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a b s t r a c t

Our work intends to show that: (1) Quantum Neural Networks (QNNs) can be mapped onto spin-
networks, with the consequence that the level of analysis of their operation can be carried out on the
side of Topological Quantum Field Theory (TQFT); (2) A number of Machine Learning (ML) key-concepts
can be rephrased by using the terminology of TQFT. Our framework provides as well a working
hypothesis for understanding the generalization behavior of DNNs, relating it to the topological features
of the graph structures involved.
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1. Introduction

A paradoxical result in Zhang et al. (2017, 2021) according
to which DNNs memorize the training samples by brute force
leaves unexplained where the generalization capabilities of DNNs
come from. This ‘‘apparent’’ paradox, as it has been dubbed
in Kawaguchi et al. (2017), has led to active investigations by
any scholars; see for example Arpit et al. (2017), Dinh et al.

2017), Dziugaite and Roy (2017), Hoffer et al. (2017), Keskar
t al. (2017), Krueger et al. (2017), Li et al. (2020), Lin et al.
2017), Neyshabur et al. (2017a, 2017b), Shwartz-Ziv and Tishby
2017), Wu et al. (2017) and Wang et al. (2017). In our vision,
he overall discussion has empirically demonstrated how far the
L community is from building a principled model of DNNs and,

herefore, understanding their generalization capabilities.
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Quantum Machine Learning (QML) and quantum algorithms
ave been employed successfully to obtain significant compu-
ational advantages over classical artificial intelligence meth-
ds (Aïmeur et al., 2013). The opposite approach, i.e. that of
pplying classical ML techniques to improve quantum algorithms,
s also frequently used e.g. Carleo and Troyer (2017), Lovett
et al. (2013) and Tiersch et al. (2015). Quantum Computing (QC)
has provided a deep theoretical background to apply quantum
algorithms to quantum computers, and quantum approaches to
machine learning have recently found profound applications (Pa-
paro et al., 2014; Schuld et al., 2014; Wiebe et al., 2016). In
the present article, we are interested in developing a new the-
oretical background for ML that is based on mathematical no-
tions derived from quantum topology and traditionally applied
in theoretical physics. Specifically, we aim at using Topological
Quantum Field Theory (TQFT) to construct a topological notion
of a neural network, a Topological Quantum Neural Network
(TQNN), whose corresponding quantum algorithms provide an
algebraic/geometric background to explain the issue of gener-
alization in DNNs. We emphasize that such TQNNs are more
general than QNN models employing fixed arrays of quantum
gates, as in e.g. Beer et al. (2020) and Farhi and Neven (2018). Our

TQNN structure potentially provides a computational advantage
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as a consequence of the fact that the projectors used in Noui
and Perez (2005) naturally implement arbitrarily deep topological
neural networks. We will also show that the semi-classical limit
of the objects hereby considered can be interpreted as classical
DNNs.

2. Motivations and theoretical background

The main problem addressed in this article is that, despite
their excellent performance in many different domains, the source
of DNNs’ success and the reason for them being powerful ML
models remain elusive. DNNs are still analytically opaque in
the sense that they miss a principled model of their operation.
This issue has a theoretical relevance and, at the same time,
it is extremely urgent from an applicative point of view as
well. Indeed, if we wish to trust any application making use
of Deep Learning technology, we need to open the ‘‘black box’’
of these architectures. Moreover, the problem is worsened by
uncertainty coming from the data (data uncertainty) and/or the
model (model uncertainty). As a consequence, the predictive
reliability of DNNs can be hardly quantified as soon as the model
is deployed in the real world. Ideally, ML methods including DNN
approaches are used to predict data from the same distribution
on which they were trained. Yet, real world domains can lead
to shifts between the distribution of data on which the model
was trained and on which the model is applied (covariance shift).
Many scholars are showing an increased interest in developing
approaches for estimating uncertainty in DNNs (as concerns a
comprehensive overview, Gawlikowski et al. (2022); concerning
recent approaches in estimating uncertainty see, Blundell et al.
(2015), Gal and Ghahramani (2016), Lakshminarayanan et al.
(2017), Malinin and Gales (2018), Ramalho and Miranda (2020),
Van Amersfoort et al. (2020), Wu et al. (2019) and Zhao et al.
(2019)). In this sense, a solution to problems of this kind is
also going to have a social impact to the extent that it will
improve the trustworthiness of AI systems. It has been empir-
ically shown (Zhang et al., 2017, 2021) that successful DNNs
an achieve zero training error or very small error when trained
n completely random labeling of the true data. On the other
ide, the test error is not better than random chance insofar
s there is no correlation between the training labels and the
est labels. However, as the authors of Zhang et al. (2017, 2021)
nderline, in this case learning should have been impossible to
he extent that the semantics of the training samples has been
ompletely corrupted by the randomization of the labels, with
he consequence that training should not converge or slow down
ubstantially. Surprisingly, the training process remains largely
naffected by the transformation of the labels. This result seems
o leave unexplained the generalization capabilities of DNNs. How
o explain that DNNs are actually able to achieve more than
ood generalization performances, even though the results of
earning a function that maps an input to an output based on
xample input–output pairs show that the training set has been
emorized by brute force?
Moreover, the results of Zhang et al. (2017, 2021) have posed

challenge to Computational Learning Theory (CoLT) as well. The
xperimental results emphasize that the effective capacity of sev-
ral successful DNNs is large enough to shatter the training data.
n other words, the capacity of these models is in principle rich
nough to memorize the training data (with or without the use of
egularizers). In particular, the classical measures of ML model ex-
ressivity (VC-dimension, Rademacher complexity, etc.) seem to
ail when explaining the capabilities of DNNs. Specifically, they do
ot explain the good generalization behavior achieved by DNNs,
hich are typically over-parametrized models that often have
ubstantially less training data than model parameters (Goodfel-
ow et al., 2016). It is usually understood that good generalization
2

is obtained when a ML model does not memorize the training
data, but rather learns some underlying rule associated with
the data generation process, therefore being able to extrapolate
that rule from the training data to new unseen data. Overfit-
ting and, even more, brute force memorization should exclude
generalization by definition, even as concerns human beings. It
is not by chance that the concepts of capacity (Cowan, 2001;
eldman, 2000; Lewis, 1996; Miller, 1956; Wattenmaker et al.,
986; Zhu et al., 2009), bias (Griffiths, 2010; Griffiths et al., 2008),
verfitting (O’Reilly & McClelland, 1994; Vong et al., 2016), and
eneralization (Kemp & Jern, 2014; Shepard, 1987) have been

widely explored in cognitive psychology as well. This scenario
has prompted us towards considering a different framework,
the TQNNs framework, for revising a number of traditional ML
concepts in light of the perspective of TQFT.

3. Topological Quantum Neural Networks

The mathematical structure used to define TQNNs is that
of TQFT. Formally, a TQFT is a functor from the category of
cobordisms, which we denote by Cob, to the category of vector
spaces. See Fig. 1 for a concise description of cobordisms. Roughly
speaking, what the definition of TQFT means, is that to each
closed (n − 1)-manifold we associate a vector space (of arbitrary
dimension) on some fixed base field, usually C, and to each
n-manifold M between two (n − 1)-manifolds N1 and N2, we
associate a linear map between the vector spaces corresponding
to N1 and N2. What is functorially encoded in this context is the
coherence of the composition of manifolds (i.e. gluing manifolds
along their boundaries) with respect to the composition of linear
maps. With respect to Fig. 1, the manifolds N1 and N2 in the top
drawing of the figure are associated by a TQFT to vector spaces
V1 and V2, while M becomes a linear map between V1 and V2. In
the two drawings in the middle and bottom of Fig. 1, the linear
maps corresponding to M1 and M2 are composed, through the
vector space associated with Nj, which we call Vj. In the case of
the bottom drawing, further, Vj is the tensor product of two vector
spaces, corresponding to the two connected components of Nj.

The composition rule of Cob is translated into the composition
of linear maps between vector spaces. We can, in particular, think
of any linear map f : N1 ↦→ N2 as an arbitrary finite composition
f = fm ◦ fm−1 ◦ . . . f2 ◦ f1, where each of these m maps is associated
o some n-manifold Mk, subject only to constraint that the Mk can
e successively glued together. Hence, we can equally well think
f each fk as an element of an equivalence class of smooth paths
hrough Mk, paths to which amplitudes will be assigned in the
onstruction below.
The typical elementary example of TQFT is in dimension 2,

.e. one dimension lower than the TQFTs considered in this article.
e have a fixed vector space V for each copy of the circle

(i.e. 1-manifolds), and the vector space V⊗r is associated with 1-
manifolds that consists of multiple copies of circles. Then, let N1
consist of r circles and N2 of s circles. To a surface connecting
N1 and N2 we associate a linear map V⊗r

−→ V⊗s. It is a
‘‘folklore’’ result in quantum topology that TQFTs in dimension
2 are classified by Frobenius algebras. Observe, in particular,
that in the previous scheme we have that to a closed manifold
(i.e. without boundaries N1 and N2) is associated a linear map
etween two copies of V⊗0 ∼= C. This is nothing but a complex
umber that is an invariant of the manifold. In practice, such
nvariants arise as partition functions, i.e. sums over all possible
olorings with certain Lie group representations, see Appendix B.
he class of TQFT relevant to this article makes use of the spin-
etwork representation in gauge theory, where we have that
he boundary vector spaces are Hilbert spaces whose bases are
iven by cylindrical functions corresponding to spin-networks. A
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Fig. 1. Schematic representation of Cob. The top drawing shows a manifold M
hose boundary consists of two manifolds N1 and N2 . While N1 and N2 are
bjects in Cob, the manifold M is a morphism. In the middle and bottom, two
obordisms are glued along their common boundaries (where the orientation
f Nj in M2 is taken with opposite sign). This provides a composition rule for
orphisms having the same target and source objects.

etailed description of the definitions is provided in Appendix A.
e define a TQNN to be a TQFT whose target vector spaces are

ensor products of the Hilbert space of cylindrical functions, taken
ith the (regularized) Ashtekar–Lewandowski metric.
In this setting, therefore, we can take an input spin-network

ssociated with the dual cubulation of a boundary manifold, and
ap this to another output spin-network. Associated with such
mapping there arises a scalar that is geometrically derived by

‘capping’’ the boundary components to obtain a closed manifold.
his scalar is interpreted as being a probability amplitude for a
ransition between two spin-networks. This is the outcome of
pplying a TQNN between input and output states. In practice,
iven two spin-networks (Γin,Γout ), a TQNN returns the transition
mplitude from Γin to Γout , which in turn can be used for a binary
lassification problem, e.g. a transition amplitude whose modulus
quare is higher than a predefined ‘‘confidence’’ number between
and 1 implies, when used as an indicator, that the input is

lassified as the output. See Appendix A for details.
A tight texture of analogies provided by the equivalence be-

ween this categorical approach to quantum field theory and deep
achine learning specifies the theoretical perspective through
hich we progress. Following the recent literature (Farhi & Neven,
018), these states can be considered as part of a QNN machine,
nd their state transitions as implementing quantum computa-
ions. The former is supported on 1-complexes (graph Γ ), and are
ndowed with a functorial evolution supported on 2-complexes.
his 2-complex evolution is, in turn, a cobordism acting at an
nternal boundary (an n−1-manifold) that is effectively a ‘‘hidden
ayer’’ of the TQNN; however unlike in a QNN architecture with
ixed layers, in a TQNN each ‘‘layer’’ can be further decomposed
nto an arbitrarily long sequence of intermediate evolution oper-
tors (n-manifolds glued by further cobordisms) and hence into
further nested sequence of ‘‘hidden layers’’ as schematized in
ig. 2. This functorial evolution on 2-complexes is amenable to a
raining algorithm specifically adapted to our TQNN framework,
s detailed in the Appendix.
We consider, in the present article, the case of a TQFT with
local non-abelian Lie group, which we assume for the sake of

3

Fig. 2. A functorial evolution among two spin-network states.

simplicity to be SU(2). This specific choice, in particular, allows us
to parallel the example of QNN provided above. Then, square (2j+
) × (2j + 1) matrices depending on the Euler angles turn out to
onstitute the representations of the group elements U ∈ SU(2).
t the vertices of the graph supporting the quantum state, tensors
aturating the matrix indices are specified by the intertwiners
f SU(2). In our setting, these are initial and final states of the
QNN, rather than the network itself. The functor, as an operator
he action of which is supported on the disjoint boundary states,
orresponds to the classifier, i.e. the overall map f : N1 ↦→ N2
mplemented by the TQNN as described above.

We conclude this section with a few remarks about TQNN.
irst, we notice that the definition of TQNN does not generally
ix the geometry of the network, but it rather determines a
‘preferred’’ geometry to detect certain (equivalence classes of)
tates by considering the highest transition amplitudes. More-
ver, we naturally implement the superposition principle, as a
um (of sorts) over all possible histories between boundary states,
.e. paths through the intervening n-manifold M . This might be
ompared to utilizing classical networks of arbitrary layer widths
nd depths simultaneously, as different histories present in gen-
ral a different number of single vertex transitions that are com-
osed in order to evolve from one boundary state to another.
ollowing this line of interpretation, it is reasonable to expect that
deally, a TQNN ‘‘implements all input/output equivalent DNNs in
arallel’’ (Deutsch, 2002) and hence would provide considerably
igher computational performance with respect to a classical
eural network.
Interestingly, while as noted above the most straightforward

nterpretation of QNN as spin-networks assumes that the quan-
um machine corresponds to a given spin-network, in TQNN
n appropriate functor determines the transition between two
pin-networks that are associated to single states. This functor
epresents, in effect, a superposition of quantum machines imple-
enting the chosen function f : N1 ↦→ N2 from the input to the
utput state. Replacing single maps with functors representing
ppropriate equivalence classes of maps in this way is commonly
eferred to as categorification in mathematics.

We notice that the functor that defines a TQNN derives its
orm from integration on the possible geometries that determine
transition between boundary states. More specifically, it is

nown (see for example Rovelli (2011) and references therein)
hat the partition function explicitly defined in Appendix B
pproximates the Einstein–Hilbert action in the semi-classical
imit, and the integration variables can be interpreted as living in
he moduli space of (equivalent up to diffeomorphism) metrics
ver the base manifold. Rovelli (2011) compares this approxi-
ation to a ‘‘concrete implementation’’ of the Misner–Hawking

ntegral. In the setting of the present article, this is interpreted as
he learning rule itself. A TQNN computes transition amplitudes
etween states by obtaining a partition function determined by
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Fig. 3. Superimposed to four different images are the associated graphs, en-
dowed with assigned SU(2) irreducible representations. The bottom left panel
encloses an image that corresponds exactly, i.e. with probability 1, to a ‘‘L’’.

the topology of the system, and infers this by integrating over
the geometries of the system, therefore selecting a geometry that
extremizes the transition amplitude.

4. Associating spin-networks to images

A fundamental feature of the definition of TQNNs is that in-
put and output states are spin-networks and, more generally,
cylindrical functions of the Hilbert space in the holomorphic
representation. It is, therefore, crucial to have well-determined
rules to associate spin-networks to the input data. We suppose
to have a pixeled image whose shades of gray vary in [0, 1]. We
let the nodes of our spin-network coincide with the centers of
the pixels. For each node N , we let ja denote twice the spin j
representation of SU(2), i.e. ja = 2j, where ja is the integer part
of ten times the shade of gray of the pixel whose center is N
— then there will be 11 different integer values, when including
0, ja with a = 0, . . . , 10, and 11 semi-integer values of j, from
j = 1/2 to 5. Then, we consider the von Neumann neighborhood
of a node N , and for a node N ′ in the neighborhood we join the
two nodes by jab = min{ja, jb}, where a and b are the associated
(re-scaled) shade of gray of the pixels of N and N ′, respectively.
We apply the Jones–Wenzl projector (Kauffman et al., 1994) to
the representation corresponding to jab in order to symmetrize
it, so to provide all the possible spin irreducible representations
with 0 ≤ j ≤ 5.

To better elucidate the previous scheme we consider the spe-
cific situation of (handwritten) letters with 3 × 2 pixels and
the shades of gray ranging in the interval [0, 1] in decimals,
where 0 corresponds to white, while 1 corresponds to black.
By construction, the associated spin-networks obtained will have
4

Fig. 4. The maximal graph, which encloses all the possible sub-graphs support-
ing the training samples’ cylindrical functions, where 10 denotes the maximal
value for the spin color ja .

ix nodes, each centered in one of the pixels. For example, four
nstances of the letter ‘‘L’’ and their corresponding spin-networks
re given in Fig. 3, where we use rectangular boxes to denote
he Jones–Wenzl projector applied to the edges (corresponding
o SU(2) representations) joining two nodes. In the case of the
op left panel in Fig. 3, proceeding counterclockwise from the
left top pixel, the encountered set of shades of gray is set to
be {0.4, 0.5, 0.6, 0.5, 0.0, 0.0}. A slightly different case is repre-
sented in the top right panel of Fig. 3 for which the string of num-
ers is {0.4, 0.5, 0.6, 0.5, 0.1, 0.2}. The ideal case, corresponding
o the spin-network state that perfectly captures the letter L, with
probability |A|

2
= 1, is given by {1.0, 1.0, 1.0, 1.0, 0.0, 0.0} ≡

, and is represented on the bottom left panel of Fig. 3. Finally, the
ottom right panel represents an undetermined case captured by
he string of numbers {0.3, 0.4, 0.3, 0.2, 0.1, 0.2}. We shall notice
hat these are all nothing but ‘‘colored’’ sub-graphs that can be
ecovered from a maximally connected graph, the one pictured
n Fig. 4, by removing fundamental representation strands along
ith the links.

. The perceptron in the semi-classical limit

We consider now our topological version of the notion of
erceptron and show that in the semi-classical limit we obtain an
bject that resembles traditional perceptrons closely. A detailed
escription of the semi-classical limit derived from the general
QFT formalism used in Section 3 is provided in Appendix C,
nd a dictionary mapping DNN concepts to TQNNs is given in
ppendix D. The first step toward adapting TQNNs to the setting
f perceptrons is to define an algorithmic way to associate spin-
etworks to the input vectors in Rn constituting the dataset. Let
be a natural number that is large compared to the magnitudes

f the entries of the vectors of the dataset. Given a vector x̄, we
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construct a spin-network Γx̄ associated to x̄ as follows. We intro-
duce a node which is labeled by 0, and for each i = 1, 2, . . . , n
e add a node, labeled by the index i of the corresponding entry
f x̄. As in the case of Section 4, we color the node labeled by 0

with the spin representation jN , while each node i is colored by
[xi], the closest integer rounding xi. Then, for each i we introduce
an edge connecting 0 and i, which is labeled by a spin j0i =

N + [xi] representation. Finally, we symmetrize the edges by
applying the Jones–Wenzl projector, indicated diagrammatically
by placing a black box on the connecting edges. Observe that we
do not introduce, in this context, links between nodes i and j
ith i, j ̸= 0. Now, the weights of the perceptron are vectors

¯ ∈ Rn similarly to the inputs x̄ of the dataset. We follow the
ame procedure above to introduce a spin-network Γw̄ of weights.
Since we have chosen N much larger than the actual range

f the data entries x̄ (i.e. the hypercube [−M,M]
n where M is

the maximum magnitude that the entries of the dataset reach,
has M ≪ N), it follows that we can adopt the large spin j0i limit
s described in Appendix C, for which transition amplitudes are
omputed as
∏

i H0i,w̄ = ⟨ΨΓx̄,H0i |ΨΓw̄ ,jw̄ ,ιn⟩ =

i

∆j0i e
−
(j0i−j̄0i)

2

2σ20i e−ıξ0ij0i , (1)

where H0i denote SL(2,C) elements labeling boundary data in the
asymptotic limit — see e.g. Appendix C.

The analogy with classical perceptrons is as follows. A per-
ceptron trains a function f whose weight vector w̄ determines
the output according to the rule f (x̄) = 1, 0 depending on
whether w̄ · x̄ > θ or not, respectively, for some threshold θ ,
and where · indicates the inner product of Rn. In fact, usually, a
bias appears in the perceptron formulas, but this can be encoded
among the weights as well, so we will omit to refer to it. In our
topological version above, the amplitude A∏

i H0i,w̄ is obtained by
the inner product of spin-network states associated to inputs x̄
and weights w̄. The transition amplitude A∏

i H0i,w̄ is a complex
number whose modulus square is between 0 and 1, so that by
applying a Heaviside step function H , centered at some threshold
value θ , to |A∏

i H0i,w̄|
2 we obtain a TQNN implementation of the

concept of perceptron. Training a topological perceptron would
amount to optimizing weights w̄, and SL(2,C) elements H0i with
respect to a predetermined target.

Similar reasoning applied to feedforward neural networks
(i.e. multilayer perceptrons) can be implemented as well, by using
the fact that TQFTs are defined via functorial constructions that
allow us to compose an arbitrary number of H which are the basic
computational units in feedforward neural networks. Note that, in
this setting, the ‘‘semi-classical’’ nature of QNNs with fixed layers
and fixed connections, and hence classical constraints on the
entanglement between qubits, also becomes clear: such systems
are effectively designed only on particular paths through the
input/output equivalent TQNN. We see, therefore, that TQNNs are
versatile objects that can be trained and utilized for classification
problems in different ways. Moreover, through the notion of
semi-classical limit, they provide a way of interpreting artificial
neural networks in the context of TQNN theory.

6. Handwritten letter recognition

We may discuss possible experimental applications of the new
framework we introduced. First, we consider the theory intro-
duced in this article, applied to a concrete example, where we
work in the semi-classical limit. It is worth mentioning that we
take into account hidden layers as in the ‘‘Feedforward’’ step of
the algorithm of Appendix C. This consists of interpolating among
5

Fig. 5. A specific graph, representing the number 0, within the case employing
28 × 28 pixels.

Fig. 6. Several samples of the number 0, extracted from the MNIST database,
to be used during the training process.

intermediate states, on which a complete summation is taken
into account through Eq. (B.8), and which are supported only
on a restricted set of sub-graphs. The functoriality of TQNN in
this sense is here fundamental, as Eq. (B.8) encodes precisely the
composition property of cobordisms, preserved by TQFTs. We can
imagine the hidden layers acting as filtering specific patterns over
others. Indeed, what the hidden layers do is to impose a selection
over the intermediate graphs ∂Cn, and hence the 2-complexes
that interpolate among these latter ones. Internal summation
over the irreducible representations of SU(2), namely variation
of the metric properties of the QNN states, then individuates all
the possible sub-graphs contained in ∂Cn, i.e. this corresponds to
a variation of the topological features of the 1- and 2-complex
structures (Fig. 5). Applying the definition of cobordisms and
functoriality implicit in the definition of a TQNN as a type of
TQFT, implementing different layers as described above simply
coincides with computing transition amplitudes through middle
steps in the computation, as prescribed by Eq. (B.7).

The experiment utilizes the MNIST database (Fig. 6) which is
the machine learning benchmark for hand-written digit recogni-
tion. The dataset contains the gray-scale images of hand-written
digits. The fact that all images in the dataset have identical
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Fig. 7. The maximal graph, which encloses all the possible sub-graphs sup-
porting the training samples’ cylindrical functions for the case 28 × 28
pixels.

Fig. 8. Marginalized plots for the estimated mean values and standard deviation
of the irreducible representations associated to the links of the spin-networks
states. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

dimensions, which is 28 × 28 pixels, see Fig. 7, implies that
he knowledge representation graph (Scarselli et al., 2009; Sowa,
006), encoding both raw image data and the relationships be-
ween the values of each pixel, can be constructed from any
mage in the dataset. After the translation of the knowledge
epresentation graph, the parameters for each class of digits are
btained using class prototyping (Rosch, 1983, 1988). The latter
onsists of averaging the spin colors appearing in the training set
f MNIST, in order to determine a representative spin-network
hose transition with respect to input data provides the classi-

ication probability (hence the label), and it is coherent with the
hoice of utilizing the semi-classical formalism. The constructed
nput array, namely the knowledge graph encoding topological
nformation, is helping us to determine the likelihood of ‘‘input’’.
6

Alternatively, any optimization technique like gradient descent
can be applied to learning the class prototype of a specific set
of spin-networks states. In Fig. 8 we report the mean values of
the standard deviations of the j-spin colorings corresponding to
irreducible representations associated with the spin-networks.

7. A new working hypothesis

As a consequence of the previous discussions, we propose a
working hypothesis that the learning process of DNNs shall be
interpreted within an extended framework, which follows the
very same axioms of quantum mechanics and quantum topology,
through the formulation of TQFT. In other words, we see a TQNN
as a quantization of a DNN whose h̄ → 0 limit recovers the
classical case. In the learning process of a TQNN, the substantial
feature that a TQNN learns is the selection of relevant geometries
in the partition function that determines transition amplitudes
utilized to classify. The main idea that constitutes the backbone
of the present framework is that DNNs should be addressed at the
TQNNs level. Training examples or tests samples will be captured
by the spin representations of the TQNN quantum states, which
are superpositions of the boundary Hilbert space elements.

Transition amplitudes will return the probability of a state as
being in a certain spin-network basis state. The generic boundary
states are characterized by two classes of parameters, which
we refer to as topological and metric parameters: the former is
captured by the topology of the graph, hence by the topological
invariant (linking and knotting) quantum numbers, while the lat-
ter is captured by the spin of the representation itself. Pertaining
to the topological parameters, the information provided by the
training samples, together with the definition of training error
in terms of the internal product of boundary quantum states,
substantially determines the structure of the bulk, and therefore
the functor that determines transition amplitudes, in the learning
process. We argue that the topological parameters are enough to
learn the classifier, namely the TQNN 2-complex that provides
the functorial structure of the TQNN, playing a similar role to
the frequency threshold in the photoelectric effect. Whenever not
enough information about the topology is specified by the train-
ing data, any TQNN 2-complex with enough topological internal
structure will be selected. This might be considered as a TQNN
counterpart of a similar phenomenon in the theory of TQFT, and
its relations to Chern–Simons theory and the Jones polynomial.
In fact, celebrated results of Witten (1989) have shown that the
partition function associated with the action corresponding to
Chern–Simons theory is independent of the metric, although the
action itself is not. We have incurred in a similar situation, and
we argue that the notion of generalization in TQNN theory and, as
a limit, in DNN theory, lies precisely here. Although the partition
functions that are used to determine the transition amplitudes
are topological (hence the name TQNN), what is learned during
the learning process is what geometries to associate to given
classified patterns.

8. Conclusions

Moving from the perspective of TQFT, we have defined the
concept of ‘‘Topological Quantum Neural Network’’ and show that
classical DNNs can be seen as a subcase of TQNNs and emerge
in a coherent group theoretical sense as a limit of TQNNs. This
allowed us to establish a dictionary translating a number of ML
key concepts into the terminology of TQFT. More importantly, we
have proposed a framework that provides a working hypothesis
for understanding the generalization behavior of DNNs.

The novelty of our approach, particularly when compared to
recent studies in the literature (Beer et al., 2020; Farhi & Neven,
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2018), stands in taking into account fully, for the first time, the
truly topological structure of graphs and 2-complexes on which
the TQNN states are supported. Indeed, ours is not only a pictorial
representation, in terms of graphs, of product states belonging
to the total Hilbert space (Fock space) of the theory. Instead,
what we have developed is a scheme that allows associating
ML concepts to topologically invariant features of the graphs
(inter-connectivity of edges, linking and knotting numbers, topo-
logical invariants on 2-complexes) and 2-complexes involved in
the TQNN construction.

A number of further lines of research could be pursued starting
rom our approach:

1. Providing empirical results concerning the working hypoth-
esis previously described so to corroborate the claim that
the notion of generalization introduced in this article is
consistent;

2. Defining new complexity measures more appropriate to the
framework we described and adequate to explain the be-
havior of over-parametrized models such as DNNs. It would
also be of interest to pursue deeper experimentation with
a variety of benchmark data sets, so to relate complexity
measures to concrete examples;

3. Introducing the notion of ‘‘time’’ into the architecture by
modeling phenomena of the cortical plasticity such as firing
rate or spike timing, see Sjöström et al. (2001). In particular,
this perspective implies the necessity of using TQFTs that
have one extra dimension with respect to the concrete ones
that have been used in this article. The basic theory does
not change, in that the notion of TQNNs does not require
fixing a specific dimension in the cobordism category, but
the corresponding algebraic/analytical machinery certainly
becomes heavier.
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Appendix A. Topological Quantum Field Theory

We provide in this section of the appendix a deeper introduc-
tion to Topological Quantum Field Theory (TQFT), spin-network
(boundary) states, and (bulk) 2-complexes functorial evolution of

boundary states.
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A.1. Classical phase-space and spin-network states

The theory is the principal SU(2)-bundle over a D-dimensional
base manifold M. The SU(2)-connection A realizes the parallel
transport among infinitesimally closed fibers of the principal
bundle. The parallel transport along a finite path γ connecting
any two points of M is individuated by

Hγ [A] = P e
∫
γ A
, (A.1)

which denotes the path ordered exponential P of the integrated
flux of A along γ . The holonomy then provides a group element
g ∈ SU(2). The trace of the holonomy along a closed path (a
loop α) can be expanded, taking into account a squared loop of
infinitesimal edge ϵ, as

lim
∥α∥→0

Wα[A] = 11 − ϵ2F [A] + . . . , (A.2)

where ∥α∥ denotes the measure of the loop α, and F [A] = dA +

A ∧ A is the field strength, or curvature, of the connection A. The
connection A is both a 1-form on M — indeed, its curvature is
a 2-form over M, since the differential d is one-form — and an
element of the su(2) algebra. Thus, it admits the decomposition
over the generators τ a, with a = 1, 2, 3 indices in the adjoint
representation of the algebra. Consequently, the connection A and
its curvature F [A] acquire the dependence on the internal indices,
respectively A = Aaτ a and F a

[A] = dAa
+ ϵabcAb

∧ Ac , the Levi-
Civita symbol ϵabc providing the structure constants of SU(2) and
the Einstein convention of summing repeated indices is intended.

A TQFT can be introduced considering the topological action
associated to the Lagrangian density function

L[A] = Ba
∧ F a

[A] = Tr[B ∧ F [A]] , (A.3)

where the B field denotes a su(2) algebra valued D-form, which is
the canonically conjugated momentum to the connection A, and
the trace over the generators of the algebra is normalized to the
identity and yields Tr[τ aτ b] = δab. The phase-space variables A
and B can be then paired in a symplectic construction, imposing
the Poisson brackets

{Ai
a(x1), B

b
j (x2)} = δba δ

i
j δ(x1, x2) , (A.4)

with i = 1, . . . ,D space indices over the dimensions of M.
Holonomies realize the smearing of the configuration space

variables, i.e. the connections A, along the paths γ .
Similarly, the smearing of the frame fields B can be imple-

mented by substituting their fluxes calculated through the sur-
faces Σ of co-dimension 1 that crosses the paths γ at least in
one point, namely

BΣ =

∫
Σ

B · n , (A.5)

where n is normal to the surface Σ and the dot denotes contrac-
tion of indices. For example, since the dimension of the path γ is
1, its co-dimension 1 surface in a 3D ambient space will be a 2D
surface.

The theory we just introduced retains what is called a gauge
symmetry, namely a symmetry under internal transformations,
which individuates an equivalence class that describes an ob-
server. These are instantiated by transformations involving
generic group elements g ∈ SU(2), i.e.

A → Ag = g−1Ag + g−1dg , (A.6)

and

B → Bg = g−1Bg . (A.7)

It is trivial to check that the action (A.3) is invariant under the
oined action of (A.6)–(A.7). The infinitesimal expansion of finite



transformation rules (A.6)–(A.7) can be cast at the su(2) algebraic
level, through the infinitesimal expansion of a group element
around the identity, i.e. g ≃ 11 + αaτ a + . . . . This individuates
an infinitesimal transformation

δαB = [B, α] , δαA = DAα , (A.8)

where the commutators [ , ] denote the adjoint action of the
algebra. The generators of the algebra appear in B = Baτ a and
α = αaτ a, while DA denotes the covariant SU(2) derivative DA :=

d + A.
Another symmetry, which is relevant for the definition of

TQFT, is shift symmetry. This is actually ensuring the theory
under consideration to be topological, as it is straightforward to
recognize by looking at

B → B + δηB , δηB = DAη , (A.9)

and

A → A + δηA , δηA = 0 , (A.10)

where η is any arbitrary infinitesimal 0-form (a function). Under
the infinitesimal transformations (A.9)–(A.10), the variation of the
action of the theory S[A] =

∫
M L[A], namely

δηS[A, B] = S[A + δηA, B + δηB] − S[A, B] , (A.11)

vanishes, due to the Bianchi identity DAF [A] = 0. This latter iden-
tity appears in the variation of the action due to an integration by
part: ∫

M
Tr[(B + δηB) ∧ F [A + δηA]] =∫

M
Tr[(B + DAη) ∧ F [A]] =∫

M
Tr[B ∧ F [A]] −

∫
M

Tr[B + ∧ηDAF [A]] =∫
M

Tr[B ∧ F [A]]. (A.12)

This symmetry is often referred to as a ‘‘gauge symmetry’’ of
the BF theory, which individuates a class of equivalence among
physical solutions that differ by this transformation.

On the other hand, the equation of motions are specified by
the variation of the action with respect to the phase-space fields:

DAB = 0 , F [A] = 0 . (A.13)

Solutions are then ‘‘flat’’, or with zero curvature, i.e. F [A] =

0, while the frame fields satisfy the Gauß constraint DAB =

0, which generates the gauge transformations. Locally, by the
topological shift symmetry, any frame field B that satisfies the
Gauß constraint can be recast as DAη, for some η. This is true as
locally closed forms are exact, and continue to satisfy the Gauß-
constraint. This implies that locally the solutions of the equations
of motion belong to the same equivalence class, modulo gauge
transformations, and shift symmetry transformations. Since these
can be mapped into vanishing configurations, this argument fi-
nally shows that there are no propagating degrees of freedom in
BF theories, namely that these theories are topological.

A.2. Graph-kinematics

As the last step before proceeding to the definition of the 1-
and 2-complexes, we introduce the irreducible representations
of the group, the so-called ‘‘spin’’ numbers, and the inter-twiner

numbers, depending on the SU(2) recoupling theory. For this
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Fig. A.1. A graph with tri-valent nodes colored under SU(2).

purpose, we remind that in this case holonomies over a path γ are
group elements of SU(2), and thus undergo the transformations

Hγ [A] → g−1
s(γ )Hγ [A]gt(γ ), (A.14)

where gs(γ ) and gt(γ ) are group elements assigned respectively
to the source and the target of an oriented path γ . For SU(2),
irreducible representation of holonomies are provided by the
Wigner matrices and labeled by the semi-integer j-spin numbers,
namely

D(jγ )(Uγ ) , Uγ ≡ Hγ [A] , (A.15)

SU(2) intertwiners are expressed as the (group elements) inte-
grals of a number of copies of irreducible representations (Wigner
matrices). As a compact group, SU(2) is endowed with a Haar
measure (invariant under gauge transformations and coordinate
reparametrizations) that enables the definitions of the inter-
twiner invariant tensors. These latter quantities can be thought
to be associated with the nodes where endpoints (target points)
and origins (source points) of the paths γ intersect. A collection of
n path γ1, γ2 . . . γn intersecting at their target and source points
(nodes) provides a graph Γ . The internal indices of the Wigner
matrices integrated ensure gauge-invariance through the contrac-
tion with the holonomies flowing across the node. Integrating
with the Haar measure the irreducible representations of the
holonomies, the target or source points of which cross at the
node, and which are labeled by the spin jγ1 , jγ2 . . . jγn , provided
the expression for the inter-twiner

vι =

∫
SU(2)

dU D(jγ1 )(U)D(jγ2 )(U) . . .D(jγn )(U) , (A.16)

having again suppressed all the (intertwiner and Wigner matri-
ces) representation indices.

A collection of holonomies, the internal indices of which are
contracted with the intertwiners defined by integration of the
group elements at the nodes, defines a spin-network state. In
terms of its constituents, the holonomies and the intertwiners,
a spin-network state cast as

ψΓ ,{jl},{ιn}[A] =

(⨂
n∈Γ

vιn

)
·

⎛⎝⨂
γl∈Γ

jγl
D (Uγl [A])

⎞⎠ , (A.17)

where the dot denotes the contraction of internal indices, and l =
1, . . . n label the n paths γ that compose the graph Γ (Fig. A.1).

SU(2) spin-network states are equipped with a Haar measure,
which ensures invariance under gauge transformations and dif-
feomorphisms (coordinate reparametrizations) on the base man-
ifold M, of the internal product

′ ′ ′ ′ ′
⟨ΨΓ ′,jγ ,ιn [A]|ΨΓ ,jγ ,ιn [A]⟩ = δ{Γ },{Γ }δjγ ,jγ διn,ιn (A.18)
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Invariance under diffeomorphisms, which is expressed by the
Kronecker delta between classes of equivalence of graphs en-
dowed with the same topology, namely {Γ }, instantiates the sym-
etry under elastic transformations, rendering the graph struc-

ure truly topological. In this study, graphs Γ are also referred to
s 1-complexes.

.3. Graph-dynamics

A concept of dynamics requires the definition of boundary
tates (1-complexes), the quantum evolution of which is pro-
ided by relative transition amplitudes. These are captured by
he path integral (realizing the vacuum-vacuum transition, with
o underlying graph structure) and the expectation values in its
easure. It is convenient to introduce the mathematical concept
f 2-complex C. A 2-complex C is composed by edges e departing
r ending either at nodes n ∈ Γ or at vertices v internal to C, by
aces f bounded by either links γ or internal edges e, and vertices
where edges cross. We are going to show how to associate a

unctor — either the partition function ZC[Uγl ], or the expectation
alue of boundary state in the path-integral associated to the
opological theory — to a 2-complex C endowed with boundary
roup elements Uγl .
The partition function for the BF model over a SU(2)-bundle is

pecified by the expression

=

∫
DAB eı

∫
M Tr[B∧F ]

=

∫
DA′′δ(F )′′. (A.19)

here in the last equality we introduced a Dirac delta measure on
he space of flat connections. This is understood (Baez, 2000) from
mearing the phase-space variables and then casting the partition
unction as

(∆) =

∫
su(2)E

∏
e∈E

dBe∫
SU(2)E∗

∏
e∈E∗

dUe eı
∑

e∈∆ Tr[BeFe] , (A.20)

where ∆ denotes the triangulation of the manifold M — this
allows to introduce a simplicial complex ∆∗ that is dual to the
triangulation∆ — E denotes the set of edges e of the triangulation
∆, and E∗ the set of edges e∗ of the dual simplicial complex ∆∗.
Furthermore, in the expression (A.20) we have been using the
atural definition of the curvature, which is expressed by the
roduct of group elements Ue∗ associated to the links around the
oundary ∂ f ∗ of a dual face f ∗ (thus associated with the dual face
tself):

f ∗ =

∏
e∗∈∂ f ∗

Ue∗ . (A.21)

here Fe = lnUf ∗ , namely individuates a Lie algebra element
hat entails the discretization of the connection field curvature
n the edges e of ∆. Integration over the algebra elements Be pro-
ides the expression for the Dirac delta on the product of group
lements that realizes the smearing of the curvature, namely

su(2)E

∏
e∈E

Be eı
∑

e∈∆ Tr[BeFe] = δ(eFe ) = δ(Uf ∗) . (A.22)

he partition function then casts

(∆) =

∫
SU(2)E∗

∏
e∈E∗

dUe∗

∏
f ∗

δ(Uf ∗) . (A.23)

his formula finally admits a re-manipulation in terms of the irre-
ucible representation of SU(2), which thanks to the Peter–Weyl
xpansion, is provided by Plancherel formula

(Uf ∗) =

∑
∆jf ∗χ

jf ∗ (Uf ∗) , (A.24)

jf ∗ p

9

here jf ∗ denote half-integer numbers that label SU(2) irre-
ucible representations, ∆j = (2j + 1) the dimension of these
atter, and χ j(U) = Dj(U)αα is the character of the group element

∈ SU(2), i.e. the trace of a Wigner matrix over the internal
ndices α in the representation Hilbert space. Then the partition
unction recasts

(∆) =

∑
jf ∗

∫
SU(2)E∗

∏
e∈E∗

dUe

∏
f ∗

Tr[D(
∏

e∗∈∂ f ∗

Ue∗)] , (A.25)

hich depends only on the recoupling theory of SU(2), and re-
ains a dependence on the dimension of the manifoldM, in which
oth the graphs Γ and the 2-complex C are merged. Thus, we can
dentify the no-boundary path-integral amplitude Z(∆) with the
o-boundary functor ZC , i.e.

C = Z(∆) (A.26)

here there is no dependence on the boundary group elements.

ppendix B. Topological Quantum Neural Networks

We provide a detailed account of the formulation of Topologi-
al Quantum Neural Networks (TQNN), their functorial dynamics,
nd their training algorithm.

.1. Transition amplitudes

The scheme of computing the transition amplitude between
nitial and final states is obtained following an association path
Rovelli, 2011). This is schematically described as follows.

• We integrate either twice over each internal edge in the
bulk,1 or once over an adjacent couple of group elements,
assigned to either internal edges or vertices:

U ′

U

�
�
e H⇒

∫
SU(2)

dUse

∫
SU(2)

dUte ; (B.1)

• We integrate over each couple of adjacent group element,
assigned to either to a face or to an internal edge:

@

�
�

e

f hef
H⇒

∫
SU(2)

dUe∗ χ
jf (Uf ) ; (B.2)

• We sum over each face f ∗ and associate the element

� @

�
�
Ue∗

f ∗

g′

g

H⇒

∑
jf ∗

∆jf ∗ χ
jf ∗
(∏
e∗∈∂ f

Ue∗

)
; (B.3)

• We drop, at each vertex, an integral
∫
SU(2) dUv(e), which

appears as redundant in (B.1).

The functor Z(Ul) provides the transition operator between
oundary states, and gives the algebraic counterpart of cobor-
isms between boundary manifolds. It clearly depends on the
oundary group elements and it is written as

C(Ul) =

∫
SU(2)2(E−L)−V

dUv(e)

∫
SU(2)V−L

dUf

×

∏
f

Kf ∗(Ue∗,Uf ) , (B.4)

1 For bulk we intend any 2-complex structure, without boundary. Therefore
C[Uγl ] acts in a functorial way on the boundary states, which are 1-complexes,
.e. colored graphs Γ composed by a collection of paths γ and nodes where the
aths intersect, to which are assigned respectively holonomies and intertwiners.
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where Kf ∗(Ue∗,Uf ) denotes the ‘‘face amplitude’’

Kf ∗(Ue∗,Uf ) ≡

∑
jf ∗

∆jf ∗ χ
jf ∗
(∏
e∗∈∂ f

Us(e)Ue∗U−1
t(e)

)
∏
e∗∈∂ f

χ jf ∗ (Uf ) . (B.5)

Taking into account a 2-complex without boundary, (B.4) re-
duces to the partition function

ZC =

∫
SU(2)2E−V

dUv(e)

∫
SU(2)V

dUf

∑
jf ∗

∏
f

∆jf ∗ ×

χ jf ∗
(∏
e∗∈∂ f

(Us(e)Ue∗U−1
t(e))
) ∏

e∗∈∂ f

χ jf ∗ (Uf ) , (B.6)

where V is the sum of the valences of the faces of C. Differently
than in (B.4), the expression in (B.6) provides the amplitudes of
probability for the output of the transition among states. This
coincides to the process of ‘‘capping’’ the boundaries described
before, and gives a partition function which is a topological in-
variant of manifolds. As observed before, for the example of TQFT
in dimension 2, this is an endomorphism of the ground field C.

B.2. Training algorithm

We are finally able to specify the training algorithm of the
model as follows.

1. Initialize:
Associate, between boundary states that are supported on
disjoint graphs
{Γin, Γout ; ∂C = Γout ∪ Γin}, the functorial evolution

ZC({Ul ; l ∈ C}, {j̄l}),

where {j̄l} denote a set of parameters to be fitted in the
learning process.

2. Feedforward:
2a compose a functor ZC({Ul ; l ∈ C}, {j̄l}), which is sup-
ported on a 2-complex C, with a series of 2-complexes
interpolating among either the intermediate hidden layers
graphs or the boundary states’ graphs. For P hidden layers,
labeled by p ∈ P , we have the decomposition C = C1 · · · ∪

Cp ∪ CP+1. Therefore

ZC({Ul ; l ∈ C}, {j̄l}) = (B.7)
ZC1 ({Ulin ; lin ∈ Γin}, {j̄lin}) · · ·

×ZC1 ({Ulout ; lin ∈ Γout}, {j̄lout}) ,

where the dot denotes the integration over the group ele-
ments assigned to the interpolating graphs supporting the
hidden layer structures. This, in fact, encodes functoriality
of Z , since it respects the composition of intermediate
manifolds.
2b integrate over the group elements U assigned to the
hidden layer graphs, so to trace them out:

ZC1 ({G}) · ZC2 ({H}) = (B.8)∫
SU(2)

∏
dU ZC1 ({U}, {G}) ZC2 ({U}, {H}) =

ZC1∪C2 ({G}, {H}) .

This property is often referred to as a cobordism of the
functorial structure.
10
3. Classify:
Introduce Hl ∈ SL(2,C), encoding the information on the
set of parameters {j̄l}; by the aforementioned combina-
torics, associate to the 2-complex C the transition ampli-
tude

ZC(Hl) =

∫
SU(2)2(E−L)−V

dUv(e)

∫
SU(2)V−L

dUf

×

∏
f

K
tf ∗
f ∗ (Ue∗,Uf ) , (B.9)

where the heat kernel propagator, encoding the informa-
tion about the parameter {j̄l} through the SU(2) coherent
group elements,2 see Bianchi et al. (2010b), acquires the
expression

K
tf ∗
f ∗ (Ue∗,Uf ) ≡

∑
jf ∗

∆jf ∗ e
−jf ∗(jf ∗+1)

ttf ∗
2 ×

χ jf ∗
(∏
e∗∈∂ f

(Us(e)Ue∗U−1
t(e))H

−1
e∗

)
×

∏
e∗∈∂ f

χ jf ∗ (Uf ) , (B.10)

{tf ∗} being a set of positive real numbers.
4. Estimate:

Estimate the parameters {j̄l}, maximizing the probability
derived from the amplitude ZC , in a feedforward approach.

5. Repeat:
Repeat the previous steps 1–4 for different choices of the
boundaries ∂C.

ppendix C. The semi-classical limit

We have so far considered spin-network basis states repre-
ented by cylindrical functionals of the holonomies, contracted
ith the intertwiner invariant tensors. A different representation

nvolves coherent spin-network states (Bianchi et al., 2010a),
hich is obtained as the gauge-invariant projection of the prod-
ct over links of heat kernels. Namely

ΨΓ ,Hab (hab) =(∏
a

dga

)∏
ab

Ktab (hab, gaHabg−1
b ), (C.1)

here a, b label the nodes of the maximal graph where the spin-
etworks live, pairs ab correspond to links, ga ∈ SU(2) are group
lements at the nodes, hab ∈ SU(2) label group elements over
he links, and Hab are group elements of SL(2,C), assigned to
ach link ab. Notice that elements of SL(2,C) can be expressed in
erms of a positive real number ηab and two independent SU(2)
roup-element gab and g−1

ab , namely

ab = gabeηab(σ3/2)g−1
ba . (C.2)

he two SU(2) group elements cast uniquely in terms of an angle
˜ and a unit vector identified by its inclination and azimuth
⃗ = (sin θ cosφ, sin θ sinφ, cos θ ). The associated SU(2) group
lement reads

= exp(−ıφσ3/2) exp(−ıθσ2/2) , (C.3)

nd the SU(2) group elements g recast g = n exp(ıφ̃σ3/2). Thus
e get

ab = nabe−ızab(σ3/2)n−1
ba . (C.4)

2 The coherent group elements of SU(2) are defined by |n⃗, j⟩ := Dj(Un⃗)Dj(e),
with e unit element of the group, n⃗ direction on S3 that generically individuates
U ∈ SU(2) and Dj(e) ≡ |j,±ẑj⟩.
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having introduced zab = ξab + ıηab, with ξab = φ̃ba − φ̃ab.
his finally allows to identify the set of parameters associated
o each link, namely (n⃗ab, n⃗ba, ξab, ηab). These parameters give
eight vectors that determine the transition amplitudes that the
QNN associates to input and output states. The learning process,
herefore, consists of obtaining the weights that produce the
aximal transition amplitudes with respect to a ground truth.
or example, in the case of spin-networks associated to hand-
ritten letters ‘‘L’’ given above, the weights have to maximize the
ransition amplitude corresponding to the lower bottom panel of
ig. 3.
The state in Eq. (C.1) can be expanded on the spin-network

asis ΨΓ ,jab,ιa ,

Γ ,Hab (hab) =

∑
jab

∑
ιa

fjab,ιa ΨΓ ,jab,ιa (hab) , (C.5)

ith coefficients fjab,ιa individuated by

jab,ιa =

(∏
ab

∆jab e
−jab(jab+1)tabDjab (Hab)

)
·(∏

a

vιa

)
. (C.6)

n the large jab limit, the coherent states ΨΓ ,Hab (hab) undergo the
xpansion

Γ ,Hab (hab) ≃

∑
jab

⎛⎝∏
ab

∆jabe
−
(jab−j̄ab)

2

2σ2ab e−ıξabjab

⎞⎠
×ΨΓ ,jab,Φa(n⃗ab)(hab) , (C.7)

where the coherent intertwiners Φa(n⃗ab) can be decomposed on
the intertwiner space vιa by

Φa(n⃗ab) =

∑
ιa

Φιa (n⃗ab)vιa , (C.8)

with

Φιa (n⃗ab) = vιa ·

(⨂
b

|jab, n⃗ab⟩

)
, (C.9)

the variance of the Gaussian distribution per each link is inversely
proportional to the diffusion time tab, namely σab ≡ 1/(2 tab),
and finally the parameters j̄ab over which the coherent state is
peaked, which correspond to the estimated parameters we refer
to through the paper, are related to the ηab, the real numbers
entering the parametrization of SL(2,C) group elements, at each
link by ∆j̄ab ≡ ηab/tab.

The partition function of Section 3 is therefore changed in the
emi-classical limit by the use of the approximations in Eq. (C.7)
nd the corresponding transition amplitudes between initial and
inal states ΨΓ ,jγ ,ιn ,ΨΓ ,Hab , respectively, are therefore computed
ccording to the formula:
∏

ab Hab = ⟨ΨΓ ,Hab |ΨΓ ,jγ ,ιn⟩ ≃

∑
jab

⎛⎝∏
ab

∆jab e
−
(jab−j̄ab)

2

2σ2ab e−ıξabjab

⎞⎠
×

∫
dhabΨ Γ ,jab,Φa(n⃗ab)(hab)ΨΓ ′,j′ab,vι′a

(hab)

=

∑
jab

⎛⎝∏
ab

∆jab e
−
(jab−j̄ab)

2

2σ2ab e−ıξabjab

⎞⎠
×δ δ ′
Φa(n⃗ab),vι′a jabj ab

11
=

⎛⎝∏
ab

∆jab e
−
(jab−j̄ab)

2

2σ2ab e−ıξabjab

⎞⎠ . (C.10)

Using the transition amplitudes above, between states in the
semi-classical limit, we can apply the fundamental idea of the
algorithm of Section 3 in the semi-classical limit to obtain:

1. Initialize:
Associate spin-networks to images as in Section 4. This is
done in two steps:
1a associate to each training sample a 1-complex (i.e. a
graph), where each node corresponds to the center of a
pixel, and the edges connect pixels in the von Neumann
neighborhoods;
1b assign to each link of the 1-complex SU(2) irreducible
representations, where the spin j representation label is
determined by the pixel colors.

2. Feedforward:
2a estimate the parameters entering the feedforward pat-
tern through the functorial functional ZC(hl), by maximiz-
ing the internal product A between this latter and the QNN
boundary states supported on ∂C. The geometric supports
for QNN boundary states are graphs resulting from the
disjoint union of any Γ ′, on which training samples are
constructed, and 1-complexes supporting output states;
2b for hidden layer approaches: compute the functorial
composition (cobordism properties) to take place accord-
ingly to Eq. (B.8), and consistently with the filtering process
that is implemented by the selection of the sub-graph
structure at each hidden layer.

3. Classify:
3a introduce Hl ∈ SL(2,C), encoding the information on the
set of parameters to be determined, namely (n⃗ab, n⃗ba, ξab,
ηab);
3b associate to each link of the 1-complex a set of parame-
ters, the string (n⃗ab, n⃗ba, ξab, ηab), to be fitted in the learning
process. This identifies the functional ΨΓ ,Hab ;
3c compute the internal product to associate probability
amplitudes to the training samples:

A∏
ab Hab = ⟨ΨΓ ,Hab |Ψ̃Γ ,jγ ,ιn⟩ , (C.11)

the ΨΓ ,Hab denoting the functionals of the training samples,
and Ψ̃Γ ,jγ ,ιn the functional associated to the image to be
recognized.

4. Estimate:
Estimate, for each training sample, the parameters (n⃗ab, n⃗ba,
ξab, ηab), maximizing the probability derived from the am-
plitude A∏

ab Hab .
These parameters individuate a rotation group element
Eq. (C.3), which acting on a reference vector, e.g. the iden-
tity element of the SU(2) group, individuates the weight
vector.

5. Repeat:
Repeat the previous steps for different cylindrical func-
tions, corresponding to different training samples, by using
the estimated parameters, and the corresponding weight
vectors.

Observe that the topological structure of the graph, and the
related extended information that is encoded by its links and
intertwiners, are captured by the combinatorial summation of the
a, b indices, and by the information stored in the Kronecker delta
on the projected coherent intertwiners at each node. On the other
hand, metric properties are encoded in the Gaussian weights at
each link, capturing the relevant quantitative information con-
cerning the recognition of the specific digit. It is clear that the case
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in which, at the link γab, both the mean value j̄ab and its dispersion
(jab − j̄ab)2/σ 2

ab are vanishing, no information relative to that link
appears anymore in the amplitude, and the specific metric feature
affects the topology of the graph, with the consequence that the
graph will embed one link less. Finally, we recognize as a remark-
able feature of this approach that probability interference terms
(while computing |A|

2) will be provided by the ξab coefficients.
An implementation of TQNN without employing the semi-

classical limit will appear elsewhere. Such an algorithm utilizes
the machinery of Section 3 in its generality. We limit ourselves
to mentioning that transition amplitudes, in the general setting,
use the definition of Jones–Wenzl projector at the links of spin-
networks, along with the projector of Noui and Perez (2005) to
regularize the inner products.

Appendix D. A dictionary for Quantum Neural Networks

As we have already mentioned, the novelty of our model
consists in using the richer structures of graph-supported spin-
network states to represent training and test samples. As a matter
of fact, as far as we know, it is the first time that graph structures
are taken into account, together with their evolution supported
on 2-complexes. Instead, within the traditional approach, nodes
that are located at each boundary and hidden layer, are taken to
evolve along with graphs (1-complexes).

Now we are ready to reformulate notions found in DNN theory
in the language of TQNN. We restrict our illustration to the super-
vised learning scenario consisting, as it is well known, in learning
a (typically unknown) function g : X → Y that maps a (typically
arge, e.g. all possible images of handwritten characters) input set
to a (typically much smaller, e.g. names of characters) output

et Y , based on a training set X ′
⊂ X and hence an explicitly

represented function g ′
: X ′

→ Y specifying example input–
utput pairs. If f : X → Y is the (presumably random) function
mplemented by the network before training, we can represent
he learning algorithm as an operation L : (f , g ′) ↦→ g on the
nitial function f given the training function g ′. In particular, we
ollow the statistical learning framework of supervised learning
elineated in Shalev-Shwartz and Ben-David (2014). Let us recall
irst, some classical definitions for DNN, see Shalev-Shwartz and
en-David (2014).

• Sample complexity:
It represents the number of training samples (i.e. Card(X ′))
that a learning algorithm needs in order to learn successfully
a family of target functions.

• Model capacity:
It is the ability of the model to fit a wide variety of func-
tions; in particular, it specifies the class of functions H (the
hypothesis class) from which the learning algorithm L can
choose the specific function h.

• Overfitting:
A model is overfitting when the gap between training error
and test error is too large; this phenomenon occurs when
the model learns the training function g ′ but L incorrectly
maps (f , g ′) ↦→ h ̸= g , i.e. the trained network generalizes
to the wrong function h and fails to predict future observa-
tions (i.e. additional samples from X) reliably. The training
function g ′ has been merely ‘‘memorized’’ to the extent that
h is random on X outside of the training sample X ′.

• Underfitting:
A model is underfitting when it is not able to achieve a
sufficiently low error on the training function g ′; this phe-
nomenon occurs when the model does not adequately cap-
ture the underlying structure of the training data set and,
therefore, may also fail to predict future observations reli-
ably.
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• Bias:
It is the restriction of the learning system towards choosing
a classifier or predictor h from a specific class of functions
H (the hypothesis class).

• Empirical Risk Minimization (ERM):
It consists in minimizing the error on the set of training data
(the ‘‘empirical’’ risk), with the hope that the training data
is enough representative of the real distribution (the ‘‘true’’
risk).

• Generalization:
It is conceived as the ability of the learner to find a predictor,
i.e. a map X ′

→ X , which is able to enlarge successfully
its own predictions from the training samples to the test or
unseen samples.

These notions can be translated into the TQNN dictionary as
ollows:

• Sample complexity:
It is a measure of the Hilbert-space of the entire spin-
network state that is supported on a specific graph Γ . It
is then dependent on the connectivity of the graph (nodes
and links of each graph, i.e. the multiplicity of connectivity
that characterizes the graph Γ ) and on the dimensionality
of the Hilbert spaces connected to each link and node. In this
sense complexity, once extended to the different classes of
graphs corresponding to the training set, provides a measure
of the entropy of the set. Therefore, in the TQNN framework,
the notion of ‘‘complexity’’ has a wider meaning than its
counterpart in DNN, for which the sample complexity is
nothing but the size of the training set. This is summarized
in the expression for the dimension of the Hilbert space HΓ

of the (whole) spin-network supported on Γ , namely

dim[HΓ ] = ⊕jl ⊗n ⊗l∈∂n dim[Hjl ]. (D.1)

This directly encodes both the size of the maximal graph
where the input/output states live, as well as the alge-
bro/analytical structure used in the TQFT from which the
corresponding TQNN arises, as encoded by the dimension-
ality of the Hilbert spaces Hj, for instance;

• Model capacity:
It is quantified in terms of the interconnectivity of the
graph Γ . It depends on the topological structure of the
graphic support Γ of the spin-network states, and neither
on the dimensionality of the Hilbert space of the irreducible
representations nor on the intertwiner quantum numbers,
respectively assigned to each link and node of Γ ; in other
words, it depends on the total valence V of Γ , defined in
terms of the valences vn of each node of Γ through the
expression

V =

∑
n

vn ; (D.2)

• Overfitting:
As pointed out in Section 3, in the semi-classical limit, the
integrals that allow us to compute the transition amplitudes
that characterize a TQFT are interpreted as a ‘‘sum over all
the geometries’’ of the ground topological manifold, where
the integrand is some approximation of the Einstein–Hilbert
action. During the learning process, then a TQNN learns how
to select certain geometries with respect to certain others
in order to maximize certain transition amplitudes corre-
sponding to ‘‘a more suitable’’ classification. The information
available to make this selection during the learning process
is that given by the connectivity of the input graphs/spin-
networks and their given correlation g ′ with the label set



Y . If g ′ is insufficiently representative of the target function
g , the TQNN may only partially capture the topological
structure of the full input set X and therefore be unlikely
to classify correctly spin-network states that are not part of,
or are significantly dissimilar from those contained in, the
training set X ′;

• Underfitting:
It represents the converse of the overfitting scenario. The
geometries that have been selected in the learning process
do not correspond to the graphs Γ at the starting point.
Fewer information channels (links) are present and lower
dimensionality of the information channels (dimensions of
the Hilbert space associated with each holonomy) as well. As
a consequence, the QNN cannot fit the training set and may
therefore also fail to predict future observations reliably;

• Bias:
It amounts to the predisposition of the spin-network to
account for a specific set of data; it depends on the topo-
logical structure of the spin-network states, encoded in the
connectivity properties of input Γ ’s and on the specific
realization of the TQNN quantum state, i.e. on the weight
of the quantum state on the spin-networks basis elements
of the Hilbert space.

• Empirical Risk Minimization (ERM):
It is the variance of the Gaussian distribution of the irre-
ducible representations assigned to the holonomies on the
links in the semi-classical limit, i.e.

ERM :=

∑
l

(jl − j̄l)2

2L
, (D.3)

with L equal to the total number of links.
• Generalization:

It is the behavior of the system in response to test or un-
seen data analogous to a functor (amplitude) either from a
boundary spin-network to another boundary spin-network,
or from a boundary spin-network to a complex number. This
is determined by the geometries that have been selected as
the most representative of a certain training sample dur-
ing the learning process. This is in practice captured by
the parameters that give higher relevance, in the integral
computing of the transition amplitudes in a TQNN, to cer-
tain boundary transitions, while suppressing others. These
parameters are determined by (i) connectivity of 1- and
2-complexes (nodes and links, vertices and edges respec-
tively), (ii) linking and knotting (e.g. for loops in a dif-
ferent Hilbert space representation), and (iii) states’ sum
(as a global topological charge, invariant under refinement
of the triangulation, i.e. invariant under refinement of the
data/group elements/intertwiners assigned to the links and
the nodes). How the parameters determine the correspond-
ing amplitudes is clear, for the TQNN used in practice in this
article, from the formula for the partition function of the
model:

ZC(Ul) =

∫
SU(2)2(E−L)−V

dUv(e)

∫
SU(2)V−L

dUf

×

∏
f

Kf ∗(Ue∗,Uf ) , (D.4)

where the ‘‘face amplitude’’ casts

Kf ∗(Ue∗,Uf ) ≡

∑
jf ∗

∆jf ∗ χ
jf ∗
(∏
e∗∈∂ f

Ue∗

)
×

∏
χ jf ∗ (Uf ) . (D.5)
e∗∈∂ f
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Finally, from the definitions of the present article, we can
provide the meaning of Learner’s input and output in the context
of TQNN.

• Learner’s input:
(i) The domain set X: It corresponds to links l and nodes n,
and attached holonomies Ul and invariant tensors ιn respec-
tively along with the links and at the nodes: it is concisely
denoted as a state of the Hilbert space of the theory:

ΨΓ ;{jl},{ιn}[A] ≡ ΨΓ (Ul, ιn) := |Γ ; {jl}, {ιn}⟩; (D.6)

(ii) The label set Y: It is a set of topological charges and
quantum numbers, with which the 2-complex is endowed;
for instance, recalling the group-isomorphism π3(S3), for the
mapping individuated by the homotopy group π3(S3) = Z
the winding number w is defined as the integral over the
SU(2) group element

w =
1

24π2

∫
SU(2)

dU; (D.7)

(iii) The training data S: It is the union of the (initial)
boundary-colored graphs together with the topological in-
variants associated with them through the QNN functorial
action.

• Learner’s output:
It is a prediction rule, i.e. the QNN functor that identifies
the topological charges of the boundary states (training/test
samples) and thus implements the classifier; for Γ support-
ing a disjoint boundary state, the classifier is captured by the
probability amplitude that results from the internal product

A = ⟨Γ ; {jl}, {ιn}| |ZC,∂C=Γ ; {jl}, {ιn}⟩. (D.8)

Lastly, contributions to the topological invariants can be rec-
ognized to be of several different types, including the ones asso-
ciated with the connectivity of the graphs, the linking, and the
knotting (e.g. in the loops decomposition of the TQNN bound-
ary and intermediate spin-network states) and the states’ sum
invariants. The first two classes will be local in the experimental
implementation of the TQNN, while the latter represents a global
charge, the analytical expansion of which in the deformation pa-
rameter might entail an infinite number of momentum expansion
of the charge.

Notice that generic boundary states are characterized by two
classes of parameters, which we dub as topological and metric
parameters: As reminded above, the former ones are captured
either by the topology of the graph or by the topological invariant
(linking and knotting) quantum numbers, which can be expressed
in terms of quantum group representations and are characterized
by the deformation parameter of the quantum group, while the
latter ones are captured by the spin/label of the representation
itself. Whenever not enough information about the topology is
specified by the training data, any TQNN 2-complex with enough
topological internal structure to account for the classification task
will be selected. In other words, if the training data prescribe
an effective shrinking of the ‘‘measure’’ of edges and links to
zero, any topological feature of the graph, such as the valency
of a node, or the knotting or linking of an edge, will cease to
be. Metric parameters instead are individuated by the Gaussian
weights associated with the coherent group elements assigned
to the TQNN states and recovered by the fit on the spin rep-
resentation set that is assigned to each training state. In this
sense, since the parameters fit is achieved considering the whole
amplitude A, the resulting topology qualifies as a derivative-free
feedforward architecture in which a composition of intermediate
evolution operators among the hidden layers does not need to
backpropagate the information.
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