJ ]

γ
ε(z, t)eiθ, (1.17)

and using the new coordinates (τ, θ), gives[
∂

∂τ
+ η

(
∂

∂θ
+ i

)]
F = D2

1

γ

df0

dγ
ε (1.18)

D2 =
eK

2
√

2mc2ku
[JJ ] (1.19)

η =
vz(γ)− v0

c− v0
= 1− γ2

0

γ2
(1.20)

For an initial uniform and mono-energetic distribution f0 = δ(γ − γ0) and no radiation field for τ = 0,
these equations can be solved analytically. To do so, together with the new set of electron variables (τ, θ),
we can introduce the corresponding Fourier transform over θ and Laplace transform over τ

ḡ(Ω, q) =

∫
dτ

∫
dθg(τ, θ) exp{i (Ωτ − qθ)} =

∫
dτ g̃(τ, q) exp{i(Ωτ)}, Ω ∈ C, q ∈ R (1.21)

The fact that the distribution is modulated at a wavelength resonant with the radiation field implies that Ê
and F̂ are proportional to δ(q), so that there is no detuning. Fourier-Laplace transform leads to a cubic
equation in Ω and roots of such equation are the poles around which we integrate when we anti-transform
back the solution to the space coordinates. [1, 2]
The solution reads

E(τ) =
iD1

3γ3
0

3∑
j=1

e−iΩj

ωj

∫
dγF (τ = 0, γ) (1.22)
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where Ωj = 2ρ exp{ij2π/3} are the roots of the equation

Ω3 − (2ρ)3 ≈ 0, and (2ρ)3 =
2D1D2

γ3
0

. (1.23)

The quantity ρ is called Pierce parameter [3]. The cubic equation is obtained by invoking both the mono-
energetic condition and the slowly varying envelope approximation for F .
Now, the electric field is proportional to a quantity named bunching factor:

b ≡
∫
dγF =

∫
dγfe−iθ = 〈fe−iθ〉 (1.24)

where the symbol 〈...〉 indicates the mean value calculated over an ensemble of particles. The bunching
factor determines the mean value of the harmonic content at the resonant wavelength of the electron distri-
bution and it is a measure of the density modulations.
When the FEL process is triggered by the spontaneous emission originated from the granularity, i.e. the
shot-noise, in the beam, the process is called Self-Amplified Spontaneous Emission (SASE) [4–6]. The
presence of amplification is granted because there is always one root of the cubic equation that leads to an
exponential growth of the electric field.
The stochasticity of the shot-noise in the bunch is the dominant mechanism that determines the photon
statistics in a SASE FEL, together with the gain. For this reason, these sources are not lasers at all [7], in
the strict sense of the term, since the process is purely traceable to classical electrodynamics, while the high
spatial coherence is due solely to the spatial dimension of the radiation source, i.e. electrons bunch, and the
structure of the ultrashort light pulse results from the propagation of appropriately controlled behavior of
the electron bunches during the acceleration process in the linac. SASE FEL dynamics is closer to that of
super-fluorescent emission [7].
In other words, these are predominantly thermal light sources that have little to do with the radiation pro-
duced by a stimulated emission process with population inversion in a resonant optical cavity that determ-
ines the quantum nature of the laser emission. This fact is confirmed by interference experiments, at the
first and second order of longitudinal (time) coherence, where the degree of classical coherence is broadly
compatible with that of light sources predominantly thermal [8].

1.2 External seeding and coherence
Over time, however, other solutions have been proposed to trigger the FEL process, the most notable of
which is the externally seeded operation mode. An external infrared laser can be used to imprint an energy
modulation that is then translated into a density modulation. [1, 2] The interaction between electrons and
laser is enhanced by the used of a dedicated undulator, called a modulator. The bunching factor accumulated
in this way, is used as the starting condition for the real FEL process, since this bunched beam is then
injected into a second undulator. This standard setup is called high-gain harmonic generation (HGHG).A
comparison of SASE and HGHG schemes is shown in Fig. 1.1.

From the mathematical point of view, we start from a Gaussian energy distribution in the energy with
energy spread σγ

f0(γ − γ0) =
1√

2πσγ
e−(γ−γ0)2/2σ2

γ . (1.25)

After the modulator, the energy distribution of the beam is given by

f0(γ − γ0 −∆γ sin θ) (1.26)

where ∆γ is the amplitude of the energy modulation acquired from the interaction with the laser. The
phase after the dispersive section is shifted by a factor proportional to the dispersion strength dθ/dγ, and
the distribution at the entrance of the undulator is, therefore,

f(θ, γ) = f0

[
γ − γ0 −∆γ sin

(
θ − θ0 −

dθ

dγ
(γ − γ0)

)]
(1.27)

Thus, the bunching factor at the n− th harmonic, using the definition (1.24), can be estimated

bn = exp

{
−1

2
n2σ2

γ

(
dθ

dγ

)2
}
Jn

(
n∆γ

dθ

dγ

)
. (1.28)
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Figure 1.1: SASE and externally seeded FELs configurations. Image from [9]

This strategy, however, brings some novelties. The spectral behavior is now dominated by the coherence
of the laser and the emission is an harmonic of the seed laser wavelength. Thus, externally seeded FELs
could gain another figure of merit: temporal coherence. The first indication of temporal coherence is given
by the coherence time. It is usually accessed via phase correlation measurements, typically in double slits
interference setup and gives the time interval in which the wave fronts of the source are in phase. This
is, however, just a single mono-dimensional index that cannot entail the whole concept of coherence. For
this reason, higher order degree of coherence, described in terms of correlation functions, are measured to
quantify the stochasticity of a source. Second order correlations, i.e. intensity correlation, already carries a
plethora of new information to be deduced. A complete survey of the theory of coherence and correlation
function is presented in the next chapter.
As for the case of high harmonic generation (HHG) in gas, this is another technique that exemplifies the
transmission of coherence through matter via harmonic conversion. Needless to say that this innovation
was again dictated also by science cases: some attention has been shifted to spectroscopy and non-linear
scattering studies where the average brightness and the longitudinal coherence become photon parameters
of paramount importance.
The first realization of HGHG in the XUV was achieved at FERMI at Elettra [10, 11] (see also Appendix
A). The strengths of the FERMI light source include on polarization tunability, phase control and the high
degree of coherence. While the former is due to the specific choice of the undulators, the others are proper-
ties inherited from or controlled by the seed laser.
The main obstacle to the preservation of coherence and its extension to shorter wavelength is also inherent
to the gain and the gain medium, i.e. the electron bunches. Inhomogeneities in the energy and density
distributions of the electron beam result in the accumulation of spurious radiation that decrease the phase
stability and, overall, the degree of coherence of FELs. All the modulations that fall inside the gain band-
width and, as a consequence are enhanced by the FEL mechanism, are in fact source terms for radiation.
Let us consider for simplicity a two-frequency system, in which the first is the laser one and the other is
due to the spurious modulations [12]. In this setup, the electric field will therefore exhibit two terms: one
the expression presented in (1.22) and the other is going to be proportional to the amplitude of the spurious
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modulations in the electron beam.
We define Am to be the amplitude of the energy modulation of the beam at wavelength ωm = ∆νωs,
where ∆ν is smaller than ρ. Under this condition the sideband frequency is still included in the FEL gain
bandwidth. We also introduce bm, the bunching factor at ωm

bm = 〈e−i∆νθ〉. (1.29)

We are going to treat these terms as perturbation to the main radiation fields.
It is possible to demonstrate that the spurious electric field is proportional to [12]

εm(τ) ≈ − i
3

(
Am + e2πi/3bm

)
τε(τ). (1.30)

The development of a second contribution to the total field compete with the growth of the main FEL radi-
ation mode, resulting in the reduction of the bunching factor at the seed wavelength and the appearance of
sideband in the spectrum. The latter is the cause of the deterioration of the spectral purity, leading to the
reduction of temporal coherence, given the departure from monochromaticity of the field.
The collective phenomenon that results on the accumulation of these modulations is called the microbunch-
ing instability [13]. This instability has been observed at a number of facilities, using various techniques,
and some of them are reported in the third chapter, together with a comprehensive modeling of the electrons
phase space evolution. All that considered, it becomes vital to understand the mechanism underlying the
development of microbunching instability to avoid the loss of coherence.
While the inheritance of coherence in a classical sense is an established fact, very little could be said about
quantum coherence. This aspect was in fact ignored, except in the case of purely theoretical studies to
realize quantum FELs [14–17] or in the case where the FEL photon energy allowed the process of light
emission to be realized in a resonant optical cavity [18]. In the latter case, the FEL radiation can be gener-
ated in a resonant optical cavity only for photons with energy compatible with the maximum energy gap of
the mirrors insulating materials of the resonant cavity, i.e. ∼ 11 eV for alkali metal fluorides.
However, for photon energies from near-IR to those achievable by non-perturbative highly non-linear op-
tical processes, like High Harmonic Generation (HHG), the realization of expensive and complex sources,
such as FELs has no tangible advantages over conventional laser sources, except for radiation in the THz
regime, where the intensity of FEL pulses can be order of magnitude brighter respect to laser based non-
linear optical processes needed to achieve ultrashort terahertz radiation in the∼ 1-20 THz frequency range.
In this case, the FEL radiation produced in a resonant cavity (under the right conditions) could have the
quantum characteristics satisfying the statistical criteria defining the Glauber coherent states [18].
However, photon statistics experiments for these light sources do not exist, to the best of my knowledge,
and so even in this case, although quantum coherent states may be plausible, they are not demonstrated yet.
Of course, the question is not only an experimental curiosity, but overall a problem relevant to the physics
of the laser process, which can lead to a definitive answer to the question of whether the quantum nature of
the laser light is exclusively determined by a quantum process such as population inversion and stimulated
emission in an optical resonant cavity.

1.3 About this thesis
The aim of my research is the study of the classical and quantum longitudinal coherence of seeded FEL.
The focus is on the role of the electron dynamics and the mechanisms that can affect the first and second
order coherence, i.e. classical phase coherence and intensity correlation measurements.
Although there is direct evidence that the radiation from FERMI FELs shows a longitudinal coherence much
superior to SASE FELs [19, 20], the physics of the electron bunch dynamics is of paramount importance to
control, preserve and improve this property. Nevertheless, completely coherent light requires the measure
of the degree of coherence at any order. This was still missed. Here I treat also this topic and the results are
given as the last part of this work.
The rest of the thesis is divided in three chapters. The next chapter is devoted to the characterization of
the classical transverse and temporal coherence of seeded FELs. After introducing the concepts necessary
to understand the theory at the base of the whole manuscript, namely first- and second-order degree of
coherence, the results for one of the seeded FEL lines at FERMI are shown. One of the sections presents
a comparison (the first ever reported in literature) of the development of first-order transverse coherence
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between SASE and seeded FELs. Young double slits interference is measured as a function of the distance
between the slits, comparing how the spatial coherence is evolving along a chain of undulator magnets.
The consistency of the comparison is granted by the fact that the same beamline has been used, at the same
wavelength and using the same electron beam condition.
The second section is focused on the second-order longitudinal coherence of non-linear harmonics gener-
ated by seeded FELs. The second order correlation function that we measure for wavelengths in the water
window confirms the expected high degree of coherence inherited from the laser seed pulse.
I have taken part to the revision of the results concerning the transverse coherence and I had a major role in
the measurements and the analysis of longitudinal coherence.
The quoted sentences in this chapter are reduced from references [20, 21] that I have coauthored.

The third chapter focuses the attention on microbunching instability as a possible cause of decoherence in
seeded FELs. This is a cascade instability originated from electron shot noise and amplified along the linac.
Its impact on FEL dynamics is predicted theoretically and benchmarked experimentally measuring spectral
intensity distribution and brilliance of the light pulses. Actually, the inclusion of momenta diffusion due to
multiple small angle scattering in the electron phase space is the breakthrough in our theory.
Direct evidence of microbunching instability are presented: we developed a 2-D Fourier analysis of the
phase space and we commissioned a new infrared spectrometer at FERMI facility.
I developed the theory presented here and the code used for the simulations showed along the chapter, in-
cluding the comparison with the energy spread measurement and the characterization of the FEL spectral
impurity. I was involved in the data analysis and elaboration of the theory for the 2-D Fourier technique and
the HGHG FEL spectral behavior. I have also taken part to the commissioning of the infrared spectrometer,
collecting and analyzing the data presented here.
The quoted sentences in this chapter are reduced from references [22–29] that I have coauthored or where
I am the first author.

The last chapter develops the concept of FEL quantum coherence by introducing the quantum nature of
photon correlation and anti-correlation. Major emphasis has been put on the, sometimes subtle, differences
that occur between classical and quantum nature of correlation. A brief survey of the quantum states of
light and their representation is inserted before presenting our results.
We exploited a technique of photon population retrieval, already applied in the optical regime for laser-like
and incoherent photon statistics, for FEL radiation. The great advantage is that the information retrieved by
this technique is complementary to the information given by correlation functions.
The basic idea is that off-click counts from a non-ideal Geiger detector generate a statistics. This distribu-
tion is the input for a maximum-likelihood extimation of the most probable photon state that reproduces
such statistics. The possibility to extend the algorithm to a higher number of photons is demonstrated via
simulations for FEL-like states.
Finally, we tackled the fundamental problem of a free electron interacting with a quantized monochromatic
field. Despite the apparent simplicity of the problem, the answers are still unsatisfactory.
We derived a generalized formalism for solving the Dirac equation in an external electromagnetic field for
a generic initial condition for both light and electron. The derivation is commented along with our inter-
pretation of the dressed electron state and the so-called Volkov ansatz. This last chapter is a primer for a
larger project: the investigation of transmission of quantum coherence from light to matter and from matter
to light.
My contributions consist in the development of the code for the algorithm and the generation of the data,
together with the interpretation of its output and performances. I am one of the three main investigators
of the Dirac-Volkov equation, I proposed the overall physical interpretation and I conducted most of the
calculations presented in this chapter.
The quoted sentences in this chapter are reduced from references [9] that I have coauthored.
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Chapter 2

Classical Coherence

Coherence is the property that determines the stability of the relative phase between waves at two different
points, whether they are in space or time. An ideal coherent radiation source produces fields with exactly
the same spectral properties. In this sense, it is a measure of similarity between fields. As a consequence,
coherence is also a way to quantify the insurgence of interference, keeping in mind that any interferometer
is a physical correlator.
As already anticipated, correlations can be measured both in time (or wavelength) and space, discriminating
in this way between temporal and spatial coherence.
In what follows, we are going to focus on first and second order degree of coherence of light and the
corresponding correlation functions. We present two experimental setups to measure coherence of light
and from there we derive the expressions to quantify the degree of coherence and the correlation functions.
This machinery is then applied to characterize correlations of some classical fields, namely, chaotic light
and laser, underlining their main features and the behavior of their correlation functions. In the last part,
we show some experimental results of the measurement of transverse and longitudinal coherences of SASE
and seeded FELs. For the latter, I was directly involved in the measurement and I took care of the data
analysis and interpretation of the results.

2.1 Classical theory of coherence

2.1.1 Phase correlation
Interferometers are designed to demonstrate and study interference. Young’s two-slit interferometer [30–
33] is the prototype of these instruments and it works with both fermions and bosons. There are however
other schemes, such as Mach-Zender and Michelson interferometers [30–33] that are mostly suited for de-
tection of interference of non-massive particles because of the exploitation of a beam splitter. Generally,
speaking all these setups are designed to obtain a superposition of fields allowing to study the coherence of
both classical and quantum states of light.
All these interferometers are "phase correlators". In fact, they return a measurement of correlation between
fields at different point in space or time providing information about their relative phase. For all these reas-
osn, the quantitative measurements performed with these types of interferometers are used to characterize
the so called first-order coherence.
The linear superposition of equally polarized fields is given by

E(x) = δ1E(x1) + δ2E(x2) (2.1)

where x = (t,x) is the four-dimensional position vector, xi are considered at the time ti = t− si/c and δi
are geometric factors that depend on the distances si.
Light detectors in the optical frequency regime measure the average light intensity,

I(x) = 〈|E(x)|2〉, where 〈f(t)〉 = lim
T→∞

1

T
.

∫ T

0

f(t)dt (2.2)
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Assuming the ergodic hypothesis, the time average is equivalent to an ensemble average. At the first electric
field order the normalized mutual coherence or correlation function is defined as

γ(1)(x1, x2) =
〈E∗(x1)E(x2)〉√
〈|E(x1)|2〉〈|E(x2)|2〉

. (2.3)

Hence Eq. (2.3) determines the correlations between the field amplitudes relative to the magnitudes of the
uncorrelated amplitudes, and satisfies the condition 0 ≤ |γ(1)(x1, x2)| ≤ 1. This is consistent with the idea
that a phase interferometer must keep track of the phase differences of electric fields.
To simplify the next discussion, we assume that δ1 and δ2 have the same modulus δ, which is the case of
identical optical beams so that we can express the normalized first-order correlation function as

γ(1)(x1, x2) = |γ(1)(x1, x2)| exp{[iα(x1, x2)]}. (2.4)

The interference pattern can be measured via the fringe visibility

C =
Imax − Imin

Imax + Imin
, (2.5)

where Imax and Imin are the maximum and minimum intensity in the interference pattern respectively, so
that

C =
2
√

(I1I2)

I1 + I2
|γ(1)(x1, x2)|. (2.6)

The normalized correlation function is also known as the degree of coherence, since it can be used to
discriminate between the three types of coherence: when |γ(1)(x1, x2)| = 1, the coherence is complete and
the time average can be factorized, i.e.

〈E∗(x1)E(x2)〉 = 〈E∗(x1)〉〈E(x2)〉. (2.7)

The visibility of the fringes is maximized in this case. The intermediate values of the correlation function,
i.e. (0 < |γ(1)(x1, x2)| < 1), characterize a partial correlation (coherence) between the fields. In both cases,
the interference is present. Finally, for |γ(1)(x1, x2)| = 0, the visibility is 0 and the field is completely
incoherent.

2.1.2 Intensity correlation
Phase interferometry, despite the possibility to retrieve the coherence length, and, more generally to which
extent a generic light source tends to monochromaticity, i.e. to a single frequency wave, cannot provide
information about the statistical behavior of light. First-order coherence may be understood mathematically
as the result of the factorization of the expectation values in the correlation function of the fields. That is,
first-order coherence experiments are unable to distinguish between states of light with identical spectral
distributions but with quite different photon number distributions [32, 33].
For this reason the characterization of the correlation of intensities rather than phase, as for the Hanbury
Brown and Twiss experiment is of paramount importance [30–34]. Correlation of intensities correspond to
the delayed coincidence rate obtained from two light detectors from which the statistics of the beam could
be determined, if the delay is larger than the coherence time of the source. The probability of obtaining
coincident events when the detectors are at different distances from the sources and with a delay τ =
|t2 − t1|, is

γ(2)(x1, x2;x2, x1) =
〈I(x1)I(x2)〉
〈I(x1)〉〈I(x2)〉

=
〈E∗(x1)E∗(x2)E(x2)E(x1)〉
〈|E(x1)|2〉〈|E(x2)|2〉

(2.8)

Equation (2.8) is the classical second-order coherence function. Dealing with intensities means that we
are working with quantities proportional to the square modulus of the fields, hence the name. By ana-
logy to first-order coherence, the second-order classical coherence is given by |γ(1)(x1, x2)| = 1 and
γ(2)(x1, x2;x2, x1) = 1. The last equality corresponds to the factorization condition for the intensities

〈E∗(x1)E∗(x2)E(x2)E(x1)〉 = 〈|E(x1)|2〉〈|E(x2)|2〉, (2.9)

in analogy to the complete coherence condition for the first correlation function. However, the second-order
coherence function is not restricted to be less than 1, as for the first order one. To prove this, let us consider
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the case where there is no delay and the distance of the detectors from the source is the same. In this
configuration, we have

γ(2)(0) =
〈I2(t)〉
〈I(t)〉2

, (2.10)

which is always equal or more than 1, because of Cauchy’s inequality. There is no way to establish an upper
limit, thus

1 ≤ γ(2)(0) <∞ (2.11)

For nonzero time delays, instead,

0 ≤ γ(2)(τ) <∞ and γ(2)(τ) < γ(2)(0), (2.12)

and this is always true for classical fields. Analogously to what we have done for the visibility at first order,
we can define a visibility of the pattern in intensity correlation,

C(2) =
2〈I1I2〉
〈(I1 + I2)2〉

. (2.13)

Based on this definition, we see that the maximum visibility interference pattern in the intensity correlation
is equal to 1/2, contrary to the first order case. Although the properties derived here are true for temporal
coherence, the same arguments can be applied to the study of transverse coherence, leading to the same
results.

2.2 Spatial and Temporal coherence
For a physical beam, the propagation of a spatially extended wavefront requires to introduce two quantit-
ies, namely the coherence length lc and the coherence time τc that characterize respectively the space and
time scale at which the interference is observed. These quantities are usually expressed as a function of
the source bandwidth ∆ω and, in particular, lc = c/∆ω and τc = lc/c = 1/∆ω [30–33]. However, the
spatial (or transverse) coherence and the temporal (or longitudinal) coherence, differ significantly since the
temporal coherence is related to the process that generates the light, whereas the spatial coherence is related
to the size of the source. In the limit of point-size sources the light is fully spatially coherent. Finally,
when the electromagnetic field is not simply emitted but also amplified, coherence is no longer an intrinsic
property of the source, but strongly depends on the amplification process.
For a source with a finite dimension to generate transversally coherent radiation, the effective radiation size
and the source’s dimension should match. In this condition, a light source is said to be at diffraction limit.
For instance, this is closed to be realized in fourth generation synchrotron radiation storage ring, where the
electron beam emittances are designed to match the emitted photon beam spot size [35, 36]. During ampli-
fication or with dedicated tools (when available), transverse coherence can be improved via mode-selection,
leading to the selection of a single transverse mode.
Temporal coherence and coherence time, on the other hand, are determined by the emission process. The
thermodynamic and statistical behaviors of the emitters are imprinted into field’s phase and intensity. Ana-
lysis of longitudinal coherence, therefore, can be considered as a probe of the mechanism of light emission
[37]. For this reason, longitudinal coherence cannot be achieved by any form of mode selection, even when
the gain spectrum of the amplification is narrowed. In fact, according to the Wiener-Khintchine theorem
[38], spectral density F (ω) and first-order correlation function are related by

F (ω) =
1

π
Re
[
F [γ(1)(τ)]

]
=

1

π
Re

[∫ ∞
0

γ(1)(τ)eiωτdτ

]
. (2.14)

Narrower spectra correspond to the tendency towards first-order longitudinally coherent pulse with longer
coherence time. However, as we have seen before, the proximity or the achievement of phase stability is
not enough to ensure longitudinal coherence. This is exactly what a high-order degree of coherence can
discriminate. If a process that controls intensity fluctuations of the field existed, it would be the mandatory
step to reach temporal coherence. In some sense, harmonic conversion is the closest mechanism to such an
ideal process.
Finally, despite their differences, longitudinal and transverse coherence are not completely independent
from each other. In particular, a finite size source will affect the longitudinal and transversal coherence in
an intertwined way difficult to be disentangled in the interference pattern.
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2.3 Classical fields
In this section we present two paradigmatic examples of classical light, computing their first and second
order correlation functions. We limit ourselves to consider the temporal coherence for simplicity, knowing
that the same formalism can be applied also to transverse coherence.

Monochromatic field A monochromatic unpolarized light is a plane wave of the form

E(r, t) = E0e
i(k·r−ωt) (2.15)

which is completely characterized by its frequency ω and wave vector k = ωk̂/c. Since we are
interest in the temporal coherence, we can drop the spatial dependence of the field and write the
mutual correlation function as

γ(1)(τ) =
〈E∗(t)E(t+ τ)〉√
〈|E(t)|2〉〈|E(t+ τ)|2〉

= e−iωτ (2.16)

and thus |γ(1)(τ)| = 1, meaning that the source is perfectly coherent in time at first order.
The same holds for the second order correlation function and for all the higher order correlation
functions. Starting from the definition of γ(2),

γ(2)(τ) =
〈E∗(t)E∗(t+ τ)E(t+ τ)E(t)〉
〈|E(t)|2〉〈|E(t+ τ)|2〉

= 1 (2.17)

and considering that the numerator is always independent on t hence, the mean value can be factor-
ized. This is a consequence of the constancy of the intensity of a plane wave field. This fact is verified
whenever the electric field of a plane wave is multiplied by its complex conjugate and can be applied
to any power of the electric field. Thanks to this consideration, we can generalize the previous result
to any order n, leading to the condition

γ(n)(τ) = 1, ∀n > 1 (2.18)

Monochromatic light is coherent at each order both in time and space. This is sometimes referred as
the Glauber necessary conditions for complete coherence [39].

Chaotic light Let us consider a field

E(r, t) = E0e
i(k·r−ωt)eiφ(t/τ0) (2.19)

where φ(t/τ0) is an additional phase introduced to take into account the process that generates the
electromagnetic field. Generally speaking, any form of random process that leads to the emission of
light is characterized by a characteristic time τ0. The functional dependence of φ on time must also
depend on this characteristic time. Because of the stochasticity of the radiation process, this type of
light is termed chaotic.
The main feature of chaotic light is the broadening of its spectrum, i.e. the spread in the emission
frequencies. As a matter of fact, for a field like (2.19), its frequency is no longer fixed in time as in
the previous case, but can be defined as

ω0(t) =
i

E(r, t)

∂

∂t
E(r, t) = ω − dφ

dt
= ω − 1

τ0

dφ(u)

du
, (2.20)

where u = t/τ0. If the phase is a constant or is linear in t, this relation simplifies and we retrieve the
case of a monochromatic field. Otherwise, the emission lineshape is always broader.
The first order correlation function for this kind of field is

γ(1)(τ) = e−iωτ
〈

exp

{
i

[
φ

(
t+ τ

τ0

)
− φ

(
t

τ0

)]}〉
. (2.21)

Assuming that φ is a smooth function ∀t then, invoking Lagrange’s theorem,

φ

(
t+ τ

τ0

)
− φ

(
t

τ0

)
=

τ

τ0

dφ(u)

du

∣∣∣∣
u=u0

(2.22)
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where u0 ∈ (t, t + τ)/τ0. Notice that u0 depends on t and has to be defined for each interval. If we
assume that τ/τ0 is small enough such that the choice of u0 is independent from t, the derivative is
no longer t-dependent. As a consequence, the correlation function is equal to

γ(1)(τ) = e−iωτ exp

{
i
τ

τ0

dφ(u)

du

∣∣∣∣
u=u0

}
= eiω0(u0τ0) = eiω0(t0), t0 = u0τ0 (2.23)

showing that the light is still coherent. Of course, this is true only for very small values of τ/τ0 and it
is no longer verified if the delay is larger than the characteristic time. When τ > τ0, the mean value
of the phase in eq. (2.21) tends to zero and so does the modulus of the correlation function. This
means that outside of the temporal window specified by τ0, the field is incoherent. For this reason,
the characteristic time of the random process, τ0, and the coherence time of the field, τc, coincides.
Finally, for τ = 0, |γ(1)(0)| = 1.
A more general expression to characterize the degree of coherence is found assuming only that
τ � τ0, and reads

γ(1)(τ) ≈ e−iωτ 1

T

∫ T

0

exp

{
iτ
dφ(t/τ0)

dt

}
dt. (2.24)

Chaotic light also satisfies a pair of useful relations: the first is

τc =

∫ ∞
−∞

dτ |γ(1)(τ)|2 (2.25)

which becomes a method to determine the coherence time of a source, once the γ(1)(τ) is known; the
second one, instead, is a relation between the first and second order correlation function

|γ(2)(τ)| ≈ 1 + |γ(1)(τ)|. (2.26)

The higher is the number of emitters, the better this approximation becomes [32, 33]. As a con-
sequence, since 0 ≤ |γ(1)(τ)| ≤ 1,

1 ≤ γ(2)(τ) ≤ 2 (2.27)

and, in particular,
γ(2)(0) = 2. (2.28)

2.4 Experimental characterization of FEL coherence
Now that the formalism and properties of coherence of classical fields are established, we can exploit them
to interpret and explain the transverse and temporal coherence properties of an FEL operated in two different
configurations: SASE and externally seeded.
Both configurations can offer almost perfect transverse coherence, showing a single transverse electric
mode near saturation [21], because of the mode-selection that happens during the amplification process.
The fundamental difference between these two schemes lies in their longitudinal coherence: the first, since
it is an FEL process originating from the noise (therefore from the stochasticity) of the electron bunch,
shows a poor temporal coherence and behaves as chaotic light; the second, instead, inherits the longitudinal
coherence from the external laser used to pre-bunch and "synchronize" the electrons, introducing a phase
stability in the emission and showing an higher degree of longitudinal coherence.
The characterization exposed here refers to FERMI FEL-2 line (see Appendix A). For reliable operation at
shorter wavelengths down to the soft-x-ray range, in this line the HGHG scheme has been implemented in
a two-stage configuration, using the emission of the first stage to seed the second one [11].

Transverse Coherence In comparing the degree of transverse coherence of seeded and unseeded free
electron lasers, phase correlation shows comparable values, when the machine is operated at the same
wavelength and with the same electron-beam conditions. What differs significantly is the way in which the
coherence is achieved. While in the former case the transverse coherence is inherited from the seed laser,
in the latter is established due to the transverse mode selection and maximum coherence is reached well
before power saturation [21]. As a matter of fact, during the exponential regime, as the bunch progresses
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along the undulators, higher gain modes dominate until the non-linear regime starts. Transverse coherence
is reached at this point. Of course, as we explained before, having a diffraction-limited electron source is a
necessary condition for transverse coherence [35].
A recent comparison between these operation modes was conducted at FERMI (see Appendix A) [21]. A
performant SASE mode at FERMI is usually obtained by an optical klystron in order to boost the bunch-
ing (self-) generated during the amplification process [40–42]. The externally seeded scheme used in the
comparison is the most common one, called high-gain harmonic generation (HGHG) [2]. In this operation
mode, an optical laser is exploited to modulate the bunch at the fundamental wavelength λseed and its high
order harmonics λn = λseed/n. The energy modulations are converted via dispersion into density mod-
ulations. This is the initial bunching that triggers the FEL process when the electrons are injected in the
radiator, tuned at a specific harmonic λn of the seed laser [10, 11].
To measure the degree of transverse coherence a Young double-slit setup was used. From the interference
pattern, in fact, one can find the transverse coherence length. The total degree of coherence can be expressed
in terms of the ratio between the transverse coherence length and the transverse radiation size in the x plane
at the position of the slits

ζx =
1√

1 + 4/q2
, q =

lcx
σx

(2.29)

where lcx is the coherence length and σx is the FEL spot size. The measurements have been performed by
progressively tuning the radiator sections to the resonant wavelength, and acquiring, for a given number of
active radiator sections, the average output power of around 50 shots and the corresponding interference
patterns from different slit separations [21].
In Fig. 2.1, the gain curve and total degree of transverse coherence are shown. The HGHG mode reach

Figure 2.1: Gain curve (purple) and total degree of transverse coherence ζx (black) (normalized to unity),
as a function of the distance in the second-stage radiator, for (a) HGHG and (b) SASE. Image from [21]

power saturation before the last radiator module and the total degree of transverse coherence is almost con-
stant and saturates before the intensity. Instead, the FEL did not reach power saturation operating in SASE
OK mode and the total degree of transverse coherence reaches maximum value well before intensity satur-
ation. This mismatch in the behavior is a confirmation of the different mechanism that leads to transverse
coherence.
Depending on the slit separation ∆x, the fringe visibility can be written as

|γeff(∆x)| ≡ C(∆x) = exp

{
− (∆x)2

2lcx

}
(2.30)

where we have introduced the effective degree of coherence. The quantitative comparison for HGHG
and SASE in Fig. 2.2, shows that, even if they start from similar values of |γeff(∆x)|, increasing the
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separation between the slits leads to a clear distinction between the effective degree of transverse coherence.
In particular, the HGHG source have higher degree of coherence, thus, a larger coherence length when
compared to SASE.

Figure 2.2: The degree of transverse coherence |γeff | as a function of slit separation, for SASE (blue
circles) and HGHG (red circles) and the fit for Gaussian decay HGHG (red) and SASE (blue) solid lines
providing the transverse coherence lengths. Image from [21]

Longitudinal Coherence "The statistical properties of the light emitted by a seeded FEL differ substan-
tially from those of a SASE FEL source. A SASE FEL has the typical statistics of chaotic light [8, 43],
while it was demonstrated that the harmonic conversion and amplification processes preserve part of the
coherence properties of the seed laser, even at high harmonic orders, and the seeded FEL statistics resemble
those of laser light [19]. As already explained, longitudinal coherence is intrinsic to the emission process:

Figure 2.3: Second-order spectral correlation function γ(2) for 700 eV (1.77 nm) and 530 eV (2.33 nm)
radiation: (a) and (c) shows the whole map defined in Eq. (2.31), while (b) and (d) the mean values of
γ(2) calculated averaging over a very narrow central bandwidth (green dotted line) and over a larger one
(blue solid line). Image from [20]

SASE FELs inherit their thermal behavior from the stochasticity of the electron bunch noise; in seeded
FELs, instead, the bunched part of the electron beam, under the effect of the strong laser field, is organized
in a phase-locked fashion.
Theoretical studies predict that the frequency multiplication process produces phase noise degradation pro-
portional at least to the square of the frequency multiplication factor [44], preventing full coherence with
a HGHG FEL at a very short-wavelength range. To further extend the range toward the water window (up
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Figure 2.4: Measured (markers) and simulated (lines) FEL gain curves at 233 eV (i.e., 5.3 nm) and at 700
eV (i.e., 1.77 nm). The measurements were done by progressively detuning the undulator gap of the second-
stage radiator and by integrating the spectra on two different spectrometers ( one for 233 eV and one for
700 eV) within a narrow bandwidth around the central wavelength. Error bars correspond to the standard
deviation from the mean value calculated over 50 shots. Image from [20]

to the Oxygen K-edge at 530 eV) and the L-edges of the 3d transition metals up to 800 eV, an externally
seeded FEL can be operated in the so-called nonlinear harmonic generation (NHG) regime [20, 45–48].
In this regime, the exponential gain leading to the generation of the harmonic λn drives the bunching, and
consequent emission, at λn/m, where m is an integer.
The natural question is what happens to the light statistics of the nonlinear harmonics emitted at very short
wavelengths by a seeded FEL and what is the second-order degree of coherence of this spectral component
of the emitted light [20]. In the spectral domain, the second-order correlation function corresponds to

γ(2)(λ, λ) =
〈I1(λ)I2(λ)〉
〈I1(λ)〉〈I2(λ)〉

(2.31)

where I(λ) is the spectrum intensity of a single FEL pulse.
We have used the statistics of the spectra acquired at 700 eV and at 530 eV to calculate the normalized
second order correlation function, showing that the high degree of longitudinal coherence, which is imparted
by the seed to the light at λn in the linear regime, extends also to the nonlinear harmonic λn/m. Figure
2.3 reports the γ(2) function calculated for the spectra at 1.77 nm (i.e., 700 eV) and at 2.33 nm (i.e., 530
eV), averaged over a very narrow central bandwidth (∆λ = 3 × 10−4 nm, green line) and a larger one
(∆λ = 1.5 × 10−3 nm, blue line). The value of γ(2)(0) (∼1.16) is almost independent of the bandwidth
chosen and in both cases the measured value is very close to the typical performance obtained at FERMI in
the nominal spectral range (100–4 nm) [19]." From one of my paper [20]
Therefore, the answer to the question is that even in a non-linear process, longitudinal coherence is inherited
from the seed pulse and mostly preserved. Of course, as shown in Figure 2.4, this is verified in the gain
regime explored with our configuration. Higher gain and saturation, in fact, always deteriorate longitudinal
and transverse coherence. The departure from unity can be justified considering the non-negligible presence
of microbunching instability in the electron bunch, as shown in the hotter region for longer wavelengths in
Figs. 2.3.

2.5 Summary
In this chapter, we showed first- and second-order degree of coherence of FELs. A Young’s experiment
has been performed to compare the development of transverse coherence in a SASE and seeded FELs. It
is demonstrated that in the first case, coherence is builded up during the FEL process, while in the latter
the high degree of coherence is inherited from the seed laser pulse. In both cases, the amplification due to
high gain is detrimental for transverse coherence and both configurations can achieve a comparable degree
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of coherence.
We also measured temporal coherence of non-linear harmonics from a seeded FEL via second-order cor-
relation function. With our analysis, we demonstrated that even in the case of non-linear regime of light
emission, longitudinal coherence is transmitted from seeding light to the emitted one and is conserved, as
long as the gain is kept low.
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Chapter 3

Microbunching Instability

As we have anticipated, spurious harmonic content in the beam becomes detrimental for the FEL coher-
ence. It is, indeed, the main source of its deterioration and, on top of that, it is also the cause of a general
worsening of the FEL performance. As matter of fact, modulations and its harmonics that fall inside or near
the FEL gain bandwidth contribute to the formation of pedestal and sidebands, deteriorating in this way the
pulse energy, the bandwidth and its spectral purity [26, 27, 49–51].
In this chapter, the theoretical and experimental aspects of modulations in the electron beam are presen-
ted. The so-called microbunching instability is described from the theoretical point of view, deriving new
models that includes also intra-beam scattering. The mathematical apparatus is then used to predict the
impact on linac and FEL parameters. The results are benchmarked with direct and indirect measurement of
microbunching instability and we propose some novel solutions to counteract the formation of this instabil-
ity based on our formalism. In particular, we present: measurement of the energy spread that testifies the
contribution of both intra-beam scattering and microbunching instability; measurement of FERMI perform-
ance in absence and presence of the instability; the commissioning of a diagnostic station for measuring
microbunching instability at FERMI and a new technique based on 2-D Fourier analysis.
I personally developed the model that I am going to present and the code that has been used in a series of
works dedicated to the estimation of microbunching impact on electrons and FEL dynamics. I partecipated
in the commissioning on the new infrared spectrometer in FERMI, collecting all the data showed here. I
took part in the analysis of the data for the 2-D Fourier analysis.

3.1 Theory
Microbunching instability (MBI) [13, 52] is the combination of collective phenomena that occur during
acceleration, compression and transport of the electron beam and results in the accumulation of broadband
energy and density modulations at micron scale.
The instability arises from a cascade process: the self-fields of the electron bunch enhance and convert
density modulations into energy modulations and viceversa. More precisely, the electron beam is modu-
lated in energy by the electric field generated by density non-uniformities. In the case of straight section,
when the electromagnetic interaction is given by the wake of an electric field, this phenomenon is named
Longitudinal Space Charge (LSC) [53]. When, instead, the interaction is mediated by radiation, the self-
interaction is termed as a function of the emitted light, as for instance Coherent Synchrotron Radiation
(CSR) or Coherent Edge Radiation (CER) [52]. The latter is the case of dispersive section such as magnetic
compressors, collimators and transfer lines. The accumulated energy modulations are therefore enhanced
but also converted into density modulations in non-isochronous sections.

3.1.1 Huang-Kim model
To model the evolution of density modulations along a dispersive section, and, in particular, along the
chicane of a magnetic compressor, we can use the Huang-Kim (HK) formalism [54]. This model relies on
the approximated analytical solution of a Vlasov-Maxwell equation for the bunching factor

b[k(s); s] =
1

N

∫
d ~Xe−ikzf( ~X; s), (3.1)
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defined as the Fourier transform of the phase space distribution f( ~X; s) and treating the MBI as a small
perturbation of an equilibrium distribution f0( ~X; s).
The evolution can be expressed as an integral equation, after linearizing the Vlasov equation in the perturb-
ative regime in the presence of CSR,

b[k(s); s] = b0[k(s); s] +

∫ s

0

dτK(τ, s)b[k(τ); τ ], (3.2)

where the kernel of the equation is

K(τ, s) = ik(s)R56(τ −→ s)
I(τ)Z[k(τ); τ ]

γIA
e−k

2
0U

2(s,τ)σ2
δ/2×

exp

{[
− k2(s)ε0β0

2

(
V (s, τ)− α0

β0
W (s, τ)

)2

− k2(s)ε0
2β0

W 2(s, τ)

]} (3.3)

and where k0 is the modulation wave number at s = 0, k(τ) = B(τ)k0, B(τ) = [1 + hR56(τ)]−1 is the
compression factor, I(τ) = ecn0B(τ) is the peak current at τ , IA is the Alfvén current, Z[k(τ); τ ] is the
CSR impedance and

U(s, τ) = B(s)R56(s)−B(τ)R56(τ), (3.4)
V (s, τ) = B(s)R51(s)−B(τ)R51(τ), (3.5)
W (s, τ) = B(s)R52(s)−B(τ)R52(τ). (3.6)

An approximated analytical solution for the bunching at the end of the chicane can be found by iteration,
neglecting the microbunching induced by energy modulation in the same dipole, i.e. considering staged
amplification from one dipole to another. The problem reduces to the determination of the following terms

b[k(s3); s3] = b0[k(s3); s3] +

∫ Lb

0

ds1K(s1, s3)b[k(s1); s1] +

∫ 2Lb

0

ds2K(s2, s3)b[k(s2); s2]+

+

∫ 2Lb

0

ds2K(s2, s3)

∫ Lb

0

ds1K(s1, s2)b[k(s1); s1]

(3.7)

where sj is the coordinate inside the jth dipole. Transfer functions are

R51(s1) =
s1

ρ0
, R52(s1) =

s2
1

2ρ0
, R56(s1) =

s3
1

6ρ2
0

,

R51(s2) =
Lb − s2

ρ0
, R52(s2) ≈ ∆Ls2

ρ0
, R56(s2) ≈ −∆LLb

ρ2
s2,

R51(s3) = −Lb − s3

ρ0
, R52(s3) ≈ 2∆LLb(s3 − Lb)

ρ0
, R56(s3) ≈ −2∆LL2

b

ρ2
≡ R56

R56(s1 −→ s2) ≈ −∆L

ρ2
(Lb − s1)s2, R56(s2 −→ s3) ≈ −∆L

ρ2
(2Lb − s2)s3,

R56(s1 −→ s3) ≈ −2∆L

ρ2
[(Lb − s1)Lb + s1s3].

(3.8)

In absence of coherent synchrotron radiation (CSR), the bunching degradation is

b0[k(s); s] = b0[k0; 0]e−k
2(s)R2

56(s)σ2
δ(s)/2 exp

{[
− k2(s)ε0β0

2

(
R51(s)− α0

β0
R52(s)

)2

− k2(s)ε0
2β0

R2
52(s)

]}
.

(3.9)
The exponential term coincides with the Fourier transform of the equilibrium distribution evolved along a
dispersive section and is called Landau Damping. As the name suggests, it is a term that encapsulates the
natural suppression of the MBI. This process of de-synchronization that counteracts the amplification of the
instability is originated from the path difference of particles with different energy, momentum and position
in a dispersive section.
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3.1.2 Bosch-Kleman model
The beam harmonic content can be obtained also following the Bosch-Kleman (BK) formalism [55]. Dif-
ferently from the HK model, whose results are derived for magnetic bunch length compressors only, the
BK allows the description of MBI in linear regime along dispersive sections of arbitrary geometry, such
as multi-bend transfer lines. The theory treats a 2-dimensional vector space of longitudinal modulations
of electron bunches in current and energy. All the collective phenomena, namely LSC, CSR and CER,
possibly including the effect of vacuum chamber shielding, are introduced by means of impedances Z(λ)
[56], as a function of the modulation wavelength λ. The contribution to beam modulations are expressed
via matrix multiplication. Although we limit our discussion to LSC, CSR and CER, it is always possible to
add piece-wise other longitudinal collective effects, as long as they can be described by impedances. This
makes the model highly adaptable to any kind of section and to any degree of accuracy in the description of
the beam line.
Given the integrated impedance Zcol(λ) of a specific collective effect along a section of length L, the
corresponding matrix acting on the modulations space is

SL =
1

E(L)

(
E(L) 0

−Zcol(λ)I E(0)

)
(3.10)

where E(z) is the energy value along the section, with 0 < z < L.
When the section is energy-dispersive, the effect of longitudinal Landau Damping can be included through
the following matrix

D =

(
F (λ) ik(λ)R56CF (λ)

iCG(λ)/E CF (λ)− k(λ)R56C
2G(λ)/E

)
(3.11)

where C = (1− hR56)−1 and the functions F and G are

F (λ) =

∫
cos[k(λ)CR56δ/E]f(δ)dδ and G(λ) =

∫
sin[k(λ)CR56δ/E]f(δ)δdδ (3.12)

These quantities embody the suppression of gain due to uncorrelated energy spread and they depend on
the slice energy profile. We considered f(δ) as a normalized Gaussian function with rms energy spread
σE . More precisely, the dynamics of microbunching inside a dispersive region is regulated by the harmonic
content of the slice energy distribution, i.e. by its Fourier transform.

3.1.3 Comparison between models
Since HK and BK are based on the linearization of phase space dynamics, these models agree quite well in
the determination of MBI development along a beamline. Both models are able to determine the spurious
harmonic content, i.e. the bunching factor, the spectral gain of MBI, the energy modulations and the ef-
fective energy spread related to MBI. Linear gain is defined as the ratio between final and initial bunching
factor,

G(k) =
∣∣∣ b[k(s), s]

b0[k(0), 0]

∣∣∣ (3.13)

and, as the name suggests, it defines the enhancement of bunching in the linear regime. For this reason, the
gain for strongly modulated longitudinal phase space cannot be described by this expression. In particular,
while in the HK formalism, the numerator of Eq. (3.13) is given by Eq. (3.7), for the BK formalism, it
corresponds to the upper element of the vector obtained after multiplication by the beamline matrix B [55]

b[k(s), s] = (1, 0)

(
B11 B12

B21 B22

)(
b0[k(0), 0]

0

)
(3.14)

The dominant contribution to the gain in linac driver for FEL is the zeroth-order LSC-induced energy
modulations, converted into density modulations after a dispersive section. This could be no longer verified
for long dispersive sections in which beam and MBI dynamics cannot be treated consistently with a first-
or second-order approach.
Even in the case of two-stage compressions, it is still possible to demonstrate that the best approximation
for linear gain after a single chicane can be written as

G(k) ≈ I

IA

∣∣∣CkR56

∫ L

0

ds
4πZLSC(k, s)

γ(s)Z0

∣∣∣e−C2k2R2
56σ

2
δ/2, (3.15)
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where we can recognize that

p(k, L) = 4π

∫ L

0

b[k(s), s]
I

IA

ZLSC(k, s)

γ(s)Z0
ds (3.16)

are the relative energy modulations accumulated during acceleration along a section of length L. The
expression for the gain is valid whether you are using HK or BK formalism, since CSR and CER have a
negligible effect compared to LSC. In the case of HK this is true even at second order in the CSR impedance.
This means that, generally speaking, for simple transport line (accelerator + bunch length compressor) the
dominant part of the bunching factor is given by the LSC-induced energy microstructures, converted in the
dispersive section.
This expression can be generalized in the case of non-Gaussian equilibrium energy distribution f(p0),
knowing that the damping term is proportional to its Fourier transform [57]

G(k) ≈ I

γIA

∣∣∣CkR56

∫ L

0

ds
4πZLSC(k, s)

Z0

∣∣∣ ∫ dp0f(p0)eiCkR56p0 . (3.17)

Therefore the LSC-induced RMS absolute energy spread is the integral of the modulation amplitude over
the whole spectrum of modulations and we find that [24, 58]

σ2
γ =

2ec

I0

∫
dλ
|G(k)ZLSC(λ)|2

λ2
(3.18)

expressed as an integral over the wavelength λ = 2π/k.
The main difference between these two formalisms relies in the characterization of dispersive section. HK
could in principle be derived for any type of beamline, with a significant effort from the analytical and
numerical points of view. At the moment, only formulas for chicanes have been derived. On the other hand,
BK supplies matrices as building blocks for any combination of dipoles and straight sections and, as long
as the linear regime is valid, can already describe any type of beam transport line.

3.1.4 Suppression of MBI
In equation (3.9) the first exponential term is due to the energy spread of the beam, while the second is
associated to the dispersion invariant H [59]. These two terms are essential for the control of the instability
and, as a matter of fact, they represents two of the most valuable knobs to enhance its damping [26, 60].
Here we show such degrees of freedom are controlled to control MBI gain.

Laser Heater The most adopted solution to damp the gain of instability is the laser heater (LH)[53, 61–
64]. Firstly proposed in [53], it is a section designed to introduce a controlled amount of energy spread
in the beam and suppress microbunching instability. It is designed to exploit the coupling of an infrared
laser pulse and electrons inside of an undulator to introduce energy modulations that are then converted
into an effective energy spread. The most common design is composed of a four-dipole chicane with an
undulator at the center of it [61–64]. It is usually adopted in the low-energy section of the beam line in
order to maximize its effect and it is optimized in order to find a compromise between the suppression of
the instability and FEL performance [62]. As an example, the FERMI laser heater is shown in Fig. 3.1.
To quantify the damping, we can derive the matrix in the case of an energy distribution modulated by a

laser heater.
Following the standard procedure to characterize the interaction of the laser with the electron bunch, the
process can be described as a shaping of the electron energy distribution [61]

ρ(s,∆γ, r) = fl(s,∆γ)×ft(r) =
I

ec
√

2πσγ
exp

{
− [∆γ −∆γLH(r) sin kLHs]

2σγ

}
× 1

2πσ2
x

exp

{(
− r2

2σ2
x

)}
,

(3.19)
where ∆γLH(r) is the amplitude of the modulation induced by the resonant interaction [61]

∆γLH(r) =

√
PL
P0

KLu
γσr

[
J0

(
K2

4 + 2K2

)
− J1

(
K2

4 + 2K2

)]
exp

{(
− r2

4σ2
r

)}
(3.20)
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Figure 3.1: Schematic representation of the laser heater chicane at FERMI. The first pair of dipole magnets
deflects the beam to a line parallel to the linac axis at a distance of 0.03 m from it, coinciding with the
undulator axis. Then the beam is deflected again back to the linac axis by the second pair of magnets.
Image from [62].

∆γ = ∆γLH(0) and, assuming a round beam, we’re using cylindrical coordinates to describe the transverse
part of the distribution. To obtain the energy distribution, it is sufficient to integrate ρ over the spatial
coordinates

f(∆γ) =

∫
ρ(s,∆γ, r)dV =

=
1

πσ2
x

√
2πσγ

∫
rdr exp

{(
− r2

2σ2
x

)}∫
dξ√

∆γLH(r)− (∆γ − ξ)2
exp

{(
− ξ2

2σ2
γ

)}
(3.21)

In the original BK formalism, a simpler expression for F and G is given[55] and the dependence of ρ from
the transverse coordinates is neglected. Here, we derive fully three-dimensional expressions for Landau
damping terms, plugging f(∆γ) in equations (3.11), to obtain

FLH = exp

{(
− 1

2
k(λ)CR56σδ

)}∫
RdR exp

{(
− R2

2

)}
J0

[
k(λ)R56δLH exp

{(
− R2σ2

x

4σ2
r

)}]
(3.22a)

GLH = exp

{(
− 1

2
k(λ)CR56σδ

)}∫
RdR exp

{(
− R2

2

)}
J1

[
k(λ)R56δLH exp

{(
− R2σ2

x

4σ2
r

)}]
.

(3.22b)
These expressions allow to model the superposition of laser and electrons in the BK model and take into
account the finite sizes of both laser spot and bunch transverse dimensions together with their eventual mis-
match. The first expression coincides with the one derived for the HK model [61].

At FERMI, the laser heater is routinely used also with a second purpose: THz-scale modulations at fixed
wavelength can be impressed on the electron bunch by a laser pulse with a tailored longitudinal intensity
profile [65]. In particular, the laser heater temporal profile is firstly chirped, introducing a phase factor φa
in the electric field proportional to [65]

φa = πat2 (3.23)

where a is the linear chirp coefficient. The pulse is then splitted in an interferometer with adjustable delay
τ . The recombination of the two pulse results in a chirped-pulse beating [66]. The frequency of this pulse
is linear in the delay introduced in one of the two arms of the interferometer between splitted pulses [65]

ωbeat = aτ. (3.24)

At the exit of the LH chicane, the modulated energy spread resulting from the interaction in the undulator
is partially converted into density modulation, leading to a seeded microbunching in the whole longitudinal
phase space.
Finally, a third configuration has been recently developed. In this configuration, the LH pulse is shortened to
reach few ps of duration, shorter enough to heat significantly only a portion of the whole electron bunch. The
local heating spoils a reduced portion of the electron longitudinal phase space, leaving the rest unperturbed.
In this way, one can correlate the local properties of the bunch with any signal correlated to the longitudinal
phase space.
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Optics Linear gain theory of MBI is independent from the initial condition, meaning that, independently
from the initial condition, the gain function for a beam-line can be determined using either HK or BK form-
alism. The latter is clearly more versatile for long dispersive sections, multi-bend and energy-dispersive
switchyards. For this reason, it can be applied to RF linac-based accelerators, laser- and beam-driven
plasma accelerators [25], which typically adopted a switchyard to install energy collimators to protect the
undulator or to serve multiple photon beamlines [67–72].

Some differences in the initial condition of the electron beam transported along a switchyard, however,

Table 3.1: Electron Beam Parameters

Parameters Values

Charge 30 pC
Energy 1, 5 GeV
Peak Current 3kA
Bunch Duration (rms) 4 fs
Slice energy spread (rms) 10-300 keV
Normalized emittance(rms) 0.3 µm rad

Figure 3.2: From left to right are the final energy modulation, bunching factor, and gain as a function of
the initial modulation wavelength λ0. For the longitudinal transport matrix term R56 = −2.5 mm (top),
R56 = 0 (middle), and R56 = 2.5 mm (bottom), respectively. We note the different scales used for the
three cases. Image from [25]
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need some clarifications. With respect to high-brightness beams driven by radio-frequency (RF) accelerat-
ors, the initial condition change significantly and it is important to point them out.
Firstly, because plasma acceleration provides high peak current bunches (≥ 1 A), the electron beam does
not undergo the longitudinal beam gymnastics that usually includes bunch length compression and linear-
ization. Secondly, in plasma-based accelerators the effect of the LSC is basically limited to the switchyard
path length because the beam energy is already suitable for lasing in soft X-rays (e.g., 1 GeV or more). The
total length of the multi-bend transport lines is of order of tens of meters for the aforementioned energies.
On the contrary, to reach the undulator in RF linacs, LSC force is the dominant collective effect during
the whole acceleration, which is a path tipically from 0.1 to 3 km for final beam energies in the range of
1-17 GeV [73]. Thirdly, the longitudinal phase space generated by plasma accelerators usually shows large
relative slice energy spread (SES) values in the range of approximately 0.1-1% [74–77], which tends to
dampen the MBI by virtue of Landau energy damping before any amplification builds up, as shown in the
next paragraphs.
In summary, the spurious modulations at the entrance of a switchyard after a plasma accelerator are signi-
ficantly weaker compared to RF linacs.
Despite these facts, however, other factors could heavily affect the development of MBI. In primis, the beam
charge density in plasma accelerators can still be very high, meaning that collective effects are generally
stronger. Moreover, schemes for the reduction of the slice energy spread at the entrance of the undulator
are being pursued to achieve more efficient lasing [78–82]. Since the MBI gain is heavily reduced by the
relative energy spread and it is linear in the bunch peak current, the growth of the instability also in the
switchyard line downstream of a plasma accelerator could become relevant.
Because of the uncertainty of the uncorrelated energy spread at the exit of the plasma cells, which may
strongly depend on the details of the scheme adopted for beam generation and acceleration, we will con-
sider this as a variable. Thus, MBI in the switchyard could be analyzed as a function of the momentum
compaction or longitudinal transport matrix term (R56) of the line, while for the initial uncorrelated energy
spread σE,i in the range of 10-300 keV, beam energies of 1 and 5 GeV are considered. Given these ranges
of parameters, our findings allow to infer the dominant physical mechanisms behind the development of the
instability and establish some regimes, based on the smaller or larger values of the energy spread. Paramet-
ers used for the calculations are shown in Table 3.1.
There are two figures of merit that can be used to evaluate the efficiency of the transport line: the gain peak

Figure 3.3: The calculated final slice energy spread vs. initial slice energy spread for three switchyard
optics (see Table 3.2). Image from [25]

of the instability and the effective final energy spread. Based on these parameters, we can provide analytical
prescriptions for the terms of the first-order transport matrix of the switchyard. These in turn are necessary
conditions—although are not sufficient—for the preservation of the bend plane emittance in the presence
of CSR kicks and longitudinal emittance (Liouvillian behavior). The semi-analytical estimation of the MBI
through the switchyard indicates that the isochronous optics is preferable, since it minimizes the instability
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with respect to both positive and negative momentum compaction. The reduction in the peak gain and peak
energy modulation amplitude is up to 10-fold (see Fig. 3.2). However, the isochronous optics blue-shifts
the maximum gain at sub-µm wavelengths, which could still interfere with lasing at < 1 nm.
Considering the comparison of the final SES in Fig. 3.3, we find that the optics associated with a larger gain,
i.e., non-zero R56, show a non-linear trend of MBI for σE,i < 60 keV, which is a signature of the phase
space dominated by the instability. At larger values of σE,i < 60 keV, the dependence becomes linear,
which reflects the preservation of the longitudinal emittance, i.e., the instability is largely mitigated or sup-
pressed. On the contrary, the isochronous optics shows MBI as being almost independent from σE,i < 60
keV for small values of this parameter (i.e., the non-linear dependence is strongly suppressed), while a
linear dependence still exists for larger values. At a minimum value of σE,i ≈ 30 keV, the instability level
is already largely mitigated.
A similar result is obtained for σE,i > 70 keV for the non-isochronous optics. The final slice energy spread
(SES) is partly reduced by a negative R56 value with respect to the positive value (see Table 3.2), which
indicates a contribution of LSC to the total gain. Regardless, the isochronous optics give a 10-fold smaller
SES value.

Table 3.2: Numerical Results for MBI Peak Gain and Final Energy Spread

R56R56R56 [mm] Peak Gain σMBIσMBIσMBI [keV]

+2.5 407 928
0 38 64
-2.5 281 565

3.2 Intra-beam scattering
Intrabeam scattering (IBS) is the multiple small-angle Coulomb scattering of charged particles in acceler-
ators. It can drive the growth in time of transverse emittance and uncorrelated energy spread, proportional
to the beam charge density. IBS can be pictured as a diffusion process in the phase space, where collisions
lead the distribution towards a spherical shape in the beam reference frame and redistribute the momenta of
electrons. Since Landau damping is strongly dependent on the beam energy spread, IBS plays a pivotal role
in the reduction of MBI and is, therefore, a crucial effect that has to be included in calculations [24, 83].
The novelty in our treatment is the analytic evaluation of the IBS cutoff: in a plasma-like environment such
as the accelerated electron bunches, light could be considered as a massive particle, hence characterized by
a finite range and a Yukawa potential. This effective mass is a function of the electron beam spatial and
temporal structure and is changing as the beam is compressed or accelerated. It has been demonstrated that
this mechanism could impact significantly the development of IBS-induced energy spread. [24, 83]
Historically, there are two consistent approaches to characterize the growth rate of transverse and longitud-
inal emittances. The first one, due to Piwinski [84], is based on Analytical Mechanics; the second one, due
to Bjorken and Mtingwa [85], is based on Quantum Field Theory. These formalisms coincide in the high
energy approximation [86]. The relevance of this effect to the development of storage rings has recently
been recognized with the Wilson Prize to A. Piwinski, J. D. Bjorken and S. K. Mtingwa [87]. Because
of the computational expense required to implement the full theory in particle tracking codes, high energy
approximations have been derived [88–90].
We start from the Vlasov equation for f( ~X; s), this time including the collision term (Boltzmann equation)
in the Fokker-Planck approximation,

∂f( ~X; s)

∂s
+ {f( ~X; s), H} =

(
∂f( ~X; s)

∂s

)
c

, (3.25)

where the last term represents the effect of collisions. This expression is obtained as a small-angle expansion
of the Boltzmann collisional term and is equal to(

∂f( ~X; s)

∂s

)
c

= −
∑
i

∂

∂pi
(f( ~X; s)Di) +

1

2

∑
i,j

∂2

∂pi∂pj
(f( ~X; s)Dij) (3.26)
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The first term is a drift and the second is a diffusion process, whose coefficients, Di and Dij are written in
term of the Rosenblath potentials [91]. IBS growth rate found by [85] can be recovered taking the second
order momenta of (3.25) when f( ~X; s) is assumed to be equal to the zeroth order Gaussian f0( ~X; s). There-
fore, the dynamics described by IBS is the exchange of longitudinal and transverse momenta of particles,
resulting in a diffusion process in the phase space. In other words, it is a relaxation in the momentum dis-
tribution to a spherical shape in the beam reference frame, acting on both emittance and energy spread.
In the framework of linac-driven FELs and as discussed in previous chapter, we are particularly interested
to the growth rate of the relative energy spread, described by the differential equation [86]:

1

τδ
=

1

σδ

dσδ
dt

=
cr2
eNe[log ]σH

16γ2(εnxσx)1/2(εnyσy)1/2σzσ3
δ

g

[(
βxεny
βyεnx

)1/2]
, (3.27)

where c is the speed of light, re is the classical electron radius, Ne is the number of electrons, σδ = σE/E,
γ = E/mc2, εn is the normalized emittance, σx,y are the beam’s rms sizes, βx,y are the betatron functions,
σz is the bunch length,

1

σ2
H

=
1

σ2
δ

+
γHx
εnx

+
γHy
εny

, Hx,y =

[
η2
x,y +

(
βx,yη

′
x,y − 1

2β
′
x,yηx,y

)2]
βx,y

(3.28)

in which η is the dispersion lattice function, and finally

g(x) =
4
√
x

π

∫ ∞
0

y2dy√
(1 + y2)(x2 + y2)

(
1

1 + y2
+

1

x2 + y2

)
(3.29)

Both the Piwinski [84] and Bjorken-Mtingwa [85] theory includes the so-called Coulomb logarithm:

[log ] = ln

(
bmax
bmin

)
≈ ln

(
θmax
θmin

)
(3.30)

with bmax and bmin the maximum and minimum impact parameter of IBS scattering events, θmax and
θmin the maximum and minimum scattering angle. Equation (3.30) inherits the logarithmic behavior from
the phase space divergence in the presence of long-range interactions; the divergence can be avoided by
imposing a cutoff. This procedure is mandatory not only to normalize the integration in the phase space,
but also to discard hard scattering events, which may heavily bias IBS contributions in the bunch core [28].
The minimum scattering angle is usually chosen in terms of Debye length or beam size. The lower limit is
taken to be

θmin ≈
2rem

2c2

bmaxp2
=

2re
σxβ̄2

(3.31)

choosing bmax = σx, (see [24]), and p is the momentum in the C.o.M. system. We propose a new estimate
for the maximum scattering angle [24], inspired to the strategy proposed for synchrotrons [92]. The upper
limit is given in terms of the momentum transfer in the collision, q, calculated as the boundary beyond which
the integrated scattering rate matches a characteristic time τ . In the absence of equilibrium conditions, as
they commonly happen to be in a storage ring, τ becomes here the time the beam takes to travel along the
accelerator.
We start from [92]

q2
max =

cτNer
2
e

2πγ2εxεyσzσδ

∫ ∞
0

dx√
x4 + ux3 + vx2 + wx

(3.32)

where the relation between q and θ is [84]

q =
β̄

2
sin

(
θ

2

)
≈ β̄θ, (3.33)
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and β̄ is the average normalized velocity in the C.o.M. system and the coefficients u, v and w are [92]

u = γ2

(
γHx
εnx

+
1

σ2
δ

+
βx
γεnx

+
βy
γεny

)
(3.34)

v = γ2

(
γ2Hxβy
εnxεny

+
βxβy
εnxεny

+
γβx
εnxσ

2
δ

+
γβy
εnyσ

2
δ

+
γ2η2

x

εnx

)
(3.35)

w = γ2

(
γ3η2

xβy
ε2nxεny

+
γ2βxβy
εnxεnyσ

2
δ

)
, (3.36)

For a round (εx = εy , βx = βy) and ultra-relativistic electron beam in a straight section, the polynomial’s
coefficients reduce to:

u =
γ2

σ2
δ

, v = 2
βx
εn

γ3

σ2
δ

= 2
βxγ

εn
u = 2χu, w =

β2
x

ε2n

γ4

σ2
δ

= χ2u (3.37)

and the integral can be rewritten in the simpler form

I =

∫ ∞
0

dx
√
x
√
x3 + u(x+ χ)2

. (3.38)

We now apply a change of variable of the form x = χ/(z − 1), we get

I =
1

χ

1√
δ

∫ ∞
1

dz√
z3 − z2 + 1/δ

, (3.39)

where δ = u/χ = γεn/βxσ
2
δ . We note that in high brightness electron beams, and even for multi-GeV

beam energies, δ is a small quantity, of the order of 105-106. This allows us to take into account only terms
of the order of O(1/

√
δ). We therefore rewrite eq. (3.32) as:

q2
max u

cτNer
2
e

2γ3/2ε
3/2
n σz

√
βx
. (3.40)

The mean value of the electron velocity in the C.o.M. frame is β̄ = γσx′√
2

[24]. This is substituted in the
expression for the angles in (3.30), getting

log

(
θmax
θmin

)
= log

(
qmaxσxβ̄

2re

)
= log

(
qmaxεn

2
√

2re

)
. (3.41)

Differently from our first estimation [24], we can conclude that, at first order in δ, the Coulomb logarithm
does not depend on σδ , but it does depend upon γ. The implication of our new findings compared to our
first estimates are illustrated and discussed below.
For an ultra-relativistic beam in a dispersive section, instead [92],

u =
γ2

σ2
H

, v =
γ2βy
σ2
Hεny

+
γ2σ̃2

x

σ2ε2nx
= αu+ ζ, w =

γ2βyσ̃
2
x

σ2ε2nxεny
= αζ (3.42)

Again, the integral can be rewritten in the simpler form

I =

∫ ∞
0

dx
√
x
√
x3 + (ux+ β)(x+ α)

. (3.43)

Since αu/ζ ≈ 1 and defining the coefficient ω = ζ/α2, we obtain

1

α

∫ ∞
0

dy√
1 + ωy(y + 1)2

=
1

α
√
ω

∫ ∞
1

dz√
1/ω + z3 − z2

∝ 1

α
√
ω

=
1√
αu

(3.44)

Notice that α plays the role of χ in the non-dispersive case, but now u depends on σH . As a consequence,
the Coulomb logarithm has the same formal expression of the non-dispersive case, but now qmax is the
expression (3.32) times the ratio σH/σδ .
Again, it is important to underline that these integrals at first order in δ are analytically exact, differently
from the numerical one used so far [24]. On top of the higher precision reached in the determination of
the Coulomb logarithm, which was still ambiguous in dispersive regions, its functional dependence on the
beam energy and from the energy spread is now explicit, leading to new expressions for the induced energy
spread.
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3.2.1 IBS-induced energy spread
With the proposed expression for the Coulomb logarithm in equation (3.41), we can proceed and solve
equation (3.27). We discriminate two cases: dispersive section at constant energy and straight (or non-
dispersive) section, in the presence or absence of acceleration. In the latter configuration, the beam energy
is assumed to grow linearly along the section with a null dispersion (Hx,y = 0) and a gradient G =
[E(L)− E(0)]/L, i.e.

dγ =
G

mc2
cdt =

G

mc2
ds (3.45)

Straight section with varying energy

For the moment, we simplify the math by assuming a round beam. Thus, the function in (3.29) becomes
g(1) = 2 and the growth rate differential equation is simplified:

1

τδ
=

cr2
eNe[log ](γ)

8γ2εnσx(γ)σzσ2
δ

(3.46)

where we make explicit the dependence on γ of the terms. In addition to IBS growth rate, we take into
account the growth rate term associated to acceleration 1/τacc. This quantity can be derived imposing that
the absolute energy spread does not change during acceleration:

dσγ
ds

=
d

ds
(γσδ) = σδ

dγ

ds
+ γ

dσδ
ds

= 0. (3.47)

The right-hand side of the equation (3.47), using (3.45), implies that

1

σδ

dσδ
ds

=
G

mc2τacc
= − G

mc2γ
(3.48)

or, equivalently,
1

σδ

dσδ
dγ

=
1

τacc
= − 1

γ
(3.49)

Combination of equations (3.27) and (3.49) can be recast in the following form

dσ2
δ

dγ
=

2σ2
δ

τacc
+
reNemc

2[log ](γ)

4Gγ2εnσx(γ)σz
= −2σ2

δ

γ
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[log ](γ)

γ3/2
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reNemc
2

4Gε
3/2
n β

1/2
x σz

. (3.50)

The solution is

σ2
δ (γ) = σ2

δ (γ0)
γ2

0

γ
+

1

γ2

∫ γ

γ0

g(γ′)γ′2dγ′ and g(x) =
k[log ](x)

x3/2
. (3.51)

Straight section with constant energy

In this case the separation of variables is immediate, leading to

σ2
δ (s)− σ2

δ (0) =
reNe[log ]s

4γ3/2ε
3/2
n β

1/2
x σz

. (3.52)

This expression can also be derived by looking at certain limits of the previous solutions. In fact, this results
coincides with the first case, if dγ tend to zero, since the ratio dγ/G reduces to L/mc2.

Dispersive section

The differential equation to be solved has the form:

dσ2
δ

ds
=
a log

(
bσHσδ

)√
hσ2

δ + 1
with a =

r2
eNe

4γ2εnσxσz
, b =

√
cτa

εn
2re

, h =
γHx
εn

. (3.53)
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The equation can be integrated separating the variables,∫ √
hσ2

δ + 1dσ2
δ

log

(
b√

hσ2
δ+1

) =
2b3

h

{
Ei

[
3 log

(√
hσδ(0) + 1

b

)]
− Ei

[
3 log

(√
hσδ(s) + 1

b

)]}
= as (3.54)

in which Ei stands for the exponential integral [93].
In order to find the value of σδ(s)2, we need to find numerically the zero of the function F , written as

F (x) =
2b3

h

{
Ei

[
3 log

(√
hx0 + 1

b

)]
− Ei

[
3 log

(√
hx+ 1

b

)]}
− as (3.55)

If we take the limit for h that tends to zero, equation (3.55) coincide with (3.52).

3.2.2 Interplay between MBI and IBS
IBS and MBI both affect and are affected by the bunch phase space distribution and can be coupled using
Vlasov-Maxwell equations. The main interplay between them is given by the inclusion of IBS-induced
uncorrelated energy spread in the MBI model, which substantially modifies the instability gain through
energy Landau damping [24]. In doing so, we still consider only the effect of IBS on the zeroth order
term of the energy distribution f( ~X; s) in (3.25), assumed to be a diffusive process in the longitudinal
momentum space. According to a recent numerical analysis [94], we can in fact discard higher order effects
on microbunching instability (MBI).
More quantitatively, we can derive the conditions under which energy spread growth due to intrabeam
scattering can or cannot be neglected when considering the evolution of microbunching instability in a
magnetic bunch length compressor. Considering that in the BK model the energy distribution and the
bunching factor are updated step-wisely, by discretizing the curvilinear coordinate along the simulated
beamline, this model is not able to fully couple the dynamics of MBI, as instead permitted by massive
numerical calculations by Vlasov solvers. To give a quantitative answer, we look at the microbunching gain
as defined in HK model. The only situation in which the IBS has an impact on the microbunching gain is
for the initial bunching and energy modulations, whose Landau damping term is equal to

exp

{(
− σ̄2

δ (sf )

2(1 + hR56)2

)}
with σ̄2

δ (sf ) = k0R56(σ2
δ (0) + σ2

δ,IBS). (3.56)

Although limited to only two of the numerous terms coming from the staged amplification used to determine
the MBI growth, it affects the dominant contribution, as explained before.
The contribution from the first dipole, considering that the dominant part of the damping is due to the term
proportional to R51(s1) in equation (3.9), is∫ Lb

0

ds1K(s1, s3)b[k(s1); s1] =

√
πAĪf
2σ̄x

exp

{(
− σ̄2

δ (0)

2(1 + hR56)2
+D2

)}
×

×
[
erf

(
σ̄x +D

)
− erf

(
D

)]
b0[k0; 0] (3.57)

where we have assumed for simplicity that

σδ(s) ≈ σδ(0) + a log (b)s = σδ(0) +As (3.58)

and we have introduced the new quantity D

D =
Lbk

2
0R

2
56B(sf )2A

2σ̄x
. (3.59)

D quantifies the contribution of growing energy spread. The possibility to ignore the IBS effect translate to
D � 1, or

λ0 � λcrit =
πLbR

2
56B(sf )2A

2
√
ε0β0ν

(3.60)
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where ν is the chicane bending angle.
We now recall the H(t) function and rewrite it with the inclusion of terms describing the IBS effect. The
evaluation of the modified H(t) allows us to quantify the relevance of those terms to the overall dynamics.

H(t) = exp

{[
− σ̄2

x

(1− 2t+ α0φt)
2 + φ2t2

(1 + hR56t)2
− σ̄δ(t)

2(1 + hR56t)2

(
t2 +

(1− t)2

(1 + hR56)2

)]}
(3.61)

in which φ = 2∆L/β0.
IBS contributes with terms at first, second and third order in t in the numerator. We keep only the first two,
accordingly to the assumptions of the model. The expression for the added contributions is

exp

[
Lbk

2
0R

2
56B(f)2A

2(1 + hR56t)2
t(1− 2t)

]
= exp

{[
σ̄xD

π(1 + hR56t)2
t(1− 2t)

]}
(3.62)

and we therefore find that IBS is negligible when:

|LbR2
56B(f)2A| � |4εβθ2

chicane(α0φ− 2)| and |LbC2R2
56A| � |εβθ2

chicane[4(α0φ− 2)2 + φ2]|,
(3.63)

for the linear and quadratic term respectively. However, the first condition is sufficient since it implies also
the second one. So, rewritten in terms of λcrit, the first condition becomes

σ̄xλ0 �
λcrit

2|α0φ− 2|
. (3.64)

Again, condition (3.60) is stronger than condition (3.64), demonstrating that the IBS can be neglected for
these terms. For instance, at the FERMI first magnetic bunch compressor (BC1), the value of λcrit is in
a range between 10−8 and 10−9 m. Therefore, since the FEL process is affected by modulations at the
micron scale, we are legitimized to neglect all the contributions.

3.3 Experimental characterization of MBI
There are several direct and indirect indications of the presence of microbunching instability along the linac
and downstream. In what follows we recollected some of the direct techniques used to characterize the
development of MBI and benchmark our models.

3.3.1 Energy spread measurement
"As we have demonstrated, the IBS-induced energy spread modifies the exponential term of the MBI gain,
which physically represents energy Landau damping. In doing so, the gain at successive compression stages
is diminished, with an overall mitigation of the instability. In this section is shown that in configurations
of relatively high gain, neglecting the IBS contribution to σδ can lead to unrealistic predictions of the
gain, of the energy modulation and, in particular, of the final SES (slice energy spread). In this systematic
comparison of the SES after the bunch compressor predicted by the model and the experimental data is the
observable

σδ =
√
Cσ2

0 + σ2
IBS + σ2

γ (3.65)

where C is the compression factor, σ0 is the initial energy spread, σIBS is the IBS induced energy spread
and σγ is the MBI-related effective energy spread. The former has been introduced in this chapter, while
the other have been defined in the previous chapter and sections.

Diagnostic tools

Table 3.3 lists the main parameters of the experiment carried out at the FERMI facility and used in the
model. The beam longitudinal phase space was measured at the diagnostic beam dump (DBD) station [95].
The DBD layout is shown in Appendix A.
Beam optics were matched in the DBD region in order to optimize the temporal and the energy resolution
at the screen. The systematic error to the deviation of the measured SES from the effective value is due to
the screen pixel size, to the beam non-zero vertical emittance εy , and to the VRFD-induced energy spread.
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Table 3.3: Electron Beam and Machine Parameters

Bunch parameters 100 pC 650 pC units

Initial peak current 18 60 A
Initial beam energy 96 96 A
Beam energy at BC1 ∼290 ∼290 MeV
Beam energy at BC2 424-740 610 MeV
Final beam energy 713-754 900 MeV
R56 in BC1 -35,-42 -42 mm
R56 in BC2 0,-35 0 mm
Compression factor 31-45 11-19
Normalized emittance 0.4 1.3 µm mrad
〈βx,y〉 along the linac 7-30 7-30 m
Temporal resolution 8-12 8-12 fs
Energy spread resolution 65-85 65-85 keV

The latter is due to the off-axis longitudinal electric field component sampled by deflected particles. Such
spread of longitudinal momentum is correlated with the particle’s vertical position inside the cavity, and
thus with the bunch length. Its rms value relative to the beam mean energy E ≈ p̄z , where p̄z is the beam
central longitudinal momentum and c the speed of light in vacuum, evaluated at σz-distance from the bunch
centroid, is [96]

σδ,VD ≈
eVRF kRF

2p̄zc

√(
eVRF kRFLσz

3p̄zc

)2

+ εyβy,VD (3.66)

Measurements of the beam optics parameters, of the SES vs the deflector RF power attenuation factor, and
the evaluation of the effective peak deflecting voltage, led to the estimated temporal and energy resolutions
in Table 3.3. σδ,VD is the dominant contribution to the energy resolution, where the VRFD length is L = 3.5
m, the operational effective peak voltage and RF wave vector are VRF ≈ 19 MV and kRF = 62.8m−1, and
the average vertical betatron function along the deflector is βy,VD ≈ 25 m.
The experimental values of SES reported in the following are averaged over 20 consecutive images collected
at 10 Hz. At the high charge of 650 pC, a quadratic time-energy correlation appears in the phase space (so-
called nonlinear energy chirp), due to longitudinal wakefields in the accelerator. In this case, the SES is
defined as the minimum value of the energy spread measured along the bunch (i.e., in correspondence of
null time-energy correlation). The associated current profile is usually flat. At the low charge of 100 pC, the
energy chirp is dominated by a linear component. In this case, the SES is defined as the energy spread of the
central slice, and the linear energy chirp is removed in the post-processing. For each slice, the local current
level is also recorded. For most of the recorded images, the SES is calculated as the standard deviation of
a Gaussian, which is used to fit the energy distribution of each temporal slice. In some cases, a better fit is
ensured by a flat top distribution, and the SES is therefore defined as raw RMS value. For all the images,
the temporal duration of the slice is approximately 10 fs.

Initial energy spread

The major uncertainty in our model is the initial value of the uncorrelated energy spread, σE,0, i.e., the
uncorrelated energy spread at the exit of the linac photo-injector. Since its variation at keV level substan-
tially modifies the model prediction, and since there is no direct measurement of σE,0 because of limited
resolution, it has been treated in our model as a fitting parameter. That is, while keeping all other machine
and beam parameters fixed and in adherence to the experimental settings, we scanned the value of σE,0, for
the 100 pC and 650 pC bunch charge, in order to obtain a systematic agreement of the measured and the
predicted SES over all compression schemes and compression factors. This procedure reproduces the final
SES measured in Fig. 3.6b for the fitting value σ0 = 0.9 keV at 100 pC, and σ0 = 2.4 keV at 650 pC.
It is a remarkable result the fact that a single value of σ0 (per injector set up) satisfies all the diverse linac
configurations.
To demonstrate that our fit for σE,0 is the only realistic solution, we conducted two independent checks.

First, we calculated the SES without IBS, by selecting the value of σ0 that, in this unrealistic picture, allows
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Figure 3.4: Left: longitudinal phase space of the 100 pC charge beam at the exit of the FERMI injector,
simulated with GPT. Right: peak current (red) and SES (blue) from GPT tracking. The green horizontal
line represents the semi-analytical model prediction of σ0 = 0.9 keV. Image from [24]

Figure 3.5: Left: longitudinal phase space of the 650 pC charge beam at the exit of the FERMI injector,
simulated with GPT. Right: peak current (red) and SES (blue) from GPT tracking. The green horizontal
line represents the semi-analytical model prediction of σ0 = 2.4 keV. Image from [24]

the predicted SES to collapse onto the measured one. A single value of σ0 cannot be found in order to sat-
isfy all the diverse compression schemes at 100 pC. Also, the values are far from those obtained when IBS
is included in the model: in the absence of IBS, they result in the range 5.5–6.8 keV for 100 pC (vs 0.9 keV
when IBS is included), and around 4.3 keV for 650 pC (vs 2.4 keV when IBS is included). Second, we com-
pared our expectations for σ0 with the SES predicted by particle tracking at the exit of the FERMI injector.
This is shown in Figs. 3.4 and 3.5. Tracking was performed with the 3D GPT code [97], which solves
the particles’ equation of motion starting from the Liénard–Wiechert retarded potentials. This approach
promises an accurate prediction of the initial uncorrelated energy spread, in accordance, for example, with
findings in [98]. However, IBS intended as a stochastic process was not included in the simulations. Still,
the application of our model to the injector section estimates a net IBS-induced energy spread of 0.3 keV
for both bunch charges. This has to be added in quadrature to the 0.9 keV and 2.4 keV assumed so far.
Thus, the correction of IBS in the injector to the effective total energy spread is expected to be negligible.
The simulated longitudinal phase space at the injector exit is also shown in Figs. 3.4 and 3.5. Since our
model assumes the same transverse Gaussian distribution and a constant local beam current in each slice,
we have highlighted the region of the peak current which, in the tracking, corresponds to the modelled cur-
rent level. The superposition of blue data (tracking result) and green line (model) within the red bar region
(modeled slice current) shows that the GPT prediction for σE,0 is in agreement with our fit in the presence
of IBS. In contrast, the aforementioned values of σ0 used in the model without IBS do not match the track-
ing results. Oscillations and much larger values of the simulated SES at lower current regions are due to
higher numerical sampling noise for small number of particles, and residual large energy chirp components
in the phase space.
In summary, our fit for the initial uncorrelated energy spread, as derived from the MBI model with the revis-
ited single pass theory of IBS, is consistent with particle tracking simulations of the injector. An analogous
fit from a model without IBS, is not.
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(a) (b)

Figure 3.6: Left: SES (dots) and peak current (bars) measured at the linac end for the 100 pC beam, for
various compression schemes. The SES is compared with the prediction of the MBI model with (green
squares) and without IBS (blue diamonds). One of the blue points is diminished by a factor 10 for better
visibility. Right: SES measured at the linac end for the 650 pC beam. The SES is compared with the
prediction of the MBI model with (green squares) and without IBS (blue diamonds). The compression is
accomplished with BC1 only, and the compression factor varied through linac RF phases. The peak current
ranges from ∼600 to ∼1100 A. Image from [24]

Final energy spread

Figure 3.6 compares the measured and the predicted SES at the end of the FERMI linac, for different com-
pression schemes at low charge (top), and for single compression but at various compression factors at high
charge (bottom). The laser heater is switched off in all the measurements. The error bars of the measured
data are dominated by the reproducibility of consecutive measurements in the same experimental session.
The error bars on the model predictions are dominated by the uncertainty on the average beam sizes in the
linac (see next subsection).
Figure 3.6 shows that the proposed model is able to capture the physics of the instability, predicting SES

(a) (b) (c)

Figure 3.7: Calculation of the net IBS contribution to the SES (blue bars) accumulated through individual
linac sections (see Appendix A for the labeling) and total SES as contributed by IBS and MBI energy mod-
ulations in the presence of magnetic compression.From top to bottom: BC1-only, BC2-only and BC1+BC2
compression scheme. The bunch charge is 100 pC in each case. Laser Heater is off. Image from [24]

values at the same level as the experimental data. More importantly, it clearly points out the discrepancy
between the predicted and the measured SES in the case that IBS is not included in the model. Figure 5
also shows that the contribution of IBS to the MBI development is larger for higher instability gain, such as
in the BC1 + BC2 scheme, as compared to the single compression cases. In fact, when IBS is not included
in the model, the double compression offers an unrealistically large value of the SES (see Fig. 3.6a, in
which the blue marker is lowered by a factor 10 for better visibility). That is because at large gain, any
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additional although small contribution to σδ enhances the exponential damping in Eq. (3.18) more notably.
Conversely, when the gain is intrinsically low, the effect of additional Landau damping by IBS is less pro-
nounced: the amplification process and therefore the final SES depends more weakly on variations of the
machine configuration such as the compression factor (this is the case of Fig. 3.6b).
For completeness, we show in Fig. 3.7 the prediction of the net contribution from IBS to the SES accumu-
lated along individual linac sections (blue bars), for the three compression schemes studied with the low
charge beam. The total SES (orange bars) is also given, which represents the SES contributed by MBI (Eq.
(3.18)) and IBS (Eq. (3.51), (3.52) and (3.54)), taking into account the compression factor at each chicane.
The height of the final orange bar is the SES reported in Fig. 3.6a (IBS included).
To summarize, for plausible injector longitudinal phase space, it is only with the inclusion of the integrated
effect of IBS along the whole linac that we can reproduce the SES observed at the end of acceleration, for a
wide range of beam parameters and machine configurations, for a single value of σ0 per injector setup, and
in agreement with the σ0 predicted by particle tracking runs.

Sensitivity to laser heater and beam sizes

The validity of the proposed model is now discussed in the presence of two additional effects, laser heater
and large electron beam sizes. This draws on additional experimental results.
Firstly, the model predictions are compared with measured values of the SES in a condition of laser heater
turned on, and at a level such that the MBI is suppressed. In this case, one expects an approximate preserva-
tion of the longitudinal beam emittance (Liouvillian behaviour), and therefore the SES should be inversely
proportional to bunch duration. Figure 3.8 illustrates this situation for the 100 pC bunch charge, compressed
in BC1 over a wide range of compression factors. We observe that, first, the model agrees with the expected
linear dependence of the SES on the compression factor. Secondly, although the impact of IBS on the beam
dynamics is not as significant as in the presence of strong MBI gain, its contribution to the final energy
spread leads to the agreement of experimental and modeled results. By comparing Fig. 3.8 with Fig. 3.6,
we conclude that IBS lowers the final SES by virtue of energy Landau damping when the instability gain is
high. Conversely, it increases the final SES when the instability gain is intrinsically small.
It was mentioned earlier that the major uncertainty in the model is the beam initial energy spread. This

Figure 3.8: SES vs. compression factor, for 100 pC bunch charge and compression in BC1 only. The laser
heater is inducing 6 keV RMS energy spread before compression. Image from [24]

uncertainty has been addressed in the previous section. A second uncertainty may derive from the local vari-
ation of the beam sizes (namely, Twiss parameters) along tens-of-meters-long linac sections. As discussed
in the previous sections, the model assumes average beam sizes, calculated as a function of the transverse
emittances and Twiss functions measured at the injector exit, of experimental quadrupole magnets setting
and accelerating gradients. Optics matching is reinforced at additional locations, i.e., in the BC1 region and
at the linac end. While in most cases the deviation of the beam optics from a matched condition is very
limited, the possibility exists of local large oscillations of the betatron functions, due to either mishandling
of the magnets or inaccurate matching.
To investigate the sensitivity of our model to the beam sizes, we show in figure 8 the predicted SES for the
100 pC bunch charge (with same parameters as in Fig. 3.6a, see also Table 3.3) as a function of the average
betatron function in the low energy part of the FERMI linac. This region is constituted by the laser heater
insertion followed by linac1, for acceleration up to BC1. The beam energy ranges from 96 to approximately
300 MeV, for a total length of 43 m (over a total linac length of 150 m). Single and double compression
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Figure 3.9: SES calculated with the MBI+IBS model vs average betatron function in the low energy region
of the FERMI linac, for the 100 pC bunch charge in single (BC1) and double compression (BC1+BC2).
Image from [24]

schemes are modeled in Fig. 3.9, with no laser heater action. It is seen that the modification to the predicted
SES for a variation of the betatron functions by an unrealistic factor 6 (equivalent to more than doubled
beam sizes, and up to 500µm RMS) is at the level of few tens of keV. This variation in the beam optics
is considered to have a larger effect on the calculated SES than any remaining inaccuracy in the modeling
of the three-dimensional dynamics related to the longitudinal space charge impedance, or in the estimated
impact parameters for the Coulomb logarithm.
In summary, no realistic uncertainty on the actual beam optics could significantly impact the prediction of
the model as depicted in Figures 3.6 and 3.8, nor the discrepancy of predicted and measured values when
IBS is not included." From one of my paper [24]

3.3.2 2-D Fourier analysis

Figure 3.10: Longitudinal phase space of a typical bunch compressed using BC1 only, with the laser heater
switched off. The current profile of the bunch is shown in red, and the slice energy spread is in green. Image
from [22].

As we have seen, micro-bunching instability information are encoded in the one dimensional Fourier-
transformed current profile b[k(s), s]. The inclusion of energy modulations in the description leads to a
formalism that require a bi-dimensional vector space that can be associated with the 2-D Fourier transform
of the whole longitudinal phase space.
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Following HK notation, this modulation factor can be expressed as [22]

b[k(s),m(s), s] =
1

N

∫
d ~Xe−i(kz+mδ)f( ~X; s), (3.67)

where m(s) is the wavenumber associated to the energy modulation. At first order in the perturbation, the
kernel for the MBI evolution remains the same and the dynamics is solely determined by the converted
energy modulation at the frequency m = kCR56 and by the initial condition.
There are, however, additional information that can be retrieved using a 2-D formalism. The addition of a
new axis implies the possibility to consider rotation in the Fourier phase space instead of simple dilation
of the frequency. Rotation of the longitudinal phase space in a bunch compressor, for instance, depends on
the initial phase of the plasma oscillation and the angle of rotation of phase space in the bunch compressor
[60]. In this optics, we are therefore able to map plasma oscillations of the bunch together with the MBI
gain spectrum.
An example of measured beam longitudinal phase space in DBD (see Appendix A) is shown in Fig. 3.10.
Microbunching parameters can be extracted from the 2-D Fourier transform of this image, only after a fil-
tering process: low- and high-frequency peaks in intensity are excluded to limit the region of interest. In
this way, modulations of the order of the bunch length (corresponding to low-order chirps) and artificial
structures coming from the limited screen resolution and noise in the measurements are filtered out. The
axes are then converted from frequency to wavelength and from dimensions of inverse energy space to di-
mensions of energy.
The plasma oscillation phase of a microbunched beam, named θp, can be measured using the 2-D Fourier
transform of the bunch image. θp, in fact, is given by the angle of the satellites in 2-D frequency space with
respect to the central term (see Fig. 3.11). Microbunching in longitudinal coordinate is given for θp = 0, π,

Figure 3.11: Example of 2D microbunching analysis for a bunch compressed using BC1 only, with the
laser heater off. The two satellites located around in the middle plot represent the modulations in intensity
that are visible in (a). (a) Longitudinal phase space. (b) Fourier spectrum of (a) in frequency space. (c)
Zoomed-in Fourier spectrum of (a) in wavelength space (mean of 20 shots). Image from [22].

Table 3.4: Electron Beam and Machine Parameters

Bunch parameters Values

Bunch charge 100 pC
Beam energy 787 MeV
Bunch length (rms) 54 fs
Chicane bending angle 105 mrad
R56 -62.5 mm
Peak current 560 A
Relative energy spread (rms) 0.1%
Linear energy chirp at BC entrance ≈-15.5 m−1

Linear energy chirp at DBD ≈-20 m−1

while microbunching in energy corresponds to θp = π/2, 3π/2. Any intermediate value between these pure
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modulations along one axis indicates that there is some mixing between bunching in energy and in density
(see again Fig. 3.11 as an example). In such cases, simply projecting the bunching along one axis will
present a distorted picture of the microbunching period, which in principle would require two parameters,
namely a radius and an angle in the frequencies space. The distance from the central term gives the period-
icity along both axes. The arctangent of the ratio of these quantities, normalized with respect to the bunch
length and energy spread of the beam, is defined as the normalized plasma oscillation phase.
Figure 3.11 shows an example of 2D microbunching analysis for a bunch compressed using BC1 only. Ma-
chine and beam parameters are specified in Table 3.4.
As mentioned above, manipulation of the longitudinal phase space, such as bunch compression or trans-
port along dispersive sections, can cause shearing and rotation of the satellites. Therefore, any controlled
variation of the beam parameters relevant for MBI (energy spread, charge, current, compression etc..) can
be used as a knob to map the evolution in this 2-D space [22]. As a matter of fact, this technique can be
used also for energy modulation superimposed by manipulating the electron bunch with the LH beating
technique [23].
Figure 3.12 shows a comparison between two measurement of longitudinal phase space with initial beating
frequencies of 1.2 and 2.4 THz in a double compression scheme. Machine and beam parameters are spe-
cified in Table 3.5. Notice that the number of microbunches present in the bunch increases with the beating

Figure 3.12: Single-shot measured longitudinal phase space and Fourier transform averaged over 20 shots.
BC1 and BC2 bending angles are set to 105 and 28.5 mrad, respectively, with initial beating frequencies of
1.2 (a,c) and 2.4 (b,d) THz and an initial laser pulse energy of 3.5 µJ. Image from [23]

frequency. In this case, the beam is compressed twice for a total compression factor of 23. The predicted
final bunching frequency are 1.2× 23 ≈ 30 and 2.4× 23 ≈ 55 THz, respectively.
The separation of the satellites from the dc term varies as a function of the initial modulation, and agree-
ment between the predicted and measured final bunching frequency can clearly be seen. This prediction is
consistent with the 1-D model because, in the case of the double compression scheme, the bunch exhib-
ited a modulation almost entirely in density (considering that θp ≈ 0). Different is the case for the single
compression scheme shown in Fig. 3.11, in which θp has a non-zero value.
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Table 3.5: Electron Beam and Machine Parameters

Bunch parameters Values

Bunch charge 100 pC
Beam energy 780 MeV
Bunch length (rms) 54 fs
Chicane bending angle 105, 28.5 mrad
R56 -62.5, -22.5 mm
Peak current 650 A
Relative energy spread (rms) 0.05%
Linear energy chirp at DBD ≈-1 %m−1

3.3.3 Infrared spectrometer
Experimental setup

The new diagnostics for MBI is installed in the FERMI Undulator Hall, on the FEL2 chain (see Appendix
A). A diagnostics screen equipped via a 1 µm aluminum tensioned is installed at the center of a magnetic
chicane just downstream to the FEL2 first stage. The screen is the source of transition radiation. Because
of the presence of MBI, the radiation is coherent and is the dominant part of the transition radiation. Our
instrument spectral range was chosen on the basis on theoretical works on beam dynamics to be in the range
from 1 to 10 µm and to cover this range a CaF2 prism spectrometer has been used. We installed the two
detectors (PbSe based and a pyrodetector) on two different branches selectable by a remotely controlled
flipper. Each detector is equipped with vertical slit set at about 200 micron to reach a resolution of the
order of 100 nm. They are installed on a motorized translation stage and acquisition of the detector signal
while scanning the translation stage produces a spectrum of coherent transition radiation (CTR) averaged
on multiple bunches. More detail about the setup will be published in the near future.
Generally speaking, the spectrum of the CTR is a function of the whole electron phase space, including the
eventual structures along the transverse section of the bunch. However, the homogeneity and constancy of
the transverse properties of the beam, allows us to consider the CTR as a function of the longitudinal phase
space only and factor out the dependence on the other spatial coordinates. For this reason, we conduct
our studies considering only the dependence on the signal from the longitudinal properties of the bunch
(duration and energy spread). Radiation coming from the whole electron bunch covers a range wider than
that which is expected for MBI, and in principle could propagate co-axially with the interested signal.
In particular, THz emission could have a strong impact on the detected signal. However, because of the
geometry of the setup and the choice of the prism and detectors, the detection involves only the MBI-related
signal.

Shot noise-driven MBI

Along the FERMI linac there are two main dispersive regions, the first bunch length compressor and the
spreader line between the linac end and the Undulator Hall. Every development or enhancement of MBI has
to be traced back to one of the two. In Fig. 3.13a, we characterize the variation in intensity and wavelength
of the natural MBI as a function of the compression. The map is for a 1.3 GeV beam, avoiding the use
of the laser heater. The variation in the compression factor is described by a parameter called PYRO: a
PYRO equal to 1 × 106 translates into a compression factor C = 6 and is approximately linear, meaning
that 2× 106 corresponds to C = 12. This figure already reveals several features about the MBI at FERMI.
Firstly, the fact that the main peak’s wavelength is independent from compression is a strong suggestion that
the dominant contribution that we register has its origin in the dispersive section after the bunch compressor.
The intensity scales linearly withC as shown in Fig. 3.13b, confirming that the mechanism that relies behind
the amplification is related to the current density.
Also the laser heater intensity or, equivalently, the energy spread of the beam was scanned. As expected
from the theory, in Fig. 3.14a an increase in the energy spread enhances the Landau Damping and therefore
reduces the growth of the instability. The optimal setting of heating for the MBI suppression is also
compared with the one that optimizes the FEL performance using the same electron beam. Fig. 3.14b
compares the integrated signal from the infrared spectrometer and the spurious harmonic content in the
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Figure 3.13: On the left: map of the MBI content of the beam at 1.3 GeV, without the use of laser heater.
The variation of the signal is characterized as a function of the compression factor.
On the right: variation of the maximum signal as a function of the compression factor.

(a) (b)

Figure 3.14: On the left: map of the MBI content of the beam at 0.9 GeV with a highly compressed beam
(C > 15). The variation of the signal is characterized as a function of the LH-induced energy spread. The
enhancement of Landau damping exponentially reduces the signal.
On the right: Comparison between the reduction of the sideband of FEL and reduction of the integrated
signal in Fig. 3.14a

FEL spectra, following the technique explained in [26]. FEL-2 was tuned at 13.3 nm, obtained as harmonic
6×3 of a 239.4 nm seed laser. The qualitative similarity between the two trends confirms that, as the laser
heater reduces the MBI, the sideband signal decreases and so does the MBI signal on the spectrometer.
Aside from the standard characterization, corroborated by theory, that can be performed to explore the MBI
mechanism, we want to understand also if it develops uniformly along the bunch or if it is a slice property,
affecting differently some portion of the beam. To do so we exploit the third operational mode of the laser
heater at FERMI, i.e. the short pulse configuration, to investigate the local nature of the instability. As a
matter of fact, it is possible to map the MBI strength along the bunch, correlating the elimination of MBI
with the eventual reduction of the spectrometer signal. A more detailed presentation of this configuration
will be given in a future paper.
Figures 3.15a and 3.15b display the impact of normal and short laser heater: the left figure, at a fixed
delay, demonstrates that MBI signal can be reduced exponentially; the right figure, instead, is a scan of the
temporal delay between electrons and the shortened laser pulse. Despite the fact that the LH is scanned
along the whole bunch, no variation is registered. Reducing only locally the harmonic content of the beam
is not enough to determine a significant reduction of the global signal, meaning that MBI is uniformly
distributed along the whole bunch.
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Figure 3.15: Impact of the LH-induced energy spread in the nominal configuration and a delay scan of
the shortened LH. The map on the left is performed at a fixed delay for the standard LH, showing the
exponential decay of the signal. Passing through this delay with the short pulse, there is no evident impact
of the local heating on the MBI.

Laser Heater seeded MBI

The spectrometer signal was exploited to characterize the MBI content as a function of the main parameters
that affects its dynamics, namely bunch compression and energy spread. To confirm the reliability of the
instrument and the correlation with the density modulations in the beam, we use the laser heater beating
technique [65]. This method allows to artificially introduce a narrow modulation at a desired wavelength,
tuning the delay between two chirped laser pulses inside the undulator section of a laser heater.

The two nearly identical pulses are shown in Fig. 3.16 with the corresponding beating region. These

Figure 3.16: Laser Heater double pulses and beating for a delay of 28 ps. Profiles are fitted from measured
laser profiles. Parameters are reported in Table 3.6.

profiles are simulated, based on the parameters shown in Table 3.6. In our experiment, the delay was
set to 28 ps corresponding to an energy modulation at 38.4 µm. After the magnetic compressor, these
modulations are translated into density modulations and blue-shifted by a factor 1/C. As shown in Fig.
3.17a, it is possible to monitor this dynamics as a function of C for the fundamental wavelength up to the
third harmonic on the spectrometer. From the map we extract the variation of the peak wavelength for
the fundamental and the second harmonic, confirming the linear dependence on the compression factor, as
demonstrated in Fig. 3.17b.
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Figure 3.17: On the left: map of the LH-induced MBI at 38.4 µm (before compression) for a beam at 1.3
GeV as function of the compression factor. The map shows 4 distinctive features, corresponding to the
fundamental (extreme right), second and third harmonic and MBI residual contribution at 1.3 µm.
On the right: retrieval of the compression factor as a function of PYRO signal from the fundamental (blue
line) and the second harmonic (red line).

Table 3.6: Laser Heater Beating parameters

Parameters First Laser Pulse Second Laser Pulse

Duration 9.9 ps 9.5 ps
Chirp −2.59× 1023 m/s2 −2.79× 1023

Bandwidth (FWHM) 5.09 nm 5.26 nm

3.4 Interplay between MBI and FEL
In the next section, the impact of MBI on the performance of seeded FELs is demonstrated theoretically and
experimentally, showing what we called indirect measurements of MBI. Together with the HGHG scheme,
also the EEHG [99] (Echo-enabled Harmonic Generation) is considered.
Firstly we demonstrate how, a MBI-free electron beam could significantly improve the spectral purity and
energy per pulse of an HGHG source, extending its wavelength range down to even higher harmonics.
Then we show how the EEHG scheme is affected by spurious density and energy modulations and how its
brightness can be enhanced by the use of a laser heater or by optimizing the transport along the transfer line
between the linac and the FEL.

3.4.1 HGHG
FERMI experienced the possibility to lase with a MBI-free electron beam. For this reason, we termed it cold
beam, referring to the low energy spread and energy modulation content [27]. "Measurements of the time-
slice energy spread of the electron bunch are routinely performed by using the rf deflector in combination
with the energy spectrometer [95]. As explained before, the measurement resolution depends on several
parameters (beam optics, rf deflecting voltage, beam energy). In the specific case of FERMI, considering
a beam energy in the range 1.0 - 1.5 GeV, the minimum energy spread value that can be resolved is about
100 keV [62]. Since the cold beam produced at FERMI has a slice energy spread well below this value and
an alternative method is necessary to measure this parameter. As FERMI FEL2, FERMI FEL1 too can be
operated in SASE as a high-gain optical klystron [42]. According to [40, 41] the maximum FEL intensity
is obtained when:

R56krσE
E

= 1, (3.68)

where R56 is the momentum compaction of the dispersive section, kr = 2π/λr and λr is FEL output
wavelength. The SASE optical klystron is therefore a diagnostic tool to measure the beam energy spread
that can be calculated from the value of the dispersion corresponding to the maximum FEL intensity.
The modulator and the radiator of FEL-1 were tuned to be resonant at 31.9 nm and the dispersive section
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Figure 3.18: FEL pulse energy at 31.9 nm versus the dispersive section R56, for different values of the laser
heater energy. Inset reports, for comparison, the FEL normalized pulse energy at 32.1 nm versus R56 from
previous experiments [42]. Image from [27]

strength between them has been scanned. Figure 3.18 shows the FEL pulse energy measured as a function of
the dispersive section R56 for different values of the laser heater intensity, and for a beam energy E = 1.32
GeV. In order to have a high SASE intensity we initially compressed the electron beam more than in the
nominal case reaching a peak current Ip ≈ 1.1 kA.
The first indication of a reduced microbunching instability gain and of a low energy spread, is given by
the fact that the best FEL performance, in terms of pulse energy, is obtained in the absence of the laser
heater. This differs from what was observed in the past for a similar FEL configuration (see [42]). On that
occasion, the FEL pulse energy was maximized for a low (but not zero) intensity of the laser heater,with an
R56 value of 75 µm (see vertical dotted line on the inset of Fig. 3.18). In contrast, in the present situation
the maximum FEL pulse energy decreases and shifts toward smaller values of R56 when the laser heater
power is increased. This is a clear indication of a progressive and monotonic growth of the slice energy
spread, without the typical minimum for nonzero heating. Similar measurements have been repeated for
the nominal FERMI compressed beam, Ip ≈ 0.8 kA and for higher compression Ip ≈ 1.3 kA.
Applying Eq. 3.68, σE was retrieved in the mentioned cases and the results are summarized in Fig. 3.19.
For the nominal case (Ip ≈ 0.8 kA), a minimum σE of about 40 keV was measured, a value much lower

Figure 3.19: Measured time-slice energy spread obtained from Eq. (3.68). The error-bars refer to a confid-
ence interval of 68% in evaluating the optimum value of R56. Image from [27]
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than what was usually obtained. Also in the strong compression case (Ip ≈ 1.3 kA), σE is minimized with
the laser heater off. This suggests that no microbunching structures have been amplified along the machine,
at least to a level that affects the energy spread. In terms of energy spread mitigation, the laser heater is
actually not required with this electron beam condition.
As has been reported in the literature [100], the σE parameter is of paramount importance. For a seeded
FEL as FERMI based on the HGHG scheme, in order to be able to lase efficiently at a harmonic h of the
seed laser frequency, the following condition has to be met

σE
E

< δFEL =
1

2

ρ√
1 + h2

(3.69)

where ρ is the FEL parameter, i.e., Pierce parameter [3].
Figure 3.20 shows the maximum tolerable relative energy spread δFEL calculated for FERMI FEL-1, from
40 nm to 10 nm, according to the inequality (3.69) that provides exponential gain. In the past, the FERMI
FEL-1 gain suffered a strong reduction for harmonics (h) larger than 13 − 15, indicating a slice energy
spread of the order of 100-150 keV, in agreement with the past energy spread measurements [10, 42, 62].
A beam slice energy spread of 40 keV fulfills the condition (3.69) up to harmonic 26 (λr = 10 nm),
σE/E < 3× 10−5, for a beam energy of 1.32 GeV.
At FERMI, the LH has been exploited to control periodic structures in the electron beam, in order to gen-

Figure 3.20: The maximum δFEL versus the FEL output wavelength calculated for FERMI FEL1 undulators
tuned in circular and linear polarization, according to Eq. (3.69). The standard FERMI case (σE = 100
keV) and the actual condition (σE = 40 keV) are indicated with horizontal lines, assuming a beam energy
of 1.32 GeV. Image from [27]

erate stable spectral sidebands, i.e., multicolor FEL pulses, or to shift the lasing frequency with respect to
an integer harmonic of the seed [65], but its main application is the suppression of the microbunching in-
stability [62]. The LH is usually considered essential in the optimization of the FEL aiming at maximizing
the FEL intensity while preserving a single mode, Gaussian-shaped, stable from pulse to pulse, radiation
spectrum. The impact of the LH on the FEL performance depends upon several parameters including the
use of bunch compressor and the original content of microbunching structures and their amplification [61].
At FERMI, the absolute advantage provided by the LH, in terms of FEL intensity and spectral purity, has
not been constant over the years, but a small amount of LH energy has been always necessary to optimize
the FEL output. A typical case is represented in Fig. 3.21, where the FEL intensity (first row of Fig. 3.21a)
and the FEL spectrum (second row of Fig. 3.21a) at 22.5 nm (h = 11) are reported as a function of the
LH pulse energy controlled through an optical attenuator. When the LH energy is close to zero, the FEL
presents a multi-spike spectrum and low pulse energy. It is necessary to increase the LH energy to about
1 µJ to get rid of the microbunching instability and maximize the FEL intensity with a “clean” spectrum.
We observed a consistent reduction of the LH energy required to reach such a condition. Figures 3.21b
show the same measurements in the new configuration: the FEL spectrum is a single line without evidence
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Figure 3.21: FEL performance versus laser heater for a standard electron beam in 2018 (left column) and for
the current one (right column). FEL intensity (blue curve) and laser heater intensity (red curve) (first row)
are plotted as a function of the LH attenuator angle. FEL spectra versus LH attenuator angle are reported
in the second row in false color scale (normalized for the maximum intensity value). A few spectra for the
standard case and for the actual case (last row) have been randomly selected for the minimum value of the
LH (≈0.2 µJ). Image from [27]

of microbunching-induced sidebands, and the maximum FEL intensity is obtained at the minimum LH in-
tensity. Apparently, the LH has the effect of increasing the electron slice energy spread and consequently,
reducing the FEL gain and the output intensity. This is consistent with the measurements reported in Fig.
3.19, where the minimum slice energy spread was observed for the LH at zero intensity.
Moreover, even in the case of the LH completely off, as shown in Fig. 3.20, the FEL at 21 nm is charac-

terized by a shot-to-shot power stability of 10% (rms), with a bandwidth of 7 × 10−4 (FWHM) averaged
over 1800 shots. A small fraction of shots (around 10%) have been filtered out as they were associated with
a large jitter of the relative arrival time between seed and electron bunch, as measured by the bunch arrival
monitor [101]. The measured spectral bandwidth corresponds to a Fourier limited pulse duration δ(FEL)

t

of about 45 fs (FWHM). This is in agreement with the expected pulse duration (51 fs) calculated from a
seed pulse of about 100 fs (FWHM) at 260 nm, according to the rule δ(FEL)

t = 7/6× δ(seed)
t /h1/3 , where

h = 12 is the harmonic order [102]. The residual difference may be due to a small chirp of the seed laser
pulse that causes an increase of the time bandwidth product of the FEL pulse. Note also that the scaling
relation with the seed pulse duration represents a rough estimate, since the effective pulse duration depends
on the level of saturation reached by the amplifier. In fact, far away from the saturation the δ(FEL)

t scales
as δ(seed)

t /h1/2. In presence of time-dependent energy modulation along the bunch, the FEL wavelength
output is slightly shifted shot-to-shot according to the temporal jitter between seed and electrons that is
about 50 fs [103]. However, in Fig. 3.22 the shot-to-shot wavelength stability (rms 7 × 10−6) is anyway
two orders of magnitude smaller than the FEL bandwidth, and this is another important signature that the
beam has no microbunching structures.
The use of a cold electron beam (with σE ≈ 40 keV) without microbunching structures at the undulator
entrance provides further advantages. As shown in Fig. 3.19, the low slice energy spread enables the
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Figure 3.22: Characterization of FEL pulses at h = 12 (∼ 21 nm) in linear horizontal polarization. Random
selection of individual spectra and statistical analysis over 1800 shots showing energy per pulse, central
wavelength and rms spectral bandwidth evolution. Few shots (∼10%) have been removed from the analysis
due to very different e-beam parameters. Image from [27]

Figure 3.23: Characterization of FEL pulses at h = 18 (∼ 14 nm) in linear horizontal polarization. Random
selection of individual spectra and statistical analysis over 1800 shots showing energy per pulse, central
wavelength and rms spectral bandwidth evolution. Few shots (∼10%) have been removed from the analysis
due to very different e-beam parameters. Image from [27]

amplification of shorter wavelengths, such as 14 nm (h = 18). FEL operation in this wavelength range
was reported in [104], but with a substantially lower pulse energy, and implementing an harmonic cascade
scheme. In the present conditions, more than 10 µJ per pulse were measured, with a relative (FWHM)
FEL bandwidth of about 6.4 × 10−4, as reported in Fig. 3.23. The measured FEL bandwidth corresponds
to a Fourier limited pulse of about 32 fs (FWHM), in agreement with the aforementioned scaling law that
foresees an FEL pulse duration ranging from 24 fs to 45 fs depending upon the level of saturation. Note
that the data reported in Fig. 3.23 refer to linearly polarized light. More than a factor two of power increase
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is expected in the case of a circularly polarized undulator.
We measured the FEL pulse energy at various wavelengths, in particular from 35 nm (h = 7) down to 10

Figure 3.24: Average energy per pulse (blue dots) measured for FEL1 in circular polarization from h = 7
(∼ 35 nm) down to h = 25 (∼ 10 nm). Error bars correspond to the standard deviation over hundred of
shots. Red line corresponds to the standard guaranteed FERMI FEL1. Image from [27]

nm (h = 25). The measurements down to 20 nm were carried out with the FERMI intensity monitor [105].
At shorter wavelengths, the pulse energy was estimated from the intensity of the spectrometer camera im-
age [106], cross-calibrated with the intensity monitor. An average energy of about 0.5 µJ at 10 nm was
estimated, with shots up to 1.5 µJ. The results are shown in Fig. 3.24. The red continuous line corresponds
to the standard FEL pulse energy. The performances of the FEL with the cold beam significantly exceed
the standard one in the whole range. Moreover, in this configuration we could measure a good signal down
to 10 nm, thus extending the lasing range of FERMI FEL1.
The lower beam energy spread can be also exploited to increase the beam current with a stronger compres-

Figure 3.25: FEL gain curve for an highly compressed beam (∼1.3 kA) at h = 7 (∼ 37 nm) in circular
polarization. (a) FEL energy growth as a function of the number of resonant undulators (blue curve) and
applied tapering (red curve). (b) Normalized spectra along the gain curve. Image from [27]
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sion. We operated the FEL with a bunch compressed by a factor 15 corresponding to a final peak current of
about 1.3 kA. After optimization at h = 7 (i.e., 37 nm) in circular polarization, the FEL intensity reached
several hundreds of µJ. A taper of the final undulators and a careful optimization of the seeding parameters
allowed to measure FEL pulses exceeding 1 mJ for the first time at FERMI. Taking into account the scaling
law already mentioned [102], one can estimate an FEL pulse length of about 60 fs, and therefore an FEL
peak power at 37 nm of about 16 GW. Figure 3.25 reports the FEL amplification (blue line) along the un-
dulator chain, together with the energy offsets corresponding to the undulator taper (red line).
It must be noted that despite the stronger compression, only a small fraction of the bunch charge participates
to lasing in a seeded FEL where the seed pulse is much shorter than the electron bunch. The energy offset
of the resonance of the last radiator was 15 MeV, corresponding to more than 1% of energy loss for the
emitting electrons. Considering a peak current of 1.3 kA and the mentioned energy loss, one can estimate
an FEL peak power of about 20 GW, consistent with the previous estimation. Evolution of the FEL spectra
as a function of the number of undulators is reported in Fig. 3.25. For each undulator setting, spectra are
normalized to the corresponding maximum. This representation of the data allows identification of possible
spectral structures even in case of weak spectra. Despite the very high compression and the fact that the
laser heater was offline, FEL pulses show very stable and narrow spectra, without undesired features. The
small sideband toward longer wavelength is expected to be the result of a combination between resonance
tuning and FEL saturation." From one of my paper [27]

3.4.2 EEHG
"Echo-enabled harmonic generation free-electron lasers (EEHG FELs) is conceived as a seeding method
with excellent high-harmonic conversion efficiency to generate transform-limited radiation pulses down to
soft x rays [99, 107–109]. By utilizing two laser modulations and dispersive sections (DSs), a monochro-
matic (coherent) energy modulation is imprinted on to the relativistic electron beam and transformed to a
high harmonic density modulation (see Fig. 3.26). The beam then enters the undulator radiator where the
density-modulated (bunched) electrons radiate coherently at wavelengths up to ∼ 100 times shorter than
that of the ultraviolet (UV) seeding lasers. With sufficient gain, the radiation can be amplified up to satura-
tion.
While EEHG is predicted to be more robust than other external seeding schemes to energy distortions that
occur upstream, it is also demonstrated that distortions that occur between the EEHG chicanes can signific-
antly impact the FEL spectrum. It is well known, in fact, that energy distortions in the electron beam can
impact the EEHG bunching spectrum and, in particular, incoherent energy modulations [29, 110–112].
In what follows, we examine and compare the measured FEL performance with an analytical model that
includes incoherent modulations in the electron beam longitudinal phase space that develop from the early
beam acceleration process through the final EEHG transformations.

Theoretical background

The evolution of the electron beam longitudinal phase space through the EEHG line in the presence of en-
ergy distortions is described by the following equations [113, 114]

P1 =P +A1(z) sin(ks1z) + ∆p1(z),

z1 =z +B1P1/ks1, (3.70)
P2 =P1 +A2(z1) sin(ks2z1) + ∆p2(z1),

z2 =z1 +B2P2/ks1,

where A1,2(z) = ∆E1,2(z)/σE is the normalized coherent energy modulation from seed lasers, and
B1,2 = ks1R

(1,2)
56 σE/E is the normalized energy dispersion in the chicanes, E is the electron beam mean

energy and σE is the RMS slice energy spread, and ∆p1,2(z) the energy distortions of the electron beam
distribution.
In this description, ∆p1 represents any energy structure accumulated in the electron beam up to the entrance
of the first EEHG chicane B1. ∆p2 is used to capture the integrated effect of CSR from B1 and of LSC in
second modulator. They can be expressed as the superposition of monochromatic modulations of different
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amplitudes [58, 114]:

∆p1,2(z) =

∞∑
µ=0

p1,2(kµ) sin(kµz + φ1µ,2µ), (3.71)

where φ1µ,2µ is a random phase. When the energy distortions ∆p1,2 are ignored and in the assumption of
uniform lasersA1,2(z) = A1,2 (i.e., seed durations much longer than bunch duration), the Fourier transform
of the electron beam density distribution - the so-called bunching factor - can be calculated at the exit of the
second EEHG modulator according to [99]:

b̄n,m(kE) = e−ζ
2
E/2Jn(−ζEA1)Jm(−aEA2B2), (3.72)

where aE = n + mks2/ks1 is the harmonic number with integer numbers n and m. The EEHG wave
number is kE = aEks1, and ζE = nB1 + aEB2. This factor is known to help characterize the EEHG
performance and is optimized approximately at ζE = j′n,1/A1 where j′n,1 is the first root of J ′n.
If the energy distortion ∆p2 and second laser A2 are sufficiently slowly-varying longitudinally that we can
approximate their functional dependence as z1 ≈ z, then the EEHG bunching factor close to the harmonic
peak becomes [114, 115]:

bn,m(k) = e−
1
2

(
ζE+

k−kE
k1s

B
)2 ∫ +∞

−∞
dz f(z)Jm

[
− k

ks1
B2A2(z)

]
×

Jn

[
−
(
ζE +

k − kE
ks1

B

)
A1(z)

]
ei(−ζE∆p1(z)−aEB2∆p2(z)+(k−kE)z), (3.73)

where f(z) is electron beam density distribution function, and B = B1 + B2. In the first two gain lengths
in the radiator (R in Fig.3.26) the intensity of the FEL radiation is estimated to grow like ∝ z2|bn,m(k)|2.
In the limit of negligible slippage the final radiation spectral pulse properties are given by |bn,m(k)|2. Thus,
by virtue of the general expression for the energy modulations given in (3.71), this equation can be used to
quantify the spectral effect of broadband energy modulations induced by MBI on the FEL output.

Bunching Phase

The z-dependent additional bunching phase due to electron beam energy distortions in Eq.(3.73) is:

ψ(z) = −ζE∆p1(z)− aEB2∆p2(z). (3.74)

Figure 3.26: Main components of the EEHG scheme: first modulator (M1), strong first dispersive section
(DS1), second modulator (M2), weaker second dispersive section (DS2). Equations refer to quantities of
the electron beam longitudinal phase space introduced in eq.(3.70). In particular, ∆p1,2 is the incoherent
energy modulation (see Eq. (3.71)) and bµ1,µ2 is the incoherent bunching factor (see Eq. (3.9)). After DS2,
the nano-bunched electron beam travels into the radiator (R) and emits coherent and powerful light pulse.
Image from [29]
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From this, one can obtain the moments of the spectral bunching distribution and gain insight into the relative
magnitude of the contributions from ∆p1,2 [114].
MBI-induced energy modulations accumulated up to the exit of the first modulator, ∆p1, are multiplied by
the small scaling parameter |ζE | . 1. Linear, quadratic, and sinusoidally-shaped initial modulations were
investigated in [113], where it was shown that the smallness of ζE accounts for the insensitivity of the EEHG
bunching spectrum to small initial perturbations. However, as discussed in [114], energy modulations ∆p2

that develop between the EEHG chicanes are multiplied by the much larger factor aEB2 ≈ m/A2 � 1,
and therefore can have a noticeable impact on the final bunching spectrum at high harmonics.
The RMS bandwidth of |bn,m(k)|2 in Eq.(3.73) is σ2

k = σ2
ks + σ2

ψ′ , where σks is the transform-limited

(TL) bandwidth and σψ′2 =
〈

[ψ′ − 〈ψ′〉]2
〉

is the bandwidth due to the nonlinear phase structure, where
brackets denote integration over the z-dependent amplitudes in the integrand in (3.73).
Assuming the bunching longitudinal envelope is determined by the second seed laser and that it is a TL
Gaussian pulse, the relative bandwidth in the case of optimized bunching absent MBI can be approximated
as [115]:

σ̄2
ks =

4σ̄2
ks2

3m4/3
, (3.75)

where σ̄ks2 is the relative bandwidth of the second seed laser.
Inserting Eq. (3.71) for broadband energy distortions into the phase in (3.74), the instantaneous spatial
bunching frequency is kz = kE + ψ′(z), where:

ψ′(z) = −ζE
∞∑
µ=0

p1(kµ) kµ cos(kµz + φ1µ)− aEB2

∞∑
µ=0

p2(kµ) kµ cos(kµz + φ2µ) (3.76)

is the z- derivative of the additional phase. The mean bunching frequency is then 〈kz〉. Thus, 〈ψ′〉 gives
the spectral shift from kE , and σψ′ gives the excess bandwidth due to the distortions. Assuming that the
characteristic MBI wavelengths are small compared the length of the bunching envelope (e.g, kµ � σks)
and that the individual phases φ1,2µ are uncorrelated over µ, bandwidth of |bn,m(k)|2 is therefore:

σ2
k = σ2

ks +

∞∑
µ=0

[
ζ2
E

2
(p1(kµ) kµ)2 +

(aEB2)
2

2
(p2(kµ) kµ)2

]
. (3.77)

Bunching Amplitude

Similarly to the phase, the bunching factor in Eq.(3.73) for generic energy distortions is here specialized for
MBI-induced energy modulations described in Eq.(3.71). It becomes:

bn,m(k) =

∫
χ(z, k) e−i(z(k−kE)+ψ(z))dz

=

∫
dz χ(z, k)

∞∏
µ=0

∞∑
l1=−∞

∞∑
l2==−∞

Jl1 (−ζEp1(kµ)) Jl2 (−aEB2p2(kµ))× (3.78)

e−iz[kµ(l1+l2)−(k−aEk1s)]e−i(l1φ1µ+l2φ2µ),

where

χ(z, k) = e−
1
2

(
ζE+

k−kE
k1s

B
)2
Jm

[
− k

ks1
B2A2(z)

]
Jn

[
−
(
ζE +

k − kE
ks1

B

)
A1(z)

]
f(z). (3.79)

With the definition of the bunching spectrum bn,m(k), we can now quantify the presence of sidebands
and/or of a broader spectral pedestal in EEHG. The EEHG bunching amplitude evaluated for k = aEk1s

can be calculated when l1 = −l2, so that:

bn,m(aEk1s) = b̀n,m

∞∏
µ=0

∞∑
l1=−∞

(−1)l1Jl1 (−ζEp1(kµ)) Jl1 (−aEB2p2(kµ)) e−il1(φ1µ−φ2µ), (3.80)
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where b̀n,m is the z-integration of Eq.(3.79) for k = aEk1s and demonstrates the bunching factor when
MBI is absent. In above equation we use the Bessel function relationship for integer ν value J−ν(x) =
(−1)νJν(x). In the case of long seed lasers (i.e A1,2(z) = A1,2) and a uniform electron beam, it is easy
to see that b̀n,m = b̄n,m. Note that the bunching is suppressed at the roots of the two Bessel functions.
Assuming that the arguments of Jl1 in Eq.(3.80) are less than 1, the high order of Bessel functions can be
ignored and the leading term can be expanded around 0. In doing so, the bunching factor can be simplified
to:

bn,m(aEk1s) ≈ b̀n,m

∞∏
µ=0

J0 (−ζEp1(kµ)) J0 (−aEB2p2(kµ)) (3.81)

≈ b̀n,m

∞∏
µ=0

[
1− 1

4

(
(ζEp1(kµ))

2
+ (aEB2p2(kµ))

2
)]
.

Bandwidth Enlargement and Central Frequency Fluctuation

Figure 3.27: Left: Relative FEL RMS spectral bandwidth vs. LH-induced energy spread. Blue and red lines
are experimental data (solid) and theoretical prediction (dashed-dotted, Eq.(3.77)) for n = −1 and n = −2,
respectively. EEHG is tuned at λFEL = 8.8 nm. The dashed green line is from Eq.(3.75). In case of n =
−1, the first seed energy is 8.3 µJ (A1σE = 0.88 MeV) and for n = −2, it is 20 µJ (A1σE = 1.37 MeV).
Right: calculated energy modulation amplitude p1(λµ) and p2(λµ) from MBI modeling for σLH = 20 keV
(top) and 40 keV (bottom). Image from [29]

The EEHG experiment was conducted with an electron beam accelerated through the FERMI linac to the
final energy ofE=1.32 GeV. The beam normalized emittance measured in front of the undulator amounts to
approximately 1 mm mrad in both transverse planes. The electron bunch is compressed by a factor C ∼10
to reach a final peak current in the core of I=700 A.
Figure 3.27-left plot shows the RMS spectral bandwidth of the FEL at harmonic aE = 30 of a UV seed
laser (λs = 264.54 nm), as a function of the LH-induced energy spread. The dispersion of the first EEHG
dispersive section was set to R(1)

56 = 2.25 mm. The blue curve shows the EEHG emission for n = −1

configuration or R(2)
56 = 75 µm; the red curve is for n = −2 or R(2)

56 = 145 µm (n defined in Eq.(3.72)).
The error bars reflect the RMS fluctuation of experimental data collected over a series of 20 consecutive
shots at 10 Hz machine repetition rate. The experimental data are compared with the theoretical bandwidth
predicted by Eq.(3.77) for n = −1 and n = −2, illustrated by the the dashed-dotted blue and red line,
respectively. For comparison, the green dashed line represents the bandwidth for optimized bunching ab-
sent MBI, Eq.(3.75), assuming TL seed laser pulses with a FWHM bandwidths of 2.01 nm and 1.35 nm,
respectively.
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Figure 3.28: Comparison of standard deviation of frequency fluctuations of 50 shots n = −1 (blue) and 100
shots n = −2 (red) configurations in EEHG experiment with respect to the different induced LH energy
spread. EEHG harmonic is 30 ( λFEL = 8.8 nm). The FEL parameters are same as in Fig.3.27. Image
from [29]

The spectra of the energy distortion amplitudes predicted by the MBI model for two different LH energy
spread settings is shown in the right Fig. 3.27 subplots. The integrated impact of these distortions matches
well the measured FEL bandwidth, which is substantially reduced for a LH-induced energy spread ≥ 30
keV. The model allows us to explain the observations on the basis of MBI-induced energy modulations
augmented by the first EEHG dispersive section, where p2(λµ) in absent of the first seed results always
larger than p1(λµ).

The different MBI sensitivity of the EEHG bandwidth for the cases n = −1 and n = −2 is explained
by means of Eq.(3.77). On the one side, p1(λµ) is multiplied by the EEHG scaling factor, which therefore
can be modified to change the sensitivity of the final bunching to the electron beam energy perturbations
coming from the accelerator. On the other side, p2(λµ) is multiplied by aEB2, with |B2| ≈ nB1/aE , such
that a higher value of |n| forces larger values R(2)

56 of the second dispersion section.
Equation (3.76) suggests that, by virtue of larger values of B2 in the presence of MBI, frequency fluctu-
ations in the configuration n = −2 for fixed ζE , should be larger than in n = −1. Figure 3.28 compares
the range of the frequency fluctuation by showing the standard deviation (std) of 50 single shots of n = −1
(blue) and 100 shots of n = −2 (red) configurations in EEHG experiment at λFEL = 8.8 nm respect to
the different induced LH energy spread. In other words, this figure shows the range of 〈kz〉 fluctuations for
different level of incoherent energy modulation. The larger fluctuations seen with the n = −2 setting align
with expectations.

Pulse Intensity Reduction

Figure 3.29-top plot shows the the maximum measured FEL intensity for n = −1 (blue line) and n = −2
(red line). As mentioned the FEL intensity scales with |bn,m(kE)|2. The bottom plot shows the values
calculated from Eq.(3.82). The equation shows that when the MBI gain is suppressed by large LH pulse
energies, the product function

Γ =

∞∏
µ=0

J0 (−ζEp1(kµ)) J0 (−aEB2p2(kµ)) ≈
∞∏
µ=0

[
1− 1

4

(
(ζEp1(kµ))

2
+ (aEB2p2(kµ))

2
)]
(3.82)

tends to 1. Likewise, when the MBI is more pronounced at low LH pulse energies, the product function
approaches zero. At the same time, owing to the large LH-induced energy spread (larger than 40 keV), the
FEL gain is diminished and therefore the FEL intensity is reduced. We note that in the Γ function, p2(λµ)
is multiplied by aEB2, which explains the different behavior of the function for n = −1 and n = −2, in
agreement with the experimental observation.
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Figure 3.29: Top: FEL intensity vs. LH-induced energy spread. The FEL parameters are same as in
Fig.3.27. Bottom: square bunching factor. The calculated value of p1(λµ) and p2(λµ) in Fig.3.27 are used
to evaluate bunching factor. Image from [29]

Impact of first Seed Laser

It is well-known that in the processes of harmonic emission driven by an external laser, the seed laser-
induced energy modulation has to exceed the uncorrelated energy spread of the beam at the undulator
entrance. Moreover, the EEHG bunching becomes less sensitive to MBI with increased laser modulations.
This leads to the question if and to what extent the seeding laser pulse energy could be increased in order to
counteract the effect of MBI, before preventing any further lasing by exceeding the FEL normalized energy
bandwidth.
To answer this question, Fig.3.30-left plot illustrates the FEL intensity recorded as function of the first seed
laser pulse energy, for two values of the LH pulse energy. Since the bunching is more sensitive to the co-
herent energy modulation in the first modulator at higher harmonics, the experiment was done for harmonic
18. The beam energy was 1.1 GeV and the compression factor about 7, for approximately 550 A in the
bunch core. EEHG was set in configuration n = −1 (R(1)

56 = 1.9 mm and R(2)
56 = 98 µm).

The figure shows that, once the FEL emission is built up for the seed laser pulse energy of ∼ 15-20µJ
(A1 ∼ 2-4), the intensity is weakly affected by even larger seed energies. In particular, a stronger seed laser
is not able to recover the intensity reduction due to a weaker heating effect. The right plots provide the
theoretical explanation of the experimental data. They show the spectrum of broadband energy modulation
at the exit of the second modulator for different coherent energy modulations from the first seed laser, at
two LH pulse energies. The contour plots are generated by inserting the energy distribution modified by the
first seed laser into Eq.(3.17), which allows us to calculate the MBI gain at the exit of the first DS. Using
such spectral gain function as an input to Eq.(3.16), the spectrum of the MBI-induced broadband energy
modulation at the exit of the second modulator is eventually derived as function of the first seed pulse en-
ergy. An increase of the first coherent modulation is effective in removing incoherent energy modulations
at initial wavelengths shorter than 10 µm, or ∼1µm at the entrance of the undulator. However, the effect
becomes negligible immediately at longer wavelengths.
We plugged these two sets of energy modulation and different first seed energies into Eq.(3.72) and Eq.(3.82),
thus calculated the bunching factor (b−2,20) and the product function (Γ), see bottom plots. It is shown that,
while a strong beam heating is able to shift the product function to 1 or so, an increase of A1 is not able
to recover a unitary product function (compare red starts and blue stars for σLH = 16 keV and σLH = 24
keV, respectively). The second plot of the second row compares the bunching factor with (dashed lines with
stars, Eq.(3.82)) and without MBI (doted lines with circle, Eq.(3.72)). The plot illustrates the degradation of
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the bunching factor by MBI, at different coherent energy modulation amplitudes from the first seed. Finally,
we find that the measured FEL intensity (left plot) at the two LH pulse energies is in agreement with the
theoretical behaviour of the bunching factor: by increasing the first seed energy, the FEL intensity grows
up, to eventually fall down for excessive seeding energies." From one of my paper [29]

Figure 3.30: Left: FEL intensity vs. first seed laser pulse energy. Blue and red lines are experimental data
for LH-induced energy spread σLH = 24 keV and σLH = 16 keV. Right-top row: beam energy modulation
amplitude as function of the (compressed) MBI modulation wavelength and first seed coherent energy
modulation amplitude (seed energy), at the exit of the second modulator. Right-bottom row: bunching
factor and product function versus first seed coherent energy modulation amplitude. Dotted lines with
circles show b̀−2,20; dashed lines with stars show b−2,20 in Eq.(3.80). The two sub-plots refer to the LH
inducing 24 keV and 16 keV RMS energy spread, respectively. Image from [29]

Brightness and Sidebands Control

"The mix of frequencies induced by microbunching instability and by the FEL coherent emission generates
also shot-to-shot fluctuations of the multiline FEL spectrum [26, 49–51]. In a seeded FEL, this can be
interpreted as the stochastic appearance of sidebands at frequencies [65]

kFEL = nkseed ±mkMBI (3.83)

The spectral broadening averaged over many shots is sometimes referred to as a “pedestal.” Strategies for
the mitigation of the microbunching instability which do not rely on an increase of the beam energy spread
would allow high-intensity FEL pulses and a stable, very narrow bandwidth. We can show that linear optics
control can be an additional knob, complementary to the laser heater, for mitigation of the microbunching
instability. The mitigation of the FEL sideband instability is possible by tuning the momentum compaction
(or R56) of a transfer line upstream of the undulator (or “spreader”).
Each branch of the FERMI spreader line is made of two double bend achromatic cells separated by quad-
rupole magnets. The FERMI EEHG spectrum and intensity was recorded for three values of the spreader
momentum compaction, i.e., R56 = −2, 0, 2 mm (four-dipole chicanes have negativeR56 with this conven-
tion). The R56 along the line is shown in Fig. 3.31. For each setting of the quadrupole magnets devoted to
produce a specific R56 value, the FEL intensity was re-optimized as a function of the electron beam optical
Twiss parameters at the entrance of the undulator, seed laser parameters, and strength of the dispersive sec-
tions of the EEHG scheme. By virtue of the small correlated energy spread at the entrance of the spreader
(< 0.1%, rms value), the bunch length differences between datasets due to first- and higher order transport
matrix terms were negligible (< 2%). Finally, the spreader optics was tuned to also preserve the beam
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Figure 3.31: R56 along the spreader for three different optics. Image from [26]

bend-plane emittance from CSR emitted in the dipoles
The EEHG output was recorded on a single-shot basis at the on-line spectrometer. In the following, the

(a) (b) s (c)

Figure 3.32: EEHG signal recorded at 7.3 nm, for the three spreader optics, as a function of the laser heater
pulse energy. From top to bottom: Total signal; ratio of the pedestal signal over the total FEL signal; total
signal over FWHM bandwidth. All quantities are in arbitrary units. Image from [26]

FEL data refer to the average of 41 consecutive FEL shots recorded at 50 Hz. Each dataset was measured
as a function of the laser heater pulse energy, as shown in Fig. 3.32a. The contribution of the pedestal
to the spectrum was evaluated by fitting the central FEL line with a Gaussian. The area of the Gaussian
was subtracted from the total integrated spectrum signal. Doing so, we calculated the ratio of the pedestal
signal (ASB) and the total FEL signal (Atot), as shown in Fig. 3.32b. Finally, Fig. 3.32c shows the ratio
of the FEL total signal and the spectral bandwidth. The latter quantity is the width of the spectrum image,
corresponding to the interval containing 76% of the central profile area, in analogy to a Gaussian FWHM.
Since the FEL signal is proportional to the pulse energy, and since the spatial, angular, and temporal width
of the electron beam in the undulator does not change as the laser heater is varied, the quantity in Fig.
3.32c is proportional to the FEL spectral brightness (brilliance). In all plots, the error bars are dominated
by fluctuations driven by electron beam shot-to-shot jitter. A closer look at the FEL spectrum at low and
moderate laser heater pulse energy is given in Fig. 3.33.
Figure 3.33 highlights the improved spectral purity when passing from positive to null to negative R56 of
the spreader line. In the latter case, however, there is no net increase of the brilliance compared to the
isochronous optics, and the FEL intensity is reduced at the front of a higher spectral purity. The evident
stronger dependence of the FEL intensity from the laser heater (LH) for the negative R56 compared to the
other two cases might suggest an abrupt change of the experimental conditions, e.g., of the LH operational
parameters. This has not been revealed by an analysis of the machine setting. Nevertheless, and in order
to disentangle the results from the actual LH setting, an additional analysis is conducted by comparing the
amount of relative FEL pulse energy distributed into the sidebands at the point of maximum FEL brilliance,
i.e., for the LH setting that optimizes the FEL performance in each of the three experimental sessions. The

55



Figure 3.33: EEHG spectrum (average over 31 shots) for the three spreader optics, at two laser heater pulse
energies. Image from [26]

same quantity is also calculated for the LH turned off. The results are shown in Fig. 3.34.
The trend of the experimental data with R56 is corroborated by a semi-analytical prediction based on the

Figure 3.34: Measured average spectral area of sidebands with the laser heater turned off (red triangles) and
on (green triangles), the latter being the value which maximizes the FEL brilliance. In the inset, predicted
σMBI calculated for the laser heater off. Image from [26]

model for the microbunching instability introduced before [55]. Since the instability is broadband, but only
modulation periods in the range ∼ 1-10µm are expected to have a substantial impact on the FEL band-
width, we collapsed the information of the microbunching instability “strength” into the spectral integral
of the energy modulation curve in the aforementioned wavelength range, weighted by the instability gain
[24, 58]. We refer to this quantity as σMBI. Although the calculated σMBI cannot be directly related to the
measured FEL spectral purity, the weaker the instability gain is, the lower the σMBI is, and the smaller the
amount of FEL energy is expected to be dispersed into sidebands.
The microbunching instability model suggests an interpretation of the experimental results for the negative
R56 based on phase mixing [60]. When the beam reaches the spreader with a density modulation generated
by the instability in the accelerator—this is the case of laser heater turned off—the longitudinal slippage of
particles, generated by the nonzero R56 times the local energy chirp at the modulation scale, smoothens the
beam longitudinal phase space. This translates into a redshift of the peak gain toward wavelengths that do
not interference anymore with the FEL natural bandwidth. This picture is consistent with theoretical and
numerical results reported also in Refs. [116, 117]. Contrary to energy Landau damping, the effect of phase
mixing depends on the sign of R56, which explains the asymmetry of the measured areas for positive and
negative R56 values in Fig. 3.34. In general, the phase mixing has an optimal effect, i.e., R56 is at the op-
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timum nonzero value, when the most harmful modulations incoming from the accelerator are smoothened
out. Increasing further R56 would not provide any additional benefit, while enhancing the CSR-induced
MBI due to the non-isochronous optics. Therefore, an optimum value of R56 is expected depending upon
the actual machine configuration and the FEL wavelength range under consideration. We finally observe
that, when the laser heater is turned on, phase mixing is less effective, and the sideband area in Fig. 3.34
decreases only from ∼ 40 R56 scan, compared to a reduction from ∼ 70 when the heater is off. " From one
my paper [26]

3.5 Summary
In this chapter, we characterized experimentally the microbunching content in the electron beam directly
and non directly. I derived analytically new formulas for the IBS-induced energy spread and couple them to
microbunching instability dynamics in order to derive a comprehensive model for longitudinal phase space.
The model is benchmarked with energy spread measurement and used to predict the linear MBI dynamics in
dispersive sections and transport lines, with excellent agreement between the two in a vast range of machine
configurations.
We exploited a 2-D Fourier analysis of the whole longitudinal phase space to demonstrate the possibility
to monitor microbunching and energy modulations (shot-noise based or artificially introduced) status and
evolution as a function of the machine parameters.
We showed the enhanced emission coming from a MBI-free electron beam. In such configuration, the
possibility to avoid the energy spread increase due to the lack of MBI and the purity of the electron bunch
nearly doubled the standard seeded FEL performance.
At the same time, we also showed the detrimental effect of MBI on a EEHG scheme, that, despite its robust-
ness toward spurious harmonic content, is still visibly affected. In particular its brightness and bandwidth
can be significantly improved when the MBI and strong energy modulations are suppressed. A possible
additional knob proposed to increase the brightness was the manipulation of the optics along the long
dispersive section before the undulator line. These measurements have been used also to benchmark a
theoretical model for MBI evolution.
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Chapter 4

Quantum coherence

Because of the masslessness of photons, classical theory covers the vast majority of the festures of light.
Even degrees of freedom such as spin and Orbital Angular Momentum (OAM), despite their quantized
nature, can be described using the notion of classical electromagnetic fields without invoking Quantum
Mechanics. However some aspects of light cannot be covered by classical theory. There are, in fact, situ-
ations in which the particle nature of light kicks in and its wave nature is no longer sufficient to describe
them, the photon anti-bunching being one of the most glaring examples [33, 34, 118]. Coherence too falls
under this umbrella of phenomena.
This chapter is devoted to introduce some of these aspects, focusing on the quantum states of light, the the-
ory of quantum coherence and a reconstruction technique to retrieve or discriminate its quantum features. In
particular, this method is applied to investigate, from a quantum-dynamical point of view, the photon states
that can be associated with emission from SASE and seeded FELs. Via simulations, it is possible to demon-
strate the capability to retrieve such states and some examples of reconstruction are shown. I prepared the
simulations and the code for the reconstruction algorithm. In doing so, I determined some practical rules to
run the algorithm in an efficient way. Finally, in the last part, the non-classical aspects of the light-electron
interaction are investigated, deriving an evolution operator for the coupled dynamics valid for any photon
and electron initial states. I conducted most of the calculations shown and, more importantly, I suggest
the physical meaning of the strategy used to solve this problem. This formalism can be applied to tackle
unsolved problems about the inheritance and transmission of light features via electron-photon coupling.
Overall, this chapter can be considered as the first step to answer the questions: "is it possible to introduce
quantum features other in any process of harmonic generation from a coherent light pulse interacting with
electrons? If yes, how could we measure them?"

4.1 Quantum theory of Coherence
Analogously to what we presented for classical fields, it is possible to construct the same formalism to
describe the coherence of a quantum photon state. As already anticipated, although most of the formal
expressions remain unchanged, some of their properties are different. These (sometimes) subtle differences
belong therefore to a realm beyond classical electrodynamics and mandatorily involves the concept of field
quantization, i.e. photons.
The first and most important difference in calculating the correlation functions for quantum fields is that the
field components are now non-commuting operators [33, 34, 118]. These Hermitian operators are usually
expressed by the sum of two non-Hermitian operators. One distinguishes between the positive frequencies
and the negative frequencies components [33, 34, 118]:

E(r, t) = E+(r, t) + E−(r, t) (4.1)

where

E+(r, t) = (E−(r, t))
†

= i
∑
ks

√(
~ωks

2ε0V

)
εksaks exp{i(k · r− ωkst)} (4.2)
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such that the positive frequencies correspond to the absorption of a right-propagating photon annihilated by
aks while the negative ones correspond to the emission of a left-propagating photon created by a†ks.
The annihilation and creation operators aks and a†ks obey the bosonic commutation rules

[aks, a
†
k′s′ ] = δ(k− k′)δss′ , [aks, ak′s′ ] = [a†k′s′ , a

†
k′s′ ] = 0. (4.3)

The first and second order correlation functions are defined in terms of the normally ordered field operators.
The normal ordering of the field operators means that all field creation operators stand to the left of all
annihilation operators. The mean value in this case is calculated as

〈f(r, t)〉 = Tr [ρf(r, t)] (4.4)

for a given state ρ and operator f(r, t). Correlation functions of first- and second-order can be rewritten as

γ(1)(x1, x2) =
Tr [ρE−(x1)E+(x2)]√
〈|E(x1)|2〉〈|E(x2)|2〉

(4.5)

γ(2)(x1, x2) =
Tr [ρE−(x1)E−(x2)E+(x2)E+(x1)]

〈|E(x1)|2〉〈|E(x2)|2〉
. (4.6)

Although correlation functions are constructed in the same way, only first-order coherence is equivalent
for quantum and classical electrodynamics, since from phase interference it is not possible to distinguish
them. The correspondence is no longer true already for the second-order correlation function [34]. From the
mathematical point of view, this is because of the non-commutativity of operators that prevents the existence
of a correspondence, except for the first-order. Phenomena like the two- or single-photon interference
pattern cannot be observed with classical fields [34].
To make explicit the operatorial dependence on the annihilation and creation operators, we can substitute
the definitions (4.2) into the correlation functions. For simplicity, we limit ourselves to the single-mode
case, and find

γ(1)(x1, x2) =
〈a†(x1)a(x2)〉
〈a†a〉

(4.7)

γ(2)(x1, x2) =
〈a†(x1)a†(x2)a(x2)a(x1)〉

〈a†a〉2
(4.8)

where we used the short-hand notation a(x) = aeikx for the Heisenberg representation of the operator.

4.1.1 Second order correlation function
In the classical interpretation of second-order coherence, the correlation function is a measure of the statist-
ical correlation of electromagnetic waves with fluctuating intensity that leads to the discrimination between
chaotic and coherent classical light. Passing from the formalism of fields to the concept of particles, γ(2)

quantifies the coincidence count of one photon (therefore the conditional probability) after a certain amount
of time from the detection of a previous one. This is true also in the case of zero delay, meaning that with an
intensity interferometer we can access temporal coincidence counts of light states. In general, the violation
of one of the two main properties of the second-order coherence function, namely equations 2.12, is the
strongest indication of non-classical behavior of state. As we are going to see, γ(2)(0) is not always enough
to discriminate different behaviors and categorize them.
Firstly, this parameter can be related to the variance of photon number [33, 34, 118]

γ(2)(0) =
〈a†a†aa〉
〈a†a〉2

=
〈n2〉 − 〈n〉
〈n〉2

=
(∆n)2 + 〈n〉2 − 〈n〉

〈n〉2
= 1 +

(∆n)2 − 〈n〉
〈n〉2

(4.9)

The condition under which the correlation function is equal to 1 is (∆n)2 = 〈n〉, relation in a one-to-one
correspondence with the Poisson distribution. As we are going to show here and in the following sections,
poissonianity could be used as an index for coherent states.
A state for which γ(2)(0) > 1 is a classical state, in the sense that there exist a correspondence between the
photon state described by ρ and a classical field with the same statistical properties. In this case, we talk
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about super-poissonian states, since the condition γ(2)(0) > 1 is realized for distribution with a variance
bigger than a poissonian curve with the same mean number of photons, (∆n)2 > 〈n〉.
Differently from the classical counterpart, the operatorial form of γ(2)(0) could in principle be less than 1,
when a state has (∆n)2 < 〈n〉. Since this is something that a classical field could not display, the states
belonging to this specific category do not have a classical counterpart. In analogy to what we have defined
before, we can term such states as sub-poissonian light. In this sense, poissonianity is not only an index to
determine the proximity to the perfect coherence, but also a way to discriminate between classicality and
quantumness of a light state.
We can interpret this results in terms of photon bunching [33, 34, 118]: having γ(2)(0) > 1, as in the case
of chaotic light (γ(2)(0) = 2), can be explained assuming that photons travel in space grouped together,
otherwise the presence of coincidence count cannot be explained. At the same time, having γ(2)(0) < 1,
corresponds to an anti-correlation, linked to the tendency of photon in this state to travel well-separated.
We can therefore talk about photon bunching or anti-bunching, labeling in this way the likelihood of a
light source to deliver grouped or regular bunch of photons. It is important to stress that anti-bunched light
can occur whenever the condition of monotonicity of γ(2) is violated and therefore is not a synonym for
sub-poissonian light. The quantum formulation of coherence enriches the plethora of classical phenomena
beyond the sub-poissonianity statistics and anti-bunched light.
The most important examples are the two- and single photon interference patterns. In the former case, two
single-mode fields of equal frequencies and polarizations is considered. Such state is the tensor product of
two Fock states, indicated with |1, 1〉, and the equal time second-order correlation function is

γ(2)(0) =
〈1, 1|n2|1, 1〉 − 〈1, 1|n|1, 1〉

〈1, 1|n|1, 1〉2
=

1

2
. (4.10)

This means that the interference intensity pattern, even at second order, is perfectly visibile, i.e. C(2) = 1,
contrary to the limitation given in the classical case (C(2) < 1/2). This is true even when the two photons
are produced by two independent sources [34].
What about Dirac’s remark "Interference between different photons never occurs"? Particles do not inter-
fere, as correctly stated by Glauber, but probability amplitude does [119]. We can accept the synecdoche of
saying that two photons interfere, meaning that the probability amplitude, adding up as a complex number,
could generate interference.
Finally, single photon interference, is even more subtle: in a first-order (phase) interference experiment, a
single photon state would behave as a classical field. In fact, the interferometric patterns are equivalently
determined by the superposition of complex probability amplitudes or the amplitudes of complex classical
modes, even for non-classical states [120]. Yet, anti-correlation is still present and discriminates between a
classical and quantum realm. In an intensity-correlation measurement for a single photon state, γ(2)(0) = 0,
meaning that there is a perfect anti-correlation, symptom of non-classicality of the input state [121].

4.2 Quantum states of light
In this section we present a survey of quantum states of light that are relevant for describing the vast majority
of light encountered in our studies and their properties.
A monochromatic, linearly polarized plane-wave of frequency ω is described by single-mode creation and
annihilation operators a and a† satisfying the commutation relations [a , a†] = 1. The absence of photons
of frequency ω is associated with the vacuum state |0〉 which is annihilated by the annihilation operator:
a|0〉 = 0, whereas the so-called number state, or Fock state, describing n photons with frequency ω is
obtained by acting n times on the vacuum with the creation operator a†:

|n〉 =
(a†)n√
n!
|0〉 . (4.11)

The number states are orthogonal 〈n|m〉 = δnm and such that

a |n〉 =
√
n |n〉 , a†|n〉 =

√
n+ 1 |n+ 1〉 , (4.12)

whence they possess definite photon number N = a†a and thus definite energy E = ωN (~ = 1):

N |n〉 = n |n〉 . (4.13)
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To the other extreme with respect to Fock states, one finds the so-called coherent states |α〉, with complex
amplitudes α ∈ C; they are eigenstates of the annihilation operator and their intensities are given by the
their mean photon number:

a |α〉 = α |α〉 , |α|2 = 〈α|a† a|α〉 , (4.14)

where we can introduce the displacement operator D(α)

D(α) = eαa
†−α∗ a = e−|α|

2/2 eαa
†

e−α
∗ a (4.15)

such that, acting on the vacuum state, the operator displaces it

D(α) |0〉 = |α〉 . (4.16)

Any quantum state of light described by mode-operators a and a† is representable as a density matrix ρ
acting on the Fock space space spanned by the number states, which in that representation reads:

ρ =
∑
k,`

ρk` |k〉〈`| , ρk` = 〈k|ρ|`〉 . (4.17)

In turn, any such density matrix can always be written as [39]:

ρ =

∫
C

d2αPρ(α) |α〉〈α| with
∫
C

d2αPρ(α) = 1 (4.18)

where Pρ(α) is the so-called Glauber-Sudarshan P-function (see e.g. [32] for details) associated with the
quantum state ρ and the integration is performed with respect to the real and imaginary parts of α =
αx + iαy , d2α = dαx dαy .
Therefore any single-mode state of light reads as a linear combination of projectors |α〉〈α| onto coherent
states with a function Pρ(α) that, though being normalized, need not necessarily amount to a smooth
probability distribution over the complex plane. Indeed, Pρ(α) may not only degenerate into a highly
singular distribution, but even become non-positive. As a consequence, a quantum state of light is said to
be

• classical if the Glauber–Sudarshan P-function is a bona fide distribution

Pρ(α) ≥ 0 , (4.19)

with Pρ(α) a smooth function or no more singular than a Dirac delta.

For instance, as we are going to see, for coherent states, that is when ρ = |β〉〈β|, Pρ(α) reduces to a Dirac
delta δ2(α) = δ(αx)δ(αy) on the complex plane, while, for thermal states Pρ(α) reduces to a Gaussian
distribution. Instead, a quantum state of light is called

• non-classical or, in other words, genuinely quantum, if the function Pρ(α) is either non-positive

Pρ(α) � 0, (4.20)

or more singular than a Dirac delta distribution.

Indeed, the non-classical behavior of Fock number states is accompanied by a highly singular distributional
Glauber-Sudarshan Pρ function, as shown in Appendix B,

Pn(α) =
e|α|

2

n!

∂2n

∂nα∂
n
α∗
δ2(α) . (4.21)

The P-function being an increasingly (with n) singular distribution, its behavior has to be tested by integra-
tion against suitably differentiable trial functions g(α, α∗) vanishing at infinity, that is by computing

Pn[g] =

∫
C2

d2α d2α∗ Pn(α) g(α, α∗) =
e|α|

2

n!

∂2ng(α, α∗)

∂nα∂
n
α∗

. (4.22)

Evidently, these integrations can yield negative values even for positive trial functions, thus the P-function
Pn(α) cannot be a positive distribution, whence the Fock number states are highly non-classical.
We shall now examine some quantum states associated with different degrees of coherence and discuss
which ones among them are good candidates for the quantum description of the radiation emitted by SASE
and seeded-FELs. Technical details on how to derive their mathematical properties are given in the Appen-
dices.
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Coherent states and laser radiation As we have seen in (4.14), coherent states are eigenstates of the an-
nihilation operator and have thus the following expansion over the orthonormal basis of number
states (4.15):

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉 , α ∈ C , (4.23)

whence the associated number or energy distribution is Poissonian:

|〈n|α〉|2 = e−|α|
2 |α|2n

n!
. (4.24)

Though their quantum granularity is embodied by the Poissonian distribution (4.24), coherent states
ργ = |γ〉〈γ| are nevertheless classical according to the definition comprising equation (4.19). Indeed,
(see Appendix B), their Glauber-Sudarshan P-function Pγ(α) (4.18) is a Dirac delta at the point γ in
the complex plane:

Pγ(α) = δ2(α− γ) . (4.25)

Given the complex amplitude α = αx + iαy , its phase-angle ϕ = arctanαy/αx cannot be determ-
ined; therefore, the states of monochromatic laser light are obtained by averaging uniformly over
all possible ϕ. Such a procedure yields a uniform mixture of coherent states, but also a Poissonian
mixture of number state projectors [122]. Writing αϕ = α eiϕ, α ≥ 0,

ρL =
1

2π

∫ 2π

0

dϕ |αϕ〉 〈αϕ| = e−α
2

∞∑
m,n=0

αm+n

√
m!n!

|n〉 〈m| 1

2π

∫ 2π

0

dϕ eiϕ(n−m)

= e−α
2
∞∑
n=0

α2n

n!
|n〉 〈n| . (4.26)

As the name suggests, these states satisfies the Glauber criterion for coherence and it is possible to
demonstrate that, ∀n,

|γ(n)(x1, ..., x2n)| = 1. (4.27)

Since they share this property, such states can be considered as the quantum counterpart of a clas-
sical plane wave. As stated before, poissonianity of such states becomes the discriminant between
classical (super-poissonian) and quantum (sub-poissonian) behavior and also an index for proximity
to coherence.

Single mode thermal light A single mode thermal state of light at temperature T is described by the Gibbs
density matrix (setting the Boltzmann constant κB = 1)

ρT =
(

1− e−ω/T
)

e−ω/T a
† a =

1

1 + nT

∞∑
n=0

(
nT

1 + nT

)n
|n〉〈n| , nT ≡ 〈N〉 =

1

eω/T − 1
.

(4.28)
As regards the thermal Glauber-Sudarshan P-function, one gets a P-function which is a Gaussian dis-
tribution (see (B.12) in Appendix B) so that the corresponding quantum state can thus be interpreted
as a classical one:

PT (α) =
1

π

e
− |α|

2

nT

nT
. (4.29)

Indeed, thermal light can be seen as a mixture of coherent states with respect to a Gaussian distribu-
tion in the amplitude modulus |α| =

√
α2
x + α2

y of the amplitude α = |α| eiϕ = αx + iαy and a

uniform distribution with respect to the phase-angle ϕ = arctanαy/αx:

ρT =

∫
R2

dαxdαy
e−(α2

x+α2
y)/nT

πnT
|αx + iαy〉〈αx + iαy| . (4.30)

Finally, if one computes

〈N2〉 =
eω/T + 1(
eω/T − 1

)2 , and, as a consequence 〈N2〉 − 〈N〉 = 2 〈N〉2 , (4.31)
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the second expression in (4.31) can be rewritten to express the variance of a thermal source:

(∆n)2 = 〈N2〉 − 〈N〉2 = 〈N〉2 + 〈N〉. (4.32)

Recalling the relation (4.9) between variance and second order coherence function, we see that

γ(2)(0) = 1 +

(
〈N〉2 + 〈N〉 − 〈N〉

〈N〉2

)
= 2, (4.33)

meaning that thermal light is not only classical, but corresponds to classical chaotic light.

Displaced thermal states The randomness of thermal states expressed by their Gaussian Glauber-Sudarshan
P-function can be diminished by displacing them via the displacement operators D(α) in (4.15):

ρT,α := D(α) ρT D
†(α) . (4.34)

Indeed, coherent states can also be obtained by displacing the vacuum state, |α〉 = D(α)|0〉; there-
fore, by means of D(α), thermal states acquire a coherent contribution; this is particularly evident
for vanishing temperatures, when nT vanishes as well and thermal states behave as the vacuum state
which is turned into a fully coherent state by D(α) as in (4.16). A more formal characterizaton of
this interpretation follows by using (4.30) and (B.5) in the next section; indeed, one gets

ρT,α =

∫
C

d2β
e−|β|

2/nT

πnT
|α+ β〉〈α+ β| =

∫
C

d2β
e−|β−α|

2/nT

πnT
|β〉〈β| , (4.35)

where one sees that the displacement introduces a coherent bias into the Gaussian distribution that
originates chaotic thermal light.
A concrete consequence of this coherent bias emerges when one looks at the mean energy which also
gets a coherent contribution; indeed, using (4.15), one computes

〈a†a〉 = Tr
(
ρT,α a

†a
)

= nT + |α|2 . (4.36)

4.2.1 Displaced thermal states representation
Sometimes, instead of their Glauber-Sudarshan representation in terms of projectors onto coherent states, it
proves convenient to represent quantum states by means of their characteristic function Tr(ρD(−α)) and
of the displacement operators. In the case of thermal states, this representation reads

ρT =

∫
C

d2β
1

π
e−|β|

2 ( 1
2 +nT ) D(β) , (4.37)

whence, using the algebraic relation (B.5), it yields

ρT,α =

∫
C

d2β
1

π
e−|β|

2 ( 1
2 +nT ) eβα

∗−β∗αD(β) (4.38)

for displaced thermal states. These representations are obtained by firstly noticing that any single-mode
density matrix ρ can be written as

ρ =

∫
C

d2β

π
Tr
(
ρD†(α)

)
D(α) . (4.39)

This follows from using (B.5) and the overcompleteness relation (B.2) to prove that

Tr
(
D†(β)D(α)

)
=

∫
C

d2γ

π
〈γ|D†(β)D(α)|γ〉 = π δ2(α− β) .

Then, using the P-function (4.29) and the Glauber-Sudarshan representation together with the coherent state
overcompleteness and Gaussian integration, yield

Tr
(
D†(β) ρT

)
=

1

π nT

∫
C

d2γ e−|γ|
2/nT 〈γ|D†(β)|γ〉 = exp

(
−|β|2

(1

2
+ nT

))
. (4.40)
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Given a displacement operator D(α) and a coherent state |β〉 = D(β)|0〉 (see (B.3)), using (B.2) and
then (4.23), one computes in two ways the scalar products with Fock number states |n〉, a†a |n〉 = n |n〉:

〈n|D(α)|β〉 = e(αβ∗−α∗β)/2 〈n|D(α+ β)|0〉 =
(α+ β)n√

n!
e−(|α|2+|β|2+2α∗β)/2

= e−|β|
2/2

∞∑
m=0

βm√
m!
〈n|D(α)|m〉 .

It thus follows that

(α+ β)n e−α
∗β = e|α|

2/2
∞∑
m=0

√
n!

m!
βm 〈n|D(α) |m〉 .

By setting β = α y, the equality reads

(1 + y)n e−y|α|
2

=

∞∑
m=0

(
e|α|

2/2 αm−n
√
n!

m!
〈n|D(α) |m〉

)
ym ,

whose right hand side is recognizable as one of the generating functions of the associated Laguerre polyno-
mials L(α)

n (y) [123],

(1 + t)λ e−xt =
∞∑
m=0

L(λ−m)
m (x) tm .

The identification

e|α|
2/2αm−n

√
n!

m!
〈n|D(α)|m〉 = L(n−m)

m (|α|2) (4.41)

finally yields

〈n|D(α)|m〉 = e−|α|
2/2αn−m

√
m!

n!
L(n−m)
m (|α|2) . (4.42)

From (4.37) and (4.42) one gets

ρT,α(n) = 〈n|ρT,α|n〉 =

∫
C

d2β
1

π
e−|β|

2 ( 1
2 +nT ) eβα

∗−β∗α〈n|D(β)|n〉

=

∫
C

d2β
1

π
e−|β|

2 ( 1
2 +nT ) eβα

∗−β∗αe−|α|
2/2 Ln(|α|2) , (4.43)

where Ln(x) = L
(0)
n (x) are the Laguerre polynomials.

By passing to polar coordinates, d2β = rdrdϕ and setting α = |α|eiψ , one rewrites

ρT,α(n) =

∫ ∞
0

d

π
r e−r

2(1+nT ) Ln(r2)

∫ 2π

0

dϕ e2ir|α| sin(ϕ−ψ)) . (4.44)

The last integral equals the Bessel function J0(2r|α|) so that one can use the relation [123]∫ +∞

0

dxx e−αx
2/2 Ln(βx2/2) J0(xy) =

(α− β)n

xn+1
ey

2/(2α) Ln

(
βy2

2α(β − α)

)
and get

ρT,α(n) =

(
nT

1 + nT

)n
e
− |α|

2

1+nT

1 + nT
Ln

(
− |α|2

nT (1 + nT )

)
.

4.3 No-click quantum state reconstruction
The quantum nature of light is mostly encoded in the photon statistics. A very satisfactory reconstruction
of the statistics quantum optical states may be obtained exploiting the counts of on/off detectors operating
in the Geiger mode [9, 124, 125]. In such setup, as the name suggests, the outcome of a measurement could
be either a click ("on") if one or more photons are detected or an "off-click", corresponding to the absence
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of photons.
Since this kind of measurement has a binary outcome, it is possible to associate two projection operators to
the measuring process:

Π0 = |0〉〈0| (4.45)

Π1 =

∞∑
n=1

|n〉〈n|. (4.46)

The first corresponds to the projection onto Fock subspace without photons, i.e. the vacuum, while the
second is the projection onto the subspace spanned by occupied photon states. Following the Born rule, the
probability of measure absence of photons, for an ideal detector is given by

P0 = Π0[ρ] =
∑
n

∑
m

ρnm〈n|0〉〈0|m〉 = ρ00. (4.47)

However, real detectors are inevitably affect by imperfections, and therefore are characterized by a detection
efficiency η always smaller than 1. For this reason, the projection on the vacuum |0〉 is modified and the
probability of no-click is given by

P0(η) = Π0(η)[ρ] =

∞∑
n=0

(1− η)nρn. (4.48)

As a consequence, no-click probability carries information about the diagonal terms of the density matrix,
since it can be expressed as a linear combination of them. From now on, we make the reasonable assumption
that there exist a number ñ such that ρn is negligible when n > ñ. The use of different detection efficiencies
ην , with ν = 1, .., L, can be exploited to define a statistical model for {ρn}:

P`({ρn}n) =

N∑
k=0

(1− η`)k ρk , ` = 1, 2, . . . , L . (4.49)

We now illustrate, from the analytical point of view, how the structure of a photon state diagonal with
respect to the number representation can be reconstructed by means of the empirically measured probability
of no-click events from photodetectors in on/off experiments with varying detector efficiencies η.

4.3.1 Monochromatic light
We first consider the case of a single mode radiation, a monochromatic beam of photons of frequency ω
described by a density matrix as in (4.17). If photons are detected by L detectors with different efficiencies
η1, η2, . . . , ηL, one collects L linear equations

P`({ρn}n) =

N∑
k=0

(1− η`)k ρk , ` = 1, 2, . . . , L , (4.50)

that, as we shall presently show, can be used to infer the N unknown parameters ρn via a Maximum
Likelihood method.

Remark 1 The number L of efficiencies to be considered has to be evaluated in reference with the specific
reconstruction problem: in the case of visible light, as well as in the case of the simulations discussed in
the main text, L = 20 appears to be sufficient. The fact that the number N of unknowns is larger than
the number of equations L makes the problem underestimated with a non-unique solution, in general. This
issue can be overcome with an external energy constraint as discussed below.

For each efficiency η` one counts the no-click events N` out of a total number N of impinging photons
coming from a radiation beam described by a state ρ, thus collecting L empirical frequencies

f` :=
N`
N

. (4.51)
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Usually, once the empirical frequencies f` of a set of independent events x` are measured, the event prob-
abilities p` := p(x`) are derived from the log-likelihood function

L({pn}n, {fn}n, λ) =
1

N
log
∏
`

(p`)
N` + λ

(∑
`

p` − 1
)
, (4.52)

where the Lagrange multiplier λ ensures normalization. Then, maximizing with respect to the unknown p`
one gets

∂p`L({pn}n, {fn}n, λ) =
f`
p`

+ λ = 0 , (4.53)

whence, from
∑
` f` = 1 =

∑
` p`, one retrieves λ = −1 and p` = f`, as expected.

In the case of (4.50), the unknown parameters to be found by optimization are the populations ρn of the
n-photon states, given the overall radiation state ρ. Then, one firstly introduces the normalized no-click
probabilities

P̃`({ρn}n) :=
P`({ρn}n)

P ({ρn}n)
, where P ({ρn}n) :=

L∑
`=1

P`({ρn}n) , (4.54)

and then the log-likelihood

L ({ρn}n, {fn}n, λ) :=

L∑
`=1

f` log P̃`({ρn}n) + λ
( N∑
n=1

ρn − 1
)
. (4.55)

Setting ∂ρnL ({ρn}n, {fn}n, λ) = 0, from
∑N
k=0 ρk = 1, one obtains λ = 0 and the followingN equalities

P ({ρn}n)

F

L∑
`=1

(1− η`)n∑L
k=1(1− ηk)n

f`
P`({ρn}n)

= 1 , F :=

L∑
`=1

f`, n = 1, 2, . . . , N . (4.56)

Setting

ρ′k =
F

P ({ρn}n)
ρk =⇒ P`({ρ′n}n) =

F

P ({ρn}n)
P`({ρn}n) (4.57)

one recasts (4.56) as
L∑
`=1

(1− η`)n∑L
k=1(1− ηk)n

f`
P`({ρ′n}n)

= 1 , (4.58)

where the quantities ρ′k are positive but not normalized:

N∑
k=1

ρ′k =
F

P ({ρn}n)
6= 1 . (4.59)

Notice that the equality (4.56) can be turned into a fixed point relation

L∑
`=1

(1− η`)p∑L
k=1(1− ηk)p

f`
P`({ρ′n}n)

ρ′p = ρ′p , (4.60)

whence the probabilities

ρp =
ρ′p∑N
k=0 ρ

′
k

(4.61)

can be achieved by the iteration procedure

L∑
`=1

(1− η`)p∑L
j=1(1− ηj)p

f`
P`({ρn(h)})n

ρp(h)∑N
k=1 ρk(h)

= ρp(h+ 1) , (4.62)

where ρp(h)/
∑N
k=0 ρk(h) are the probabilities at the h-th iteration step.

Due to the fact that in general the number of efficiencies L is much smaller than the number N of probab-
ilities to be determined, the linear problem (4.50) is underestimated. Especially in the multi-mode case to
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be treated in the next section, it could happen that more than one diagonal distribution {ρn}n may fit the
same experimental no-click probabilities. In order to sort the true distribution out, it proves convenient to
constrain the energy through one more Lagrange multiplier β, changing the functional L ({ρn}n, {fn}n, λ)
in (4.55) into

Lβ ({ρn}n, {fn}n, λ) := L ({ρn}n, {fn}n, λ) + β
( N∑
k=1

k ρk − E
)
. (4.63)

The optimization procedure leads to the following constrained version of (4.56)

P ({ρn}n)

F

L∑
`=1

(1− η`)p∑L
k=1(1− ηk)p − P ({ρn}n)

F β(p− E)

f`
P`({ρn}n)

= 1 . (4.64)

Then, the reconstruction algorithm proceeds as above, iteratively tuning β starting from β = 0 as suggested
in [125], in order to eliminate configurations not compatible with the mean energy E.

4.3.2 Multi-mode case
In the non-monochromatic case, let us suppose the beam contains M > 1 different independent modes
corresponding to photons with M different frequencies ω1, ω2, . . . , ωM . The quantum state of the beam is
then factorized:

ρ =

M⊗
j=1

ρ(j) , (4.65)

where ρ(j) denotes the state associated with the j-th mode. Given a same detector efficiency η for all modes,
the joint probability of having n̄ photons distributed over the M modes together with no clicks reads

Πn̄(M,η) =
∑

n1+n2+···+nM=n̄

 M∏
j=1

(1− η)njρ(j)
nj

 , (4.66)

where nj , j = 1, 2, . . . ,M , is the occupation number of the mode of frequency ωj , ρ
(j)
nj is the probability

of having nj photons with that frequency in the state ρ(j) and the summation is over all possible occupation
numbers of those modes conditioned on the total number of photons being n̄. Then, the total probability of
no-clicks is given by

PM (η) =

∞∑
n̄=0

Πn̄(M,η) , (4.67)

Notice that normalization asks for

∞∑
n̄=0

∑
n1+n2+···+nM=n̄

 M∏
j=1

ρ(j)
nj

 = 1 ,

whence as in the one-mode case, one chooses a suitable accuracy parameter ε and truncates the summation
at n̄max such that

n̄max∑
n̄=0

∑
n1+n2+···+nM=n̄

M∏
j=1

ρ(j)
nj ≥ 1− ε . (4.68)

Then, varying over a number of quantum efficiencies η1, η2 . . . , ηL, L ≥ n̄max, one obtains the following
multimode system of equations similar to (4.50):

PM (ηj) =

n̄max∑
n̄=0

Πn̄(M,ηj) , j = 1, 2, . . . , L . (4.69)

The recursive algorithm can then reproduce the probabilities Πn̄(M,ηj) by means of the no-click probab-
ilities PM (ηj) after renormalization as in (4.54).
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Notice that, by recursion, the probabilities Πn̄(η) can be turned into discrete nested convolutions

Πn̄(M,η) =

n̄∑
n1=0

(1− η)n1ρ(1)
n1

Πn̄−n1(M − 1, η) (4.70)

=

n̄∑
n1=0

n̄−n1∑
n2=0

(1− η)n1+n2 ρ(1)
n1
ρ(2)
n2

Πn̄−n1−n2
(M − 2, η) (4.71)

= (1− η)n̄
n̄∑

n1=0

n̄−n1∑
n2=0

· · ·
n̄−

∑M−2
k=1 nk∑

nM−1=0

M∏
j=1

ρ(j)
nj , nM = n̄−

M−1∑
j=1

nj . (4.72)

Multi-mode coherent states

As a concrete case, let us imagine that the photons are in coherent states of amplitudes αj relative to the
modes in the beam; namely, from (4.24), the occupation numbers read

ρ(j)
nj = e−|αj |

2 |αj |2nj
nj !

. (4.73)

In such a case, from (4.72) and (4.67) one obtains

Πn̄(M,η) = (1− η)n̄e−
∑M
j=1 |αj |

2
N∑

n1=0

N−n1∑
n2=0

· · ·
n̄−

∑M−2
k=1 nk∑

nM−1=0

M∏
j=1

|αj |2nj
nj !

(4.74)

= e−
∑M
j=1 |αj |

2 (1− η)n̄

n̄!

( M∑
k=1

|αj |2
)n̄

, nM = n̄−
M−1∑
j=1

nj , (4.75)

namely a damped Poisson distribution, whence the no-click probabilities are the multimode Gaussians

PM (η) =

n̄max∑
n̄=0

Πn̄(M,η) ' e−η
∑M
j=1 |αj |

2

. (4.76)

It is important to emphasize that the above result also holds when the coherent state projections ρ(j) are
replaced by the uniform phase-averages ρL in (4.26); indeed, both these states have the same diagonal
elements in the Fock number state representation. Therefore, PM (η) in (4.76) represents the no-click
probability for a multi-mode laser beam.

Multimode-displaced thermal states

Let us suppose that the M -mode state consist of thermal states ρT,αj at a same temperature T but displaced
by different amplitudes αj . The single-mode occupation probability of the n-th Fock number state is (see
Section 4.2.1)

ρT,α(n) =

(
nT

1 + nT

)n
e
− |α|

2

1+nT

1 + nT
Ln

(
− |α|2

nT (1 + nT )

)
, (4.77)

where Ln(x) = L
(0)
n (x) are the Laguerre polynomials.

Insert the displaced thermal states ρT,αj in the place of all ρ(j) in (4.70) and consider the last sum over
nM−1:

ΣM :=

n̄−
∑M−2
k=1 nk∑

nM−1=0

ρ(M−1)
nM−1

ρ
(M)

n̄−
∑M−1
k=1 nk

.

Using (4.77), one obtains

ΣM =
1

(1 + nT )2
e
−2

|α|2
1+nT

(
nT

1 + nT

)n̄−∑M−2
k=1 nk

×

×
n̄−

∑M−2
k=1 nk∑

nM−1=0

LnM−1

(
− |αM−1|2

nT (1 + nT )

)
Ln̄−

∑M−2
k=1 nk −nM−1

(
− |αM |2

nT (1 + nT )

)
.
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Using the sum rule [123]

L(α+β+1)
n (x+ y) =

n∑
k=0

L
(α)
k (x)L

(β)
n−k(y) , (4.78)

one finally gets

ΣM =
1

(1 + nT )2
e
−2

|α|2
1+nT

(
nT

1 + nT

)n̄−∑M−2
k=1 nk

L
(1)

n̄−
∑M−2
k=1 nk −nM−1

(
− |αM−1|2 + |αM |2

nT (1 + nT )

)
.

(4.79)
Iterating this procedure yields

Πn̄(M,η) =
1

(1 + nT )M
e
−

∑M
j=1 |αj |

2

1+nT

(
(1− η)nT

1 + nT

)n̄
L

(M−1)
n̄

(
−
∑M
j=1 |αj |2

nT (1 + nT )

)
. (4.80)

Thence the no-click probability at efficiency η results

PM (η) '
∞∑
n̄=0

P
(M)
n̄ (η) =

1

(1 + ηnT )M
exp

(
−
η
∑M
j=1 |αj |2

1 + η nT

)
. (4.81)

The last equality follows from using the associated Laguerre polynomials generating the equation

(1− t)−1−λ exp
(
− x t

1− t

)
=

∞∑
n=0

L(λ)
n (x) tn . (4.82)

4.4 SASE and Seeded FEL states reconstruction
"Coherence of SASE and seeded FEL radiation has been investigated experimentally [8, 19, 20], focussing
upon the Glauber correlation functions, revealing typical chaotic light behaviour in the first case and values
of |g2| rather close to 1 in the second one. We instead propose to shift the focus from Glauber correlation
functions to reconstructing the statistical properties of the FEL radiation related to the photon occupation
numbers [9]. This shift would then provide a first step towards a reliable investigation of the quantum
signatures of FEL light, ultimately able to discriminate between Poissonian and non-Poissonian features.
As we have seen, the presence of Poissonian statistics, though not sufficient, would in any case provide solid
ground to attributing "lasing properties" to the mechanism behind the generation of radiation by relativistic
electrons wiggling in a series of magnetic devices. It would also give support to the conjecture that the
lasing properties are imprinted upon the seeded-FEL radiation by the coherence features of the seeding
pulse. From a more general perspective, the consequences of the confirmation of the lasing properties of
the seeded FEL light will be of two types: it will open the way to experiments in quantum optics with X-
ray radiation and it will foster the experimental investigation of light-matter interactions in the high energy
quantum regime.
However, photon-counting techniques have many drawbacks in the X-ray regimes and, in general, if the
average number of photons increases, as in the case of high intensity sources, photon counting becomes
challenging, even for attenuated FEL radiation. We therefore resort to the approach described above to
retrieve the actual photon number distribution.
As explained in the introduction of this chapter, simulations has been used in order to test the algorithm.
Once the input quantum state ρin has been established, the first step consists in the computation of the
no-click probabilities. Since the problem is one-dimensional, the simplest way to generate observations of
the distribution P`({ρj}j) is the rejection sampling technique [126]. The occurrences of generated points,
normalized to the total number of data, coincides with the desired no-click frequencies f`. From datasets of
thousands of values, we extract a subset of L elements with the corresponding efficiencies. In the following
examples, L is chosen to be equal to 20. Such choice is consistent with previous use of the algorithm
[124, 125]. The range of selected efficiencies is chosen more carefully, avoiding region in which the off-
probability is flat. This condition translates in the exclusion of points with a low Fisher information. With
the aim of mimicking a real experiment, small random perturbations were added to the no-click frequencies.
The stability of the algorithm has been tested also corrupting the simulated frequencies with systematic
perturbations. The iteration procedure in (4.62) is fed with the off-click probabilities and ρn(0), i.e. the
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starting quantum state, taken as a uniform distribution. As suggested in [125], the value of constraint β is
found starting from 0 and tuning it to discard solutions whose energies do not match with the theoretical
value E. Finally, the similarity of the photon distribution reconstructed by the algorithm and the theoretical
one is evaluated by means of the "fidelity" index:

F =

N∑
j=1

√
ρinj ρ

out
j . (4.83)

The algorithm was applied to two distinct dataset scenarios. The datasets parameters were chosen in ad-
herence to the performance of a short wavelength high gain free-electron laser, run in SASE [45, 127] and
external seeding mode [2], respectively. The FEL pulse photon distribution is assumed to be captured in
proximity of power saturation in both regimes.
In the following, left plots display a comparison between simulated, reconstructed and theoretical off-click
frequencies, while right plots compare reconstructed and theoretical photon distributions.
EUV seeded FELs are ideally capable of producing Fourier-transform limited light pulses, thus a single

Figure 4.1: Left plot: off-click frequencies f` given by single mode-displaced thermal state α = 16,
nT = 30 as a function of the efficiency η. Blue dots are the simulated frequencies, obtained with the
sampling rejection technique; red dots are outputs of the reconstruction algorithm; the solid line corresponds
to (4.81) withM equal to 1 and the parameters shown before. Right plot: red line is the reconstructed photon
distribution and black line is the photon distribution given by (4.77). Fidelity F is also shown. Image from
[9]

transverse and longitudinal mode. The natural relative spectral bandwidth can be as low as 10−4 [10, 11].
In practice, micron-scale modulations of the electrons’ energy distribution, accumulated during the accel-
eration process, can add a statistically meaningful pedestal to the FEL spectrum [26, 49–51]. The ideal and
the perturbed seeded FEL performance is represented in our algorithm through a single mode-displaced
thermal state (M = 1, α = 16), and a multi-mode-displaced thermal state (M = 3, α = 7, 8, 12). In both
cases, nt = 30. The algorithm-reconstructed no-click frequencies and photon distribution are compared
with theoretical and simulated data in Figures 4.1 and 4.2.
SASE FELs are driven by shot noise in the electron distribution. Spontaneous undulator radiation is ampli-

fied and, eventually, a large number of longitudinal modes - each individually coherent - is emitted. A single
transverse mode is selected by the amplification process in proximity of saturation [128]. The number of
longitudinal modes is basically given by the portion of bunch length contribution to FEL emission (∼ 100
µm) divided by the FEL coherence length [129] (∼ 1− 3 µm in EUV).
The SASE FEL is therefore modeled with M = 30 and randomly distributed displacements. Moreover,
two thermal configurations were considered to test the algorithm: in the first example αj are chosen in the
interval 1 − 8 with nt = 10 and in the interval 1 − 5 with nt = 100 in the second one. Results are shown
in Figures 4.3 and 4.4.
The overall procedure requires less than 200 iterations, to reach a fidelity level L = (1 − F ) better than
10−4. Similarly high fidelity levels have been obtained for a larger number of datasets (not shown), so
demonstrating the capability of the algorithm in retrieving the input state in a wide range of configurations.
" From one of my paper [9]
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Figure 4.2: Left plot: off-click frequencies f` given by multimode-displaced thermal state, M = 3, α =
[7, 8, 12] and nT = 30, as a function of the efficiency η. Blue dots are the simulated frequencies, obtained
with the sampling rejection technique; red dots are outputs of the reconstruction algorithm; the solid line
corresponds to (4.81) substituting the parameters shown before. Right plot: red line is the reconstructed
photon distribution and black line is the photon distribution given by (4.77). Fidelity F is also shown.
Image from [9]

Figure 4.3: Left plot: off-click frequencies f` given by multimode-displaced thermal state, M = 30, αj
chosen randomly in the range [1, 8] and nT = 10, as a function of the efficiency η. Blue dots are the simu-
lated frequencies, obtained with the sampling rejection technique; red dots are outputs of the reconstruction
algorithm; the solid line corresponds to (4.81) substituting the parameters shown before. Right plot: red
line the reconstructed photon distribution and black line is the photon distribution given by (4.77). Fidelity
F is also shown. Image from [9]

4.5 Non-classicality in light-electron interaction
The interaction of a laser pulse with a free charge is an issue that has been studied for decades. Never-
theless, it continues to show new and fascinating aspects. Among other open questions, only recently the
one concerning the possibility of transferring the quantum properties of a laser field, e.g., quantum statistics
and/or quantum squeezed states, to a free electron, has been raised. Addressing this problem will unlock the
gate for understanding if the quantum behavior of an original laser field can be transferred, to some extent,
to a free electron and eventually to the final electromagnetic radiation re-emitted by it.
The foundation of the theory of laser-assisted phenomena, ranging from strong fields limit of quantum elec-
trodynamics (QED) to light-matter interaction and manipulation, resides in the description of the interaction
of electromagnetic radiation with electric charges and fields. In this context, the Dirac equation becomes
the basis to describe both free electrons and electrons in matter.
This is a well established strategy for both free and bounded charges: in the former it is the natural language
to investigate the high-energy perturbation provided by lasers; in the latter, there is a plethora of low energy
systems that behaves as relativistic Dirac or Majorana fermions [130].
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Figure 4.4: Left plot: off-click frequencies f` given by multimode-displaced thermal state, M = 30, αj
chosen randomly in the range [1, 5] and nT = 100, as a function of the efficiency η. Blue dots are the simu-
lated frequencies, obtained with the sampling rejection technique; red dots are outputs of the reconstruction
algorithm; the solid line corresponds to (4.81) substituting the parameters shown before. Right plot: red line
is the reconstructed photon distribution and black line is the photon distribution given by (4.77). Fidelity F
is also shown. Image from [9]

Volkov was the first to find an exact solution for a Dirac electron with given momentum in a classical plane
wave field [131]. Its solution still plays a pivotal role in the modeling of electrons in electromagnetic fields
or electromagnetic background, such as in the "Furry picture" or strong fields limit of QED. Several authors
started to extend his treatment using the second quantization approach for the plane field [132] or applying
the language of group [133] and representation theory [134] to deepen the physics hidden behind the Volkov
ansatz and the importance of the spin-field interaction [135].
Here, our aim is to extend previous works describing the interaction of an electronic wave packet with a
quantized plane wave field. Differently from other references, we propose to solve the Dirac equation to
admit a more general initial conditions for both light and electron. In fact, the analytical solution we found
can be used to describe both electron and photons density matrix starting from a generic electronic wave
function and an initial photon distribution.
Worth noting here is the fact that because of the general initial conditions imposed for solving the Dirac
equation, our results open the possibility to investigate multiple aspects of laser-assisted dynamics. Last but
not least, the transmission of classical coherence and non-classical features of light absorbed and re-emitted
by a free electron.
Regarding this last point, this section also comes as the first step towards the description of the free-electron
lasers process in a quantum dynamical fashion that includes the effect of electron’s spin. Finally, there
are generalizations that are quite straightforward: in primis the use of electron Wigner function or electron
coherent state to approach a phase space or semi-classical description that still take into account the spin
effect; secondly, the inclusion of external fields, such as magnetic or Coulomb fields. The former can be
used to describe Landau levels or undulator dynamics, while the latter can be exploited to include atomic
potential, indispensable to achieve a faithful model for high harmonic generation.

4.5.1 Evolution operator
The minimal coupling of a single electron with a quantized monochromatic electromagnetic field is de-
scribed by the following Hamiltonian:

Ĥ = mc2 β̂ + c α̂p̂ + ~ω â† â − e Â(r̂) , (4.84)

where

α̂ =

(
0 σσσ
σσσ 0

)
, β̂ =

(
I2 0
0 −I2

)
, {α̂i, α̂j} = 2δij , {α̂i, β̂} = 0 ,
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electron vector momentum operator p̂, field annihilation and creation operators â, â† such that [â , â†] = 1
and quantized vector potential at the electron position operator r̂ given by

Â(r̂) =

√
2πc2~
ωV

(
ε eikr̂ â + ε∗ e−ikr̂ â†

)
(4.85)

where k is the field wave-vector such that ω = c‖k‖ and, in the Coulomb gauge, εk = 0.
The Hamiltonian Ĥ acts on the tensor product H = Hel ⊗Hph of the Hilbert space Hel = L2(R3) ⊗ C4

of the relativistic electron and the Fock space Hph describing the monochromatic photons associated with
the electromagnetic field.
Given an initial electron-photon state |Ψ〉 or a more general mixed state of the form

ρ =
∑
α

λα |Ψα〉〈Ψα| , λα ≥ 0 ,
∑
α

λα = 1 , (4.86)

its time evolution is given by

ρ 7→ ρ(t) ≡ Ŵt ρ Ŵ
†
t , Ŵt ≡ exp

(
− i
~
t Ĥ

)
. (4.87)

From such an expression one can derive any property of the compound electron-photon system associated
with suitable observables X̂ acting on H, for instance the probability of evolving into another state |Φ〉 at
time t, X̂ = |Φ〉〈Φ|, by computing quantities of the form

〈X̂〉t ≡ Tr
(
ρ(t) X̂

)
. (4.88)

In what follows we aim at providing a manageable expression for Ŵt that might allow us to inspect proper-
ties like the quantumness of the light re-emitted by the electron when its generic initial sates are impinged
by light with specific photon properties. The derivation of such an expression for the dynamical unitary
map Ŵt will be pursued by successive diagonalizing steps.
The action of the electron-photon unitary operator

V̂ = exp
(
−ikr̂⊗ â† â

)
(4.89)

is such that

Â(r̂) =

√
2πc2~
ωV

V̂
(
ε â + ε∗ â†

)
V̂ † , V̂ † p̂ V̂ = p̂− ~k â† â . (4.90)

Then, by means of the Dirac matrices

γ̂0 = β̂ , γ̂ = (γ̂1, γ̂2, γ̂2) = γ̂0α̂ {γ̂µ , γ̂ν} = 2 gµν Î , (4.91)

where ĝ = [gµν ] is the diagonal 4× 4 matrix [1,−1,−1,−1], the Hamiltonian can be rewritten as follows

Ĥ = V̂
(
c γ̂0

(
γ̂p̂ +mc+ ~

(
γ0 k0 − kγ̂

)
â† â− g γ̂Â

))
V̂ † , (4.92)

where we have set

g ≡
√

2πe2~
ωV

, Â ≡ ε â + ε∗ â† . (4.93)

In the following we shall use the slash notation,

/a = γ̂a ≡
3∑

µ=0

γ̂µaµ = γ̂0a0 − γ̂a , (4.94)

where a stands for the 4-dimensional vector (aµ) = (a0,a) so that (aµ) = (a0,−a).
Taking into account that, in the Coulomb gauge, the time-component Â0 of the potential 4-vector vanishes,
we will now concentrate on the Hamiltonian

K̂ ≡ c γ̂0
(
γ̂p̂ +mc+ ~ /k â† â+ g /A

)
, (4.95)
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where, with the 4-polarization vector ε = (εµ) = (0, ε),

/k = γ̂0ω

c
− γ̂k , /A = /ε â + /ε

∗ â† , /ε = −γ̂ε . (4.96)

By expanding along pseudo-eigenprojectors |p〉〈p| of p̂, p̂|p〉 = p|p〉, one rewrites

K̂ =

∫
R3

dp |p〉〈p| ⊗ K̂(p) , K̂(p) ≡ cγ̂0
(
γ̂p +mc+ ~ /k â† â+ g /A

)
, (4.97)

where the momentum operator p̂ has become a vector p ∈ R3 and the Hamiltonians K̂(p) are now operators
on C4 ⊗Hph.
Using that γ̂0γ̂0 = Î, the eigenvalue equation for such K̂(p),

K̂(p)|E(p)〉 = E(p) |E(p)〉 , (4.98)

can be recast as (
/p − mc − ~ /k â† â− g /A

)
|E(p)〉 = 0 , (4.99)

where
/p = γ̂0E(p) − γ̂p . (4.100)

Once (4.99) has been solved, the dynamical map Ŵt in (4.87) will be of the form

Ŵt =

∫
R3

dp
∑
E(p)

e−i t E(p) V̂ |p〉〈p| ⊗ |E(p)〉〈E(p)| V̂ † . (4.101)

In order to solve (4.99), one first introduces the following unitary operator on C4 ⊗Hph,

Û(p) = Î+
g

2pk
/k /A , pk = E(p)

ω

c
− pk . (4.102)

The unitarity of Û(p) follows from the fact that, in the Coulomb gauge,

/k/ε = −1

2

3∑
i,j=1

kiεj
[
γ̂i , γ̂j

]
=⇒

(
/k/ε
)†

= − /k /ε∗ , (4.103)

which implies
Û†(p) = Û−1(p) = Î − g

2pk
/k /A . (4.104)

One explicitly finds

Û†(p)
(
/p − mc − ~ /k â† â− g /A

)
Û(p) = /p − mc − ~ /k â† â− g /A− g

2pk
/k /A/p (4.105)

+
g2

2pk
/k /A

2
+

g

2pk
/p/k /A +

g2

2pk
/k /A

2 − g2

(2pk)2
/k /A/p/k /A . (4.106)

Then using that

/k
2

= 0 , /p/k = 2pk − /k /p , and /k /A = −/k /A in the Coulomb gauge , (4.107)

one finds
/k /A/p/k /A = 2pk /k /A

2
, (4.108)

so that the electronic spinorial factor /k can be brought to multiply an operator K̂(p) that acts solely on
Hph:

/p − mc − ~ /k â† â− g /A = Û(p)
(
/p −mc − /k K̂ph(p)

)
Û†(p) , (4.109)

K̂ph(p) ≡ Γâ†â+
(
αâ+ α∗â†

)
+
(
µâ2 + µ∗(â†)2

)
+ η1, (4.110)

Γ =

(
~− g2 ε

∗ε

pk

)
, α = g

εp

pk
, µ = − g2

2pk
ε2, η1 = −g2 /ε/ε

∗

2pk
(4.111)
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and can be diagonalized by means of squeezing and displacement operators,

Ŝ(Θ(p)) ≡ exp
(
Θ(p) â2 −Θ∗(p) (â†)2

)
, (4.112)

D̂(σ(p)) ≡ exp
(
σ(p)â† − σ∗(p)â

)
, (4.113)

such that
K̂ph(p) = Ŝ(Θ(p)) D̂(σ(p))

(
~Ω(p) â† â + η(p)

)
D̂†(σ(p))S†(Θ(p)) . (4.114)

where the energies ~Ω(p) and the complex parameters Θ(p) and σ(p) depend on p.
The expression for Θ(p) and σ(p) in the case of linear polarization, i.e. ε∗ = ε and referring the coefficients
defined in Eq. 4.111

tanh [2Θ(p)] =
2µ

Γ
=

g2

g2 + ~pk
(4.115)

σ(p) = −α(cosh Θ(p)− sinh Θ(p))√
Γ2 + (2µ)2

(4.116)

where we have used the fact that ε∗ε = ε2 = −1. In the case of circular polarization, instead, ε2 = 0
implies µ = 0 and there are no quadratic terms in Eq. (4.110), except for the first one. In this situation the
squeezing operator is not necessary.
Finally, the energies are determined by

Ω(p) =
1

~
√

Γ2 + (2µ)2 =
1

~
Γ

√
1 + tanh [2Θ(p)]

2
=

1

~pk
√

(~pk + g2)2 + g4. (4.117)

Observe that, by means of the photon number eigenstates,

â |0〉 = 0 , |n〉 ≡ (â†)n√
n!
|0〉 such that â† â |n〉 = n |n〉 , (4.118)

one can rewrite

K̂ph(p) =

+∞∑
n=0

(
~Ω(p)n + η(p)

)
D̂(σ(p)) Ŝ(Θ(p)) |n〉〈n| Ŝ†(Θ(p)) D̂†(σ(p)) . (4.119)

Then, (4.109) can be recast as

/p−mc− ~/kâ† â− g /A =

+∞∑
n=0

T̂1(p)
[
/p −mc − /k

(
~Ω(p)n+ η(p)

)
⊗ |n〉〈n|

]
T̂ †1 (p)

where the operators
K̂sp(p) ≡ /p −mc − /k

(
~Ω(p)n + η(p)

)
(4.120)

is a 4× 4 matrix acting on the spinorial electronic Hilbert space C4 and

T̂1(p) = Û(p) Ŝ(Θ(p)) D̂(σ(p)). (4.121)

Once the 4-vectors |χα(n,p)〉, α = 1, 2, 3, 4, satisfying the eigenvalue equation

K̂sp(p) |χα(n,p)〉 = 0 , (4.122)

have been found, the sought after eigenvectors |E(p)〉 in (4.99) are given by

|En,α(p)〉 = Û(p) Ŝ(Θ(p)) D̂(σ(p)) |n〉 ⊗ |χα(n,p)〉 , (4.123)

and the dynamical operator Ŵt in (4.101) finally reads

Ŵt =
∫
R3 dp

∑+∞
n=0

∑4
α=1 e−i t En,α(p) T̂ (p)

(
|p〉〈p| ⊗ |n〉〈n| ⊗ |χα(n,p)〉〈χα(n,p)|

)
T̂ †(p) ,(4.124)

T̂ (p) ≡ V̂ Û(p) Ŝ(Θ(p)) D̂(σ(p)) . (4.125)
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It is possible to prove some fundamental properties of Ŵt, namely

Ŵ0 = Î Ŵ †t Ŵt = Î (4.126)

confirming that such operator is unitary and that the solutions satisfies the completeness relation. The dis-
persion of the global system and the eigenvalues in 4.125 can be derived from the spinorial equation 4.122,
applying K̂sp(p)† to the left. The resulting equation is cubic in En,α and can be solved analytically or
numerically.
There are some comments that can be pointed out about the four operators contained in T̂ (p) and used to
write the time-evolution operator. Operator V̂ is exploited to remove the dependence on electron variables
and acts as a shift in the momentum, proportional to the momentum of the photon state. Operator Û(p) has
been characterized in literature as the transformation from the non-interacting to interacting representation
of the Dirac equation, or, equivalently, to the transformation that defines a new set of gamma function [133].
This is, indeed, also the transformation from the Dirac to the Majorana representation [135]. There is how-
ever another interpretation that we propose for the ambivalent action on electronic and photonic degrees of
freedom. In the former case, Û(p) act as a Lorentz transformation. This is confirmed by the fact that it is
a function of γµγν , a product that can be used as the generator for the (1/2, 0) ⊕ (0, 1/2) representation
of the Lorentz group. In the photonic case, instead, Û(p) is a displacement operator, and can be written as
the exponential of a Grassman number. The presence of such operator is responsible for the non-minimal
coupling that Pauli equation and Dirac equation in the Newton-Wigner representation display. This also
suggests a way to generalize the decoupling from spin in the interaction with the electromagnetic field,
independently from the value of the spin.
Because of the coupling with both spin and charge, the interaction between an electromagnetic field and a
single electron is always non-classical. As we have shown in the diagonalization, the interaction Hamilto-
nian has a group structure, namely SU(1, 1) o H , that does not preserve coherent states. In particular,
this kind of Hamiltonian modifies the statistical properties of Glauber states, possibly introducing a non-
poissonian behavior [136]. For this reason, the eigenstate for the photonic part are written in terms of
squeezed coherent state, obtained from Ŝ(Θ(p)) D̂(σ(p)).

4.6 Summary
In this chapter, we introduced a reconstruction algorithm based on the off-clicks distribution of a Geiger-
like detector for photons. We showed that this technique can be extended to a significantly higher number
of photons with respect to the one proposed in literature and applied to the case of SASE and seeded FELs.
We determined the possible quantum states of light that could be associated with the light produced in these
two different schemes and used it as the input distribution for the algorithm. The reconstructions were all
characterized by a high fidelity.
In the second part, we derived some useful results regarding the determination of light and electron proper-
ties in a simple system: a single electron in a quantized electromagnetic field. It is shown that the electron
behaves in a non-classical manner when interacting with photons because of the spin degree of freedom.
The formalism developed can be applied to any initial condition, including quantum light interacting with
an electron wavefunction.
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Chapter 5

Conclusions and perspectives

The aim of this thesis, organized in an introduction and three chapters, is to highlight the role of the elec-
tron dynamics on the coherence of short wavelength high-gain free-electron lasers. In particular, we focused
our attention on some of the most relevant collective phenomena affecting the electron dynamics and con-
sequently the FEL light coherence. Recent experiments have shown that seeded FELs display a high degree
of longitudinal coherence, but are still affected by the electron bunch dynamics. Furthermore, the FEL
seeding process with an external laser is clearly determining a higher degree of longitudinal coherence with
respect to the conventional SASE FELs. Nonetheless, even for laser seeded FELs, spurious harmonic con-
tent in the beam, as detailed in this work, are at the origin of longitudinal coherence deterioration. The effect
of spurious harmonic content can be mitigated once a comprehensive description of the electron dynamics
is achieved. This becomes even more evident when the statistical behavior of the emitters has to be taken
into account. Conversely, the measure of the photon beam coherence is suitable for the characterization of
the electron bunch.
The second chapter is dedicated to the measurement of transverse and longitudinal coherence. Measure-
ments of phase correlation show that transverse coherence is developed differently in SASE and seeded
FELs. While the former is dominated by the thermal behavior of accelerated electrons, the seed laser im-
print dominates the features of the latter. However, microbunching instability significantly affects the seed
FEL longitudinal coherence as measured by second-order correlation function.
In fact, microbunching instability (MBI) has proven to be one of the most relevant showstoppers to improve
FEL performance, including FEL brightness and coherence. This issue is discussed in the third chapter.
MBI was described theoretically and characterized experimentally. By measuring the bunch energy spread
at the exit of FERMI linac, we benchmarked the model for longitudinal phase space dynamics to which I
gave a major contribution. This formalism includes also intrabeam scattering (IBS), which is an unexplored
mechanism in electron linear accelerators so far. In particular, including IBS into the MBI models brings a
good agreement between the measured and calculated energy spread.
As a direct evidence of MBI, 2-D Fourier analysis of longitudinal phase space provided new information
about MBI and energy modulations after compression. This technique has been used for both shot-noise-
based MBI and for the artificially injected one. MBI spectral gain has also been measured with an infrared
spectrometer and characterized as a function of the machine parameters such as induced energy spread and
compression. With this second diagnostic station, positioned after the spreader line of FERMI FEL-2, we
were able to determine the impact of such long dispersive section.
We also demonstrate that MBI is not localized in a portion of the electron bunch, but uniformly distributed
along the current profile.
We showed that there is a clear correlation between the MBI content and FEL performance by comparing
the reduction of spurious harmonic content in the emitted light and the reduction of the signal on the spec-
trometer. Finally, the performances of seeded FELs in the HGHG and EEHG configurations in presence or
absence of MBI have been characterized. In this regards, we showed that spreader optics is an additional
knob to control and reduce the MBI impact.
The comparison between 2-D Fourier analysis, spectrometer data and the FEL spectral purity, with the
same beam condition, could become a standard procedure to gain more information about this plasma-like
dynamics. This in turn, will become helpful to further develop the theoretical apparatus for the description
of MBI and related phenomena.
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In perspective, we are planning to use the measurement of second-order correlation function to associate the
statistical behavior of FEL sidebands with the modulations in the electron bunch. This allows to promote
the measurement of FEL spectral content into a novel diagnostic for microbunching instability.
The last chapter dealt with the characterization of FEL coherence from a quantum-mechanical point of view.
In our pioneering work, we proposed to shift the attention towards the poissonianity of a source, instead of
the degrees of coherence, promoting it as an alternative method to investigate the coherence of seeded FELs
longitudinal and transverse. To do so, we tested a reconstruction algorithm by feeding it with simulated
photon number distributions that represent possible FEL classical states. This method has proven to be very
efficient in retrieving the deviation from Poisson distribution of highly populated photon states.
All this considered, we are planning to exploit such algorithm also for experimental no-click frequencies to
measure poissonianity of light sources, first in the visible and then in the XUV regime.
To include the impact of electron on quantum coherence, a fully quantum picture is needed. The fun-
damental building block to achieve a QED description of emission processes stimulated by an external
coherent source is the interaction of a Dirac fermion, i.e. an electron, with a quantized electromagnetic
field. We therefore derived a new solution to this problem, interpreting all the components of such expres-
sion.
Interestingly, the formalism proposed can be used to calculate the evolution of both light and electron prop-
erties, such as the second order correlation function. With our apparatus it is possible to determine if and
how the free-electron wave function is affected by these statistics of the interacting photon and how this
statistics is modified by the interaction. Calculations of this type will become the first theoretical descrip-
tion of how quantum coherence is transferred from photons to electron and vice versa.
We are already planning the next steps by including a many-body treatment for electrons and non-monochromatic
quantized electromagnetic field. The former is necessary to describe processes in which more than one elec-
tron is involved, while the latter allows us to include any form of external fields (classical or not). This result
is versatile enough to be adapted to describe HHG and inverse Compton scattering.
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Appendix A

FERMI layout

The FERMI [137] is an international user linac-driven FEL facility delivering short pulses (in the range
between 100 fs and 10 fs) close to the Fourier limit with tunable wavelength and polarization in the range
from 100 to 4 nm.

FERMI Linac
FERMI linac is shown in Figure A.1.
FERMI photo-injector delivers 10 ps long pulse with a bunch charge in the range between 500 and 700

Figure A.1: Overview of FERMI linac (not to scale). The insets show the geometry of Laser Heater (lower)
and Bunch Length Compressor (upper). The Diagnostic Beam Dump is also indicated in the scheme.

pC (standard operation) and a repetition rate of 50 Hz with a rms normalized transverse emittance of 1.2
mm-mrad at 100 MeV. A laser system provides an UV laser pulse for the electron extraction and the laser
heater (LH) [62].
The laser heater is a device installed to heat the beam, increasing by a fixed amount the uncorrelated energy
spread of the electron beam. The heating is provided by the interaction of the laser with the electron bunch
in an undulator, placed in the middle of a four dipoles chicane. The parameters are provided in Table A.1.
The prescription of artificially increase the energy spread is motivated by the high sensitivity of microbunch-
ing instability to such parameter.
After reaching 100 MeV with two S-band rf sections, the beam is injected in the main linac. The linac is
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Table A.1: FERMI Laser Heater Parameters

Parameters Values

Undulator period 40 mm
Number of periods 12
Undulator parameter 0.8-1.17
Laser wavelength 783 nm
Laser pulse duration 8-15 ps
Laser energy < 160µJ
Laser transverse size 130-220 µJ
Horizontal offset in the chicane 30 mm
Chicane bending angle 3.5 deg

composed of four accelerating sections (L1 to L4) and two bunch compressors (BC1 and BC2) before the
transfer section which transports the beam to the two FEL lines, known as a "spreader". The final energy of
the beam ranges from 0.9 to 1.35 GeV. The off-crest acceleration before compression, the non-linearities of
the correlated momentum distribution along the bunch and the longitudinal wakefields are compensated by
an X-band rf structure placed in L1.
Bunch compressors are designed to increase the beam peak current. They are four-dipole chicanes that
exploit the linear chirp introduced by off-crest acceleration, before the first bending magnet, to decrease the
path travelled by lower energy particles and increase it for higher energy particles. This strategy shorten
the bunch length and, since the charge is conserved, increase the overall current. In typical operations
only BC1 is employed, in order to prevent the enhancement of microbunching instability. The current after
compression is of the order of 500 A and the bunch duration is less than 1 ps.

Diagnostic Beam Dump
Before the two branches of the transfer line, FERMI possess also a Diagnostic Beam Dump (DBD), posi-
tioned at the end of the linac. A couple of bending magnets deflect the beam along this beamline in which
the longitudinal phase space of the beam is characterized with the help of a vertical RF deflector (VRFD)
and a horizontal spectrometer magnet [95]. After the dipoles, the beam is intercepted by a screen, whose
horizontal and vertical physical axis can be calibrated to be proportional, respectively, to the energy and
arrival time of the particles. As a matter of fact, the presence of a dispersive region introduce a correlation
between energy and position, while the use of the deflecting cavity, correlates time and position. For this
reason, images of the bunches at the screen can be used to retrieve the bunch duration, current profile, the
energy spread and energy chirps.

Free Electron Lasers

Figure A.2: FERMI FEL1. Image from [138]

Each branch of the transfer line is assigned to one of the two externally seeded FELs, called FEL-1 (in
Fig. A.2) and FEL-2 (in Fig. A.3). Both switchyard are composed of four dipoles and the first two are
common.
FEL-1 is a single-stage high gain harmonic generation FEL which covers the wavelength range 100-20 nm,
while FEL-2 is a double-stage high gain harmonic generation FEL, covering the range the range 20-4 nm.
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Figure A.3: FERMI FEL2. Image from [138]

They both rely on a conventional, high peak-power pulsed laser as external seed. The energy modulation
coming from the laser-electron interaction in a first undulator section, called the modulator, is converted into
density modulation by crossing dispersive section. In this process, modulation occurs at the fundamental
seed wavelength, as well as at its higher harmonics. The following radiators are then tuned to resonate at
one of these harmonics so that high intensity FEL emission is radiated.
In the case of FEL-2 the process is repeated twice: in a second modulator, light produced by the first stage
is used as an external seed to further increase the harmonic jump. The FEL process takes place in a second
radiator section. A magnetic delay line between the two stages is inserted in order to seed, in the second
stage, a portion of the electron beam that has not been spoiled by the previous emission process.
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Appendix B

P-function: coherent, thermal and
number states

Coherent states form a continuous non-orthogonal family,

〈α|β〉 = e
−1

2
(|α|2 + |β|2 − 2α∗β)

, (B.1)

which is however over-complete in the sense that the corresponding projectors integrate to the identity
operator ∫

C

d2α

π
|α〉 〈α| = I . (B.2)

Coherent states are obtained by displacing the vacuum |0〉,

D(α) |0〉 = |α〉 , (B.3)

by means of the displacement operators

D(α) = eαa
†−α∗ a = e−|α|

2/2 eαa
†

e−α
∗ a , (B.4)

which are such that

D(β)D(α) = e(β∗α−βα∗)/2D(α+ β) , D†(β)D(α)D(β) = eβ
∗α−βα∗ D(α) . (B.5)

whence D†(α) aD(α) = a+ α.
Let ρ be the density matrix of a monochromatic light beam; its Glauber-Sudarshan representation reads as
a continuous linear combination of coherent-state projectors

ρ =

∫
C

d2αPρ(α) |α〉〈α| .

Using the scalar product (B.1), with α = x+ iy and β = u+ iv, one obtains

e|β|
2

〈−β|ρ|β〉 =

∫
C

d2αPρ(α) e−|α|
2−αβ∗+α∗β

=

∫
R2

dxdyPρ(x+ iy) e−x
2−y2 e2i(xv−yu) , (B.6)

whence, by anti-Fourier transformation,∫
R2

d(2u)d(2v)

4π2
eu

2+v2 〈−u− iv|ρ|u+ iv〉 e2i(xv−yu) = e−x
2−y2 Pρ(x+ iy) . (B.7)

Then, the Glauber-Sudarshan P-functionPρ(α) can be expressed by means of the matrix elements 〈−β|ρ|β〉:

Pρ(α) =
e|α|

2

π2

∫
C

d2β e|β|
2

eαβ
∗−α∗β 〈−β|ρ|β〉 , (B.8)
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where | ± β〉 are coherent states.
If ρ is itself a coherent state ργ = |γ〉〈γ|, the scalar product (B.1) yields

〈−β|ργ |β〉 = e−|β|
2−|γ|2−γβ∗+γ∗β . (B.9)

Using (B.8) and the fact that, with α = x+ iy and β = u+ iv,

1

π2

∫
C

d2β eαβ
∗−α∗β =

∫ +∞

−∞

∫ +∞

−∞

dx

π

dy

π
e2i(yu−xv) = δ(x)δ(y) = δ2(α) , (B.10)

one then obtains

Pργ (α) =
e|α|

2−|γ|2

π2

∫
C2

d2β e−(γ−α)β∗+(γ∗−α∗)β = δ2(α− γ) . (B.11)

For thermal states as in (4.28), by Gaussian integration one obtains

〈−β|ρT |β〉 =
e
−|β|2 1+2nT

1+nT

1 + nT
=⇒ PT (α) =

1

π

e
− |α|

2

nT

nT
. (B.12)

On the other hand, when ρ = |n〉〈n|, one computes

〈−β|ρ|β〉 =
e−|β|

2

π2
(−)n

|β|2

n!
, (B.13)

whence, using (B.10), the P-function becomes a highly singular distribution:

Pn(α) =
e|α|

2

π2

∫
C

d2β (−)n
|β|2

n!
eαβ

∗−α∗β =
e|α|

2

n!

∂2n

∂nα∂
n
α∗
δ2(α) . (B.14)
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Appendix C

Geiger-like detectors

When considering the detectors that should measure no-click probabilities, several requirements need to
be satisfied. The detector should have fast response (< 1 ns) and a relatively small dead time (ideally
< 100ns) to accommodate for the laser dynamics, especially in the case of FELs with high repetition rates.
The quantum efficiency should be high (> 10). One of the most employed single photon detectors are
photomultiplier tubes [139]. The figures of merit for photomultipliers are close to those specified above,
even if response times are often larger than 1 ns and dead times in the range between 100 ns and 1µs. One
disadvantage of photomultiplier tubes is the need to bias the devices at voltages of the order of 1 kV, making
gated operation extremely difficult.
Recent years have seen the development of monolithically integrated CMOS detectors. Monolithic integra-
tion of the photosensitive area with the readout electronics offers unprecedented accuracy in the processing
of the detected signal and engineering freedom on the sensor characteristics in term of size and electronic
response. Fully depleted p-n junctions have been used for X-ray detection and have sensitivities that can
reach the single photon level [140, 141]. Different materials can be employed for the sensor area via wafer
bonding [142].
Monolithic CMOS detectors can operate in Geiger mode in the case of CMOS single photon avalanche pho-
todiodes (SPADs) [143]. CMOS SPADS have very fast response times (generally< 100 ps) with short dead
times (of the order of some tens of ns) and can be operated at low voltage of the order of 10 V. Furthermore
their integration can ensure that arrays of photon counting pixels can be easily integrated on chip to the side
of the electronic circuits used for counting [144]. Such pixels can be as small as 10µm in size, giving the
possibility of engineering arrays comprising tens or hundreds of single photon counting pixels within the
FEL spot diameter. The counts from such an array can then be summed by the on-chip electronics (in a
configuration similar to silicon photomultipliers [145]) and pixels can be selectively turned off thus directly
controlling the detection efficiency.
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