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In many natural environments, diferent forms of living organisms successfully accomplish the same task while being diverse
in shape and behavior. This biodiversity is what made life capable of adapting to disrupting changes. Being able to reproduce
biodiversity in artiicial agents, while still optimizing them for a particular task, might increase their applicability to scenarios
where human response to unexpected changes is not possible. In this work, we focus on Voxel-based Soft Robots (VSRs), a
form of robots that grants great freedom in the design of both morphology and controller and is hence promising in terms
of biodiversity. We use evolutionary computation for optimizing, at the same time, morphology and controller of VSRs for
the task of locomotion. We investigate experimentally whether three key factorsÐrepresentation, Evolutionary Algorithm
(EA), and environmentÐimpact the emergence of biodiversity and if this occurs at the expense of efectiveness. We devise
an automatic machine learning pipeline for systematically characterizing the morphology and behavior of robots resulting
from the optimization process. We classify the robots into species and then measure biodiversity in populations of robots
evolved in a multitude of conditions resulting from the combination of diferent morphology representations, controller
representations, EAs, and environments. The experimental results suggest that, in general, EA and environment matter more
than representation. We also propose a novel EA based on a speciation mechanism that operates on morphology and behavior
descriptors and we show that it allows to jointly evolve morphology and controller of efective and diverse VSRs.

CCS Concepts: ·Computer systems organization→ Evolutionary robotics; · Theory of computation→ Evolutionary

algorithms; Developmental representations; · Computing methodologies→Mobile agents.

Additional KeyWords and Phrases: Evolutionary robotics, Evolutionary algorithms, Neuroevolution, Representation, Diversity

1 INTRODUCTION

One grand-vision goal for robotics is to create robotic ecosystems that can endure hazardous and dynamic
environments, pursuing their mission without any need for human supervision [Buchanan et al. 2020; Hale et al.
2019]. Several challenges must be overcome before achieving this goal, ranging from scalability in the design and
building phases [Hale et al. 2020; Kriegman et al. 2020], possibly with auto-fabrication [Nitschke and Howard
2021], to efective mechanisms for robot adaptation to changes in both the environment and the robot itself (e.g.,
unforeseen damages) [Cully et al. 2015]. Adaptation would be a crucial property in order to ensure the survival
of such autonomous robotic ecosystems.
The vast majority of works in robotics have aimed at inding one robot design that its well for a given task

in a given environment. One intrinsic limitation of this approach is that, when the task or the environmental
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conditions change, the found design might become less efective, and possibly inefective, making all the deployed
robots immediately useless. That design, and the approach that produced it, are hence intrinsically not adaptable.
Conversely, in nature, several diferent designs exist at the same time that it well for a given task, e.g., locomotion,
food harvesting, and reproduction. Diversity of designs for life forms, i.e., biodiversity, is hence the way nature
achieves adaptation. Through biodiversity, natural evolution made life robust to disruptive changes, by illing a
variety of ecological niches with diferent species. Indeed, biodiversity is so valuable that it has to be preserved in
order to protect life itself [Tilman et al. 2017], as well as to increase the stability of ecosystems [Arese Lucini
et al. 2020]. Diversity plays a fundamental role even in other settings as, e.g., in geology [Schrodt et al. 2019],
economics [O’Sullivan and Shefrin 2003], culture and politics [Young 1979].

Since researchers do resort to the paradigm of evolution for optimizing robots, by means of the methodologies
of Evolutionary Robotics (ER) [Noli and Floreano 2000], it is sound to wonder if diversity may emerge from
evolution also in populations of robots, similarly to what happens in populations of living creatures. In this work,
we target this question and study which factors impact diversity in populations of evolved robots and whether
they afect the efectiveness, i.e., the ability of robots to perform the required task.
Actually obtaining diversity while evolving robots is not an easy endeavor, though. First, comprehension,

measurement, and promotion of diversity are important challenges themselves in the broader ield of Evolutionary
Computation (EC) [Črepinšek et al. 2013; Squillero and Tonda 2016], from which ER borrows the optimization
techniques. Second, the characterization of diversity in ER and a deep understanding of which factors favor or
impede it are still open issues [Silva et al. 2016]. In fact, the complexity of the robot-environment interplay makes
it hard to obtain useful diversity, i.e., the diversity that does not afect efectiveness.

We consider the scenario of Voxel-based Soft Robots (VSRs), a kind of robots composed of cubic blocks of soft
material capable of basic actuation and organized in a grid-like structure [Hiller and Lipson 2012]. VSRs it
particularly well our research questions for two reasons. First, their intrinsic modularity [Yim et al. 2007] and
the fact they are an instance of soft robots [Kim et al. 2013] make VSRs a promising path toward autonomous
robotics ecosystems. Second, they allow great freedom to the designers: in principle, they may optimize the
morphology [Cheney et al. 2013], the controller [Talamini et al. 2019], and even the sensory apparatus [Ferigo
et al. 2022a]. Indeed, VSRs have accomplished remarkable feats, e.g., squeezing through tight spaces [Cheney
et al. 2015], crossing the sim-to-real gap [Kriegman et al. 2020], and igniting research on self-replicating synthetic
organisms [Kriegman et al. 2021]. We investigate whether such great freedom can also foster diversity.

In this work, we study the impact of three factors on the diversity and efectiveness of populations of evolved
VSRs: the solution representation, the Evolutionary Algorithm (EA), and the environment. To this end, we
deal with the joint evolution of both morphology and controller of the robot, a task that is well-known to be
problematic in the ER community [Lipson et al. 2016]. We consider two representations for the controller and
two representations for the morphology that difer in their expressiveness and hence exhibit diferent potentials
for diversity while allowing concurrent evolution of VSRs morphology and controller. We also consider four EAs
that are radically diferent in how they deal with diversity and, inally, three environments with diferent degrees
of diiculty. Among these, we propose and assess a novel EA that promotes diversity through speciation, where
individuals are partitioned in species based on a few morphology and behavior descriptors that we designed for
the case of VSRs doing locomotion.
A key contribution of our work is an automatic pipeline for systematically analyzing a very large number

of VSRs (hundreds of thousands), while still looking at them with the human eye as we do when associating
living organisms with a speciic species. In doing so, we rely on Machine Learning (ML) to automatically assign
species to VSRs. We build an ML pipeline for classifying VSRs into species according to morphology and behavior
descriptors extracted from simulations of VSRs that perform the task of locomotion. Then, we use the relative
abundance of predicted species as a measure of diversity for a population of VSRs, using the well-established
Simpson index [Simpson 1949].
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While there have been several studies addressing diversity in EC, with some of them considering the domain of
robots, we believe that our work is the irst to consider multiple factors afecting the diversity of both morphology
and behavior. Moreover, we analyze those factors based on a notion of diversity that exploits humans’ ability to
discriminate between diferent approaches to locomotion, and hence facilitates comprehension. We believe our
study may help future designers of evolvable robotic ecosystems in prioritizing diferent factors in terms of their
impact on the diversity and efectiveness of evolved robots. Namely, we found that the environment and the EA
seem to have a greater impact on diversity than the representation. Hence, these two factors should likely be the
ones on which a designer should focus more.

This work is an extended version of [Medvet et al. 2021]. With respect to the cited work, the major additions
are:

(a) we consider also the environment as a factor that can impact biodiversity and efectiveness, in addition to
representation and EA;

(b) we consider two representations for the morphology, rather than the only one being used in [Medvet et al.
2021]: we also discuss the bias of the representation in terms of morphology descriptors;

(c) we increase the size of the robot morphology grid, from 5 × 5 to 10 × 10, in order to evolve larger and more
complex robots and to better exploit the expressiveness of VSRs.

2 RELATED WORKS

There are earlier works that examined diversity in ER [Auerbach and Bongard 2014; De Carlo et al. 2020; Miras
et al. 2020; Mouret and Doncieux 2012; Nordmoen et al. 2021; Samuelsen and Glette 2014]. Our work shares
with them the general methodology, i.e., investigating the factors that may have an impact on evolution but
difers in either the kind of robots considered or the factors themselves. Most of those works focused mainly on
the impact of the environment [Auerbach and Bongard 2014; Gupta et al. 2021; Miras et al. 2020], while here
we consider also the controller representation, the morphology representation, and the EA. The studies that
are most similar to ours are [De Carlo et al. 2020] and [Mouret and Doncieux 2012]. The former investigates
whether a mechanism of artiicial speciation can favor morphological diversity. We also devise an EA that
employs speciation and, in this respect, both the cited work and our approach were inspired by NEAT [Stanley
and Miikkulainen 2002]. However, diferently from [De Carlo et al. 2020], we (i) also consider the diversity of
behavior, (ii) work with a more expressive kind of robots, VSRs, and (iii) analyze the joint impact of representation,
EA, and environment. Mouret and Doncieux [2012] conducted an empirical study for comparing approaches
for encouraging the diversity of the behavior of evolved robots. The authors focused mainly on the EA and
on the measure of similarity on which to build diversity promotion. Diferent from the cited work, we (i) also
consider the diversity of the robot morphologies and (ii) take the representation of solutions, i.e., how to map
a genotype into a pair morphology-controller, as a factor potentially afecting diversity. We do not explicitly
compare diferent similarity measures; yet, in the novel simple EA we propose for promoting diversity through
speciation, we experiment with three diferent ways of measuring similarity between pairs of robots.
The pursuit of diversity has become more and more important in the EC community [Cully and Demiris

2017]. Proposals in this respect include novelty search [Lehman and Stanley 2008], novelty search with local
competition [Lehman and Stanley 2011], and quality-diversity algorithms [Cully and Demiris 2017]. In a recent
study, Nordmoen et al. [2021] showed that MAP-Elites, a form of quality-diversity optimization, is particularly
suitable for exploiting the potential for diversity of modular (rigid) robots. The authors showed experimentally that
populations of robots that evolved with MAP-Elites are more successful when transferred to new environments
with respect to those that evolved with other EAs. Moreover, they speciically spotted a strong correlation between
the diversity of earlier populations and efectiveness in locomotion in new environments. In a previous study,
Tarapore et al. [2016] found that MAP-Elites is sensible to the representation of the controller in evolutionary
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robotics applications: apparently, the lower locality of indirect, generative representations makes this EA less
efective than with direct representations. Interestingly, MAP-Elites has also been recently found particularly
efective in the simultaneous evolution of morphology and controller of VSRs [Ferigo et al. 2022b], with both
indirect and direct representations of the controller. Overall, these results further motivate our aim of investigating
the factors, beyond the EA, that favor or disfavor diversity in modular robotics.

Last but not least, our work its into a relevant body of literature in ER concerning the joint evolution of mor-
phology and controller. Past studies have either employed directed acyclic graphs [Sims 1994], L-systems [Hornby
et al. 2001], gene regulatory networks [Joachimczak et al. 2016], direct encodings [Pagliuca and Noli 2020], or
relied on more complex solutions as co-evolution [Cheney et al. 2018], and evolutionary reinforcement learning
[Gupta et al. 2021]. In most of the cited works, the key ingredient for achieving the concurrent optimization of
morphology and controller is the representation, i.e., how to encode in a genotype the information needed for
describing both the morphology and the controller of the robot. While, in principle, some of the approaches
mentioned above could be ported to the case of VSRs, in this study we “onlyž focus on four representations
resulting from the combination of two for the morphology and two for the controller. Since we are interested in
investigating the impact of representation (and its interplay with EA and environment) on diversity, we choose
the representations for the morphology and the controller considering their compactness vs. expressiveness
trade-of.

The intrinsic hardness of jointly evolving robots morphology and controller has been discussed by Lipson et al.
[2016], using precisely the case study of VSRs. The reason for such diiculty rests on the embodied cognition

paradigm [Pfeifer and Bongard 2006], which posits that intelligence emerges from the interaction between
the controller (brain), the morphology (body), and the environment: brains evolve to it a particular body and
variations in the body are likely to cause mismatch [Eiben and Hart 2020]. On the other hand, allowing the
concurrent optimization of both morphology and controller of the robots makes their optimization more diicult
as diversity seems to vanish quickly [Pagliuca and Noli 2020]. An important contribution of our work is showing
that it is possible to jointly evolve the morphology and the controller of VSRs that are efective in the task of
locomotion, while also being diverse.

3 MATERIALS AND METHODS

3.1 Background

Voxel-based Soft Robots (VSRs) are a kind of robotic agents composed of several deformable cubes (called voxels),
that perform actions by expanding or contracting the volume of the voxels. VSRs have been irst introduced in
[Hiller and Lipson 2012], along with a procedure for physically realizing them. We consider a 2-D variant of
simulated (in discrete time and continuous space) VSRs, proposed in [Medvet et al. 2020b]. While disregarding one
dimension makes these VSRs less realistic, it also reduces the search space; as such, this framework is particularly
suitable for optimization by means of EC. We remark, however, that the representations and the algorithms
proposed in this paper are easily portable to the 3-D setting.

In this section, we briely describe the salient characteristics of VSRs that are relevant for this study: we refer
the reader to [Medvet et al. 2020b,c] for more details.
A VSR is deined by its morphology and its controller. The former describes how the voxels are arranged and,

for each voxel, the sensors it is equipped with. The controller determines how the area of each voxel varies over
time, possibly relying on the readings of the sensors of that voxel and on communication with the other voxels.
The ability of sensing both its internal state and the external environment makes VSRs potentially more efective
in performing those tasks where sensing may be advantageous as, e.g., locomotion [Talamini et al. 2019].

3.1.1 Morphology. Voxels of a VSR are arranged in a 2-D grid topology of size w × h. In our simulations, we
model each voxel as the assembly of spring-damper systems, masses, and distance constraints [Medvet et al.
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2020b]. Each voxel is rigidly welded to its four adjacent voxels (at the vertices), if present. We set the same
values for the parameters of those components across all voxels, which results in all the voxels having the same
mechanical properties.
The area of a voxel changes based on the corresponding actuation value, imposed by the controller, and on

the external forces acting on the voxel, i.e., other voxels and the ground. The actuation value lies in [−1,+1],
where −1 corresponds to the maximum expansion and +1 corresponds to the maximum contraction. We model
expansion and contraction in the simulation as instantaneous changes of the resting length of the springs in the
spring-damper systems of the voxel.

Voxels can be equipped with sensors. Each sensor produces, at every time step, a sensor reading s ∈ Rm , where
m is the dimensionality of the sensor type. We use three types of sensors and equip every voxel with one sensor
of each type. Area sensors perceive the ratio between the current area of the voxel and its rest area (som = 1).
Touch sensors perceive whether the voxel is touching the ground or not (m = 1), and output 1 and 0, respectively.
Velocity sensors perceive the velocity of the center of mass of the voxel along the x- and y-directions (m = 2).
We apply a soft normalization (with tanh function) to every sensor reading, to ensure all sensor readings lie in
[0, 1]m . After normalization, to simulate real-world sensor noise, we perturb every sensor reading with additive
Gaussian noise of mean 0 and standard deviation σnoise = 0.01.

3.1.2 Controller. The controller determines the actuation value for each voxel at each time step. For the sake of
this study, we resort to the distributed neural controller proposed in [Medvet et al. 2020a] that facilitates the joint
evolution of morphology and controller. It consists of a number of fully connected, feed-forward Artiicial Neural
Networks (ANNs), one for every voxel, and operates as follows.
At time step t = k∆t , where ∆t is the interval between two simulation time steps, each ANN (i) receives as

input the local sensor readings and the 4ncomm communication values generated by the four adjacent ANNs at the
previous time step and (ii) outputs the local actuation value and 4ncomm communication values to be fed to the
adjacent ANNs at the next time step. Formally, each ANN works as follows:

[

a(k ) o(k )
N

o
(k )
E

o
(k )
S

o
(k )
W

]

= ANN
( [

s
(k )
i i
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i
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W

] )
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where a(k ) ∈ R is the local actuation value, o(k )
N
∈ Rncomm is the vector of communication values directed to

the voxel above (similarly for E, S, W), s(k)i ∈ [0, 1]4 is the concatenation of the local sensor readings, and

i
(k−1)
N

∈ Rncomm is the vector of communication values coming from the voxel above and been generated at the
previous time step (similarly for E, S, W). If one of the neighbors is absent (e.g., if the voxel lies on the boundary

of the morphology), we set i(k−1)
N

(or E, S, W) to a zero-vector 0 of the proper size. Similarly, we use a zero-vector
as input communication values for all the voxels at the very irst time step.
This form of controller meets the requirement of the concurrent evolution of morphology and controller:

since the architecture of each ANN, namely the size of the input and output layers, is dictated only by the
parameter ncomm, the structure of this distributed controller is agnostic with respect of the morphology of the
VSR. Morphology and controller can hence be optimized together.

Despite its simplicity, this form of controller may result in interesting and variegate behaviors, since the
interconnections between voxel ANNs make the overall architecture recurrent [Rumelhart et al. 1986], endowing
the system with a form of “memoryž: therefore, there is a further dynamics introduced by the recurrent ANN that
interacts with the dynamics induced by the mechanical model of the soft body (where the spring-and-hamper
systems hold a form of “memoryž too).

After some preliminary experiments and by taking into account the indings of [Medvet et al. 2020a], we use
ncomm = 1, no hidden layers, and tanh as activation function for all the neuronsÐthe latter guarantees that all
communication values and the actuation value are in [−1, 1]. Considering that the overall dimension of the sensor
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readings is 4, this results in each ANN having 4 + 4 input neurons and 4 + 1 output neurons; hence, each ANN is
described by 8 · 5 + 5 = 45 = nANN numerical parameters (the weights and biases of the edges connecting the
neurons).

3.2 Measuring biodiversity

We take inspiration from the natural sciences and build our deinition of biodiversity of populations of VSRs on
the concept of species. A species groups together individuals sharing the same phenotypic traits. Once being able
to associate each VSR with a species, we measure the diversity of a population of VSRs as the variety of species
of its individuals.

For VSRs, since we deal with the joint evolution of morphology and controller, we use both kinds of traits for
deining species. That is, we deine a species as a pair of morphology species (based on morphology traits) and
controller species (based on controller traits). Aiming at deining species that are based on observable traits, we
actually consider the behavior, rather than the controller, of VSRs: while we do acknowledge that the behavior is
not determined by the controller alone since it depends also on the morphology and the environment, we believe
that the behavioral traits we chose to consider carry a signiicant amount of information about the underlying
controller.

In order to have species that can be observed and discerned by humans, as it happens for living organisms, we
phenotypically classify morphology species and behavior species by human categorization. Although it is just
one of the ways that modern biology uses to deine species, we believe this approach aligns with our objective of
discovering species as seen by the human eye (rather than, e.g., according to genetic compatibility). However,
since we evolve a large number of VSRs (in the order of hundreds of thousands), species classiication by human
inspection alone is not feasible. For this reason, we use ML for automatically determining the species of a VSR,
an approach that is common also for determining the species of plants [Franklin and Ahmed 2018] and animals
[Tabak et al. 2019].
We rely on supervised ML for species classiication: we collect a few example cases, each one consisting of

a VSR associated with a morphology class and a behavior class (both manually assigned); then, we learn two
classiication models, based on those examples, for associating any other VSR with one morphology and one
behavior class. In order to use supervised ML, we irst deine the classes and a criterion for selecting a training
set for manually assigning classes. We also deine a set of descriptors (features, in ML terminology) useful for
characterizing the morphology and the behavior of VSRs and to be fed to supervised learning techniques. In the
following subsections, we describe each of the steps in detail.

3.3 Species classes definition and manual annotation

3.3.1 Classes definition. For deciding how many classes to use for morphology and behavior we observed a
large number of videos of VSRs performing locomotion on three diferent terrains (lat, downhill, and uphill, see
Section 4.3) and obtained through evolution with six diferent EAs (see Section 3.6.2), two diferent controller
representations (see Section 3.6.1), and two diferent morphology representations (see Section 3.6.1).

Based on these observations, we deine four classes for the morphology. Blob is compact and roundish, with no
clear direction of development. Limbed has extrusions that might resemble limbs. Elongated is compact but with
a clear direction of development. Other is a miscellaneous class for the VSRs that cannot be classiied into one of
the other classes. Figure 1 shows sample morphologies for the four classes.
Concerning the behavior, we deine four classes. Jumping VSRs alternate between touching the ground and

lifting their body up in the air.Walking VSRs cyclically alternate the parts of the body that touch the ground.
Rolling VSRs roll on themselves. Finally, Other VSRs cannot be classiied into one of the other labels, and thus fall

ACM Trans. Evol. Learn.
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(a) Blob (b) Limbed

(c) Elongated (d) Other

Fig. 1. Sample morphologies for the four morphology classes.

(a) Jumping

(b) Walking

(c) Rolling

(d) Other

Fig. 2. Time-lapse showing locomotion for a sample VSR for each behavior class. The color of each voxel encodes the ratio
between its current area and its rest area: red for < 1, yellow ≈ 1, green > 1; the circular sectors drawn at the center of each
voxel indicate the current sensor readings.

in a miscellaneous class. Figure 2 show time-lapse images for the movement of a sample VSR for each behavior
class. We also provide a video of those VSRs at https://youtu.be/tuD8scZ88Xc.
Since we deine four classes for each one between morphology and behavior, and being the species the

combination of the two, it follows that we deine an overall number of 16 diferent species.

ACM Trans. Evol. Learn.
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Table 1. Distribution of the manually assigned labels for the morphology and behavior classes on the training set.

Blob Limbed Elongated Other Total

Jumping 0 1 291 25 317
Walking 67 82 64 174 388
Rolling 8 48 0 50 106
Other 82 93 132 437 744

Total 157 224 487 687 1555

3.3.2 Manual annotation. Having deined classes for morphology and behavior as illustrated in the previous
section, we need to collect a training set of examples suitable for learning two classiiers that can automatically
associate a previously unseen VSR with the corresponding classes.

Since we want to measure the diversity of populations of VSRs subjected to evolution, the training set should
consist of individuals that uniformly cover the spaces of morphologies and behaviors that are likely to arise from
evolution. However, a large portion of VSRs being generated during evolution (in particular at its early stage)
perform poorly in the task of locomotion and are hence very diicult to associate with behavior class. For this
reason, instead of simply selecting a random sample of all the individuals observed during the many evolutions
we run (see Section 4.1, Section 4.2, and Section 4.3), we proceeded as follows.

First, we deine three descriptors of the VSR morphology:

(1) Number of voxels dnum, i.e., the number of voxels in the VSR.
(2) Elongation delong, i.e., how stretched is the morphology in its direction of maximum development. For

computing delong we irst consider the smallest ellipse that encloses the VSR morphology; then we compute
the ratio of the focal distance (distance between focal points) of the ellipse over the major axis length
[Burger et al. 2009]. It follows that delong ∈ [0, 1[, with delong = 0 for perfectly “evenž morphologies (e.g., a
circle or square).

(3) Compactness dcompact, i.e., the ratio between the number of voxels of the VSR and those of the convex hull
enclosing the morphology. The intuition is that dcompact is higher for morphologies with few concavities.
Considering that the convex hull of a 2-D shape has an area that is always greater or equal than the area of
the shape itself, it follows that dcompact ∈ [0, 1], with dcompact = 1 for perfectly compact morphologies, i.e.,
morphologies with no concavities.

Then, we computed the values of dnum, delong, and dcompact for each VSR and partitioned the pool into 4 equal-
size bins per descriptor, thus partitioning the pool of VSRs into 4 × 4 × 4 = 64 bins. Next, we removed from all
the 64 bins the VSRs that perform poorly in locomotion, i.e., those whose speed is lower than 2m/s. Finally, we
selected a subset of VSRs to be manually inspected for associating a morphology and a behavior class by taking
randomly 25 VSRs out of each bin and adding 75 slow VSRs taken randomly from the discarded VSRs. This way,
we assembled a set of 25 · 64 + 75 = 1675 VSRs.

We inally had a human operator inspect the VSRs, by looking at their unlabeled simulation videos, and assign
VSRs to morphology and behavior classes until collecting at least 100 labels per class. We ended up with a training
set of 1555 labeled VSRs, distributed among classes as summarized in Table 1.

The igures of Table 1 might suggest that our manual annotation procedure is afected by a human bias: human
annotators tended to assign to the Other classes all the samples they were not able to assign to the clearly
identiiable cases (both for the morphology and behavior). As a result, the dataset is slightly unbalanced and, as
we will discuss in Section 4, this impacted later analyses. On the other hand, we believe that this bias is positive,
in the sense that human operators did observe the robots in the context of a race for locomotion. In the end,

ACM Trans. Evol. Learn.
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we are more interested in distinguishing between a crawling and a jumping artiicial organism rather than a
multitude of ways of being idle.

3.4 Features and learning

As in any ML application, two key design choices concern the features to extract for describing the observations
(here, simulations of VSRs) and the learning technique. Since we aim at classifying the morphology and the
behavior separately, we deine diferent features for the two classiication tasks. We describe them in the next
subsections.

3.4.1 Morphology features. Since the VSR morphology is an arrangement of voxels in a 2-D grid, we could extract
the features concerning the morphology directly from the grid, e.g., the descriptors described in Section 3.3.
However, the grid is a static description of the VSR and does not capture the robot as seen during its life, i.e., as it
could be seen by an external observer looking at the VSR while it does locomotion. For this reason, we deine
the morphology features based on the idea of the dynamic pose of the VSR. Intuitively, the dynamic pose can be
regarded as a “long-exposure photographž of the VSR during the simulation. We construct such a pose as follows.

Let a snapshot be the complete description of a time step of VSR simulation, i.e., it comprises the ground and
every voxel of the VSR. Let S be a sequence of such snapshots, spanning an entire VSR simulation. For each
snapshot, we determine the minimal bounding square (x0,y0,x0 + l ,y0 + l) around the VSR, that is, the smallest
square parallel to the x-axis that completely encloses the VSR. Then, we partition the minimal bounding square
in 16 × 16 inner squares with side length l

16 and build a matrix d ∈ {0, 1}16×16 where the element di, j is 1 if and

only if the corresponding inner square (x0 + (i − 1) l16 ,y0 + (j − 1)
l
16 ,x0 + i

l
16 ,y0 + j

l
16 ) is occupied by the VSR

for at least half of the area. Finally, we compute the dynamic pose as the element-wise mode of the matrices
computed for the snapshots in S .

We use the 256 values of the dynamic pose of a VSR as feature vector for its morphology, obtaining f morph ∈
{0, 1}256.

3.4.2 Behavior features. Since we deal with robots performing the task of locomotion, we deine two groups of
features that capture the VSR behavior while in locomotion, i.e., its gait, from two diferent points of view: the
movement of the center of the VSR over the time and the way the VSR touches the ground while moving. We
denote by f center and f footprints the two corresponding feature vectors, and by f behavior their concatenation. We
construct these vectors as follows.

Center movement. Concerning the features describing the movement of the center of the VSR, let S be a sequence
of snapshots; we extract from S the discrete signals of the x− and y−coordinate of the center of mass of the VSR.
Then, we consider the signals of the irst diferences and compute their Fast Fourier Transform (FFT) [Cooley and
Tukey 1965]. Subsequently, we take the magnitude of the two FFTs, ilter out the components corresponding to
frequencies greater than fmax (by taking into account the simulation time step ∆t ), and re-sample the remaining
components in order to have nfreq components for each one of the two axes.
We use as feature vector f center the concatenation of the two resulting vectors of magnitudes f center =

[

f center,x f center,y

]

∈ R+2nfreq , with R+ = [0,+∞[. After preliminary experiments and leveraging our expertise,

we set fmax = 10Hz and nfreq = 100.

Footprints. Concerning the features describing how the VSR touches the ground, we build a deinition based
on the concept of footprint. Given a snapshot, we consider the projection [x0,x0 + l] of the minimal bounding
square on the x-axis and we partition it in 8 equally-sized segments. Then we build the footprint of the VSR in
that snapshot as a binary sequencem ∈ {0, 1}8, where the elementmi is 1 if and only if the VSR is touching the
ground for at least half of the corresponding segment [x0 + (i − 1) l8 ,x0 + i

l
8 ].
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Given a sequence S of snapshots, we follow the following procedure to determine the set of footprint features.
(1) We split S in a sequence (S1, S2, . . . ) of non-overlapping subsequences, each one corresponding to an interval of
∆tfootprint simulated time (we set ∆tfootprint = 0.5 s after some preliminary experiments). (2) We build the sequence
M = {m1,m2, . . . } of footprints where eachmi is obtained as the element-wise mode of the footprints computed
from snapshots in Si . (3) We consider all the non-overlapping n-grams of footprints in M , with 2 ≤ n ≤ 10,
that occur at least twice and compute the overall duration of each n-gram, computed as the product between
its number of occurrences and its duration. (4) We select as the main footprint n-gram M⋆ the n-gram with the
greatest overall duration. (5) We compute the following features forM⋆: duration |M⋆ |∆tfootprint, average touch
area 1

|M⋆ |
1
8

∑

m∈M⋆

∑i=8
i=1mi , number of occurrences ofM⋆ inM , mode ∆tM⋆ of the intervals between subsequent

occurrences ofM⋆, rate of intervals that are equals to the mode.
We use as feature vector the ive features computed for the main footprint n-gramM⋆, i.e., f footprint ∈ R+

5.

3.4.3 Learning technique. We rely on Random Forest [Breiman 2001] as classiiers for the morphology and
behavior classes based on f morph and f behavior, respectively. We chose this supervised learning technique because
studies [Fernández-Delgado et al. 2014; Wainberg et al. 2016] have proved it to be among the best general purpose
classiication techniques. We used the default values for the main parameters: 100 trees in the ensemble and

m =
⌊√

p
⌋

features (i.e.,m =
⌊√

| fmorph |
⌋

= 16 for the morphology classiier andm =
⌊

√

| fbehavior |
⌋

= 14) for each

tree.
For an estimate of the accuracy of Random Forest on our two classiication tasks, we performed a 5-fold cross

validation assessment using the 1555 labeled simulations (Table 1) and obtained an average accuracy of 0.833 and
0.891 for morphology and behavior classiication, respectively. A trivial classiier (always predicting the most
frequent class) taking into account the class imbalances obtained an accuracy of 0.442 and 0.478, respectively.

3.5 Simpson index

Diferent measures of diversity have been used in the ecological literature [Magurran 2013]. Among them, the
Simpson index is one of the most commonly used [Simpson 1949]. Given a population of individuals that is
partitioned based on species, this index is deined as λ =

∑i=n
i=1 p

2
i , where n is the number of species and pi is the

fraction of individuals of the i-th species.
Intuitively, the Simpson index measures the probability that two individuals picked at randomwith replacement

belong to the same species. Since its semantics is the opposite of the one of diversity (i.e., λ = 1 for a population
composed of a single species and it is < 1 for more diverse populations), in this study we use the Inverse Simpson
index (ISI) λ−1 (deined in [1,+∞[): the greater the ISI, the more diverse the population. Since we deined a limited
number of possible species, i.e., 16, the actual domain of ISI in our study is [1, 16].

Simpson index is a suitable measure of diversity since it depends on both the total number of species, as well
as their relative abundance. To better grasp this intuition, Figure 3 plots three example populations colored by
species and their corresponding ISI. As can be seen, the red species pollutes most of the population in Figure 3a,
and, as a result, the corresponding ISI is the lowest. The population in Figure 3b is evenly partitioned between
two species; nevertheless, there are just two of them, so the total variety of species is not very high, and indeed
ISI is only slightly higher than before. Finally, the population in Figure 3c witnesses a great variety of species,
and all of them are evenly balanced in terms of abundance, which is relected in its ISI.

3.6 Evolution of VSR morphology and controller

We want to investigate how diferent factors (namely, the representation, the EA, and the environment) impact
efectiveness and diversity in populations of VSRs, i.e., whether VSRs can be optimized for a given task, by means

ACM Trans. Evol. Learn.



Factors Impacting Diversity and Efectiveness of Evolved Modular Robots • 11

(a) ISI = 1.41 (b) ISI = 2.00 (c) ISI = 7.82

Fig. 3. Example populations colored by species, and their corresponding ISI.

of EC, while maintaining diversity measured as above. For fully exploiting the potential of expressing diverse
solutions to a task, we need a way for evolving simultaneously the morphology and the controller.

We here propose diferent genotypic representations that jointly encode a description of both the morphology
and the controller of a VSR in a single numerical vectorv ∈ Rp . The resulting optimization problem is hence a
search in the numerical space Rp , for which many techniques do exist. We experiment with two representations
for the controller and two for the morphology. We also experiment with four EAs that it this scenario, two of
them being tailored to the speciic goal of promoting diversity. In the following subsections, we describe the
representations and the EAs.

3.6.1 Representations. We deine two representations for the controller and two representations for the morphol-
ogy of the VSR in the form of a numerical vectorv ∈ Rp . In both of them, a portionvmorph ofv encodes a descrip-
tion of the morphology and the remaining, disjoint portionvctrl describes the controller, i.e.,v =

[

vmorph vctrl
]

.
The controller representations difer in the latter, whereas the morphology representations difer in the former.

Controller. We propose two alternatives for the controller deined in Section 3.1.2. In theHomogeneous controller
representation, denoted by Ho, we assume that all the ANNs have the same parameters w . It follows that
vctrl = w ∈ RnANN .

In the Heterogeneous controller representation, that we denote by He, we assume that ANNs may have
diferent parameters and that nsize × nsize is the size of the largest representable VSR. In order to favor the
locality of the representation [Rothlauf 2006] and to make the controller representation agnostic with respect
to the morphology representation, vctrl is the concatenation of the weights of the ANNs of all the voxels, i.e.,
vctrl =

[

w1,1 . . . wnsize×nsize

]

, where w i, j is the vector of parameters of the ANN at the (i, j) position in the

enclosing grid. It follows thatvctrl ∈ Rn
2
sizenANN . This representation is the same, for the controller part, as the one

proposed in [Medvet et al. 2020a].
The two controller representations difer in expressiveness. The heterogeneous representation is the most

expressive one, thus resulting in the largest search space. The homogeneous representation is the least expressive
one: its search space is smaller and hence, in principle, easier to explore. However, it might be harder for evolution
to ind the combination of genes that, when translated to the same ANNs for each voxel, results in a VSR that
exhibits the desired complex behavior.

Morphology. We propose two alternatives for representing the morphology. In the Direct morphology rep-
resentation, we associate each gene with one and only one voxel of the inal morphology, i.e., a collection of

adjacent voxels arranged in a 2-D grid. Given avmorph ∈ Rn
2
size , we build a morphology as follows. Let nsize × nsize

be the size of a square grid enclosing the largest representable VSR morphology. First, we build a Boolean matrix
b = {T, F}nsize×nsize where bx,y is set to true if and only if vk > 0, with k = x + (y − 1)nsize. Then, we build the
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morphology by considering the largest connected component of b elements set to true and putting a voxel
at each element of such set. As a consequence, vmorph comprises one number for every voxel in the grid, i.e.,
|vmorph | = nsize × nsize. Albeit simple, such direct representations have proved efective for the joint evolution
of morphology and control of other kinds of embodied agents [Ha 2019; Pagliuca and Noli 2020]. Moreover,
the irregularities that may arise from this direct representation of a VSR morphology have been shown to be
potentially beneicial for the adaptability of morphologies to diferent tasks [Talamini et al. 2021].

In the Gaussian Mixture Model (GMM) morphology representation, based on the observations of [Cheney et al.
2013; Hiller and Lipson 2012], we use the generative representation based on a mixture of bi-variate Gaussian
distributions [Lindsay 1995] described in [Medvet et al. 2020c]. Let nGMM be the number of Gaussians in the
mixture. First, we build a real matrix b = {T, F}nsize×nsize where bx,y is set to true if and only if f (x ′,y ′) > 0, with:

f (x ′,y ′) =
nGMM
∑

i=1

ϕi

2πσi,xσi,y
exp
− 1

2

(

(x ′−µi,x )
σi,x

2
+

(y′−µi,y )
σi,y

2)

,

where x ′ = 2 x
nsize
− 1 and y ′ = 2 y

nsize
− 1 are the x ,y coordinates normalized in [−1, 1], µi = [µi,x , µi,y ] and

σ i =

[

σi,x 0
0 σi,y

]

are the mean vector and the covariance matrix for the i-th Gaussian, and ϕi ∈ [0, 1] is its mixing

coeicient. Then, we build the morphology by considering the largest connected component of b elements set to
true and putting a voxel at each element of such set. Since we restrict every σ i to be diagonal,vmorph comprises
5 numbers for every Gaussian in the mixture, i.e., the two means, the two variances, and the mixing coeicient,
so thatvmorph ∈ R5nGMM . Note that we clip the values ofvmorph corresponding to σi,x and σi,y , for all i , in order
to make them positiveÐe.g., for the irst matrix, we set σ1,x = max(0,vmorph,3).
The two morphology representations difer along two axes. First, they difer in terms of the compactness-

expressiveness trade-of: the Direct representation presents, in general, a larger search space, thus holding
the potential for more expressiveness. The GMM representation is potentially more compact (depending on
the actual value of nGMM), thus holding the potential for easier exploration of the search space. Second, we
confront a direct representation with an indirect (or generative) one. In doing so, we tap ourselves into the debate
surrounding direct and indirect encodings in ER [Veenstra et al. 2017]. As a consequence of those diferences, the
two representations potentially difer in the types of morphologies they are more suited to encoding. On one side,
we expect the Direct representation to encode more irregular morphologies; while [Cheney et al. 2013] proved
direct representations to be sub-optimal for the evolution of VSR morphologies, they can increase the degree
of complexity of a dynamical system [Talamini et al. 2021] and put it in a better position to exploit cognitive
oloading, i.e., moving from the brain to the body the ability to store and processing information [Noli 2021]. On
the other side, we expect the GMM representation to generate morphologies that are more regular, symmetrical,
and composed of a few limbs. We evaluate how the morphology representations difer along these three axes by
looking into the bias of the representation in Section 4.1.2.
For the sake of this study, we performed the experiments with nsize = 10 and nGMM = 5, resulting in |vctrl |

being 45 · 10 · 10 = 4500 and 45, respectively for He and Ho representations, and |vmorph | being 10 · 10 = 100 and
5 · 5 = 25, respectively for Direct and GMM representations.

3.6.2 Evolutionary algorithms. We use four EAs suitable for optimizing in the numerical space Rp . Two of them
are general purpose EAs, one is an EA that employs a form of speciation aimed at favoring diversity in the
populationÐyet not based explicitly on the concept of species deined in Section 3.3Ðand one is a quality-diversity
algorithm, a family of approaches that aim at returning a population that is both diverse as possible and efective
as possible.
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Evolution strategy. The irst EA is Canonical-ES (ES) [Chrabaszcz et al. 2018], a state-of-the-art Evolution
Strategy. Evolution Strategies [Beyer and Schwefel 2002; Schwefel 1965] constitute a family of EAs including some
variants that have recently shown to achieve competitive results for continuous control tasks and game-playing
[Salimans et al. 2017]. ESs have also been used for evolving the controller of VSRs [Ferigo et al. 2021; Nadizar
et al. 2021].
ES iteratively evolves a ixed-size population of npop individuals as realizations of a multivariate normal

distribution of mean µ ∈ Rp that is updated during the evolution. At iteration, npop children are born from µ,
each one obtained by applying Gaussian noise ϵ i with σmut = 0.35 and zero mean:

vi = µ + ϵ i (2)

where vi is the i-th child. Then, we update µ by selecting the ittest quarter of the children and correcting µ

according to a weighted mean of the corresponding ϵ i :

µ ← µ +

i=
⌊

npop
4

⌋

∑

i=1

wiϵ i (3)

with weightswi set as in [Hansen and Ostermeier 1996]:

wi =
log

(

npop + 0.5
)

− log i
∑j=npop

j=1 log
(

npop + 0.5
)

− log j
(4)

We set µ by sampling uniformly in the interval [−1, 1] for each vector element. We set npop = 40 and let ES
iterate until nevals = 30 000 itness evaluations have happened.
ES is a form of population-based optimization. We remark, however, that the population in ES is indeed a

realization of a multivariate normal distribution, i.e., all the individuals are “variationsž of a single individual, the
mean of the distribution. This observation is relevant in our settings, where we study the diversity of the evolved
solutions.

Genetic algorithm. As a second EA, we use a standard variant of Genetic Algorithm (GA). Our GA variant
iteratively evolves a ixed-size population of npop individuals according to a µ + λ generational model [De Jong
2006], i.e., with overlapping: at each generation, the ofspring and the parents are merged and the worst half
individuals are discarded. For building the ofspring, we select individuals with tournament selection of size 5
and then apply Gaussian mutation with σmut = 0.35, with probability pmut, or extended geometric crossover with
probability 1 −pmut. For extended geometric crossover, given two parentsv1,v2 ∈ Rp , the new individual is born
asv = v1 + α (v2 −v1), where each element αi of α is chosen randomly with uniform probability in [−1, 2]. In
this way, the new individual may fall outside the hypercube deined by the parents, hence favoring exploration.
Moreover, we perturb each child of crossover by applying Gaussian mutation with σmut = 0.1, to prevent having
genetically identical children based on selecting similar parents.
As for ES, we build the initial population by sampling uniformly in the interval [−1, 1] and iterate until

nevals = 30 000 itness evaluations have happened. Moreover, we set npop = 100 and pmut = 0.2.

Speciated evolver. We designed this EA, which denote by SE (for Speciated Evolver), speciically for this study.
SE employs a form of speciation inspired by NEAT [Stanley and Miikkulainen 2002], the popular EA for evolving
the topology and the weights of ANNs. NEAT employed speciation with the purpose of protecting innovations
introduced by modiications in the topology. In SE, we do not optimize the topology of the ANNs composing
the controller of the VSR, while we do optimize the morphology of the VSR. Our goal is hence not to protect
innovation, but explicitly to promote diversity.
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1 function evolve():
2 P ← initialize(npop)
3 while ¬shouldStop() do
4 P ′← ∅
5 (P1, . . . , Pk ) ← kmeans(P)
6 P ′← P ′ ∪ {best(P)}
7 foreach i ∈ {1, . . . ,n} do
8 if |Pi | ≥ nelite then

9 P ′← P ′ ∪ {best(Pi )}
10 end

11 end

12 n′pop ← npop − |P ′ |
13 r ← ranks(repr(P1), . . . , repr(Pk ))
14 foreach i ∈ {1, . . . ,k} do
15 c ← 0
16 while c < n′popα

ri 1
∑i=k
i=1 α

ri
do

17 if U (0, 1) ≤ pmut then

18 v = nth(Pi , c mod |Pi |)
19 P ′← P ′ ∪ {mutate(v)}
20 c ← c + 1
21 else

22 v1 = nth(Pi , c mod |Pi |)
23 v2 = nth(Pi , (c + 1) mod |Pi |)
24 P ′← P ′ ∪ {crossover(v1,v2)}
25 c ← c + 2
26 end

27 end

28 end

29 P ← P ′

30 end

31 end

Algorithm 1: The algorithm of SE.

Similarly to ES and GA, SE iteratively evolves a ixed-size population of npop individuals, as shown in Algo-
rithm 1. At each iteration, individuals are partitioned in species according to a given criterion (described below)
that also elects a single representative individual of each species (lines 5 and 13). Then, the current best individual
in the population and the best individual of every species larger than nelite are moved in the ofspring (lines 6ś11).
The remaining individuals in the ofspring are generated as follows. First, an ofspring slot of size n′popα

ri 1
∑i=n
i=1 α ri

is reserved to each species Pi depending on the rank ri of the corresponding representative individual repr(Pi )
(line 16)Ðα ∈ ]0, 1] is a parameter of the algorithm, the closer to 1, the less the preference for ittest species.
Then, the ofspring slot is illed by applying Gaussian mutation or expanded geometric crossover (as in GA) to
individuals of the corresponding species Pi (lines 17ś25).
We explore three variants of SE. All three of them use the k-means clustering technique [Lloyd 1982] for

partitioning the population into species and elect as representative individual the one closest to the centroid of
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the cluster. They difer in the features that are used for clustering individuals into species. In the irst variant,
which we denote by SE-g, we use the genotypev , whose dimension depends on the representation. In the second
variant, denoted by SE-s, we use the vector f morph ∈ R256 of the morphology features (see Section 3.4.1). Finally,

in the third variant, denoted by SE-b, we use the vector f behavior ∈ R205 of the behavior features (see Section 3.4.2).
In all cases, we compute the Euclidean distance after having properly normalized the vectors of the individuals of
the current population.

We designed SE with the main goal of studying the factors afecting diversity; the search efectiveness (both in
terms of itness and diversity) was not a design goal, while we believe that SE simplicity favors the analysis and
the interpretation of the experimental results. We remark, however, that approaches similar to SE have been
proposed and successfully employed in the past for evolving robots, in particular using behavioral similarity for
speciating solutions [Trujillo et al. 2011].

In the experiments, we set npop = 100, pmut = 0.2, as for GA, and iterate until nevals = 30 000 have happened, as
for GA and ES. Moreover, we set α = 0.75, nelite = 5, and k = 10 (for k-means).

Quality-diversity algorithm. Finally, we experiment with an established quality-diversity algorithm, Multidi-
mensional Archive of Phenotypic Elites (MAP-Elites, hence further abbreviated as ME) [Cully et al. 2015].
ME computes a descriptor d ∈ Rq for every individual to partition the descriptor space in a grid of nbin cells

for every dimension. ME starts with a population of nparents individuals randomly initialized in [−1, 1]p , evaluates
them, computes their descriptors, maps the descriptors to the corresponding cell in the grid, and selects the best
performing individual of every non-empty cell. These individuals form the archive. At each iteration, nparents
children are born by mutating nparents randomly chosen individuals in the archive with Gaussian mutation with
σmut = 0.35, they are evaluated, and their descriptors are computed; if the descriptor of a child maps to a cell that
is empty or stores an individual of lower itness, the child is added to the archive and the individual of lower
itness is discarded. The algorithm iterates until nevals itness evaluations have happened.
We used the morphology descriptors of Section 3.3.2, so d = [dnum,delong,dcompact] ∈ R3. We set nbins = 10,

nparents = 20, and nevals = 30 000. This choices resulted in a grid with 103 cells.
ME is a simple yet efective algorithm that intrinsically creates an incentive to ill as many cells in the grid as

possible, thus covering as much of the descriptor space as possible. Moreover, it has also been recently found
particularly efective in the simultaneous evolution of morphology and controller of VSRs [Ferigo et al. 2022b].
Here, we employed a simple and widespread version of ME, as we did for the other EAs considered in this study:
however, later improvements have been proposed for ME which further increased its efectiveness, as, e.g., the
directional variation operator proposed by Vassiliades and Mouret [2018].

4 EXPERIMENTS AND DISCUSSION

We aim at investigating how the three key factors of representation (both controller and morphology), EA, and
environment impact diversity and efectiveness.

For all the experiments in the following sections, we considered the task of locomotion. The goal of the VSR is
to travel as fast as possible, in the positive x direction, on a lat surface and within a time interval of tinal = 30 s
(simulated time). The itness of the individual is the average velocity vx , measured considering the position of
the center of mass of the VSR at the beginning and end of the simulation:

vx =
xc (tinal) − xc (0)

tinal
(5)

where xc (t) is the x-position of the center of mass of the VSR at time t . We remark that each simulation of any
given VSR is deterministic.
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Table 2. Summary of the experimental parameters.

Context Name Description Value

Controller σnoise Standard deviation of the additive Gaussian noise applied
to sensor readings

0.01

Controller ncomm Number of communication values between adjacent vox-
els

1

Representation (all) nsize Side length of the largest representable VSR 10
Representation (GMM) nGMM Number of Gaussian distributions in the mixture 5
EA (ES) σmut Standard deviation of the Gaussian noise applied to chil-

dren
0.35

EA (ES) npop Population size 30
EA (GA, SE-*) pmut Probability of applying only mutation 0.2
EA (GA, SE-*, ME) σmut Standard deviation of the Gaussian mutation 0.35
EA (GA, SE-*) npop Population size 100
EA (SE-*) α Species preference 0.75
EA (SE-*) nelite Minimum species size to preserve elite individual 5
EA (SE-*) k Number of species (found by k-means) 10
EA (ME) nbin Number of bins per descriptor dimension 10
EA (ME) nparents Number of randomly chosen parents 20
EA, all nevals Number of itness evaluations (as stop criterion) 30 000
Simulation tinal Duration of a simulation for the locomotion task (in s) 10
Simulation ∆t Simulation time step (in s) 1

60

We used 2D-VSR-Sim [Medvet et al. 2020b] for the simulation of the VSRs, with a time step of ∆t = 1
60 s

and all the other parameters set to default values. The code of the experiments is publicly available at https:
//github.com/pigozzif/VSRBiodiversity. Table 2 reports an overview of all the parameter values used in our
experiments.

For each experiment, i.e., a combination of representation, EA, and environment, we performed 10 evolutionary
runs by varying the random seed of the EA. Table 3 summarizes, for each factor of investigation, the experimental
settings. During each experiment, we saved the entire population of VSRs every 1000 itness evaluations (to meet
our storage constraints), which resulted in 3000 individuals for every run.

As a result, 10 ·4 ·2 ·3000+10 ·2 ·3120+10 ·2 ·2 ·3000+10 ·2 ·2 ·3000+10 ·3000 = 572 400 VSRs were generated
in all of our experiments: for each one of them we applied the two classiiers for predicting the morphology and
behavior classes learned on the subset of 1555 manually labeled VSRs, as described in Section 3.2.
We carried out all statistical tests with the two-sided Mann-Whitney U rank test for independent samples,

using, unless otherwise speciied, 0.05 as the conidence level.
We consider average velocity v⋆

x of the best individual as a measure of efectiveness and ISI (see Section 3.2) as
a measure of diversity. We inquire into the landscape of diversity in the population of robots by taking the median
values (across evolutionary runs) ofv⋆

x and ISI at the last generation. To gain more insights, for some experiments
we also present the number of VSRs broken-down by classes, at the last generation, and the distribution of
morphology (or behavior) descriptors.

Every experimental coniguration was able to evolve efective VSRs for the task of locomotion. We manually
inspected a subset of the most efective VSRs (across every combination of representation/EA/environment tested)
and found that they looked quite diferent. We showcase some of those VSRs in Figure 4; the corresponding video
can be found at https://youtu.be/_kblILsivw. Those hand-picked VSRs strikingly mirror emergent patterns found
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Table 3. Summary of the experiments. The table shows one row for each factor potentially impacting diversity and efective-
ness. For each factor, the table shows the diferent experiments we performed, i.e., the diferent combinations of controller
representation, morphology, EA, and environment.

Representation

Factor Section Contr. Morph. EA Env. N. of exp.

Contr. repr. 4.1.1 Ho, He Direct GA, SE-s Flat 4
Morph. repr. 4.1.2 Ho Direct, GMM GA, SE-s Flat 4
EA 4.2 Ho Direct ES, GA, SE-g,

SE-s, SE-b, ME
Flat 6

Environment 4.3 Ho Direct GA, SE-s Flat,
Downhill,
Uphill

6

in nature. We nicknamed “geckož one individual (Figure 4g), for example, for its clinging to an inclined surface
and climbing up with a pair of short limbs. Another individual, “bigfootž (Figure 4d), walked by treading a big
extrusion that looked like a foot. Others slithered like centipedes or trotted like equines, to name a few traits. In
general, both primitive and complex morphologies emerged. Interestingly, evolution succeeded in adaptation
also with bizarre and unusual solutions. In fact, some individuals covered long distances while possessing a
morphology that might have turned out a handicap. As a proof of concept, one individual (nicknamed the “snailž,
Figure 4i) crawled forward despite carrying on its back an uncomfortable hump (resembling a shell indeed) that
might have hindered motion.

4.1 Impact of the representation

In the next subsection, we investigate the impact of the representation on efectiveness and diversity for both the
controller and the morphology.

4.1.1 Controller representation. We performed an experimental campaign of 10 evolutionary runs on the He and
Ho controller representations using GA and SE-s (i.e., the variant of SE in which the partitioning criterion is
based on morphology features). We chose these two EAs because, as it turned out from our experiments described
in Section 4.2, they were the ones with the weakest ability to promote diversity (GA) and strongest ability to
promote efectiveness (SE-s). Moreover, for the sake of this experiment, we adopt Direct as the sole morphology
representation and discuss the comparison with GMM in the next subsection.
We report the results in Figure 5 in terms of v⋆

x and ISI at the last generation, together with the p-values for
every EA.

From the plot, two interesting conclusions can be made:

(a) Ho outperforms He with both EAs in terms of efectiveness, and
(b) there is no clear diference in terms of diversity.

The former means that despite the lower expressiveness of the Ho representation, a “single ANNž (i.e., one whose
weights and biases are shared among all the voxels) is capable of driving cooperatively an entire robot when
proper parameters are found. As it turns out from our experiments, inding these parameters is feasible with
both EAs, probably because of the much lower dimension of the search space. p-values are signiicant for both
EAs. Regarding conclusion (b), the much smaller search space induced by Ho does not result in a lower diversity
when compared to He. The two representations are indeed comparable in terms of ISI; neither of the p-values is
signiicant.
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(a) Walrus (b) Godzilla (c) Ankylosaurus

(d) Bigfoot (e) Rhino (f) Rolling stone

(g) Gecko (h) Monkey (i) Snail

Fig. 4. A subset of outperforming individuals, in terms of efectiveness and variety of morphologies and behaviors. A video
can be found at https://youtu.be/_kblILsivw.

To conclude, the compactness of the search spaceÐchampioned by HoÐtriumphs over the expressiveness
of the representationÐchampioned by He. For these reasons, we adopt Ho as the only representation for the
experiments in the next sections.
As an aside, we note that there is a contrast in terms of diversity between the two EAs, regardless of the

controller representation (Figure 5, right): we discuss this aspect in more detail in Section 4.2.
Figure 6 reports, for each species resulting from the combination of a morphology class and a behavior class,

the rate (bubble size) of VSRs at the last generation belonging to that species and the average velocity vx (bubble
color) of the best VSR of that species (that is not, in general, the best of the entire population).
While there seems to be no clear diference with SE-s, we spot some trends with GA. Diversity for Ho is

greater along the behavior axis, with a relative majority of Walking individuals. On the other side, He seems to
favor more diversity along the morphology axis, with Limbed and Other individuals being equally represented.
Overall, in all the cases the percentage of robots following in the Other class for both morphology and behavior
is signiicant: we remark that this inding may be explained partly in terms of the dataset used for training the
classiier, which is slightly unbalanced (see Section 3.3.2).
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Fig. 5. Boxplots of v⋆x and ISI of the population at the last generation, obtained with four combinations of EA and controller
representation (10 evolutionary runs for each combination). Each lower (upper) whisker is at the smallest (larger) data value
greater than the lower (upper) quartile − (+) 1.5IQR, IQR being the inter quartile range. Numbers above each pair of boxes
are p-values. The Ho representation outperforms the He one in terms of fitness, while there is no clear diference in terms of
diversity.

4.1.2 Morphology representation. We aim at investigating what impact the two morphology representations,
namely Direct and GMM, have on efectiveness and diversity. As discussed in Section 4.1.1, we adopt Ho as
controller representation, GA and SE-s as EAs. With these settings, we performed an experimental campaign of
10 evolutionary runs with the Direct and GMM morphology representations.

We report the results in Figure 7 in terms of v⋆
x and ISI at the last generation, together with the p-values for

every EA.
From Figure 7, it clearly turns out that the Direct and GMM representations are comparable in terms of

efectiveness, with no clear diferences across the EAs and no signiicant p-values. Considering diversity, GMM
performs better with SE-s, and thep-value is signiicant. Once again, we remark that there seems to be a signiicant
efect of the EA on diversity, and we treat it in Section 4.2.
We observe that both morphology representations are capable of evolving efective individuals, as well as

preserving a fair amount of diversity (if we employ the appropriate EA). Thus, considering also the results of
Section 4.1.1, we speculate that joint optimization of morphology and control is more susceptible to the choice of
the controller rather than morphology representation. One reason might be that the morphology representations
we consider in this work do not signiicantly difer in the dimension of the search space, whereas the same is not
true for the controller representations.

We thus asked ourselves whether the two representations have a diferent bias in terms of species and emergent
forms of “lifež, and so what classes (i.e., species) did prevail. Figure 8 presents the breakdown by classes with the
same visual syntax of Figure 6.

As can be seen from Figure 8, there are relevant diferences in the GA case. In particular, the Direct representation
is more capable of evolving individuals in the Walking behavior class.

Both representations witness a proliferation of individuals in the Other behavior class, which consists, for the
most part, of idle individuals. This result conirms the previous observation that the joint evolution of morphology
and controller is a diicult optimization problem: the majority of ofspring individuals are born with brains that
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Fig. 6. Rate (bubble size) of VSRs that belong to each species, resulting from the combination of a morphology class and a
behavior class, and average velocity vx (bubble color) of the best VSR of each species, at the last generation. The plot shows
median values computed across 10 evolutionary runs performed with two EAs and two controller representations.

are ill-suited for their bodies, or vice versa. To tackle this problem, other studies employed age protection [Cheney
et al. 2018] or proposed to embed a learning loop within evolution [Eiben and Hart 2020; Gupta et al. 2021]. We
chose to not consider these further design axes in our investigation and leave them as options for future work.

We asked ourselves whether the class diferences in Figure 8 could be due to the morphology representations
biasing the search towards diferent regions of the space of morphologies. To verify this hypothesis, we plot in
Figure 9 the three morphology descriptors introduced in Section 3.3, namely elongation delong (on the x-axis),
compactness dcompact (on the y-axis), and number of voxels dnum (by means of marker size) for the best individuals
at the last generation. We use the descriptors computed on the “staticž morphology, rather than the features
f morph computed out of a simulation, for two reasons: irst, the descriptors are fewer; second, they are not
inluenced by the behavior, and are hence better suited for discussing the bias of the representation alone. We
also show in Figure 10 a few sample morphologies found throughout the phylogenetic tree for Direct and GMM
representations.

Figure 9 illustrates that the Direct representation covers more efectively the compactness axis, while the GMM
representation covers more efectively the elongation axis. Direct best individuals are usually elongated and small
in size, while GMM best individuals are all very compact and usually bigger in size. Figure 10 corroborates these
observations, by showing how individuals evolved with the Direct morphology representation are, generally,
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Fig. 7. Boxplots ofv⋆x and ISI of the population at the last generation, obtained with four combinations of EA and morphology
representation (10 evolutionary runs for each combination). Numbers above each pair of boxes are p-values. The Direct
and the GMM representations are comparable in terms of efectiveness, while SE-s fosters diversity more with the GMM
representation.

more knotty and less regular, with many protrusions that could potentially be employed as limbs for locomotion.
This inding is particularly insightful if we consider that the Direct representation evolves very efectively in
Walking individuals. Intuitively, limbs are necessary to generate a walking gait. GMM morphologies, on the other
side, are more rounded and compact, sometimes spindly.
These observations raise an interesting point: the morphology representation biases the search towards

particular regions of the behavior space (i.e., gaits). This conjecture is in line with the embodied cognition
paradigm [Pfeifer and Bongard 2006], which posits that there is an inextricable relationship between the body
and the brain. As our results point out, the Direct representation is better suited for evolving “limbedž individuals,
having body extrusions that contribute to locomotion by a walking gait.
Finally, we investigated whether the biases observed so far are due to the representation, or also to the

concurrent evolutionary factors of selection and genetic operators [Aaron et al. 2022]. To do so, we plot the
distribution for the three morphology descriptors, dnum, delong, and dcompact, right after population initialization,
and compare it with the distribution at the last generation. If a morphology representation did not introduce any
bias, we would expect a uniform distribution after population initialization. Figure 11 presents the results.

For a given descriptor, selective pressure biases the search in the same direction regardless of the representation,
i.e., toward more compact, elongated, and smaller morphologies, as bigger individuals are probably more diicult
to evolve.

4.2 Impact of the EA

We aim at investigating what impact the EA has on efectiveness and diversity. As discussed in Section 4.1.1,
we adopt Ho as controller representation. Since, as reported in Section 4.1.2, Direct and GMM representations
delivered comparable results, we resort just to Direct as morphology representation for the sake of conciseness.
With these settings, we performed an experimental campaign of 10 evolutionary runs with the six EAs described
in Section 3.6.2, namely ES, GA, SE-g, SE-s, SE-b, and ME.
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Fig. 8. Rate (bubble size) of VSRs that belong to each species, resulting from the combination of a morphology class and a
behavior class, and average velocity vx (bubble color) of the best VSR of each species, at the last generation. The plot shows
median values computed across 10 evolutionary runs performed with two EAs and two morphology representations.

We show in Figure 12 how v⋆
x and ISI vary over the course of evolution. We see that all EAs are able to evolve

efective VSRs, i.e., they score well in terms of v⋆
x . In terms of ISI, SE variants and ME achieve the best results

among the EAs.
Concerning diversity, the ISI plot in Figure 12 highlights some diferences among the EAs: however, the

variability of ISI across runs, as shown in Figure 13, is rather large for the majority of the EAs. The latter igure
shows the distribution of ISI at the last generation, for all six EAs. By looking at Figure 12 it can be seen that, SE
variants and ME generally maintain a large amount of diversity in the population, in terms of median value during
the evolution, whereas ES and GA do not. For ES, the inding is not surprising: as discussed in Section 3.6.2, this
EA does not evolve a population of actually diferent individuals but rather evolves one prototype individual by
sampling its variants. GA performs similarly, witnessing a drastic drop in ISI around 5000 itness evaluations. We
looked at the raw results and found that the drastic drop in ISI is the outcome of the joint action of the generational
model (that employs overlapping) and the crossover operator: a good individual often mates with a slightly
modiied copy of itself generating a “duplicatež, rapidly swamping the population. We believe our GA turned
out to operate with the wrong exploration-exploitation trade-of, a long-standing issue in EC [Črepinšek et al.
2013]. We speculate that this limitation might be addressed by employing some diversity promotion mechanism
[Squillero and Tonda 2018], possibly acting at diferent levels of the representation (genotype, phenotype, itness)
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Fig. 9. Scater plot for elongation delong (x-axis), compactness dcompact (y-axis), and number of voxels dnum (marker size)
descriptors computed on the best individual of each run (GA and SE-S together), and colored by themorphology representation.
Best individuals evolved with the Direct representation cover more efectively the compactness axis, while best individuals
evolved with the GMM representation cover more efectively the elongation axis.

(a) Direct

(b) GMM

Fig. 10. Sample morphologies evolved with the Direct and GMM morphology representations. Direct individuals tend to be
more łlimbedž, while GMM individuals tend to be more compact.

[Bartoli et al. 2019]. As expected, ME is comparable to SE variants at promoting diversity, whereas its slightly
lower efectiveness may be due to its incentive for exploration: illing more cells in the archive does not necessarily
entail better individuals.

Figures 14 and 15 present the breakdown by classes with the same visual syntax of Figure 6: Figure 14 shows
one single plot for all the EAs; Figure 15 show six plots, one for each EA. In terms of efectiveness (color of each
bubble in the igures), for the majority of the EAs, the fastest VSRs are those of class Other/Other, followed by
Other/Walking; for ES, the best VSR belongs to the Limbed/Jumping class. By looking at the relative sizes of
the bubbles, it can be seen that some EAs tend to favor a more even distribution of evolved VSRs across classes.
Overall, Figure 15 is consistent with Figure 13: SE-s exhibits the most uneven distribution of bubble sizes. The
relative majority of the evolved individuals belong to the Other behavior class, both globally and for each EA.
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Fig. 13. Boxplots of ISI at the last generation, obtained with six EAs, Ho controller representation and Direct morphology
representation (10 evolutionary runs for each EA). ES and GA exhibit the lowest median diversity.

We traced individuals of the Other behavior class to two major sub-classes: idle and vibrating. Not surprisingly,
idle individuals abound, as already discussed in Section 4.1.2. Vibrating individuals manifest a behavior similar
to that of Walking, but move their body at a higher frequency that makes it hard to discern which parts of the
body are touching the ground and which ones are not (as a matter of example, consider Figure 2d). In this way,
they achieve very high itness. Nevertheless, the results concerning vibrating individuals call for some further
remarks. If we attempted to physically realize those vibrating VSRs, maybe using the approaches of [Kriegman
et al. 2020; Legrand et al. 2023; Sui et al. 2020], they would likely not be as fast as in simulationÐi.e., there would
likely be a reality gap problem [Mouret and Chatzilygeroudis 2017]. We think that the vibrating behavior evolves
frequently for two reasons. First, we do not consider energy consumption in our simulations, and hence ineicient
behaviors are not discouraged [Joachimczak et al. 2016]. Second, the recurrent nature of our neural controller,
and in particular the voxel-to-voxel message passing, likely favors the emergence of high-frequency dynamics
[Medvet et al. 2020a].
One last comment concerns the way we evaluate efectiveness. So far, we reported results in terms of v⋆

x ,
i.e., the average velocity of the best individual. In Figure 16 we plot the distribution of vx , i.e., median average
velocity within the entire population of last generation, for all six EAs, side-by-side with the corresponding v⋆

x .
As expected, GA witnesses a non-signiicant diference between the best and median. Figure 16 corroborates the

inding that SE variants, especially SE-g and SE-s, foster a greater amount of diversity: diferences between best
and median are strongly signiicant, attesting that speciation promotes diversity by protecting low-performing
species in the population. Interestingly, with SE-b the same does not happen: from this point of view, this EA
seems the one that better its the needs of an autonomous robotic ecosystem, by preserving diferent but still
efective species.

4.3 Impact of the environment

The third and last factor we consider in our study is the environment. In our experimental setup, the terrain proile
plays the role of the environment: more arduous terrains (e.g., uphill) correspond to less hospitable environments
and less arduous terrains (e.g., downhill) correspond to more hospitable environments. Based on the results of
Section 4.1, we adopt Ho and Direct as controller and morphology representations, respectively, while based
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Fig. 14. Rate (bubble size) of VSRs that belong to each species, resulting from the combination of a morphology class and a
behavior class, and average velocity vx (bubble color) of the best VSR of each species, at the last generation. The plot shows
median values computed across all the evolutionary runs performed with all the EAs, considered together.

on Section 4.2, we use GA and SE-s as EAs. With these settings, we performed an experimental campaign of 10
evolutionary runs with three diferent terrains:

(a) lat;
(b) downhill, consisting of a lat surface tilted downward by 30°;
(c) uphill, consisting of a lat surface tilted upward by 20°.

We report the results in Figure 17 in terms of v⋆
x and ISI at the last generation, together with the p-values.

From the plot, we draw the following observations:

(a) downhill is the terrain favoring efectiveness the most, uphill the least;
(b) downhill appears to favor more diversity than the other two terrains, but only when using SE-s as EA;
(c) as already discussed in Section 4.2, the EA impacts diversity a lot, while the same is not true for efectiveness.

We found noticeable diferences between the two new terrains in terms of the evolved species. We summarize
the results in Figure 18, using the same visual syntax of Figure 6. The most efective individuals who evolved
on downhill relied, for the vast majority, on Rolling to achieve very high efectiveness. To our surprise, Rolling
did not amount to merely falling down the surface. Instead, successful Rolling individuals nudged themselves to
create momentum at the very onset of the simulation and expanded their bodies at every roll to accompany the
descent. On the other side, the most efective individuals who evolved on uphill mostly relied on crawling to
clinch to the upright surface, resist gravity, and slowly move forward (a behavior labeled as Walking). Being
an arduous environment, uphill generated a disproportionate amount of idle individuals of class Other, whom
gravity dragged down.
As far as the morphology is concerned, downhill did favor Blob individuals, since Blob is a very suitable

morphology for the Rolling behavior. On the other hand, uphill exerted high selective pressure on Blob individuals,
since such morphology is not suitable for climbing an inclined surface. Instead, evolution favored Elongated
individuals, who could stretch over the inclined surface and clinch to it.
At a high level, it might look like populations evolved with downhill become swamped by Rolling/Blob

individuals, and so downhill does not favor diversity. This intuition is in contrast to what Figure 17 reports, as
SE-s achieves a high ISI on downhill. We investigated this contradiction and found that although diverse species
did indeed coexist within the same generation, Blob/Rolling tended to be the species with better efectiveness.
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behavior class, and average velocity vx (bubble color) of the best VSR of each species, at the last generation. Each plot shows
median values computed across all the evolutionary runs performed with each one of the EAs.

Finally, we considered the pool of individuals from the last generations of both EAs, and performed PCA
on either their morphology features or their behavior features from Sections 3.4.1 and 3.4.2 and projected the
best individual of each run on the resulting 2-D space. Figure 19 provides the results, one marker for each best
individual, separately for morphology and behavior. Marker style stands for the terrain, marker color stands for
morphology or behavior class.
The PCA analysis corroborates the previous discussion, as the best individuals evolved on downhill cluster

together in the morphology and behavior spaces while sharing the same Blob/Rolling class. Considerations made
so far for the uphill terrain stand as well.

To conclude, the efect of the environment on efectiveness reveals as expected: more hospitable environments
correspond to higher values since efectiveness is an absolute measure. At the same time, diversity is higher on
downhill terrain, which is a very hospitable environment, and only if the EA is capable of favoring it; the reason
for this might be less competition.
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Fig. 17. Distribution of v⋆x and ISI at the last generation, obtained on three diferent terrains with two EAs, Ho controller
representation and Direct morphology representation. Numbers above each pair of boxes are p-values. Evolution on downhill
terrain finds more efective solutions, while evolution on uphill terrain finds less efective solutions. The EA impacts diversity,
while it does not do so in terms of efectiveness.

5 CONCLUDING REMARKS

In this paper, we considered the automatic design of a kind of simulated modular soft robots, VSRs, by means of
evolutionary optimization and investigated experimentally the impact of three key factors on the efectiveness
and diversity of evolved VSRs. In the long-term vision of robotic ecosystems that are capable to stay resilient to
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individuals.

environmental changes even without the intervention of human designers, diversity plays a key role. However,
evolving efective and diverse robots is not an easy task for at least two reasons. First, optimizing concurrently
the morphology and the controller of efective robots is known to be diicult. Second, the interplay between
quality and diversity of evolved solutions is complex in the more general context of evolutionary optimization.
We considered three key factors (representation, evolutionary algorithm, and environment) and performed

several experiments in which we evolved VSRs for the task of locomotion. For analyzing the diversity of the
population of evolved robots, we relied on a well-established index inspired by biology, the inverted Simpsons
index, that measures how many species there are in a population and how evenly they are distributed. For
assigning species to VSRs, we used a supervised machine learning approach: we deined the classes by visual
inspection, collected a few examples by manual labeling, engineered suitable features, and learned a model.
We also proposed a novel EA based on a form of speciation, inspired by NEAT, and instantiated it in three

variants, with species depending on the genotype, morphological traits, and behavioral traits. We showed
experimentally that the proposed EA is in general able to preserve diversity without afecting efectiveness. In
particular, SE-b, the variant based on behavioral traits, seems to achieve the best results. We leave to future work
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the investigation on which other traits of VSRs may be useful for promoting diversity with SE-b or similar EAs.
Beyond manually deined descriptors, which have the drawback of being task- and robot-speciic, automatic
methods like those of [Cully 2019; Paolo et al. 2020] appear promising.
Despite it is not obvious to which degree these results can be extended to other classes of robots and tasks

than the one considered in this study, we believe our methodology can be easily ported to other cases. Moreover,
we think that the idea of using behavioral traits for promoting diversity, as implemented in SE-b, is promising,
consistently with the recent trend of quality-diversity optimization algorithms that rely on descriptors for favoring
the concurrent optimization of a diverse set of solutions. Finally, we hypothesize that the diversity induced by
SE-b and similar EAs might be beneicial for ighting the reality gap problem, which afects the ield of automatic
design of robots, not only when employing ER techniques [Salvato et al. 2021].
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