
UNIVERSITÀ DEGLI STUDI DI TRIESTE

Joint-supervision with Universidad Nacional de San Luis

XXXV Ciclo del Dottorato di Ricerca in Ingegneria Industriale e dell’Informazione

Doctorado en Ciencias de la Computación

PO FRIULI VENEZIA GIULIA - FONDO SOCIALE EUROPEO 2014/2020

SoC-based FPGA architecture for image analysis

and other highly demanding applications

Settore scientifico-disciplinare: ING-INF/01 Electronics

Dottoranda: Romina Soledad Molina

Coordinatore: Alberto Tessarolo

Supervisori di tesi: Giovanni Ramponi

Verónica Gil Costa

Co-supervisore di tesi: María Liz Crespo

Anno accademico 2021/2022

gr
New Stamp_1

"You will begin to touch heaven, Jonathan,

at the moment that you touch perfect speed.

And that isn’t flying a thousand miles an hour,

or a million, or flying at the speed of light.

Because any number is a limit,

and perfection doesn’t have limits.

Perfect speed, my son, is being there.”

— Jonathan Livingston Seagull - Richard Bach

Acknowledgment

Grazie a Dio perché la sua energia è sempre presente, in ogni passo.

Grazie ai miei supervisori, Gianni, Liz, e Verónica, che sono stati presenti durante tutto questo

tempo, guidando la barca che oggi mi ha permesso di raggiungere la meta di questo viaggio.

Grazie per aver nutrito il mio cammino con la sua saggezza e la lora buona qualità umana.

Grazie anche ad Andrés, che mi ha dato il suo sostegno in questa parte del viaggio.

Grazie alle istituzioni che mi hanno permesso di sviluppare il mio dottorato: Università degli

Studi di Trieste, The Abdus Salam International Centre for Theoretical Physics, Consiglio

Nazionale delle Ricerche, Universidad Nacional de San Luis.

Grazie eterne alla mia famiglia, perché anche a distanza fisica sono sempre presenti, con tutto

l’amore, il supporto, e la comprensione. Grazie per essere sempre al mio fianco.

Vi volgio tanto bene!

Andrea una volta mi ha detto che i supervisori sono come il capitano della nave, ci guidano in

questo processo di apprendimento che attraversa ogni ambito della nostra vita. Grazie infinite

essere presente, per avermi permesso d’imparare dalla tua saggezza.

Grazie Raffaele, Franco e Salvatore, per avermi accompagnato in questi anni.

Grazie a Iván, Werner, Charm Loong, Luis, Bruno, Maynor, e Agustín per avermi accompagnato

in tutti questi anni, per l’amicizia, le risate, i momenti di lavoro, e quelli di relax.

Grazie a tutti i miei amici dell’anima che vibrano nell’eternità dell’esistenza.

Infinitamente, grazie al mare!

Romina Soledad Molina

ii

Summary

Nowadays, the development of algorithms focuses on performance-efficient and energy-efficient

computations. Technologies such as field programmable gate array (FPGA) and system on chip

(SoC) based on FPGA (FPGA/SoC) have shown their ability to accelerate intensive computing ap-

plications while saving power consumption, owing to their capability of high parallelism and re-

configuration of the architecture.

Currently, the existing design cycles for FPGA/SoC are time-consuming, owing to the complex-

ity of the architecture. Therefore, to address the gap between applications and FPGA/SoC architec-

tures and to obtain an efficient hardware design for image analysis and highly demanding appli-

cations using the high-level synthesis tool, two complementary strategies are considered: ad-hoc

techniques and performance estimator.

Regarding ad-hoc techniques, three highly demanding applications were accelerated through

HLS tools: pulse shape discriminator for cosmic rays, automatic pest classification, and re-ranking

for information retrieval, emphasizing the benefits when this type of applications are traversed by

compression techniques when targeting FPGA/SoC devices.

Furthermore, a comprehensive performance estimator for hardware acceleration is proposed

in this thesis to effectively predict the resource utilization and latency for FPGA/SoC, building a

bridge between the application and architectural domains. The tool integrates analytical mod-

els for performance prediction, and a design space explorer (DSE) engine for providing high-level

insights to hardware developers, composed of two independent sub-engines: DSE based on single-

objective optimization and DSE based on evolutionary multi-objective optimization.

iii

Riassunto

Al giorno d’oggi, lo sviluppo di algoritmi si concentra su calcoli efficienti in termini di prestazioni

ed efficienza energetica. Tecnologie come il field programmable gate array (FPGA) e il system

on chip (SoC) basato su FPGA (FPGA/SoC) hanno dimostrato la loro capacità di accelerare ap-

plicazioni di calcolo intensive risparmiando al contempo il consumo energetico, grazie alla loro

capacità di elevato parallelismo e riconfigurazione dell’architettura.

Attualmente, i cicli di progettazione esistenti per FPGA/SoC sono lunghi, a causa della com-

plessità dell’architettura. Pertanto, per colmare il divario tra le applicazioni e le architetture FP-

GA/SoC e ottenere un design hardware efficiente per l’analisi delle immagini e altri applicazioni

altamente demandanti utilizzando lo strumento di sintesi di alto livello, vengono prese in consid-

erazione due strategie complementari: tecniche ad hoc e stima delle prestazioni.

Per quanto riguarda le tecniche ad-hoc, tre applicazioni molto impegnative sono state accel-

erate attraverso gli strumenti HLS: discriminatore di forme di impulso per i raggi cosmici, classi-

ficazione automatica degli insetti e re-ranking per il recupero delle informazioni, sottolineando i

vantaggi quando questo tipo di applicazioni viene attraversato da tecniche di compressione du-

rante il targeting dispositivi FPGA/SoC.

Inoltre, in questa tesi viene proposto uno stimatore delle prestazioni per l’accelerazione hard-

ware per prevedere efficacemente l’utilizzo delle risorse e la latenza per FPGA/SoC, costruendo

un ponte tra l’applicazione e i domini architetturali. Lo strumento integra modelli analitici per la

previsione delle prestazioni e un motore design space explorer (DSE) per fornire approfondimenti

di alto livello agli sviluppatori di hardware, composto da due motori indipendenti: DSE basato

sull’ottimizzazione a singolo obiettivo e DSE basato sull’ottimizzazione evolutiva multiobiettivo.

iv

Contents

Acknowledgment . ii

Summary . iii

Riassunto . iv

1 Introduction 1

1.1 Motivation . 1

1.2 Hypothesis . 3

1.3 Objectives . 3

1.3.1 Specific objectives . 4

1.4 Contribution . 4

1.5 Methodology . 5

1.6 Challenges . 7

1.7 Scientific publications . 10

1.8 Thesis outline . 13

2 Specific topics in machine learning and mathematical optimization 15

2.1 Deep neural networks . 15

2.2 Compression for ML-based models . 17

2.3 Methodology to deploy DNN-based classifiers on SoC 18

2.4 Mathematical optimization . 21

2.4.1 Bayesian optimization . 22

2.4.2 Multi-objective optimization based on evolutionary algorithms 23

3 Background on SoC-based FPGA and parallel models 25

3.1 SoC-based FPGA . 25

v

Contents

3.1.1 Design space exploration and metrics . 26

3.1.2 Improving performance with HLS tool . 28

3.2 Parallel computing models for performance estimation 31

3.2.1 Random access machine and parallel random access machine 31

3.2.2 Bulk Synchronous Parallel model . 32

3.2.3 LogP model . 34

3.2.4 Collective Computing Model . 34

3.2.5 Roofline Model . 35

3.3 Summary . 36

4 State of the art in performance estimators for SoC-based FPGA 38

4.1 Performance estimation for FPGA . 38

4.1.1 General approaches . 39

4.1.2 Design space exploration . 42

4.1.3 Discussion . 48

4.2 Estimators for highly demanding applications . 52

4.2.1 Models . 52

4.2.2 Frameworks . 54

4.3 Summary of the chapter . 57

5 MARTE: A comprehensive hardware acceleration performance estimator 59

5.1 MARTE general flow . 59

5.2 Initialization stage . 61

5.3 Cost Model . 61

5.3.1 Latency model . 63

5.3.2 Resource model . 67

5.4 Design space explorer . 70

5.4.1 Single-objective Bayesian optimization . 71

5.4.2 Evolutionary multi-objective optimization (EMO) 72

5.4.3 Rules for guiding the DSE engine . 74

5.5 Outputs . 74

5.6 Summary of the chapter . 75

vi

Contents

6 Image analysis and highly demanding applications 76

6.1 Image analysis and other highly demanding applications 76

6.2 Pulse shape discrimination for cosmic rays . 77

6.2.1 Dataset . 78

6.2.2 ML-based architecture . 79

6.2.3 ML-based model compression . 81

6.2.4 Implementation results . 82

6.3 Automatic pest classification based on CNN . 84

6.3.1 ML-based architecture . 85

6.3.2 Dataset . 86

6.3.3 CNN assessment . 87

6.3.4 Implementation results . 88

6.4 Re-ranking algorithm . 88

6.4.1 Information retrieval system . 89

6.4.2 Re-ranking through an ensemble of decision trees 89

6.4.3 Towards the hardware implementation . 91

6.5 Summary of the chapter . 94

7 Experiments and results 96

7.1 Experimental setup . 96

7.2 Metrics . 97

7.3 Basic applications . 98

7.4 MARTE performance evaluation . 99

7.4.1 Analytical models for resource and latency estimation 99

7.4.2 Pulse shape discriminator: performance estimation 102

7.4.3 Automatic pest classification: performance estimation 103

7.4.4 Re-ranking algorithm: performance estimation 105

7.4.5 Discussion . 106

7.5 Assessment of MARTE DSE engine . 106

7.5.1 Assessment of the DSE engine based on BO . 107

7.5.2 Assessment of the DSE engine based on EMO . 109

vii

Contents

7.6 MARTE runtime analysis . 113

7.7 MARTE compatibility analysis . 114

7.8 Summary of the chapter . 116

8 Integration of MARTE with the state of the art 118

8.1 Roofline Model . 118

8.1.1 Pulse shape discriminator . 119

8.2 Discussion . 124

8.3 Summary of the chapter . 124

9 Conclusions 125

9.1 Future directions . 127

Bibliography 129

viii

List of Figures

1.1 Methodology. 5

2.1 Detail of a single neuron function. 16

2.2 Knowledge distillation process. 18

2.3 Methodology. The input is the labeled dataset used to train the teacher and student

(or target) networks. After this, the data structure generated is the input for the hls4ml

package, translating the neural network-based model into a HLS project. 19

2.4 Compression workflow to deploy DN classifiers on FPGA/SoC. 20

2.5 General flow diagram of the NSGA-II algorithm. 24

3.1 Architectures for Zynq-7000 SoC and Zynq UltraScale+ MPSoc devices. 26

3.2 Typical DSE framework with HLS in the loop. 28

3.3 HLS directives for loop handling. 30

3.4 HLS directives for memory optimization. 30

3.5 PRAM model. Different processors execute read and write operations in a shared

memory. 32

3.6 Superstep of the BSP model. 32

3.7 LogP model. From a local point of view, for one Processor (P), g represents the gap

between messages, o is the communication overhead, and L is the communication

delay. 34

ix

List of Figures

3.8 Roofline model. The x-axis represents the operational or computational intensity

(CI) and y-axis represents the attainable performance (AP) or throughput. Computa-

tional roof and I/O bandwidth roof limit the achievable AP. On the right (yellow area),

the algorithms are compute-bound, while on the left (orange area), they are memory-

bound. 35

4.1 Classification of HLS DSE techniques. 43

4.2 Value curve for DSE. 43

4.3 COMBA framework overview. LLVM IR is extracted from the source code. This trace

is the input for the recursive data collector, which will extract the parameters used by

the analytical models (latency and resource). MGDSE-II evaluates the configuration

and defines the next set of directives to be applied. The output of the complete flow

is the high-performance configuration. 46

4.4 DSE methodology based on Roofline. The input source code is translated to LLVM

IR trace, obtaining the baseline for performance estimation and resource utilization.

Subsequently, the Roofline model chart estimates memory bottlenecks. An auto-

mated DSE phase allows resource and performance estimations, and the best feasible

design is plotted along with the original Roofline chart. 47

4.5 Prospector framework. The inputs are the source code, clock frequency, and direc-

tives; and the outputs are the synthesized designs with a trade-off between latency

and area. The directives are encoded and sent to the BOU. Source code and clock fre-

quency are the inputs for HLS Tools. Performance and cost values are obtained from

HLS tool and Place & Route process. 48

4.6 Radar plots. (1) Metrics. (2) Techniques. 50

4.7 Radar plot for models, methodologies, and frameworks for metric estimation, FPGA-

based DSE, and power consumption. 51

5.1 General flow of MARTE, a comprehensive hardware acceleration performance esti-

mator. 60

5.2 Input of MARTE: source code as tree data structure. 61

5.3 Terminology for a loop (without directives). 63

5.4 Model for latency estimation. 64

x

List of Figures

5.5 Resource utilization model. 67

5.6 Flow chart for LUT and FF computation due to operations. 68

5.7 Steps involved in LUT and FF computation through multiple linear regression. 69

5.8 Flow diagram of the single-objective BO for DSE. 72

5.9 Flow diagram of the EMO for DSE with NSGA-II solver. 73

6.1 Cosmic rays DAQ system for Water Cherenkov Detectors. 78

6.2 Samples of raw pulse traces of each cluster. 79

6.3 MLP teacher architecture. 80

6.4 AUC per class for each student network. 81

6.5 Methodology for compression. 85

6.6 Teacher architecture based on VGG16, including the new classifier. 85

6.7 Distilled architecture. 86

6.8 Samples of Pest24 dataset . 86

6.9 Confusion matrix: VGG-16-based teacher (1), QStudentFPGA Pest24 dataset (2), QS-

tudentFPGA ARG dataset (3). 87

6.10 Information retrieval. 89

6.11 Data layout of the QS algorithm. 90

6.12 λ-MART efficiency/effectiveness trade-off. Right: NDCG@10 per MB of model size.

Left: impact of quantization on NDCG@10. 93

6.13 High-level representation of the QS IP core. 93

7.1 DSE based on BO. Objective space for multiplication, matrix multiplication, and FIR

filter. 108

7.2 Running metric. Convergence EMO DSE for basic applications. 110

7.3 Running metric. Convergence EMO DSE for highly demanding applications. 111

7.4 Objective space EMO DSE for basic applications. 112

7.5 Objective space EMO DSE for MLP and pre-ranking algorithms. 113

8.1 Roofline model for MLP-based models targeting ZCU102 platform. 120

8.2 Roofline model for MLP M1 model 32-bit fixed-point precision, targeting ZCU102

platform. 121

xi

List of Figures

8.3 Roofline model for MLP M1 model 32-bit fixed-point precision, targeting ZCU102

platform. Reuse factor impact in the attainable performance. 122

8.4 Reuse factor vs latency for MLP architecture. 123

8.5 Reuse factor vs scalability for MLP architecture. 123

xii

List of Tables

3.1 Features of the computing models PRAM, BSP, LogP, CCM, multi-BSP, and DRAM-

only Roofline. 37

4.1 Contributions presented in the literature for performance estimation. The acronyms

used in the table are: A: area, L: latency, P: power consumption, QoR: quality of re-

sult, C: communication, T: throughput, E: energy, S: speed-up, RT: reconfiguration

time, S-C: SystemC, I-C: Impulse C, HDL: hardware description language, MH: meta-

heuristics, Em: empirical, and PN: Petri Nets. 49

4.2 Models used for FPGA/SoC on different research areas. 54

4.3 Utilization of frameworks FPGA/SoC on different research areas. PDR: Partial dy-

namic reconfiguration. 57

5.1 Resource and latency estimation for the basic operations obtained through HLS tool. 62

5.2 Pipeline directive: resource estimation for 32-bit fixed point, obtained through HLS

tool. From left to right: number of DSP, FF and LUT due to expressions (expDSP,

expFF, expLUT), LUT consumed by multiplexers (muxLUT), LUT and FF used as reg-

isters (regLUT, regFF), total number of operations (Nop), trip count (TC), number of

each operation inside the loop (Add, Mult, Sub, Div), total number of expressions

(NopExp). 63

6.1 Distilled architectures based on MLP. 80

6.2 Distilled architectures based on MLP. The four classes of pulse are represented by c0,

c1, c2, and c3. AC stands for accuracy. 82

xiii

List of Tables

6.3 HLS reports for M1 MLP @200MHz, without AXI interface. Latency in clock cycles.

RF: reuse factor (configuration option in hls4ml). For ZCU102 and PYNQ-Z1, the re-

ports were obtained with Vivado HLS 2019.2.1. For the KRIA device, the report was

obtained from Vitis HLS 2021.1.1. 83

6.4 Place & route report for the KRIA device. From Vivado 2021.1.1. 83

6.5 Metric estimations for KRIA device, obtained from Vivado 2021.1.1. P & R stands for

place & route. 84

6.6 Complete system. Utilization from P & R reports (post-implementation). Reports

were obtained with Vivado 2021.1.1. 88

6.7 Isolated inference IP core. Utilization from P & R reports (post-implementation). Re-

ports were obtained with Vivado 2021.1.1. 88

6.8 Re-ranking algorithm - 32-bits floating-point version. Latency in clock cycles. The

acronyms used in the table are: HD: Hardware design. [A]QS 100 Trees. No directives.

[B]. QS 1000 Trees. No directives. Reports obtained through Vivado HLS 2019.1.1. . . 92

6.9 Re-ranking algorithm. From [A] to [D] with binning and quantization strategies; [E]

to [F] 32 floating-point version. Latency in clock cycles. The acronyms used in the

table are: HD: Hardware design. [A]. No directives. Base implementation. [B]. No

directives. One fixed loop [C]. No directives. Loop MC_L divided by a factor of four.

[D]. Same case as [C], but with directives applied. [E]. Floating-point with code re-

structuring. No directives. [F]. Floating-point with Loop MC_L divided by a factor of

four and directives. 94

7.1 Available resources on Kria KV260 development board. 97

7.2 Metric estimation through HLS tool and MARTE for multiplication. The acronyms

used in the table are: HD: Hardware design. A. No directives. [B] Unroll and array

partition complete. [C] Pipeline II=1. 100

7.3 Per r or , ADL , and Lr ati o for multiplication. The acronyms used in the table are: HD:

Hardware design. [A]. No directives. [B] Unroll and array partition complete. [C]

Pipeline II=1. 100

xiv

List of Tables

7.4 Metric estimation through HLS tool and MARTE for matrix multiplication. The acronyms

used in the table are: HD: Hardware design. [A]. No directives. [B] AP + Product Loop:

Pipeline II=3. [C] AP + Col Loop: Pipeline II=3. [D]. AP + Row Loop: Unroll Factor=2

[E]. AP + Row Loop: Pipeline Factor=3. 101

7.5 Per r or , ADL , Lr ati o and for matrix multiplication. The acronyms used in the table

are: HD: Hardware design. [A]. No directives. [B] AP + Product Loop: Pipeline II=3.

[C] AP + Col Loop: Pipeline II=3. [D]. AP + Row Loop: Unroll Factor=2 [E]. AP + Row

Loop: Pipeline Factor=3. 101

7.6 Metric estimation through HLS tool and MARTE for FIR filter. The acronyms used

in the table are: HD: Hardware design. [A]. No directives. [B]. Pipeline II = 3, [C].

Pipeline II = 5, [D]. Pipeline II = 3 + AP complete. 102

7.7 Per r or , ADL , and Lr ati o for FIR filter. The acronyms used in the table are: HD: Hard-

ware design. [A]. No directives. [B]. Pipeline II = 3, [C]. Pipeline II = 5, [D]. Pipeline II

= 3 + AP complete. 102

7.8 Metric estimation through HLS tool and MARTE for pulse shape discriminator. The

acronyms used in the table are: HD: Hardware design. [A]. 8-bits fixed-point, reuse

factor = 1. 103

7.9 Per r or , ADL , and Lr ati o for pulse shape discriminator. The acronyms used in the

table are: HD: Hardware design. [A]. Reuse factor = 1, 103

7.10 Pulse shape discriminator. Per r or considering MARTE estimation and place and

route report (Vivado 2021.1.1). 103

7.11 Metric estimation through HLS tool and MARTE for automatic pest classification al-

gorithm. The acronyms used in the table are: HD: Hardware design. [A]. Reuse factor

= 1. 104

7.12 Per r or , ADL , and Lr ati o for pest classification algorithm. The acronyms used in the

table are: HD: Hardware design. [A]. Reuse factor = 1. 104

7.13 Automatic pest classification. Per r or considering MARTE estimation and P & R re-

port (Vivado 2021.1.1). 104

xv

List of acronyms

7.14 Metric estimation through HLS tool and MARTE for re-ranking algorithm. The acronyms

used in the table are: HD: Hardware design. [A]. No directives. [B]. Pipeline II=12

(loop 1.1) [C]. Pipeline II=12 (loop 1.1) + Pipeline II=6 (loop 2) + Array Partition com-

plete . 105

7.15 Per r or , ADL , and Lr ati o re-ranking algorithm. The acronyms used in the table are:

HD: Hardware design. [A]. No directives. [B]. Pipeline II=12 (loop 1.1) [C]. Pipeline

II=12 (loop 1.1) + Pipeline II=6 (loop 2) + Array Partition complete 105

7.16 Re-ranking (implementation of [B] option from Table 7.14). Per r or considering MARTE

estimation and P & R report (Vivado 2021.1.1). 106

7.17 Configurations provided by MARTE DSE based on single-objective BO for latency

optimization. The acronyms are: D=0 No directive, D=1 Pipeline, D=2 Unroll, AP:

array partition. 108

7.18 MARTE EMO DSE efficient configurations. The acronyms are: D=0 No directive, D=1

Pipeline, D=2 Unroll, AP: array partition. 111

7.19 Runtime measured in seconds. HLS single execution with directives. Single-objective

BO with stopping-criterion 100 iterations. 114

7.20 Available resources on ZCU102 development board. 114

7.21 Comparison results between MARTE and Vivado HLS 2019.1.1, targetting xczu9eg-

ffvb1156-2-e part. The acronyms used in the table are: HD: Hardware design. Multi-

plication: [A]. No directives, [B] AP + Unroll. [C] Pipeline II=1, Matrix Multiplication:

[D]. No directives. [E]. Pipeline II=3 (Loop: Col) + AP. [F]. Pipeline II=3 (Loop: Row) +

AP. FIR filter: [G]. No directives. [H]. Pipeline II = 3 + AP complete. [I]. Pipeline II = 3. 115

7.22 Per r or , ADL , and Lr ati o for the basic applications considering MARTE and Vivado

HLS 2019.1.1. The acronyms used in the table are: HD: Hardware design. Multiplica-

tion: [A]. No directives, [B] AP + Unroll. [C] Pipeline II=1. Matrix Multiplication: [D].

No directives. [E]. Pipeline II=3 (Loop: Col) + AP. [F]. Pipeline II=3 (Loop: Row) + AP.

FIR filter: [G]. No directives. [H]. Pipeline II = 3 + AP complete. [I]. Pipeline II = 3. . . 116

8.1 Resource and latency estimation for the elementary operations obtained through

HLS tool, considering 32-bits fixed point precision. 121

xvi

List of acronyms

A Area

ADRS Average distance from reference set

AF Array factor

ANN Artificial neural network

AP Attainable performance

ASIC Application specific integrated circuit

AUC Area under the curve

BBO Black-box optimization

BRAM Block RAM

BO Bayesian optimization

BSP Bulk synchronous parallel

CCM Collective computing model

CDFG Control data flow graph

CFD Computational fluid dynamics

CI Computational intensity

CLBs Configurable logic blocks

xvii

List of acronyms

CNN Convolutional neural network

CR Cosmic rays

CRCW Concurrent read concurrent write

CREW Concurrent read exclusive write

CUDA Compute Unified Device Architecture

D Design space

DAQ Data acquisition systems

DDDG Dynamic data dependence graph

DMA Direct memory access

DNN Deep neural network

DSE Design space exploration

DSP Digital signal processor

EA Evolutionary algorithm

EI Expected improvement

EMO Evolutionary multi-objective optimization

ERCW Exclusive read concurrent write

EREW Exclusive read exclusive write

ERT Empirical Roofline toolkit

FF Flip-Flop

FIR Finite impulse response

FPGA Field programmable gate array

GNN Graph neural networks

xviii

List of acronyms

GP Gaussian process

HDL Hardware description language

HLS High-level synthesis

HPC High-performance computing

HPM Hierarchical model for parallel computations

HVE Hypervolume error

II Initiation interval

I/O Input/Output

IL Iteration latency

IoT Internet of things

IP Intellectual property

IR Intermediate representation

KD Knowledge distillation

L Latency

L1 Level-1 cache memory

L2 Level-2 cache memory

LAGO The Latin American Giant Observatory

LLVM IR Low-level virtual machine intermediate representation

LUT LookUp Table

ML Machine learning

MLP Multi-layer perceptro

MOOA Multi-objective optimization algorithms

xix

List of acronyms

MPSoC Multiprocessor system on chip

NN Neural network

NSGA-II Elitist non-dominated sorting genetic algorithm

P & R Place and route

PC Peak computation

PE Processing element

PF Pareto-optimal frontier

PI Probability of improvement

PMB Peak memory bandwidth

PRAM Parallel random access machine

PSD Pulse shape discriminator

QAP Quantization-aware pruning

QAT Quantization-aware training

QoR Quality of results

QS QuickScorer

RAM Random access machine

ROC Receiver operating characteristics

RTL Register transfer level

SC scalability

SIMD Single Instruction/Multiple Data

SoC System on chip

SPMD Single program multiple data

xx

List of acronyms

T Throughput

TC Trip count

UF Unrolling factor

UMH Uniform Memory Hierarchy Model of Computation

WCD Water Cherenkov detectors

xxi

Chapter 1

Introduction

1.1 Motivation

Nowadays, the development of algorithms focuses on performance-efficient and energy-efficient

computations. Technologies such as field programmable gate array (FPGA) and system on chip

(SoC) based on FPGA (FPGA/SoC) [2–5] have shown their ability to accelerate intensive computing

applications while saving power consumption, owing to their capability of high parallelism and

reconfiguration of the architecture.

Several high-level synthesis (HLS) tools [6] have been proposed by vendors and academics,

such as Vivado HLS [7], formerly AutoPilot [8], Intel HLS [9], LegUp [10], Bambu [11], and oth-

ers [12]. These tools facilitate the adoption of FPGAs in different fields, as they allow the creation

of a register transfer level (RTL) code from a high level of abstraction. Nevertheless, the efficient

use of these technologies usually requires the knowledge of the underlying hardware and code re-

structuring techniques in the original algorithm [13]. This is a time-consuming task for algorithm

designers who want to take advantage of the inherent characteristics of these reconfigurable tech-

nologies.

HLS tools support C/C++, SystemC, and OpenCL [14] codes to generate the final RTL code.

This chapter is based on the work published in [1]: Molina, R.S.; Gil-Costa, V.; Crespo, M. L; Ramponi, G. (2022)
"High-Level Synthesis Hardware Design for FPGA-based Accelerators: Models, Methodologies, and Frameworks". In
IEEE Access, vol. 10, pp. 90429-90455, 2022. IEEE.

1

Chapter 1 – Introduction

These tools provide the designer with a detailed report for each algorithmic solution, including

information about the estimation of latency, resource utilization (also known as the area occupied),

and throughput. The use of directives allows code optimization through parallel techniques, such

as loop pipelining, loop unrolling, array partitioning, and array reshaping. For each solution, the

designer can specify different combinations of directives; comparing the reports provided by these

tools, the best option can be determined according to different performance metrics.

Furthermore, these tools allow a design space exploration (DSE), which involves the evalua-

tion of multiple implementations with different combinations of user design constraints, FPGA

features, and directives, also known as knobs or optimizations. Setting these optimizations to ob-

tain a hardware design with the desired characteristics is a problem that grows exponentially with

the number of directives the user adds and complex code structures. The generated hardware is

directly associated with the applied directives, but sometimes applying and tuning directives re-

quires considerable effort to obtain a proper hardware implementation. An optimal DSE process

grants a hardware design with a good compromise between metrics such as latency, area, through-

put, and power consumption.

Over the years, parallel computing models have proven their benefits across different architec-

tures, such as clusters of distributed processors with single cores and multicores, GPU, and cloud.

These models act as a bridge between the architecture and the software developer. The actual

trend in parallel computer architectures demonstrates progress toward hybrid architectures com-

bining many cores, superscalars, SIMD, hardware accelerators, and on-chip communication sys-

tems, which require handling computations and data locality at several levels to achieve suitable

performance [15].

Using computing models, methodologies, and frameworks to predict the performance of FP-

GA/SoC architectures may reduce design times and improve productivity, which are critical issues

when choosing these architectures.

Currently, the existing design cycles for FPGA-based reconfigurable architectures are long, ow-

ing to the complexity of the architecture and the different applications in multiple research areas.

Therefore, for all of the above, a methodology that includes a performance estimation model and

exploration of the design space is necessary to analyze the system for its subsequent implementa-

tion in hardware.

Applications in the field of image analysis are a relevant research focus in the scientific com-

2

Chapter 1 – Introduction

munity [16–18]. The growth of artificial vision techniques for the processing, recognition, and clas-

sification of images has made it possible to expand the expectations of systems to solve problems

that are otherwise much more difficult or impossible in different areas, such as security, industry,

and autonomous driving.

As presented in [1], in recent years, machine learning (ML) techniques have been applied in

multiple fields such as fluid dynamics, high-energy physics, information retrieval, image process-

ing, video processing, security, and biology [19–21]. Because of this trend, models for FPGA-based

architectures are being developed to accelerate ML applications with efficient exploitation of hard-

ware resources to improve productivity in the design phase [22–24].

Therefore, to evaluate this thesis proposal, the chosen applications are in the context of image

analysis, high-energy physics, and information retrieval.

1.2 Hypothesis

It is possible to develop a methodology for FPGA/SoC architectures composed of analytical models

and integrated with a DSE engine based on mathematical programming, guiding the exploration

process through HLS rules, to estimate performance metrics, while improving the productivity of

the hardware developers.

1.3 Objectives

This thesis aims to efficiently develop, deploy, and evaluate image analysis and highly demand-

ing applications on SoC-based FPGA. Therefore, this research proposes using a methodology, al-

gorithms, and associated software tools for FPGA/SoC hardware acceleration, including a perfor-

mance estimation model for applications deployed on reconfigurable hardware accelerators based

on FPGA.

The estimated metrics include latency and resource utilization. Moreover, a design space ex-

plorer engine is incorporated to provide a set of hardware designs that satisfy the design conditions

defined by the hardware designer.

3

Chapter 1 – Introduction

1.3.1 Specific objectives

• Exploration, proposal, and development of performance models for FPGA/SoC to estimate

mainly latency and resource utilization.

• Investigation, proposal, and development of a methodology for the exploration of the design

space for FPGA.

• Implementation of highly demanding applications on FPGA/SoC, including pulse shape dis-

criminator for cosmic rays based on ML, deep neural networks for automatic image classifi-

cation, and re-ranking for information retrieval.

1.4 Contribution

The contributions of this thesis are as follows:

• MARTE as a comprehensive performance estimator for hardware acceleration, composed

of analytical models to estimate area and latency and a DSE engine for providing high-level

insights to hardware developers

• MARTE DSE engine, compound of two independent sub-engines:

– DSE single-objective Bayesian optimization for latency.

– DSE evolutionary multi-objective optimization for latency-area.

• Integration of MARTE with the Roofline model, the leading parallel computing model adapted

for FPGAs.

• An exhaustive evaluation of a methodology to deploy deep neural networks classifier on

SoC/FPGA.

• Hardware acceleration of:

– A pulse shape discriminator for cosmic rays to be paired with a front-end data-acquisition

system based on SoC-FPGAs for water Cherenkov detectors (WCD).

– Automatic pest classification based on convolutional neural networks (CNN).

– Re-ranking algorithm for information retrieval.

4

Chapter 1 – Introduction

1.5 Methodology

Fig. 1.1 presents the methodology proposed in this thesis to address the gap between applications

and FPGA/SoC architectures and, in turn, obtain an efficient hardware design for image analysis

and highly demand applications using the HLS tool. Two complementary strategies are considered:

Efficient hardware
design HLS tools

Ad-hoc techniques

Performance estimator

Challenges

Literature review

MARTE:

A comprehensive hardware acceleration performance estimator

Highly-demanding

aplications

Machine learning and
compression

Manual tuning of
directives

Through

Exposed

Develop and integrate

Assist the process to create
To obtain

Result

Such as

Figure 1.1: Methodology.

• Performance estimator: the literature review shows that existing performance estimators

based on models, methodologies, and frameworks proposed for FPGA/SoC still need to over-

come different challenges to be widely used for estimating system performance in the early

stages of design. Moreover, this type of tool could assist the hardware developer in the pro-

cess of creating efficient hardware designs.

• Ad-hoc techniques: an efficient hardware design can be obtained by combining different

5

Chapter 1 – Introduction

techniques to satisfy the user and system constraints. These techniques can be related to

the application or tool domains. The former includes the use of methods such as ML, com-

pression, and efficient algorithms to map applications on FPGA/SoC. The latter is based on

the options offered by the HLS tool, such as compiler directives, which require considerable

effort to obtain a suitable configuration to improve the throughput, latency, and resource

utilization.

To overcome the exposed above, MARTE, a comprehensive performance estimator for hard-

ware acceleration is proposed to effectively predict the resource utilization and latency for FPGA/-

SoC, building a bridge between the application and architectural domains. Furthermore, image

analysis and other highly demanding applications (such as automatic pest classification, pulse

shape discriminator for cosmic rays, and re-ranking for information retrieval) are considered in

this thesis to achieve the objectives, emphasizing the benefits when this type of application is tra-

versed by compression techniques when targeting FPGA/SoC devices.

Regarding the application object in this thesis, different problems are explored in relevant ar-

eas, considering highly demanding applications:

• Pulse shape discrimination: data-driven learning based on neural network (NN) models for

pulse shape discriminator (PSD) in the context of Water Cherenkov detectors (WCD) used in

LAGO (The Latin American Giant Observatory) experiment [25], aiming to perform pulse dis-

crimination in a front-end data-acquisition system based on FPGA/SoC. The PSD identifies

four types of pulses (based on the shape) obtained from the corresponding data acquisition

system.

• Image classification: automatic pest classification based on ML to be deployed in an embed-

ded system, considering two types of classes: insects and the corresponding plague (moth).

• Re-ranking algorithm: exploitation of the parallelism on FPGA/SoC devices for the re-ranking

algorithm QUICKSCORER (QS), the state of the art algorithm for performing fast inference

with tree ensembles [26, 27]. QS exploits a particular representation of the tree ensemble

based entirely on linear arrays accessed with high locality. This characteristic permits a very

fast traversal of the tree ensemble at inference time.

6

Chapter 1 – Introduction

1.6 Challenges

Nowadays, the explosive growth of accelerators promises greater computational capabilities. FP-

GA/SoC devices are widely used as hardware accelerators in different areas of research and de-

velopment. However, there is the necessity to address some challenges, as presented in [1]. Even

using HLS tools, reconfiguring an SoC-based FPGA with an efficient hardware design is a challeng-

ing task. This is easily made apparent by some observations [1]:

• Physical resources, such as memory bandwidth, reconfigurable hardware (LUTs, CLBs, and

slices), and static hardware (DSPs and BRAMs) are limited in FPGA/SoC devices. Thus, the

available physical resources should be used skillfully, considering techniques to improve the

latency, area, and power.

• Code restructuring techniques aid in creating efficient FPGA implementations using HLS

tools, modifying the source code of the application according to the FPGA architecture.

• The number of processing elements (PE) in a hardware design, and consequently the level of

coarse-grain parallelism that can be obtained, is limited to the available physical resources.

Therefore, different strategies should be implemented to exploit the architecture to increase

the system’s scalability.

• There is a trade-off between the different metrics to be optimized. For example, the area oc-

cupied is likely to increase if the latency is reduced, and vice versa. Thus, the FPGA designer

should choose a good compromise between the metrics in terms of resources, computing

operations, and throughput, among others.

• The hardware generated through HLS tools is directly associated with the applied directives,

but sometimes applying and tuning directives require considerable endeavour to obtain a

proper FPGA implementation. Moreover, generating a solution for each directive combina-

tion is associated with the synthesis time, reducing productivity.

• The exploration of the design space is linked to the human effort of performing combinations

of directives, user design constraints, FPGA features, and code restructuring, among others.

Hardware designers can cope with the above considerations through performance estimators

to reduce design time, as follows:

7

Chapter 1 – Introduction

• The coarse-grain parallelism level can be obtained by employing a Roofline model, identify-

ing the computation-to-communication ratio, and exposing the relationship between com-

munication bottlenecks, computations, and the number of replicas.

• Design space explorers aim to identify the optimal combination of directives to obtain an

HLS-based hardware design with a proper trade-off among different metrics, generating the

Pareto-optimal set of designs. Reducing the design space and avoiding HLS in the explo-

ration process can improve the design time.

• Models integrated within a methodology or framework can automatically estimate the per-

formance of HLS-based hardware designs without executing HLS tools.

• Some frameworks and methodologies including DSE provide automatic directive-insertion

optimizations and code transformation insights.

Nevertheless, the literature review shows that a number of challenges has to still be addressed

in order to make optimal use of performance estimators (models, methodologies, and frameworks)

such as:

• Recent HLS tools generate more comprehensive reports with more accurate information on

total resource availability, latency, clock frequency, and resource utilization. These reports

can be integrated with models, methodologies, and frameworks to estimate metrics and pro-

vide an initial value for the replication factor of a single PE. However, the report generation

is linked to the synthesis time of the FPGA implementation. Reducing the design time is es-

sential when using FPGA/SoC without losing hardware quality to reconfigure the platform.

Thus, if the HLS tool is in the loop for performance estimation using reports, it can lead to

an increased design time.

• The performance metrics reported by HLS tools make them suitable to be combined with a

parallel computation model to reduce the time required to obtain the necessary statistics for

each implementation for a specific application. However, there is a gap between the HLS re-

port and the real hardware implementation that can be addressed with a performance model

that includes the results obtained from the sourceCode-to-bitstream flow using the values

related to final hardware utilization, power consumption, and timing reports.

8

Chapter 1 – Introduction

• Computing models for FPGA-based reconfigurable hardware accelerators have to consider

that the inherent hardware is not fixed. Rather, it is defined by how the application is de-

scribed. Therefore, a higher number of parameters have to be included in the model, such

as hardware resources (DSP, BRAM, LUT, and FF), programmable logic clock, latency, byte-

operations (Bops), scalability in the number of PE, and power consumption. This contrasts

with the computing models proposed for other parallel platforms, such as PRAM or BSP, that

use a few parameters. Nevertheless, including more parameters in the model increases the

analysis accuracy but affects the complexity of the model analysis. Therefore, the trade-off

between these two features has to be addressed. In addition, the parameters should be ad-

justed according to the particular combination of directives applied to the source code.

• The compatibility among different versions of HLS tools is not granted by models, method-

ologies, and frameworks. As a consequence, calibration techniques can help maintain com-

patibility between high-level tools, thereby avoiding being tied to one version of HLS tool in

particular [28].

Moreover, when a DSE engine is integrated with models, methodologies, and frameworks, the

following aspects need to be considered:

• One of the key points in the DSE is the execution of HLS tools during the exploration stage

to validate the configuration obtained. This behaviour can lead to a long runtime, becoming

a drawback in the DSE phase. Therefore, the adoption of different techniques to reduce the

execution time of the exploration phase is indispensable.

• It is often sufficient to find a suboptimal combination of knobs based on specific metrics

and user constraints. An important strategy is pruning the design space using intermedi-

ate Pareto-optimal designs, giving priority to the points that permit high-performance be-

haviours.

• The DSE engine should guarantee a good compromise among the QoR and performance

metrics.

• Approximate computing [29] can lead to an expansion of the design space, generating Pareto-

optimal designs with a trade-off between area-power-latency estimation and error compu-

9

Chapter 1 – Introduction

tation. A reduction in the space to be explored is fundamental to minimizing the invocations

of HLS tools.

• It is important to identify the strengths and weaknesses of a given design space explorer. This

can be performed using benchmarks.

• Mapping an optimal design from the DSE to the FPGA/SoC can be challenging while main-

taining the QoR reported by the DSE engine, mainly latency. In the process of mapping the

final hardware design onto the FPGA/SoC, the place-and-route phase plays an important

role and different strategies provided by commercial tools can be used in this phase, adding

another factor to be analyzed.

• It is fundamental to consider the application of HLS-specific compiler optimizations, due

to the impact that they have on the hardware quality, in terms of latency, area, and power

consumption [30].

1.7 Scientific publications

This research has generated the following original scientific contributions:

Thesis related

• Molina, R.S., Gil-Costa, V., Crespo, M. L, Ramponi, G. (2022) "High-Level Synthesis Hardware

Design for FPGA-based Accelerators: Models, Methodologies, and Frameworks". In IEEE

Access, vol. 10, pp. 90429-90455, 2022. IEEE.

• Molina, R. S., Carrer. V., Ballina; M., Crespo, M. L., Bollati, L., Sequeiro, D., Marsi, S. Ram-

poni, G. (2022) “ML-based classifier for precision agriculture on embedded systems”. In In-

ternational Conference on Applications in Electronics Pervading Industry, Environment and

Society [Accepted].

• Gil-Costa, V., Loor, F., Molina, R.S., Nardini, F. M., Perego, R., Trani, S. (2022) “Energy-Efficient

Ranking on FPGAs through Ensemble Model Compression”. In 12th Italian Information Re-

trieval Workshop.

10

Chapter 1 – Introduction

• Molina, R. S., Garcia, L. G., Morales, I. R., Crespo, M. L., Ramponi, G., Carrato, S., Cicuttin, A.,

Perez, H. (2022). "Compression of NN-Based Pulse-Shape Discriminators in Front-End Elec-

tronics for Particle Detection". In International Conference on Applications in Electronics

Pervading Industry, Environment and Society, pp. 93-99. Springer, Cham.

• Gil-Costa, V., Loor, F., Molina, R. S., Nardini, F. M., Perego, R., Trani, S. (2022). "Ensemble

Model Compression for Fast and Energy-Efficient Ranking on FPGAs". In European Confer-

ence on Information Retrieval, pp. 260-273. Springer, Cham.

• Suárez, A., Molina, R. S., Ramponi, G., Petrino, R., Bollati, L., Sequeiros, D. (2021, Novem-

ber). "Pest detection and classification to reduce pesticide use in fruit crops based on deep

neural networks and image processing". In 2021 XIX Workshop on Information Processing

and Control (RPIC), pp. 1-6. IEEE.

• Molina, R. S., Loor, F., Gil-Costa, V., Nardini, F. M., Perego, R., Trani, S. (2021). "Efficient

traversal of decision tree ensembles with FPGAs". In Journal of Parallel and Distributed Com-

puting, 155, 38-49. Elsevier.

• García Ordóñez, L. G., Molina, R. S., Morales Argueta, I. R., Crespo, M. L., Cicuttin, A., Carrato,

S., Ramponi, G., Pérez Figueroa, H. E., Ballina Escobar, M. G. (2021). "Pulse shape Discrim-

ination for Online Data Acquisition in Water Cherenkov Detectors Based on FPGA/SoC". In

37th International Cosmic Ray Conference (ICRC2021), p. 274. PoS Sissa.

• Marsi, S., Bhattacharya, J., Molina, R. S., Ramponi, G. (2021). "A Non-Linear Convolution

Network for Image Processing". In Electronics 2021, 10, 201. MDPI.

• Garcia, L. G., Molina, R. S., Crespo, M. L., Carrato, S., Ramponi, G., Cicuttin, A., Morales,

I. R. Perez, H. (2021). "Muon–Electron Pulse Shape Discrimination for Water Cherenkov

Detectors Based on FPGA/SoC". Electronics 2021, 10, 224. MDPI.

• Guzzi, F., De Bortoli, L., Molina, R. S., Marsi, S., Carrato, S., Ramponi, G. (2020). "Distillation

of an End-to-End Oracle for Face Verification and Recognition Sensors". In Sensors, 20(5),

1369. MDPI.

11

Chapter 1 – Introduction

Others

• Cicuttin, A., Morales, I. R., Crespo, M. L., Carrato, S., García, L. G., Molina, R. S., Valinoti,

B., Folla Kamdem, J. (2022). "A Simplified Correlation Index for Fast Real-Time Pulse Shape

Recognition". In Sensors, 22(20), 7697. MDPI.

• Florian Samayoa, W., Valinoti, B., Molina, R. S., Garcia Ordonez, L. G., Crespo, M. L., Carrato,

S., Cicuttin, A., Levorato, S. (2022). "Diagnostic analytics for pixelated particle detectors: A

case study". In International Conference on Applications in Electronics Pervading Industry,

Environment and Society [Accepted].

• Crespo, M. L., Foulon, F., Cicuttin, A., Bogovac, M., Onime, C., Sisterna, C., Melo, R., Florian

Samayoa, W., García Ordóñez, L. G., Molina, R. S., Valinoti, B. (2021). Remote Laboratory for

E-Learning of Systems on Chip and Their Applications to Nuclear and Scientific Instrumen-

tation. In Electronics, 10(18), 2191. MDPI.

• Guillermo, G. L., Crespo, M. L., Carrato, S., Cicuttin, A., Oswaldo, F. W., Molina, R. S., Valinoti,

B. Levorato, S. (2021). "High Voltage Isolated Bidirectional Network Interface for SoC-FPGA

Based Devices: A Case Study: Application to Micro-pattern Gaseous Detectors".In Applica-

tions in Electronics Pervading Industry, Environment and Society. Lecture Notes in Electrical

Engineering, vol 738, pp. 280-285. Springer, Cham.

• Molina, R. S.., Gonzalez, V., Benito, J., Marsi, S., Ramponi, G., Petrino, R. (2021). "Imple-

mentation of Particle Image Velocimetry for Silo Discharge and Food Industry Seeds". In

Applications in Electronics Pervading Industry, Environment and Society. Lecture Notes in

Electrical Engineering, vol 738, pp. 3-11. Springer, Cham.

Awards

• Industry impact award: Gil-Costa, V., Loor, F., Molina, R. S., Nardini, F. M., Perego, R., Trani,

S. (2022). "Ensemble Model Compression for Fast and Energy-Efficient Ranking on FPGAs".

In European Conference on Information Retrieval, pp. 260-273. Springer, Cham.

12

Chapter 1 – Introduction

1.8 Thesis outline

The thesis is composed of nine main chapters, introduced as follows:

• Chapter 2 discusses specific topics in ML and mathematical programming. Because the ap-

plications focused on in this thesis are based on ML and compression techniques for their

implementation in hardware, the basic concepts, ML-based model compression techniques,

and methodology to deploy deep neural network classifiers on FPGA/SoC are introduced.

Mathematical programming concepts for single- and multi-objective optimizations, which

are used for DSE engine implementation, are introduced.

• Chapter 3 describes the background of FPGA/SoC and parallel computing models for per-

formance estimation. FPGA/SoC architecture is presented with DSE, the main metrics for

this technology, and the techniques to improve latency, area, and delay. As a model for per-

formance estimation is proposed in this thesis, the leading parallel computing models for

performance estimation are introduced.

• Chapter 4 summarizes and discuss the state of the art in performance estimators for FPGA-

based reconfigurable hardware accelerators, providing a classification in general approaches

and DSE. Moreover, their use for highly-demanding applications is exposed.

• Chapter 5 introduces MARTE, a comprehensive performance estimator for hardware ac-

celeration through FPGA/SoC, composed by analytical models and a DSE engine based on

single- and multi-objective optimizations. The different models are introduced as the tech-

niques employed for their implementation.

• Chapter 6 presents the different cases of study and their corresponding hardware accelera-

tion: pulse shape discriminator for cosmic rays, automatic pest classification, and re-ranking

algorithm for information retrieval. The applications are traversed for an ensemble of com-

pression techniques, to obtain a suitable implementation on FPGA/SoC.

• Chapter 7 discusses the performance evaluation of MARTE. The first stage of the experi-

ments was aimed at evaluating MARTE with different applications (basic and highly de-

manding). In the second stage, the assessment of MARTE DSE engine is exposed, showing

the efficiency and effectiveness of the engine to provide high-performance configurations.

13

Chapter 1 – Introduction

• Chapter 8 provides a way to pair MARTE with the Roofline model, the leading parallel com-

puting model adapted to FPGA architectures.

• Chapter 9 presents conclusions and future directions.

14

Chapter 2

Specific topics in machine learning and

mathematical optimization

This chapter presents specific topics in machine learning (ML) and mathematical programming.

Because the applications focused on in this thesis are based on ML and compression techniques

for their implementation in hardware, Section 2.1 introduces the basic concepts, ML-based model

compression techniques, and a methodology to compress ML architectures efficiently. Section 2.4

presents the concepts associated with mathematical programming for single- and multi-objective

optimizations used for the DSE engine development and implementation.

2.1 Deep neural networks

Machine learning is a subfield of artificial intelligence (AI), and it aims to build analytical models

based on data capable of learning and to improve performance [31]. Based on the learning process,

ML techniques can be classified as supervised, semi-supervised, and unsupervised [32].

• Supervised learning: the algorithms are pre-trained on a fully labelled dataset. The main

objective of this type of learning is predicting results from an input. In turn, classification

and regression models can be found where the output of the function can be a numerical

value (as in regression problems) or class label (as in classification problems).

• Semi-supervised learning: labelled (the least quantity) and unlabelled (the largest quantity)

data are used during the training phase.

15

Chapter 2 – Specific topics in machine learning and mathematical optimization

• Unsupervised learning: these algorithms do not have prior knowledge and aim to find pat-

terns in the dataset, making it possible to organize them in some way. It is self-organized;

there are only input data without labels and a cost function to be minimized.

In supervised learning, an artificial neural network (ANN) [33] is composed of neuron (or node)

interconnections arranged in different layers, usually an input layer, middle or hidden layers, and

an output layer, where a prediction is generated. The connections between the neuron and inputs

(xi) are called weights (wi). Each node has several inputs and only one output, and the ANN uses

a nonlinear activation function to compute the output value. This description is shown in Fig. 2.1

and is mathematically represented by Eq. (2.1).

y = f ((
∑

i
xi wi)+b) (2.1)

where xi are the inputs, wi are the weights, b represents the bias, f the activation function and y

the final output of the neuron.

W1

W2

Wi

x1

xi
b

f
Activation

function

y
x2

Figure 2.1: Detail of a single neuron function.

In an ANN-based classifier, the input is mapped to a specific class. For this task, an ANN goes

through a supervised training step to recognize patterns and compares its actual output with the

desired output. The difference between these two values is adjusted with backpropagation.

Convolutional neural networks (CNN) are a type of deep neural network (DNN) that receives an

image as input and extracts features directly from it, learning as the network trains on a collection

of images. The architecture is defined through a stack of layers, and each layer transforms one

volume of activation into another through a differentiable function. CNNs are mainly made up

of two stages: feature extraction (composed of tens or hundreds of hidden layers based, mainly,

on convolutional and pooling layers) and classification (based on fully-connected layers) [32]. For

16

Chapter 2 – Specific topics in machine learning and mathematical optimization

more details in this topic, the reader can refer to [32].

DNNs are mainly composed of parameters and hyperparameters; the former are defined dur-

ing training. The user defines the latter before training, characterizing the architecture by defining

the number of layers and filters and the learning approach, among others. Techniques such as

random search [34], random grid [35], and Bayesian optimization (BO) [36, 37] are mainly used

for tuning the hyperparameters of DNNs, thereby avoiding the trial-error procedure for their selec-

tion [34,38,39]. Random search selects random trials and is a greedy approach that settles for local

optimality, failing to end with global optimality. For a given hyperparameter space, grid search

tries all the possible combinations of hyperparameters. BO is a sequential approach that uses the

information from previous steps, scaling with the utmost resource utilization, handling noisy data

well, and exploiting non-continuous spaces to attain global minima [40].

2.2 Compression for ML-based models

Compression techniques are essential for deploying machine learning models on resource-constrained

devices while maintaining efficiency and effectiveness and obtaining smaller and faster models

[41, 42].

Among the most commonly used techniques for compression are pruning, quantization [43],

and knowledge distillation [44, 45], which can be combined to benefit the compression process

with their unique characteristics. Pruning and quantization [42, 46] are orthogonal to distillation,

helping to achieve better performance by reducing the size of the model with minimum loss of

accuracy [47]. Pruning aims to reduce the number of parameters by removing neurons and con-

nections, whereas quantization reduces the memory footprint by selecting the number of bits rep-

resenting weights and biases.

Quantization-aware training (QAT) [42,48] and quantization-aware pruning (QAP) [49] are learn-

ing processes based on quantization methods. The former avoids post-training quantization, and

the quantization operations on weights and activations are simulated while maintaining floating-

point precision to update the weights and compute the gradient. The latter performs a QAT by

integrating pruning.

Finally, knowledge distillation (KD) [45] is devoted to transferring the knowledge (or "dark

knowledge" according to Hinton) from a teacher network (a single large model or an ensemble

17

Chapter 2 – Specific topics in machine learning and mathematical optimization

of models) to a smaller and faster target network (distilled or student) that can mimic the teacher’s

behavior, being computationally less expensive. Fig. 2.2 presents the process involved in KD. a

Input

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r m

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r n

Teacher network

Distilled (student) network

Softmax (T = t)

Softmax (T = t)

Softmax (T = 1)

Soft labels

Soft predictions

Hard prediction

Loss Fn

Loss Fn

Hard label
(ground truth)

Distillation loss

Student loss

Figure 2.2: Knowledge distillation process.

In KD, the probability qi of class i is calculated from the logits z as presented in Eq. 2.2, where

T represents the temperature. The probability distribution obtained by the Softmax function be-

comes softer when T grows, providing more information, called by Hinton the "dark knowledge".

If T = 1, the result is the same as the Softmax activation function [45].

qi = e(
zi
T)∑

j e(
z j
T)

(2.2)

2.3 Methodology to deploy DNN-based classifiers on SoC

As the final goal is the implementation of an ML-based classifier in the FPGa/SoC platform, model

compression is performed using an ensemble of different techniques: quantization, pruning, and

KD. Fig. 2.3 shows the steps involved in the methodology used to obtain efficient compressed

neural network-based classification models, supported by the literature in contributions such as

[50, 51].

18

Chapter 2 – Specific topics in machine learning and mathematical optimization

Neural network
model Compression

HLS

conversion

HLS
Project Directives

IP Core Final
Hardware Bitstream PS

Application

Data structure

(layers, weights and bias)

Dataset

Figure 2.3: Methodology. The input is the labeled dataset used to train the teacher and student (or
target) networks. After this, the data structure generated is the input for the hls4ml [52] package,
translating the neural network-based model into a HLS project.

The input of the methodology is the labeled dataset used to train the target network. Then, the

data structure generated is the input for the hls4ml package [52], translating the neural network-

based model into an HLS project. Once the IP core is generated, it can be integrated with the final

system (hardware and software).

Fig. 2.4 presents the training and compression stages integrated within the methodology pre-

sented in Fig. 2.3 (green boxes) to generate the final architecture to be deployed on SoC-based

FPGA. Each stage is detailed as follows:

19

Chapter 2 – Specific topics in machine learning and mathematical optimization

Stage 4A

StudentQP

quantization and/or pruning aware training

student_PQ

Loss

teacherFP trainedPre-trained model

after distillation

Quantize and\or
prune model

Q-P AT

Dataset

Re-train model

studentQP

Stage 4B

Distillation, quantization, and pruning
aware training

studentDQP

Stage 4C

AutoQKeras

Pre-trained model
after distillation

AutoQKeras

Q-P AT

Dataset

Re-train model

studentAQK

Dataset

Stage 2

Student FP training

Hyper-params BO

studentFP_N

Loss

teacherFP trained

studentFP_N trained

Dataset

Re-train model through distillation

Hyper-params BO

Stage 1

Teacher FP training

Teacher network
Dataset

Train model

teacherFP trained

Get best hyper-params combination

Re-train model

Stage 3

Student selection

studentFP trained

studentFP_1
trained

studentFP_2
trained

studentFP_N
trained

Good compromise between
accuracy and

number of parameters

Figure 2.4: Compression workflow to deploy DN classifiers on FPGA/SoC.

• Stage 1 - Teacher floating-point (teacherFP) training: The teacher network is defined em-

ploying Bayesian optimization (BO) for hyperparameters tuning. Given an architecture, the

algorithm searches for the best configuration to optimize a specific objective function, such

as accuracy, by modifying the number of neurons, kernels, and learning rate. After tuning,

the network is trained with the best configuration, generating a teacher model with 32-bit

floating-point precision.

• Stage 2 - Distillation. Student floating-point (studentFP) training: In this step, the knowl-

edge of the teacherFP is distilled into the student architecture. The hyperparameters for the

student network are chosen by BO, similar to [53]. Several studentFP networks can be trained

by varying the number of layers and other hyperparameters.

• Stage 3 - Student selection: The studentFP to be accelerated in hardware is selected, consid-

ering a good compromise between accuracy and the number of parameters.

20

Chapter 2 – Specific topics in machine learning and mathematical optimization

• Stage 4 - Student quantization- and pruning-aware training: This step aims to obtain the

quantized student (studentQ), that can be generated through different stages:

– Stage 4A: From the pre-trained model after distillation, a quantization-aware or ebpruning-

aware training is performed to generate the compressed student (studentQP).

– Stage 4B: The knowledge of the teacherFP is distilled to a student network (student-

DQP), previously defined with quantization and pruning strategies.

– Stage 4C: From the pre-trained model after distillation, the number of bits for each layer

of the student is chosen through BO, generating the compressed network (studentAQP).

This approach can optimize the network based on energy and compression ratio goals.

2.4 Mathematical optimization

Mathematical optimization is a field of study that comprises problems in which it is desirable to

maximize or minimize a real function defined on the objective space Rn , and whose variables be-

long to a predefined set [54].

A single-objective optimization problem can be defined by Eq. 2.3, considering f (x) the objec-

tive function to be optimized and x a p-dimensional decision variable vector f (x) = (x1, ..., xp) [55],

thus xϵΩ, withΩ as the feasible region [54, 56].

min
x

f (x) (2.3)

The objective function f (x) is subjected to constraint functions of the problem presented in Eq.

2.4, which can be expressed by inequality (gi (x)) and (or) equality (hi (x)), where m,n represent the

total amount of constraints for each case.

gi (x) ≤ 0 i = 1,2, ...m

hi (x) = 0 i = 1,2, ...n
(2.4)

A multi-objective optimization problem can be defined as minimizing or maximizing F (x) =
(f (x1), f (x2), ..., f (xk)), with k objective functions. x is a p-dimensional decision variable vector

21

Chapter 2 – Specific topics in machine learning and mathematical optimization

f (x) = (x1, ..., xp), thus x ϵΩ, . The objective function F (x) is subject to gi (x) ≤ 0, i = 1,2, ...m and

hi (x) = 0, i = 1,2, ...n, which are the constraints of the problem [54, 56].

2.4.1 Bayesian optimization

Black-box optimization technique (BBO) [57] refers to a problem in which an objective function

should be optimized (maximize or minimize) through a black-box interface. The optimization al-

gorithm may query the value f (x) for a point x, but it does not obtain gradient information. In

particular, it cannot make any assumptions on the analytic form of f .

BBO, based on Bayes’ theorem, aims to find the minimum or maximum of an objective func-

tion. The conditional probability of an event is given by the Eq. 2.5:

P (A|B) = P (B |A)∗P (A)/P (B) (2.5)

Removing the normalization faction P (B), then P (A|B) is defined as in Eq. 2.6, where P (B |A) is

known as the likelihood probability and P (A) the prior probability.

P (A|B) = P (B |A)∗P (A) (2.6)

Considering xi as a set of samples of the exploration space, and f (xi) the objective function to

be evaluated in xi , the available data D is composed by the sequential collection of the samples

and their outcomes, then D = {xi , f (xi), ..., xn , f (xn)}, and is used to obtain the prior probability.

The function P (D| f) presented in Eq. 2.7 represents the probability of observing the data given the

function f and is defined as the likelihood function.

P (f |D) = P (D| f)∗P (f) (2.7)

The surrogate function (posterior probability), usually defined as a Gaussian process (GP), is

the Bayesian approximation of the objective function that can be sampled efficiently, identifying

the points that are promising minima and updating the surrogate function accordingly. The acqui-

sition function (a(x)) is the technique by which the posterior is used to select the following sample

from the search space, thus, updating the surrogate function with a good compromise between

exploitation and exploration [58, 59]. Among the most used acquisition functions are expected

22

Chapter 2 – Specific topics in machine learning and mathematical optimization

improvement (EI), probability of improvement (PI), and GP – LCB [58, 60].

For further information, the reader can refer to a survey presented in [61].

2.4.2 Multi-objective optimization based on evolutionary algorithms

Evolutionary algorithms (EAs) are heuristic-based approaches inspired by living organisms, emu-

lating their behavior to solve problems [62]. The leading operators associated with EAs are muta-

tion, recombination (crossover), and selection, which help to guide the search towards the solu-

tions.

Within EAs, genetic algorithms (GA) are inspired by Charles Darwin’s theory of natural evo-

lution. In GA, a population is composed of individuals represented by a chromosome encoded

in a string. The encoding technique may be binary, permutation, tree, or value, among others.

Crossover operation selects genes from parent chromosomes and creates a new offspring, while

mutation randomly changes the genes of the new offspring. Selection means that the better chro-

mosomes pass their genes to the next generation of the algorithm, according to a fitness criterion.

In evolutionary algorithms, elitism implies that they keep the best solutions, called elitist, of

the previous iterations and insert them into the next generation, speeding up the algorithm’s con-

vergence [63, 64]. Among the elitist multi-objective evolutionary algorithms (MOEAs), the elitist

non-dominated sorting genetic algorithm (NSGA-II) [65–67] is one of the most used MOEAs in

real-world applications. It is used in different research areas such as communications, control

systems, image recognition, manufacturing, and traffic engineering [68, 69]. The NSGA-II uses an

elitist principle, emphasizes non-dominated solutions, and uses crowding distance as an explicit

diversity-preserving mechanism. The complexity of NSGA-II is at most O(M N 2), considering N

as the population size and M as the number of objective functions [69]. In addition, it has non-

penalty constraint handling and fast and efficient convergence.

A general flow diagram of the NSGA-II is presented in Fig. 2.5. The process starts with creating

a random population of randomly mutated solutions and crossover with each other to generate

new solutions. They are then downsampled back to the initial population size so that the preferred

solutions are elected to remain (and survive the evolution). This process is repeated until the con-

vergence criterion is satisfied, generating the final output [70].

For additional information on this topic, the reader can refer to [54, 69, 70].

23

Chapter 2 – Specific topics in machine learning and mathematical optimization

Rejected
individuals

Crowding distance
sorting

Non-dominated

sorting

Pt

Qt

Rt

F1

F2

F3

Pt+1

Figure 2.5: General flow diagram of the NSGA-II algorithm. Based on [70].

24

Chapter 3

Background on SoC-based FPGA and

parallel models

This chapter presents the theoretical background associated with the topics addressed in this the-

sis. Section 3.1 describes the SoC-based FPGA architecture, design space exploration, the primary

metrics for this technology, and the techniques to improve latency, area, and delay. As a perfor-

mance estimation model is proposed in this research, Section 3.2 introduces the leading parallel

computing models for performance estimation. Finally, Section 3.3 presents a summary.

3.1 SoC-based FPGA

FPGA architectures contain many reconfigurable circuits, which makes them feasible for acceler-

ating applications that require high parallelism, high performance, and low power consumption.

FPGAs have been commonly used with "soft" processors, designed using programmable logic

resources instead of being built into the silicon. Because the use of reconfigurable devices has

grown in increasingly sophisticated applications, the need for FPGA-based systems, including pro-

cessors, has arisen.

Integrating a processor and FPGA into a single chip allows the exploitation of different but

This chapter is based on the work published in [1]: R. S. Molina, V. Gil-Costa, M. L. Crespo and G. Ramponi, "High-
Level Synthesis Hardware Design for FPGA-Based Accelerators: Models, Methodologies, and Frameworks," in IEEE Ac-
cess, vol. 10, pp. 90429-90455, 2022, doi: 10.1109/ACCESS.2022.3201107.

25

Chapter 3 – Background on SoC-based FPGA and parallel models

complementary computational resources presented in both devices. Dumping critical functions

to the FPGA while maintaining the data transfer quickly and coherently between the devices helps

achieve a system performance boost.

The SoC-based FPGA architecture combines a processing system with programmable logic

(FPGA). The architecture also includes specific interfaces that provide high bandwidth and low

latency in the connections between the two parts of the SoC-based FPGA device. The process-

ing system has a fixed architecture composed of a "hard" processor and RAM, while the FPGA is

entirely flexible for hardware design.

Within this context, a processing element (PE) can perform an entire computation containing

all the elements required for its replication, improving the entire system’s performance through

coarse-grain parallelism. As an example of this architecture, Fig. 3.1 depicts the different com-

ponents of the Zynq-7000 SoC and Zynq UltraScale+ multiprocessor system on chip (MPSoC) ar-

chitectures from AMD-Xilinx. We refer to Xilinx because it is one of the leading providers of this

technology. Zynq-7000 SoC combines a dual processor with an FPGA. Zynq UltraScale+ MPSoC

devices include quad-core and dual-core real-time processors, GPU, and FPGA.

Figure 3.1: Architectures for Zynq-7000 SoC and Zynq UltraScale+ MPSoc devices [1].

3.1.1 Design space exploration and metrics

HLS tools are used to create RTL components from a high-level abstraction using directives to op-

timize a hardware design described in a high-level language. Each hardware obtained is unique

26

Chapter 3 – Background on SoC-based FPGA and parallel models

based on the strategies and optimizations used to describe it. DSE involves the evaluation of mul-

tiple implementations with different combinations of directives, also known as knobs or optimiza-

tions. In this context, DSE plays an essential role as a fundamental key point in obtaining a hard-

ware design with a good compromise between different metrics.

In the last few years, most DSE techniques have applied multi-objective optimization algo-

rithms (MOOA) dedicated to optimizing objective functions despite conflicting metrics. In this sce-

nario, trade-off solutions form an objective space plotted with the objective values, which builds a

Pareto-optimal frontier (PF) and a set of configurations (trade-off solutions) called Pareto-optimal

designs.

Let us denote D as the design space composed by q design points, thus q ϵD . PF can be defined

as a set of hardware designs PF = {d1,d2, . . . ,dk }, where the sub-index k defines the number of

elements in PF . Each di with 1 ≤ i ≤ q represents a hardware design with unique features such

as latency, resource utilization, and clock frequency. Suppose the area (A) and latency (L) are the

objective functions. In that case, any hardware design di is considered a Pareto-optimal design,

and in consequence, di ϵPF , if there is no other design dn with 1 ≤ n ≤ q in the search space such

that it simultaneously has less area (A) and less latency (L) than di [28], as shown in Eq. 3.1.

A(di) ≤ A(dn) and L(di) ≤ L(dn) (3.1)

A survey on MOOA for HLS, presented by Fernandez de Bulnes et al. [71], remarks on the ex-

pansion of these techniques for the FPGA DSE process. The authors conclude that the most com-

mon objective functions are: latency (clock cycles), area (LUT, BRAM, DSP, and FF), power (static

and dynamic), wire length, digital noise, reliability, temperature, and security. For FPGA-based

devices, all metrics should be minimized except reliability and security. The authors remark on

six main multi-objective methods applied for HLS DSE: evolutionary algorithms, single-solution-

based heuristics, problem-specific heuristics, branch-and-X, learning-based methods, and swarm

intelligence systems. Some examples are the studies presented in [72–81].

An overview of the general DSE process using HLS tools in the loop, based on [28], is shown in

Fig. 3.2. An application, described mainly in C/C++, SystemC, or OpenCL, is the input of this type of

system. A low-level virtual machine intermediate representation (LLVM IR) [82] is obtained from

the input code through the Clang front-end compiler [83], generating a control data flow graph

27

Chapter 3 – Background on SoC-based FPGA and parallel models

(CDFG). Each node of the graph represents the operations connected by control dependency and

data. The DSE phase generates a unique batch of directives to minimize a specific cost function.

The HLS tool then uses the generated optimizations, application, and technology library to gener-

ate the final optimized RTL.

Clang and LLVM IR

Design space exploration (DSE)Optimizations or
pragmas

Unique set of exploration
optimizations

HLS tool Tech lib

(ASIC, FPGA)

RTL

QoR

C/C++ /

SystemCOptimizations

Ar
ea

Latency [clk cycles]

Application

Figure 3.2: Typical DSE framework with HLS in the loop, based on [28]. From [1].

3.1.2 Improving performance with HLS tool

There are different techniques to improve the performance of algorithms running on FPGAs through

HLS tools [84]. One of the most common approaches is to use a set of directives (or knobs) pro-

vided by HLS tools to improve throughput, latency, and resource utilization. To this end, HLS tools

insert pragmas (compiler directives) into the source code [7, 9], and some of the most used opti-

mization techniques are:

28

Chapter 3 – Background on SoC-based FPGA and parallel models

• Loops handling:

– Loop inlining: this directive removes function hierarchy. Nevertheless, a high factor of

inlining can create a considerable amount of logic and slow runtime.

– Loop merging and flattening: help to remove the redundant computation among mul-

tiple (related) loops. The former merges consecutive loops to increase sharing, improve

logic optimization, and reduce overall latency. The latter allows the collapse of nested

loops into a single loop with improved latency.

– Loop Pipelining: in the presence of sequential operations executed multiple times, this

technique allows the insertion of registers at the output of each stage. Each operation

can run in parallel on different input data, increasing the overall throughput at the ex-

pense of area. Pipelining can be applied at instruction and function levels.

– Loop unrolling: let us denote f as the unroll factor. One iteration takes n clock cycles in

a rolled loop. Thus, f iterations can be executed within n clock cycles when unrolling

the loop by a factor of f , and the total latency for the unrolled loop is n/ f (without

data dependency). This technique can improve both latency and throughput, but it is

expensive in resource utilization since it is affected proportionally by f .

• Memory optimizations:

– Array partition: let us denote p f as the partitioning factor. Array partition splits an

array in p f sections to be mapped into a dedicated memory element, allowing multiple

simultaneous accesses to it at the cost of higher utilization of memory elements.

– Array reshape: this technique allows creating smaller arrays from the original array,

concatenating elements by increasing bit widths, thus reducing the number of BRAM

consumed and allowing parallel access to the data.

Fig. 3.3 presents an example of the latency of a given function and its improvement with

pipelining and unrolling techniques. For an array, Fig. 3.4 shows the effect of applying memory

optimization techniques based on array partition directive.

Nevertheless, memory performance could be affected by array partition techniques because

improper partitioning leads to generating numerous multiplexers, incurring additional delays [85].

29

Chapter 3 – Background on SoC-based FPGA and parallel models

Loop_1: for(i=1; i<3; i++){
 OP_RD;
 OP_CMP;
 OP_WR;
}

OP_RD

OP_CMP

OP_WR

Read

Computation

Write

OP_RD OP_CMP OP_WR

OP_RD OP_CMP OP_WR

Latency = 3 clock cycles

Loop latency (L_clk) = 4 clock cycles

Initiation interval (II) = 1 clock cycle

Clock (ckl)

Loop + Pipelining Loop + Unrolling

Loop_1: for(i = 1; i < 3; i++){
 OP_RD;
 OP_CMP;
 OP_WR;
}

OP_RD

OP_CMP

OP_WR

Read

Computation

Write

OP_RD OP_CMP OP_WR OP_RD OP_CMP OP_WR

Iteration Latency (IL) = 3 clock cycles

Loop latency (L_clk) = 6 clock cycles

Initiation interval (II) = 3 clock cycles

Clock (ckl)

Trip count (TC) = 3

Original loop

Loop_1: for(i=1; i<3; i++){
 OP_RD;
 OP_CMP;
 OP_WR;
}

OP_RD

OP_CMP

OP_WR

Read

Computation

Write

OP_RD OP_CMP OP_WR

OP_RD OP_CMP OP_WR

Latency = 3 clock cycles

Loop latency (L_clk) = 3 clock cycles

Initiation interval (II) = 1 clock cycle

Clock (ckl)

Figure 3.3: HLS directives for loop handling.

arrayInput[N]

0 1 ... N-1

complete

0 N-3

N-2

N-1

1

... 2

cyclic

0 2 ... N-2

1 ... N-3 N-1

block

0 1 ... (N/2-1)

N/2 ... N-2 N-1

Figure 3.4: HLS directives for memory optimization.

Code restructuring techniques [86–90] are also used to improve the hardware design of the

30

Chapter 3 – Background on SoC-based FPGA and parallel models

algorithms. Ferreira et al. [91] introduce an approach for automatic code restructuring targeting

HLS tools. A detailed survey is presented in [92], where the sets of optimizing transformations

techniques are classified into: pipelining, scaling, and memory-enhancing transformations.

Quantization techniques aim to reduce memory footprint by selecting the number of bits rep-

resenting the data structures and operations to improve objective functions such as latency, re-

source utilization, and throughput. Moreover, by reducing the computational intensity, the power

consumption also decreases [93–96].

3.2 Parallel computing models for performance estimation

Computing models allow to easily analyzing algorithms by simplifying the computational world to

a reduced set of parameters that define the cost of arithmetic and memory access operations and

communication. These models contribute to the search for efficient algorithms for a given archi-

tecture, improving the productivity of designers, programmers, and engineers. A small amount of

communication, a few operations, and a high degree of parallelism are fundamental points that

directly contribute to the efficiency of a parallel algorithm.

This section summarizes the characteristics of the most widely used parallel computing mod-

els for performance estimation. It is not aimed at providing a comprehensive presentation or a

thorough classification of parallel models, languages, and architectures.

3.2.1 Random access machine and parallel random access machine

The random access machine (RAM) model is proposed in [97] for sequential algorithms. It com-

prises a memory, control unit, processor, and program. In 1978, Fortune and Wyllie proposed the

parallel random access machine (PRAM) model [98] based on the RAM model. The main idea be-

hind PRAM is that there is a shared memory m connected to several processing units with a global

clock, as shown in Fig. 3.5. In this scenario, one processor P can execute one operation (arith-

metic, memory access, or logic) within one clock cycle. However, this model does not consider the

communication or synchronization overheads.

PRAM sub-models like the exclusive read exclusive write (EREW), exclusive read concurrent

write (ERCW), concurrent read exclusive write (CREW), and concurrent read concurrent write

(CRCW) were introduced to handle read/write operations in a shared memory model [99].

31

Chapter 3 – Background on SoC-based FPGA and parallel models

Shared memory

Processors

Figure 3.5: PRAM model. Different processors execute read and write operations in a shared mem-
ory. From [1].

3.2.2 Bulk Synchronous Parallel model

The bulk synchronous parallel model (BSP) [100] proposed for distributing computing is a bridging

model between hardware and algorithms that offers a high degree of abstraction. The BSP program

is divided into supersteps separated by a barrier synchronization. Each superstep comprises sev-

eral blocks of computation and communication. Fig. 3.6 shows the workflow of the BSP model.

Barrier synchronization

Inputs

Computation

Communication

Figure 3.6: Superstep of the BSP model. From [1].

A BSP computer is represented by parameters P , s, L, and G , where:

• P : number of processors of the BSP computer.

• s: processor speed.

• L: cost, in step, to complete a barrier synchronization.

• G : cost, in words, of delivering a message.

The normalized cost G is defined by Eq.3.2

32

Chapter 3 – Background on SoC-based FPGA and parallel models

G = Oplocal

Wsec
(3.2)

Where Oplocal is the number of local operations executed per second in a processor and Wsec

is the number of words the network communicates per second. L represents the barrier synchro-

nization cost at the end of each superstep.

The superstep cost depends on the synchronization, computation, and communication costs

of each processor of the BSP machine [101].

The multi-BSP model [102] extends the BSP to multicore architectures by considering the ar-

chitecture as a tree with d leaves. Multi-BSP is a multilevel model with explicit parameters for

the number of processors, memory/cache sizes, communication, and synchronization costs. The

multi-BSP allows: (i) modelling a multicore computer as a tree, (ii) designing a parallel algorithm

as a single program multiple data (SPMD) program with strict separation between computation

and communication, and (iii) computing the cost of an algorithm on a specific computer based on

computation, data movement, and latency. For a tree with i levels, the main parameters related to

this model are as follows:

• Pi : number of processors at i -th level.

• gi : communication bandwidth.

• Li : cost, in step, to complete a barrier synchronization at level i .

• mi : words of memory at i -th level.

BSP and multi-BSP have been widely used in multiple contexts and applications because of

their flexibility in allowing portable and efficient parallel programs for a wide range of comput-

ers [103–109]. The results presented in [110] demonstrate the feasibility of the BSP-based machine

learning (ML) computing model in intrusion detection. An elastic BSP for relaxing the synchroniza-

tion stage in distributed deep learning is presented in [111]. The authors focus on the data paral-

lelism approach, in which weight synchronization during training is crucial. The BSP is adapted

for CUDA applications in [112]. This BSP for the CUDA model allows the prediction of execution

times for a single kernel function on the GPU. This proposal focuses on several computational and

communication steps but removes synchronization at the end of each step.

33

Chapter 3 – Background on SoC-based FPGA and parallel models

3.2.3 LogP model

The LogP model [113] describes a parallel machine using four main parameters: communication

delay (L), communication overhead (o), the gap between each message (g , from a local point of

view), and the number of processors (P). Fig. 3.7 presents a graphical representation of the differ-

ent parameters. The model decomposes each communication step into three elements: L, o, and

g , measured in clock cycles, but it does not include a model for application/computation. LogP is

devised for distributed computation based on message passing and can simulate a BSP model.

Figure 3.7: LogP model, based on [114]. From a local point of view, for one Processor (P), g repre-
sents the gap between messages, o is the communication overhead, and L is the communication
delay. From [1].

Different variants of LogP, such as LogGP [115], LogGPC [116], LogPQ [117], PLogP [118], mPlogP

[119], and mHLogGP [120] were introduced to improve the model.

3.2.4 Collective Computing Model

The collective computing model (CCM) [121] is based on the BSP model and is composed of pro-

cessors, memory, and two types of supersteps: normal and division. The normal superstep is char-

acterized by computation, followed by the execution of a collective communication function (f).

The division superstep considers that the machine can be divided into submachines. Based on

this assumption, several steps are performed: P processors are divided into r groups and the input

data are distributed in tasks, each one is executed, followed by a phase of re-joinment. Finally, the

distribution of the results is performed.

CCM has as parameters P : number of processors, F: group of collective functions f , TF: cost

34

Chapter 3 – Background on SoC-based FPGA and parallel models

functions for each f ϵ F, P: group of partition functions p, and TP cost functions for each p ϵ P.

3.2.5 Roofline Model

The Roofline [122] is a throughput-oriented performance model for auto-tuning the performance

of multicore computers. It provides information about data movement and computation to under-

stand the limitations of the code and combines bandwidth, locality, and different parallelization

paradigms. Fig. 3.8 shows the output of the model, which includes the computational intensity,

peak computation (PC), peak memory bandwidth (PMB), and architectural and algorithmic fea-

tures. The main parameter of the Roofline model is the arithmetic intensity (or computational/op-

erational intensity – CI – [GFlops per byte]), which corresponds to the x-axis and is defined as the

ratio of the number of operations (floating-point) to the total data movement (bytes). The attain-

able performance (AP) is defined by Eq. 3.3, and corresponds to the y-axis [GFLOPS per second].

Some contributions in the literature, such as [123, 124], extend the Roofline to cache hierarchy (hi-

erarchical Roofline) by considering L1, L2, device memory, and system memory bandwidths.

AP [GF LOPS/sec] = min


PC ,

P MB ×C I
(3.3)

Figure 3.8: Roofline model, based on [125]. The x-axis represents the operational or computational
intensity (CI) and y-axis represents the attainable performance (AP) or throughput. Computational
roof and I/O bandwidth roof limit the achievable AP. On the right (yellow area), the algorithms are
compute-bound, while on the left (orange area), they are memory-bound. From [1].

35

Chapter 3 – Background on SoC-based FPGA and parallel models

Roofline model for FPGA

Roofline model has been introduced in the field of SoC-FPGA to assist the designer in creating ef-

ficient hardware for HPC applications, explore the design space, and estimate the performance of

ML-based models implemented on FPGA. Silva et al. [126] adapted the model for reconfigurable

hardware accelerators, including scalability as a parameter to obtain the processing element (PE)

replication factor based on resource utilization. The unit introduced for performance operation

is byte-operations (BOPS). The parameters used by the model according to [126] are the scalabil-

ity (SC), computational performance (CP), computational intensity (CI), and peak memory band-

width (PMB). According to Silva et al., the attainable performance is defined by Eq. 3.4 when tar-

geting FPGA/SoC devices.

AP [BOPS] = min


C PPE ×SC ,

P MB ×C I
(3.4)

The SC of the system is defined as the ratio between the total resource available in the recon-

figurable architecture and the maximum resource utilization by a given PE, thus the SC of one PE

is constrained by the most utilized resource, as it is shown in Eq. 3.5.

SC = min
{ BR AMT

BR AMPE
,

DSPT

DSPPE
,

LU TT

LU TPE
,

F FT

F FPE

}
(3.5)

The computational performance (C PPE) for a given PE is the ratio between total number of

operations and the runtime of the instance, according to the Eq. 3.6.

C PPE = Oper ati ons

Runti me
(3.6)

3.3 Summary

Parallel computing models aim to bridge the gap between application and architectural domains.

Table 3.1 presents a comparison of the main features of the models described in Section 3.2. The ta-

ble includes the type of communication supported by the model (shared, distributed, or hierarchi-

cal), the different costs considered by the model (synchronization, asynchronous communication,

computation, or memory), and the parameters used in each model.

36

Chapter 3 – Background on SoC-based FPGA and parallel models

Model
Communication Costs

Parameters

Shared Distributed Hierarchical Synchronization
Asynchronous

communication
Computation Memory

PRAM x - - - - - - P , m

BSP - x - x x x - P , s, L, G

LogP - x - x x L, o, g , P

CCM - x - x x x - P ,F, TF ,P, TP

Multi-BSP - x - x x x x Pi , gi ,Li ,mi

DRAM-only Roofline - - - - x x - C I , AP

Table 3.1: Features of the computing models PRAM, BSP, LogP, CCM, multi-BSP, and DRAM-only
Roofline.

As can be observed, one of the main features of parallel computing models is their reduced

number of parameters, making them easily adopted by the software designer. Nevertheless, except

for the Roofline model, they have yet to be widely adopted for FPGA technology, benefiting hard-

ware developers with a tool capable of modeling the architecture and predicting the main metrics

related to FPGA-based hardware accelerators. One of the factors that may impact this is the inher-

ent hardware reconfigurability of FPGA/SoC, challenging its modeling. Moreover, when working

with HLS tools, the number of parameters that impact the hardware designs is greater than the

ones considered by traditional computing models.

Besides these factors, a parallel computing model can be coupled with a performance estima-

tor for FPGA, where latency and area are one of the main objective functions to optimize. Thus, the

estimator provides the information needed to build the parallel model.

For heterogeneous architectures, the hardware-software co-design can be considered by per-

formance estimators, taking into account the inherent features of different technologies, to ease

the decision on which part of the algorithm should be implemented in software and which part

in hardware. The performance of the overall system may be estimated by combining traditional

parallel computing models presented in Section 3.2 (for the sequential part) and the contributions

discussed in Section 4 (for the FPGA part). In addition, a single parallel model, such as Roofline,

can be applied to both architectures.

Moreover, coarse-grain parallelism can be obtained by employing a model such as Roofline,

identifying the computation-to-communication ratio. Thus, exposing the relationship between

communication bottlenecks, computations, and the number of replicas, as was presented in Sec-

tion 3.2.5 and demonstrated in contributions such as [125, 127].

37

Chapter 4

State of the art in performance

estimators for SoC-based FPGA

This chapter presents the state of the art related to the topic addressed in this thesis allows knowing

the scientific advances that occurred in recent years, supporting the research carried out. Section

4.1 presents the performance estimators for FPGA, considering general approaches in Section 4.1.1

and design space exploration in Section 4.1.2, with the corresponding discussion in Section 4.1.3.

Since this thesis considers image analysis and other highly demanding applications, Section 4.2

introduces and discusses the models and frameworks developed for performance estimation in

different research areas.

4.1 Performance estimation for FPGA

Performance estimation in the early stages of design is essential for improving the hardware de-

signer’s productivity when using HLS tools. To this end, studies have demonstrated an increasing

trend in developing models, methodologies, and frameworks for estimating performance metrics

associated with FPGA/SoC. Two categories are proposed in this chapter: general approaches and

design space exploration (DSE). The former includes the proposed estimators for the area, resource

This chapter is based on the work published in [1]: Molina, R.S.; Gil-Costa, V.; Crespo, M. L; Ramponi, G. (2022)
"High-Level Synthesis Hardware Design for FPGA-based Accelerators: Models, Methodologies, and Frameworks". In
IEEE Access, vol. 10, pp. 90429-90455, 2022. IEEE.

38

Chapter 4 – State of the art in performance estimators for SoC-based FPGA

utilization, and power consumption without considering a DSE engine. In contrast, the latter con-

siders the exploration of the design space in addition to performance estimation.

4.1.1 General approaches

Traditional parallel computing models have been used to perform metric estimations, being the

Roofline model the one with more impact in the current literature. BSP was employed in [128],

while RAM was used [129]. Regarding Roofline, contributions in [125,130,131] exploited this model

to compute the attainable performance of the hardware accelerators.

Kapre et al. [128] presented a communication discipline inspired by synchronous dataflow

[132] and BSP computational models for OpenCL pipes in FPGA devices, considering that one of

the strategies to exploit FPGA wiring is through pipes, by reducing the communication latency be-

tween kernels.

Hora et al. [129] proposed pipelining circuit RAM (PCRAM), which is a computational model

that considers only synchronous circuits. Several algorithms were described, and the model was

used to obtain time complexities, leaving the contrast with the experimental results for future work.

In this model, the computer comprises a word-RAM of word size w with a circuit composed of an

execution module, gates, and inputs/outputs.

The Roofline model is currently used to recognize the FPGA’s highest performance and poten-

tial bottlenecks owing to its intuitiveness and simplicity while providing insights into arithmetic

computation and attainable performance. An extended version of the Roofline multicore model

for hardware accelerators was presented by Silva et al. [125], maintaining the core of the origi-

nal proposal but adding the resource utilization and parameters obtained through HLS tools. The

unit for the performance operation is byte-operations (Bops), considering that fixed-point oper-

ations are more suitable for this technology than floating-point operations. The authors also in-

cluded the scalability parameter in determining the PE replication factor, considering the available

resources and resource utilization per PE. Based on this initial proposal, contributions in the lit-

erature [130, 131] extended this model to FPGA devices. Calore et al. [130] presented an FPGA

empirical Roofline (FER) to estimate the throughput and memory bandwidth of FPGAs for high-

performance computing (HPC) applications based on HLS tools. Nguyen et al. [131] extended the

empirical Roofline toolkit (ERT) to FPGAs and presented a benchmark for energy efficiency.

39

Chapter 4 – State of the art in performance estimators for SoC-based FPGA

HLScope [133] is a performance debugging methodology that helps to identify potential bot-

tlenecks and their causes. HLScope has two flows: in-FPGA (accurate analysis) and software sim-

ulation (rapid analysis). For each hardware described by the designer, the tool provided execution

times and analyzed various stall causes: external DRAM access, synchronization, and dependency.

HLScope+ [134] extended HLScope to overcome its main drawbacks. HLScope+ includes a fast

and accurate HLS-based cycle estimation and an improved memory access model that considers

some PE in the FPGA connected to an external memory through a DRAM controller, avoiding cache

modeling.

A cost model for FPGA partial reconfiguration, proposed by Papadimitriou et al. [135], consid-

ered all physical elements involved in the reconfiguration process, where each phase contributed

to the total reconfiguration time. The authors also explored the parameters that affect the recon-

figuration performance.

FlexCL, introduced by Wang et al. [136], is an analytical performance model that uses the OpenCL

kernel as the input and provides the performance estimated for the FPGA. The input source code

was transformed into an LLVM IR trace by using Clang. Code structure and operation latency are

extracted using a kernel analyzer and sent to computation, communication, and global memory

models. Because of the integration of these three models, the execution time for a given kernel was

estimated. FlexCL contributes to identifying performance bottlenecks in FPGA, where PEs, compu-

tation units, and kernels have their models. FlexCL considers eight global memory access patterns

and can be used to explore the design space to identify solutions under given user constraints.

Pyramid, developed by Makrani et al. [137], is a machine learning-based framework to estimate

timing and resource utilization and to overcome the differences between the post-implementation

results and intellectual property (IP) cores created using HLS. It was developed by employing en-

semble machine learning techniques such as linear regression, artificial neural networks, support

vector machines, and random forests. As part of the framework, Minerva [138], an automated

hardware optimization tool based on a heuristic model, was used to obtain a good throughput

and throughput-to-area ratio for the RTL code generated by HLS. Wang et al. [139] presented a

framework based on a performance analysis model combined with code tuning techniques for

OpenCL applications only on FPGAs, assuming that designers adopt an incremental development

model [140]. The model included four FPGA-centric metrics to detect possible bottlenecks related

to memory, parallelism, and computation.

40

Chapter 4 – State of the art in performance estimators for SoC-based FPGA

Power consumption is an important topic, especially with the growth of green technology, in-

ternet of things (IoT) systems, and the expansion of communication networks. Power estimation

techniques are categorized based on the abstraction levels of the FPGA design process as follows:

system, RTL level, gate, and layout levels. One of the requirements when designing IP cores under

power, energy, or thermal constraints is their estimation during the first steps of the design process

for a given application. A survey on power consumption in FPGA and ASIC devices [141] classi-

fied the techniques for its estimation into analytical, table-based, polynomial-based, and neural

networks.

Neural networks have been used to estimate power consumption in contributions such as [142–

144], showing the effectiveness of these techniques.

Verma et al. [145] presented a power estimation model that improved Deng’s model [146] and

was designed using nonlinear regression techniques. For this purpose, they used the power data

from different types of digital circuits (described in VHDL) after the synthesis process. The data

were divided into designs with and without clock gating, and based on this separation, two power

models were developed.

KAPow, proposed by Davis et al. [147], is an online activity-based power methodology that in-

cludes a signal pruning strategy. The flow has two phases: signal selection (nets with solid relation-

ships between activity and power) and instrumentation (implying the accumulation of events to

monitor relevant signals). A linear model is used to estimate the overall system’s power contribu-

tion by computing each IP core’s power consumption.

FlexCL was extended in [148] by incorporating three modes of communication in the memory

model: direct, burst, and stream access patterns, and an analytical power model for dynamic and

static power.

HLSPredict, developed by O’Neal et al. [149], is a framework based on an ensemble of ten ma-

chine learning models to predict performance and power consumption without analytical models

or HLS-in-the-loop. Two types of IP cores were considered: without directives (base IP core) or with

directives (optimized IP core). Accelerators for training the models are based on a template with

DMA for memory transactions, which implies that for every source code implemented through the

HLS, the functionality of the IP core is encapsulated and integrated within the hardware template.

HL-Pow, proposed by Lin et al. [150], is based on machine learning techniques and overcomes

the gap between the HLS synthesis phase and power consumption estimation (usually performed

41

Chapter 4 – State of the art in performance estimators for SoC-based FPGA

after the RTL implementation flow). A DSE is introduced to obtain the latency vs power trade-off,

with pruning to reduce the design space when finding Pareto-optimal designs. For the machine

learning implementation, the training dataset was constructed by a feature construction (HLS re-

port) and power collection (post-implementation report), with a total of 256 elements per feature.

The experiments were performed using different machine learning models, including linear re-

gression, support vector machines, tree-based models, and neural networks.

PowerGear, described by Lin et al. [151], is a graph-learning-assisted power estimator for FPGA

HLS that is composed of a graph construction flow and a power-aware graph neural network model

called HEC-GNN. This study considers the impact of interconnections in hardware design that

affects power modelling. The authors benefit from the HLS front-end and HLS back-end to recover

dataflow graphs because it is possible to obtain IR traces and finite state machines with datapath

information. PowerGear can be used to guide a design space explorer with a trade-off between

latency and power to obtain the Pareto frontier.

Aladdin, introduced by Shao et al. [152], estimates the performance, power, and area of accel-

erators. It generates a dependence graph from the input code and produces a fast cycle estimate

before the RTL construction.

HAPE, presented by Makni et al. [153], is a framework for area-power estimation based on an-

alytical models, and it aims to assist the DSE in reducing HLS runtime. HAPE focuses only on

the main subtraces presented in a source code containing the directives provided by the designer.

HAPE integrated LinAnalyzer for computational cost.

4.1.2 Design space exploration

Design space explorers aim to minimize HLS tools execution times, which are highly dependent

on the size of the space to be analyzed. Different approaches have been proposed based on the

analysis of HLS directives, where the exploration of the design space [154, 155] is important be-

cause it increases exponentially with the use of directives. The challenge is to find a set of hard-

ware designs, also known as Pareto-optimal designs. Considering that there is a limited number

of resources (LUT, BRAM, DSP, and FF) available in the reconfigurable architecture, the hardware

design cannot request more resources than those available in the FPGA.

Surveys related to this topic are presented in [28, 71]. In particular, the last one proposed a

42

Chapter 4 – State of the art in performance estimators for SoC-based FPGA

classification of HLS DSE techniques into two groups, as depicted in Fig. 4.1: synthesis-based and

model-based. In this classification, the third category is composed of a combination of supervised

learning and DSE synthesis-based techniques.

HLS Design Exploration

- Techniques -

Synthesis Based Model based

Meta-heuristics Dedicate Heuristic Supervised
Learning

Graph analysis
based

Figure 4.1: Classification of HLS DSE techniques, based on [28].

According to [28], supported by Fig. 4.2, DSE based on meta-heuristics techniques presented

the highest accuracy and is easy to implement, port, and maintain. Nevertheless, they lack respect

for runtime because most use HLS tools in the loop. In addition, techniques based on supervised

learning exhibited equilibrated behavior along the five features presented in Fig. 4.2.

- -

-

+ / -

+

++

Runtime Accuracy Easy to

implement

Easy to

maintain

Easy to

port

Synthesis (meta/dedicated) Graph analysis Supervised learning

Figure 4.2: Value curve for DSE. Based on [28].

Ferretti et al. [156] proposed a method to infer knowledge from past design explorations. The

authors introduced signature encoding for code and directives, composed of specification en-

coding (SE), configuration space descriptor (CSD), and similarity metric longest common subse-

quence (LCS). The methodology uses signature encoding to create a string with design and config-

uration spaces (directives and their modes) by combining CSD and SE. The LCS metric was used

43

Chapter 4 – State of the art in performance estimators for SoC-based FPGA

to measure the similarity between the actual and previous DSE stored in a database.

COSMOS, which is an automatic and scalable methodology for DSE, was introduced by Piccol-

boni et al. [157] for complex accelerators. It generates a set of Pareto-optimal designs and reduces

the number of HLS invocations. It comprises two main phases: component characterization and

DSE (based on two steps: synthesis planning and mapping). The computing model used for DSE

was based on timed marked graphs. COSMOS includes memory as part of the DSE process and

applies synthesis constraints to reduce the variability of the HLS tools.

Lo et al. [158] proposed a sequential model-based optimization using a transfer-learning mech-

anism to select directive configurations in HLS, minimizing the number of tool evaluations/execu-

tions while obtaining solutions with LUTs-latency optimal trade-offs.

Kwon et al. [159] proposed a mixed-sharing multidomain model for reusing the knowledge ob-

tained from previous HLS DSE while exploring a new target design space, demonstrating its effec-

tiveness when approximating the quality of results (QoR) without running HLS tools.

Dai et al. [160] presented a fast and accurate QoR estimation based on HLS. For this purpose,

they used final HLS reports from a set of synthesized applications to identify relevant features and

metrics. They also constructed the dataset for training machine learning models (linear regression,

artificial neural networks, and gradient tree boosting). The authors employed information from

HLS reports for different directives and targeted different FPGA platforms to create the dataset.

In addition, C-to-bitstream flow for different clock periods is performed to obtain features, such

as post-implementation resources and the worst negative slack. Finally, the authors obtained 234

features, which were reduced to 87 after an elimination process to remove irrelevant features.

Lin-Analyzer [161] is a tool that allows accurate and fast FPGA performance estimation and

DSE, considering fine-grained parallelism. With this framework, the runtime scales linearly while

increasing the design space complexity; however, only a few optimizations are considered, mainly

loop unrolling, loop pipelining, and array partitioning. Regarding resource utilization, the authors

assumed that DSP and BRAM are bottlenecks in accelerator design. The communication cost be-

tween the FPGA and global memory was not considered. The framework is divided into three main

stages: instrumentation, optimization of dynamic data dependence graph (DDDG) generation,

and DDDG scheduling. In the last stage, latency was used as a performance metric under resource

constraints. Lina was proposed in [162] as an extension of LinAnalyzer, including non-perfect loop

nests and timing analyses.

44

Chapter 4 – State of the art in performance estimators for SoC-based FPGA

MPSeeker was proposed by Zhong et al. [163] to estimate the performance and resource utiliza-

tion of a given code (C/C++), considering fine- and coarse-grained parallelism, allowing fast DSE.

Because MPSeeker contemplates multi-parallelism using the loop tiling technique, a gradient-

boosted machine is proposed to obtain an accurate resource model for FF and LUT. In contrast,

Lin-Analyzer is used for BRAM and DSP estimation. The authors also extended the features of

the LinAnalyzer by including the data communication cost. The performance cost in MPSeeker is

modelled as the sum of the kernel computation and data communication costs.

Choi et al. [86] presented a DSE and clock cycle estimator using HLS, including code trans-

formations in the presence of variable-loop bounds. They proposed a resource prediction method

based on HLS reports through shareable and non-shareable operators from a loop. Using linear in-

terpolation, non-shareable resources are obtained, whereas the resources estimated for shareable

operators are computed as the maximum of all loops. An analytical model is proposed for clock

cycle prediction. In this framework, the design with the best performance is the output.

Ferretti et al. [164] presented a framework for HLS DSE using a cluster-based heuristic, inte-

grally developed in MATLAB. The algorithm identifies different clusters in the DSE by reducing the

number of regions to be analyzed. Intra-clustering was performed, followed by inter-cluster ex-

ploration. A lattice-traversing DSE framework [165] was proposed to explore the design space by

transforming it into a lattice representation. The framework includes lattice creation and initial

sampling, selection of lattice Pareto neighbors, and synthesis and lattice labelling.

COMBA [85, 166] is a framework that focuses on selecting the optimal configuration of direc-

tives in an HLS, taking into account the use and availability of hardware resources, and provides an

estimation of performance and resource utilization. The authors proposed a metric-guided DSE

II (MGDSE-II) algorithm to prune and explore the design space based on three metrics: the num-

ber of DSP, BRAM, and LUT. An overview of COMBA, which comprises a recursive data collector,

analytical models (latency and resources), and DSE, is presented in Fig. 4.3. In COMBA, the input

is C/C++ source code, which is transformed into an LLVM IR trace through Clang. The IR trace is

the input for the recursive data collector, which extracts static and dynamic information that will

be used for the analytical models. The MGDSE-II then evaluates the configuration and establishes

the subsequent directives to be applied to the input code. This iteration is repeated until a high-

performance configuration is obtained.

45

Chapter 4 – State of the art in performance estimators for SoC-based FPGA

C/C++

Source code

Clang

LLVM IR

Static info.
collector

Dynamic info.
collector

Recursive data
collector

Parameters

Directives

Analytical models Metric-Guided DSE II
(MGDSE-II)

High-performance
configuration

Figure 4.3: COMBA framework overview, based on Zhao et al. [85]. LLVM IR is extracted from the
source code. This trace is the input for the recursive data collector, which will extract the param-
eters used by the analytical models (latency and resource). MGDSE-II evaluates the configuration
and defines the next set of directives to be applied. The output of the complete flow is the high-
performance configuration. From [1].

IronMan [167] is an end-to-end flexible and automated framework for DSE composed of a per-

formance and resource predictor based on a graph-neural network (GPP), a multi-objective DSE

engine based on reinforcement learning (RLMD), and a code transformer (CT). One of the main

features of this framework is that it retrieves the final code with the discovered optimizations and

is ready to generate the corresponding RTL through HLS.

The Roofline model was introduced within the methodologies to explore the design space, tar-

geting HPC applications based on HLS [127, 168, 169].

Nabi et al. [169] proposed a TyTra flow that integrates performance and cost models based

on Roofline analysis to obtain an optimized FPGA solution for scientific HPC applications. The

methodology adopts the models defined in the OpenCL standard: platform and memory hierarchy,

kernel execution, memory execution, and data patterns. The Roofline model is the basis for the de-

sign space explorer and is used to assist in the selection of the best instance to be downloaded into

hardware. Additionally, the authors proposed an intermediate representation language (TyTra-IR).

For the calculation of resource utilization to obtain scalability of the system, the authors consid-

ered a maximum utilization of the FPGA of 80%, as suggested by [170].

Siracusa et al. [127] proposed DSE methodology. The system input was the C/C++ source code,

translated to an LLVM IR trace to obtain the baseline performance estimation and resource utiliza-

tion through the synthesis process. The Roofline model chart (RooflineOrig) determines memory

bottlenecks from this base implementation. Subsequently, an automated DSE estimates the re-

46

Chapter 4 – State of the art in performance estimators for SoC-based FPGA

sources and performance and generates optimal design points. The Roofline for the best feasible

design is plotted along with the RooflineOrig chart to compare the current design’s performance

with the solution derived by the DSE. The explorer includes resource sharing and HLS-specific IR

optimizations during sample estimations. This work was extended in [168] with the hierarchical

version of Roofline, estimating peak performance analytically, and integrating a guide to reaching

memory transfer and data-locality optimizations.

C/C++

Source code

LLVM IR Performance and
resource

Estimator

Roofline model Directives

insertion

Performance and

resource

estimation

Best directives

configuration + Roofline

model

Design Space Exploration (DSE)

Next directive
selection

Insertion of optimization directives

Figure 4.4: A DSE methodology presented in [127, 168]. The input source code is translated to
LLVM IR trace, obtaining the baseline for performance estimation and resource utilization. Subse-
quently, the Roofline model chart estimates memory bottlenecks. An automated DSE phase allows
resource and performance estimations, and the best feasible design is plotted along with the orig-
inal Roofline chart. From [1].

One of the fundamental points when designing DSE engines for SoC-based FPGA is the time

required to sample the search space because it is usually linked to the execution of HLS tools in the

loop. Contributions in the literature aimed to reduce the search space [156–158,160,164,171–173].

Based on the premise that search space exploration is a time-consuming task and that its com-

plexity is associated with different combinations of directives, user constraints, and technology

features, DSE has been treated as a black-block optimization problem [71].

In the context of evolutionary algorithms (EAs), several contributions in the literature have

aimed to integrate the HLS tool into the loop by combining the exploration stage with EAs. Schafer

et al. [174] proposed a combination of NSGA-II and a machine learning-based model to predict the

performance. Nevertheless, the HLS tool was incorporated into the DSE flow. Moreover, NSGA-II

was employed in [175,176] using HLS in the loop. Nevertheless, EAs based on NSGA-II for DSE has

yet to be used again in recent years, exploiting this solver in combination with an accurate perfor-

mance model, avoiding the full use of HLS in the loop, except for the final evaluation at the end of

the exploration process.

Based on Bayesian optimization, Sherlock [173], introduced by Gautier et al., is a DSE frame-

47

Chapter 4 – State of the art in performance estimators for SoC-based FPGA

work based on multi-objective optimizations devoted to finding Pareto-optimal solutions (or Pareto

fronts) and handling multiple conflicting optimization objectives. This framework uses active

learning to exploit a surrogate design space model to determine Pareto-optimal designs as quickly

as possible. Chimera [177] is a multi-objective DSE based on active learning and evolutionary al-

gorithms. One objective was to reduce the number of HLS invocations during the exploration pro-

cess.

Mehrabi et al. proposed Prospector framework [178] that uses Bayesian techniques to obtain

the best configurations with fewer resources and reduced latency near Pareto-efficient designs.

The HLS tool is considered a black box (or function) that must be modeled and optimized. Prospec-

tor is shown in Fig. 4.5, where the inputs are the source code, clock frequency, and directives, and

the outputs are the synthesized designs. The Bayesian optimization unit (BOU) was used to explore

the design space and control the selection of directives. The HLS tool was used to generate the RTL

from high-level source code. At the end of the process, the framework can obtain different designs

with a latency-area trade-off belonging to the Pareto frontier.

Others contributions devoted to DSE are introduced in [171–173, 179–181].

Input

Encodig Translator

Bayesian optimization
unit (BOU)

HLS tool

Place & Route

Source code and clock frequency

Cost

Performance

Pragmas

Directives

Ar
ea

Latency [clk cycles]

Figure 4.5: Prospector framework, based on [178]. The inputs are the source code, clock frequency,
and directives; and the outputs are the synthesized designs with a trade-off between latency and
area. The directives are encoded and sent to the BOU. Source code and clock frequency are the
inputs for HLS Tools. Performance and cost values are obtained from HLS tool and Place & Route
process. From [1].

4.1.3 Discussion

Table 4.1 shows that the described contributions (from 2016 to 2022) are fairly distributed between

models (34%) and frameworks (42%), whereas 24% propose methodologies. In line with the grow-

ing tendency in developing design space explorers, 56% of the contributions include DSE.

48

Chapter 4 – State of the art in performance estimators for SoC-based FPGA

Metrics Input Optimized designs Technique

Paper Year Model Methodology Framework DSE A L P Other S-C C/C++ I-C HDL OpenCL Pareto HP Config Statistical Analytical ML Others

[125] 2013 x (10+) C x x

[152] 2014 Aladdin x x x x

[161] 2016 Lin-Analyzer x x x x x

[171] 2016 x x x x x x x x

[139] 2016 x C x x

[180] 2016 x x x x x x x

[158] 2016 x (-) x x x x x x

[142] 2016 x (-) x x x x

[85] 2017 COMBA x x x x x x

[169] 2017 TyTra x x x C x

[163] 2017 MPSeeker x x x C x x x

[133] 2017 HLScope x x C x x

[134] 2017 HLScope+ x C x x

[136] 2017 FlexCL (10+) x x C x x x

[157] 2017 COSMOS x x x x x PN

[86] 2018 x x x x x x x

[182] 2018 x (-) x x x

[153] 2018 HAPE x x x x x

[148] 2018 FlexCL (21) x x x C x x

[147] 2018 KAPow x x x

[165] 2018 x x x x x x x

[164] 2018 x x x x x x x

[129] 2018 x (-) x x x

[160] 2018 x (10+) x QoR x x x

[149] 2018 HLSPredict x x x x

[162] 2019 Lina x x x x x

[137] 2019 Pyramid x x T x x

[183] 2019 x (-) x x x x x x

[179] 2019 XPPE x x S x x

[184] 2019 x x x x x x x

[145] 2019 x (10+) x E x x

[144] 2019 x (11) x E x x x

[181] 2019 x x

[159] 2020 x (-) x x x QoR x x x

[185] 2020 x (10+) x C x x

[156] 2020 x x x x x x x

[143] 2020 x (10+) x x x x

[150] 2020 HL-Pow x x x x

[127] 2020 x x x x T, C x x x

[131] 2021 x(-) x T, C x x x

[168] 2021 x x x x T, C x x x

[130] 2021 x(-) x x T, C x x x

[178] 2021 Prospector x x x x x x

[167] 2021 IronMan x x x x x x

[172] 2021 AutoDSE x x x x x x MH

[151] 2022 PowerGear x x x x x

[177] 2021 Chimera x x x x x x MH

[173] 2022 Sherlock x x x x x x

Percentage 34% 24% 42% 56% 58% 66% 26.5% 36% 13% 66% 2% 8% 14% 34% 14% 10% 40% 44% 6%

Table 4.1: Contributions presented in the literature for performance estimation. The acronyms
used in the table are: A: area, L: latency, P: power consumption, QoR: quality of result, C: communi-
cation, T: throughput, E: energy, S: speed-up, RT: reconfiguration time, S-C: SystemC, I-C: Impulse
C, HDL: hardware description language, MH: meta-heuristics, Em: empirical, and PN: Petri Nets.

49

Chapter 4 – State of the art in performance estimators for SoC-based FPGA

It is noticed that most DSE solutions use high-level abstraction languages as input, showing

a tendency to increase productivity in the design phase. Likewise, many studies are focused on

obtaining Pareto-optimal designs.

Regarding metrics, latency and area are the most frequently estimated metrics, followed by

power: 66%, 58%, and 26.5%, respectively. We also present this result in Fig. 4.6 (1). The area and

latency metrics are widely estimated because reconfigurable platforms are resource constrained

and are used for algorithm acceleration.

Concerning power consumption, some described contributions highlight the benefits of esti-

mating this metric for a given application at an early stage of its design. Some of the most recent

studies benefit from HLS tools to estimate this metric before the implementation stage of the over-

all system into the hardware platform. This approach is becoming commonplace in the literature

when considering FPGA/SoC as a development architecture.

Table 4.1 also shows that the C/C++ source code is preferably used as input (66%), and the

Pareto frontier is the most applied solution to obtain optimal designs (34%) in terms of trade-off

between area and latency, area and power, latency and power, among other metrics. Whereas ma-

chine learning and analytic methods are almost equally used to obtain accurate, fast, and robust

models (44% and 40%, respectively), as shown in Fig. 4.6 (2). However, in the last years, machine

learning has been the most widely used technique.

Figure 4.6: Radar plots. (1) Metrics. (2) Techniques.

The contributions devoted to models, methodologies, and frameworks for metric estimation,

50

Chapter 4 – State of the art in performance estimators for SoC-based FPGA

FPGA-based DSE, and power consumption described in this section are illustrated in Fig. 4.7. It can

be observed that, in recent years, there has been an increasing number of frameworks including

DSE, whereas the power consumption is mainly estimated by models, with a preponderance of

analytical techniques.

Figure 4.7: Radar plot for models, methodologies, and frameworks for metric estimation, FPGA-
based DSE, and power consumption.

From the exposed in section 4.1.2, only a few contributions include more than two aspects

when developing DSE. A design space explorer can benefit from reducing the design space by fo-

cusing on obtaining design points near the Pareto frontier, a parallel computing model to guide

performance estimation, a reasonable estimation of QoR, and resource utilization. Transfer learn-

ing, a technique linked mainly with ML approaches, could help to obtain underlying patterns when

developing hardware through HLS tools.

Some contributions only estimate some of the FPGA resources, as follows. LUT-latency trade-

off is estimated by [158], and BRAM and LUT are computed by [171]. COMBA [85, 166] estimates

DSP, BRAM, and LUT. Lin-Analyzer [161] computes BRAM and DSP, whereas MPSeeker [163] esti-

mates FF and LUT, combining Lin-Analyzer for DSP and BRAM utilization. Nevertheless, overesti-

mating resource utilization can lead to pruning valid design points in the exploration phase. LUT,

FF, DSP, and BRAM post-implementation estimation is performed by [160]. A challenge with HLS

tools is efficiently predicting resource sharing for unrolling factors and array partitions when using

HLS pragmas. [86, 127].

51

Chapter 4 – State of the art in performance estimators for SoC-based FPGA

4.2 Estimators for highly demanding applications

Contributions in the literature propose performance estimators for specific hardware acceleration

applications, which are used in diverse research areas. Some of these are based on general models,

such as Roofline.

4.2.1 Models

The Roofline model was adapted to FPGA to explore the design space, estimate the performance,

and evaluate the throughput because of its dependency on communication and computation. The

introduction of this model helped to assist the designer when targeting hardware acceleration of

HPC applications.

Roofline was applied by Du et al. [186] in the acceleration of the stencil computation kernels by

Karp et al. [187] for the hardware implementation of a spectral element method and by Nagasu et

al. [188] in the context of an FPGA-based tsunami simulation.

In computational fluid dynamics (CFD), Du et al. [189] presented an FPGA-based CFD sim-

ulation architecture using a performance model to guide the DSE while achieving the maximum

performance of the lattice Boltzmann method and searching for an optimal combination of the

parameters of the unroll directive.

Reggiani et al. [190] presented the acceleration of iterative stencil computation using Verilog to

describe hardware. An analytical model that considers memory transfer and computation was pro-

posed to estimate the performance of the accelerator and accelerate the exploration of the design

space.

Through efficiency degradation, it is possible to obtain hardware designs with higher perfor-

mance, lower power consumption, and lower resource utilization at the cost of the QoR. Manuel

et al. [191] proposed a DSE in the context of model-based approximate computing for image pro-

cessing, using a multi-objective genetic algorithm to find a wide range of Pareto-optimal solutions,

from which the desired compensation between quality and resources can be chosen.

In recent years, ML techniques have been applied in multiple fields such as fluid dynamics,

high-energy physics, information retrieval, image processing, video processing, security, and bi-

ology [19–21]. Because of this trend, models for FPGA-based architectures are being developed to

accelerate ML applications with the efficient exploitation of hardware resources, with the aim of

52

Chapter 4 – State of the art in performance estimators for SoC-based FPGA

improving productivity in the design phase [22–24].

Resource and performance models were proposed by Reggiani et al. [192] for convolutional

neural network (CNN) accelerators to drive an automatic Pareto-optimal DSE and explore network

performance on different hardware platforms. These models were applied to convolutional cores,

which are critical components of the design and directly affect the overall latency and DSP utiliza-

tion. The final relation to obtain the Pareto-optimal solutions is the number of DSP vs the initiation

interval (input rate of the pipeline in clock cycles).

Gysel et al. [193] presented an analytical model for deep CNN design, which is useful for ob-

taining the computational cost and inferring the required memory bandwidth for hardware design.

CaFPGA, developed by Xu et al. [194], is an FPGA-based DSE for CNN that focuses on the convo-

lutional and fully connected layers. To improve productivity in the design phase, the authors pro-

posed an automatic generation model, including incremental searching and flexible layer-folding

algorithms, considering that on-chip memory is a limited resource in an FPGA. The analysis of the

design space was performed using time, resources, memory, and performance models.

Shan et al. introduced [195] a CNN multi-kernel application and its implementation on AWS-

F1, where an analytical model iwas used to compute data transfers (CPU to DDR, DDR to FPGA,

FPGA to DDR, and DDR to CPU) and kernel computation times.

The Roofline model has been employed as a performance predictor for FPGA-based CNN ac-

celerators [196–199]. Ayat et al. [196] presented the optimization of an FPGA-based CNN accel-

erator for energy efficiency. Xie et al. [197] used this model to quantitatively analyze the design

phase of a CNN accelerator, depending on the available computing and memory resources. Park

et al. [198] proposed a model based on Roofline to effectively compute convolutional layers using

metrics such as throughput, on-chip memory, off-chip memory bandwidth, and computation-to-

communication ratio.

Ma et al. [199] introduced a coarse-grained analytical performance model for CNN accelera-

tors. For this purpose, the modelling of DRAM access, latency, and the on-chip buffer is analyzed

to obtain the final model. Regarding DSE, convolution throughput is the main focus, considering

factors such as the operating frequency, external memory bandwidth, and loop unrolling variables,

using Roofline to analyze the throughput of the CNN accelerator. Resource costs were obtained by

considering knobs loop unrolling and tiling.

Table 4.2 summarizes the models used in the contributions described in this section. The first

53

Chapter 4 – State of the art in performance estimators for SoC-based FPGA

two columns represent the reference and the year of publication. The third column shows the

research area in which the model is applied. The fourth and fifth columns are the aim and type of

model used, respectively, and the last column is the target platform.

We can observe that most contributions focus on CNN accelerators and that the models are

devoted to carrying out DSE and performance estimation and are mainly based on Roofline. The

use of this model is based on the premise that communication and computation are two basic

constraints for improving the throughput of an accelerator, especially when developing hardware

for highly demanding applications.

Paper Year Field Aim of the model Type of model Platform

[193] 2016 ML accelerators (CNN) DSE Analytical + Roofline Xilinx Virtex-7

[188] 2017 Tsunami simulations Scalability and performance Roofline Intel Arria 10

[194] 2018 ML accelerators (CNN) DSE Analytical Xilinx Virtex-7

[197] 2018 ML accelerators (CNN) Performance Analytical Xilinx XCVU9P

[190] 2018 Various Performance Analytical Xilinx VC707

[196] 2018 ML accelerators (CNN) Performance Roofline Xilinx Zynq

[192] 2019 ML accelerators (CNN) Network Perf. Analytical Xilinx Virtex-7

[198] 2020 ML accelerators (CNN) DSE Roofline Xilinx Virtex-7

[199] 2020 ML accelerators (CNN) Performance + DSE Analytical + Roofline Intel Arria 10 and Stratix 10

[191] 2020 Image processing DSE Analytical Intel Arria 10

[189] 2020 Fluid dynamics Performance Deterministic Xilinx Alveo

[186] 2020 Fluid dynamics Performance Roofline Xilinx Alveo

[195] 2020 ML accelerators (CNN) Data transfer and computation Analytical Amazon EC2 F1

[187] 2021 Fluid dynamics Performance Roofline Intel Stratix 10 GX2800

[200] 2021 Image processing DSE

Table 4.2: Models used for FPGA/SoC on different research areas.

4.2.2 Frameworks

Frameworks (or toolflows) have been proposed to map ML inference and training into SoC-based,

integrating models to estimate hardware resource utilization, latency, and throughput mainly. An

exhaustive survey is presented in [22].

Concerning training acceleration, Geng et al. [201] developed FPDeep, a toolflow for scalable

CNN training acceleration on deeply pipelined FPGA clusters, proposing a model for operator

graph partitioning and hardware resource allocation (with a distinction between small and large

54

Chapter 4 – State of the art in performance estimators for SoC-based FPGA

FPGA clusters). Roofline was used to evaluate throughput because of its dependency on commu-

nication and computation.

F-CNN, introduced by Zhao et al. [202], is an automatic framework for CNN training based on

the reconfiguration of a streaming data path at runtime. The proposed resource and bandwidth

estimation models guide space exploration under design constraints to obtain an optimal perfor-

mance.

HP-GNN, proposed by Lin et al. [203], is a framework for training graph neural networks (GNN)

on a CPU-FPGA platform. It incorporates an engine dedicated to exploring the design space through

an exhaustive search using performance and resource utilization models. HP-GNN also incorpo-

rates hardware templates to implement different GNN architectures.

Regarding inference acceleration, Ghaffari et al. [204] presented CNN2Gate, a framework based

on OpenCL, to map a CNN onto an FPGA with fixed-point arithmetic, including a hardware-aware

DSE based on resource utilization. It was implemented using manual directive tuning, reinforce-

ment learning, and hill-climbing methods.

Venieris et al. [205] proposed the fpgaConvNet toolflow to map a CNN onto an FPGA, thereby

optimizing the neural network workload. It includes a DSE using a multi-objective algorithm (sim-

ulated annealing), where the explorer optimizes the design according to the latency, throughput, or

maximum throughput with a latency constraint. Performance estimation and resource utilization

models were proposed for DSE.

Cloud-DNN [206], introduced by Chen et al., is a framework for mapping DNN to cloud-FPGA

and generating the corresponding HLS project to obtain the final IP core. The proposed accel-

erator model is based on the hardware resource cost (considering DSP and BRAM) and a perfor-

mance model for each layer (convolutional, max pooling, and fully connected). A greedy algorithm

was employed to search for the best accelerator configuration under constraints such as the DSP,

BRAM, bandwidth, and DNN layers.

FRED [207], developed by Biondi et al., is a framework for real-time applications that benefits

from a dynamic partial reconfiguration (DPR). It includes a hardware task model for the tasks car-

ried out by the FPGA with partial reconfiguration enabled, a software model for the tasks executed

on the processor, and a scheduling infrastructure.

Mu et al. presented [208] a collaborative framework to obtain OpenCL-based hardware designs

for CNN implementations. A DSE based on LoopTrees is generated and pruned to reduce the de-

55

Chapter 4 – State of the art in performance estimators for SoC-based FPGA

sign space. Fine-grained and coarse-grained analytical models are introduced to generate the final

optimized solution. The former estimates latency and resource utilization, whereas the latter ap-

plies further optimization to the best candidate designs obtained after applying the fine-grained

model.

The heterogeneous image processing acceleration (Hippac), proposed by Reiche et al. [209], is

a framework that allows the generation of image processing accelerators. Several steps were per-

formed by analyzing the IR trace: data dependency analysis, dependency graph restructuring, and

transformations (streaming objects, memory allocation, and replication of the innermost kernel to

improve throughput).

A framework called Spark-to-FPGA-Accelerator (S2FA), introduced by Yu et al. [210], transforms

Scala computational kernels based on Apache Spark applications into optimized accelerator de-

signs. For this, a learning-based DSE was employed to obtain high-performance RTL designs using

an ensemble of reinforcement learning algorithms: uniform greedy mutation, differential evolu-

tion genetic algorithm, particle swarm optimization, and simulated annealing. The HLS tool was

executed in the loop to verify the optimization.

AutoDNNchip [211] was proposed by Xu et al. to facilitate fast chip designs based on DNN,

targeting FPGA, and ASIC platforms. The main factors involved in the DNN acceleration process

are the bit precision, clock frequency, memory technology, PE architecture, width for data transfer,

memory allocation, and DNN mapping. AutoDNNchip is composed of a chip predictor and a chip

builder. The former predicts metrics such as area, latency, energy, and throughput, whereas the

latter performs the DSE optimizing the chip design using the results obtained by the predictor. A

chip predictor is formed by two modes: (i) coarse-grained and (ii) fine-grained. In (i), analytical

models are used to obtain the energy, critical path, and area for a DNN model, whereas in (ii), an

algorithm is implemented to obtain the final latency through runtime simulations, considering

the results of the coarse-grained mode. A chip builder is composed of a DSE based on two phases:

early stage architecture and IP configuration exploration, and inter-IP pipeline exploration and IP

optimization. Finally, the RTL was generated and executed to validate the results.

Table 4.3 summarizes the frameworks used in the contributions described in this section. The

first two columns are the reference and the year of publication. The third column is the research

area in which the model is applied. The fourth is the framework’s name, and the last is the target

platform.

56

Chapter 4 – State of the art in performance estimators for SoC-based FPGA

Paper Year Field Framework Platform

[207] 2016 Real-time applications with PDR FRED Xilinx Zynq 7010

[209] 2017 Image processing Hipacc Xilinx Kintex 7 and Intel Stratix V

[202] 2017 ML accelerators (training) F-CNN Intel Stratix V

[205] 2017 ML accelerators (inference) fpgaConvNet Xilinx Zynq 7020/45

[210] 2018 Big data analytics S2FA Amazon EC2 F1

[208] 2018 ML accelerators Collaborative framework Xilinx Virtex 7

[201] 2019 ML accelerators (training) FPDeep Xilinx VC709 (x8)

[206] 2019 ML accelerators (inference) Cloud-DNN Amazon EC2 F1 and VU9P

[204] 2020 ML accelerators (inference) CNN2Gate Intel Cyclone V and Arria 10

[211] 2020 DNN chip design (inference) AutoDNNchip Xilinx Ultra96 and ASIC

[203] 2022 ML accelerators (training) HP-GNN CPU + Xilinx Alveo U250

Table 4.3: Utilization of frameworks FPGA/SoC on different research areas. PDR: Partial dynamic
reconfiguration.

As it is observed, most frameworks are devoted to mapping ML-based inference into FPGA/-

SoC architectures. The components of these frameworks are usually expressed as pre-defined op-

timized templates, mainly implemented in C++ and OpenCL, where parallelism can be controlled

by changing the parameters associated with the different directives.

4.3 Summary of the chapter

This chapter presented and discussed the most relevant contributions in the literature related to

the development of this thesis.

In particular, the previous studies have yet to comprehensively address using performance esti-

mators based on analytical models integrated with a DSE engine based on mathematical program-

ming and guided by HLS rules. Several attempts have been made; however, they have included the

execution of HLS tools in the loop. In addition, most developments have been tested with bench-

marks, which need more diversity of real-world applications.

Contributions in the literature showed the effective use of NSGA-II solver to explore the design

space using heuristic approaches. Although these techniques have been used in previous contri-

57

Chapter 4 – State of the art in performance estimators for SoC-based FPGA

butions, EAs based on NSGA-II for DSE have yet to be used again in recent years, exploiting this

solver with an accurate performance model and avoiding using HLS in the loop.

Further, as observed from the literature review, DSE based on meta-heuristics methods pre-

sented the highest accuracy and are easy to implement, port, and maintain, lacking for runtime

because most use HLS tools in the loop. Moreover, Bayesian optimization is one of the most used

black-box optimization techniques. As heuristic approaches, the bottleneck of this type of imple-

mentation relies on the execution of HLS in the loop.

Nevertheless, several challenges still need to be addressed to adopt performance estimators in

the design flow for developing efficient hardware using HLS tools, as introduced in Section 1.6.

The following chapter presents the performance estimator proposed in this thesis.

58

Chapter 5

MARTE: a comprehensive hardware

acceleration performance estimator

This chapter presents MARTE, a comprehensive performance estimator for hardware accelera-

tion. Section 5.1 explains the general flow of MARTE. Then, the different stages of MARTE are pre-

sented: the initialization stage in Section 5.2, the cost model for latency and resource estimation

in Section 5.3, MARTE DSE engine implemented through mathematical programming in Section

5.4, and the outputs of MARTE in Section 5.5.

5.1 MARTE general flow

As presented in Chapter 4, there is a need to develop a performance estimator to be used in the

early stages of hardware design, bridging the gap between the application and SoC-based FPGA

architecture. To this end, Fig. 5.1 presents the schematic of MARTE, the comprehensive perfor-

mance estimator for hardware acceleration proposed in this thesis. It comprises four steps: initial-

ization, cost model, DSE engine, and outputs.

In the initialization phase, the source code associated with the application to be accelerated is

provided by the developer in C/C++ and transformed manually into a tree data structure, thereby

identifying the main parts that affect the overall system’s performance. Each node of the tree con-

tains information related to a given statement.

Then, the cost model is applied to the tree to achieve the performance estimation. With MARTE,

59

Chapter 5 – MARTE: A comprehensive hardware acceleration performance estimator

Initialization stage

C/C++

source code

Tree data structure

Models

Latency

Area
High-Performance

Configuration

Feasible solutions

Area - Latency

HLS

IP core generation

Cost Model Outputs

ConstraintsMicro-benchmarks

Cost Model + DSE

Initialization

Directives

Config-generator

Automatic

User defined

DSE engine

Rules

Outputs

Figure 5.1: General flow of MARTE, a comprehensive hardware acceleration performance estima-
tor.

the main objective functions estimated are the latency (L) and area, which includes hardware re-

sources: reconfigurable hardware (LUTs and FFs) and static hardware (DSPs and BRAMs).

The next step corresponds to the DSE engine, which is responsible for exploring the design

space for the different combinations of directives. This is an iterative process until a good trade-off

between objective functions is achieved. Finally, the outputs of the system are the different feasible

solutions, latency, resource utilization, and high-performance configurations.

MARTE reduces the time required to evaluate each solution compared with the HLS synthesis

process, thus avoiding the c-to-synthesis flow to obtain area and latency estimations. Furthermore,

it minimizes the time required to find a solution with a good trade-off between latency and area,

improving the hardware design’s performance. MARTE also helps improve productivity by pro-

viding developers with a tool that can be included in the hardware design flow while maintaining

the constraints required to accelerate applications. In addition, MARTE can be used solely as an

estimator or also exploiting its internal DSE engine, providing versatility to the hardware developer.

MARTE supports 32-bit floating point and 4, 8, 16, 32 bit fixed point data types. Regarding

directives, pipeline, unrolling, array partitioning, and loop flattening are considered.

60

Chapter 5 – MARTE: A comprehensive hardware acceleration performance estimator

5.2 Initialization stage

During the initialization stage, the source code is provided by the developer in C/C++ and trans-

formed manually into a tree data structure, as shown in Fig. 5.2. Thus, obtaining operator types

and tracking activities (operations, optimizations, and dependencies) is feasible.

Code

Loop1

Loop2

Loop3

Data Data

Data

Outer loop

Inner loop

Code structure 1 Code structure 2

- Loop features

- Arrays features

- Loop features

- Arrays features

- Loop features

- Arrays features

Figure 5.2: Input of MARTE: source code as tree data structure.

The tree data structure comprises a parent node that represents the source code of an appli-

cation. Each tree node corresponds to a type of statement and contains associated properties. If

a node represents a loop, features such as loop bounds, initiation interval, number of operations,

and type of operations (addition, subtraction, multiplication, division, load, and storage) are con-

sidered, thereby maintaining the hierarchy in the presence of nested loops.

5.3 Cost Model

The cost model aims to predict the objective functions of latency (clock cycles) and area (repre-

sented by LUT, BRAM, DSP, and FF). It comprises a model for each objective function and is based

on analytical and statistical techniques, considering directives for loop handling and array par-

titioning, which are typically employed to improve latency, performance, throughput, and area.

Some parts of the cost models are inspired by COMBA [85].

The inputs of this stage are the tree data structure, micro-benchmark database, and constraints

(e.g., FPGA specifications related to the family part and user specifications).

61

Chapter 5 – MARTE: A comprehensive hardware acceleration performance estimator

The micro-benchmark database is generated offline and composed of comma-separated val-

ues (csv) files which store the cost of basic operations (addition, subtraction, division, and mul-

tiplication), load and store operations, operation combinations, directive combinations (pipeline,

unroll), and arithmetic precision (32 bit floating point, and 4, 8, 16, and 32 bit fixed points). To this

end, different basic code structures were generated and synthesized using the HLS tool. The costs

are defined through resources (FF, LUT, BRAM, DSP) and latency (clock cycles) for each operation

and combination. E.g., in the case of 32-bit floating point operations, the resource utilization and

latency obtained through micro-benchmarks and associated with multiplication, addition, and di-

vision operations are presented in Table 5.1.

Operation BRAM DSP LUT FF Clock cycles

Multiplication - 3 135 128 2

Addition - 2 214 227 4

Division - - 8 49 8

Subtraction - 2 214 227 4

Table 5.1: Resource and latency estimation for the basic operations obtained through HLS tool.

Therefore, the micro-benchmark database comprises:

• A file containing the cost of the arithmetic and memory access operations (load and store),

considering 32-bit floating-point and 4, 8, 16, 32 bit fixed point data types.

• Files with the cost regarding the combination of operations inside a loop for no directives,

unroll, and pipeline considering 32-bit floating-point and 4, 8, 16, 32 bit fixed point data

types.

As an example, for the case of operation combinations and data types, Table 5.2 presents two

rows of the data structure composition for Pipeline directive, considering the number of DSP, FF,

and LUT due to expressions (expDSP, expFF, expLUT), LUT consumed by multiplexers (muxLUT),

LUT and FF used as registers (regLUT, regFF), total number of operations (Nop), trip count (TC),

62

Chapter 5 – MARTE: A comprehensive hardware acceleration performance estimator

number of each operation inside the loop (Add, Mult, Sub, Div), and the total number of expres-

sions (NopExp).

expDSP expFF expLUT muxLUT regLUT regFF Nop TC Add Mult Sub Div NopExp

0 0 61 36 0 10 1 5 1 0 0 0 5

0 0 54 36 0 12 2 10 1 1 0 0 5

Table 5.2: Pipeline directive: resource estimation for 32-bit fixed point, obtained through HLS tool.
From left to right: number of DSP, FF and LUT due to expressions (expDSP, expFF, expLUT), LUT
consumed by multiplexers (muxLUT), LUT and FF used as registers (regLUT, regFF), total number
of operations (Nop), trip count (TC), number of each operation inside the loop (Add, Mult, Sub,
Div), total number of expressions (NopExp).

In the following sections, I I represents the initiation interval (or input rate of the pipeline), I L

is the iteration latency and depends on load and store operations and on computing operations

inside the loop. TC defines the trip count of the loop, which is the difference between the upper

and lower bounds, U F defines the unrolling factor, and AF is the array partition factor. The latency

for a loop structure is denoted as Lclk . In addition, for a better understanding of the parameters,

Fig. 5.3 shows TC , I I , I L, and loop latency (Lclk) in a loop without directives.

Loop_1: for(i = 1; i < 3; i++){
 OP_RD;
 OP_CMP;
 OP_WR;
}

OP_RD

OP_CMP

OP_WR

Read

Computation

Write

OP_RD OP_CMP OP_WR OP_RD OP_CMP OP_WR

Iteration Latency (IL) = 3 clock cycles

Loop latency (L_clk) = 6 clock cycles

Initiation interval (II) = 3 clock cycles

Clock (ckl)

Trip count (TC) = 3

Figure 5.3: Terminology for a loop (without directives).

5.3.1 Latency model

The latency model is based on an analytical approach and aims to predict the latency in clock cy-

cles for a given hardware design. Fig. 5.4 presents the leading considerations to perform the overall

latency estimation at a macro level. In this research, estimations are considered at the macro level

because the objective is to obtain an approximation of the performance in the early stages of de-

63

Chapter 5 – MARTE: A comprehensive hardware acceleration performance estimator

sign, avoiding micro-level approximations.

Models

Latency

Area

Latency

No directive

Array partition

Dynamic indexation

Analytical

Techniques

Pipeline

Unroll

Figure 5.4: Model for latency estimation.

For latency estimation, several modes are considered based on the directives applied and op-

erations, described as follows:

• No directives: the latency is computed in the absence of directives.

• Loop pipelining: the latency is computed when the pipeline directive is applied. The value

of I I can be specified explicitly by the designer.

• Loop unrolling: the latency is obtained when the unroll directive is applied. The value of U F

can vary according to the designer’s criteria.

• Array partition: the latency is estimated, taking into account the impact of the partition

array. AF can be provided by the developer.

• Dynamic indexation: when an array is accessed in a non-contiguous region through a non-

constant index.

• Load and storage operations: impact of these operations in the latency.

Therefore, the final latency L for a given application is the sum of all the contributions of

considered modes.

64

Chapter 5 – MARTE: A comprehensive hardware acceleration performance estimator

No directives

The simplest case is that of the absence of directives. Latency Lclk for a single loop is defined by Eq.

5.1, directly associated with the clock cycles consumed for each operation inside the loop (I L×TC),

considering the initiation interval of the loop (I I).

Lclk = I I + I L×TC (5.1)

The latency associated with the computing operations inside the loop Lop (therefore, I Lop) is

defined by Eq. 5.2, where nOpi represents the number of specific operations (addition, multiplica-

tion, division, and subtraction), LOpi the latency corresponding to each operation nOpi inside the

loop, the subindex i specifies the operations (e.g., if 4 operations are considered, then 0: addition,

1: multiplication, 2: subtraction, 3: division)

Lop = I Lop =
3∑

i=0
nOpi ×LOpi (5.2)

In the presence of nested loops, Lclk is determined using Eq. 5.3, computed in a recursive

manner, considering M the total number of loops.

Lclk =
M∑

i=1
I Ii + (T Ci × I Li) (5.3)

Where M is the number of nested loops, TCi is the trip count corresponding to the M−th level

loop, and i represents the index loop.

Loop pipelining

In the presence of perfect loops (nested or single), the latency (Lclk) due to loop pipelining is de-

fined as in Eq. 5.4, with j the level of the pipelined loop. In this case, the inner loop could be

pipelined while the outer loops can be flattened (in absence of unrolling directive). Therefore, TC

is the product between the different nested loops. Moreover, in the absence of the unrolling direc-

tive, U F = 1.

Lclk = D j + I I j ×
(

TC

U F j
−1

)
(5.4)

65

Chapter 5 – MARTE: A comprehensive hardware acceleration performance estimator

With T C =∏M
i=1 TCi , where M is the number of nested loops and TCM is the trip count corre-

sponding to the M − th level loop.

Regarding non-perfect loops, the latency is obtained through the Eq. 5.5, as in [85], which

considers the depth of the pipeline (D) in the overall computation, with j the level of the pipelined

loop.

Lclk = D j + I I j ×
(

T C j

U F j
−1

)
(5.5)

Loop unrolling

In the presence of a single loop, the latency (Lclk) due to loop unrolling is defined as in Eq. 5.6,

according to [85].

Lclk = I L× TC

U F
(5.6)

For nested loops, considering M the outermost loop, the iteration latency I LM−1 correspond-

ing to the M −1 loops is defined by the Eq. 5.7 [85]:

LM−1 =
M−1∑
i=1

I Li × TCi

U Fi
(5.7)

Including the outer loop, the total latency (L) for a nested loop is defined by the Eq. 5.8.

Lclk = I LM−1 + T CM

U FM
× I LM (5.8)

Dynamic indexation

The latency associated with dynamic indexation is considered when accessing an array in a non-

contiguous region through a non-constant index. To this end, micro-benchmarks were generated

to obtain the latency associated with the operations involved in the index generation to access to

the memory position.

66

Chapter 5 – MARTE: A comprehensive hardware acceleration performance estimator

Load and storage operations

The clock cycles consumed by each load and storage operation are considered in the final compu-

tation of the latency. Moreover, if an array partition is applied, the impact on reading and writing

an array is affected by the partition factor.

5.3.2 Resource model

The resource model is based on analytical and statistical techniques and aims to predict resource

utilization, mainly associated with BRAM, DSP, LUT, and FF. The different components of the model

are illustrated in Fig. 5.5. Area estimation is computed considering static hardware (DSP, BRAM),

reconfigurable hardware (LUT, FF), directives applied (no directives, array partition, loop unrolling,

loop pipelining).

Models

Latency

Area

Area

FF, LUT

Statistical
DSP, BRAM

Analytical

Techniques

Figure 5.5: Resource utilization model.

LUT and FF estimation

The number of FF and LUT is affected by the number and type of operations involved in the arith-

metic computation and by the generated expressions, multiplexer, and registers, among others.

Regarding the instance, which is mainly composed of the arithmetical operations performed,

LUT and FF estimations are based on the premise that each elementary operation (addition, sub-

traction, multiplication, and division) is associated with the amount of LUT and FF through micro-

benchmarks. Moreover, when the unroll directive is applied, the LUT and FF estimations are multi-

plied by U F for a given loop. The computation of LUT and FF for the instance, LU T _op and F F _op

respectively, is depicted in Fig. 5.6. Once LU T _op and F F _op are computed, they are multiplied

by U F .

67

Chapter 5 – MARTE: A comprehensive hardware acceleration performance estimator

LUT instance computation FF instance computation

FFop+= Nop x FFutilization

Last type of
operation?

No

Final FFop

Yes

Start computation

LUTop+= Nop x LUTutilization

Last type of
operation?

No

Final LUTop

Yes

Start computation

LUTop = LUTop x UF FFop = FFop x UF

Figure 5.6: Flow chart for LUT and FF computation due to operations, corresponding to the in-
stance’s resources.

LUT due to expressions (LU Texp), multiplexers (LU Tmux), and registers (LU Tr eg) and FF due to

expressions (F Fexp) and registers (F Fr eg) utilization are obtained through multiple linear regres-

sion [212,213], a statistical technique that is used to predict the outcome of a variable based on the

value of several explanatory variables.

In multiple linear regression, the regression model can be defined by the Eq. 5.9, where β0 is

the intercept, βn are the partial regression coefficients, the number of observations n = 1,2, ...,k,

and X1, X2, ..., Xn determine the explanatory variables [214].

Y =β0 +β1 ×X1 +β2 ×X2 + ...+βn ×Xn +ϵ (5.9)

The estimation of βn is performed by the method of the least squares, extended to n dimen-

sions. Details of multiple linear regression technique can be found in [215].

FF and LUT estimation is also affected by factors such as trip count, the number of operations,

and the directives applied. Thus, several variables generate a final value for the different combi-

nations. This approach aims to model the relations through multiple linear regression, avoiding

modeling each of the different cases (expressions, multiplexers, and registers).

For the estimation of LUT utilization, and considering Table 5.2, the three independent vari-

ables (expression, multiplexer, and registers) obtained through multiple linear regression are asso-

ciated with Nop, TC, Add, Mult, Sub, Div, NopExp from table 5.2. For FF utilization due to expres-

sion and registers, their value is obtained using the variables Nop, TC, Add, Mult, Sub, Div, NopExp

68

Chapter 5 – MARTE: A comprehensive hardware acceleration performance estimator

from table 5.2.

The number of LUT and FF consumed for the instance are computed based on the type of oper-

ations and the values presented in Table 5.1. The steps involved in the calculation due to multiple

linear regression are presented in Fig. 5.7. First, it should be created the model corresponding

to the regressor and perform the fitting with the data set (E.g., micro-benchmark from Table 5.2).

Then, a prediction is performed for each variable to estimate (LU Texp , LU Tmux , LU Tr eg , F Fexp ,

and F Fr eg).

Multiple linear regression

Create and fit regressors for LUTexp, LUTmux, LUTreg

Multiple linear regression

Create and fit regressors for FFexp, FFreg

Predict LUTexp

Predict LUTmux

Predict LUTreg

Predict FFexp

Predict FFreg

Final LUTexp

Final LUTmux

Final LUTreg

Final FFexp

Final FFreg

Figure 5.7: Steps involved in LUT and FF computation through multiple linear regression.

After the completion of the steps presented in 5.6 and 5.7, the estimated number of LUT and

FF is obtained through Eq. 5.10 and 5.11, respectively.

LU T f = LU Top +LU Texp +LU Tmux +LU Tr eg (5.10)

F F f = F Fop +F Fexp +F Fr eg (5.11)

In MARTE, multiple linear regression was implemented through sklearn [216].

DSP estimation

The amount of DSP used for a specific computation depends on the type of operations executed.

E.g., for a 32-bit floating-point, DSP utilization for each arithmetic operation is associated with

the values presented in Table 5.1. Furthermore, if an unroll directive is used in a loop, the DSP

utilization is also affected by U F , which means that the amount of DSP increases proportionally

69

Chapter 5 – MARTE: A comprehensive hardware acceleration performance estimator

with U F . The total amount of DSP (DSPF) is obtained through Eq. 5.12, where Nopadd , Nopmul t ,

and Nopsub represents the number of addition, multiplication, and subtraction operations respec-

tively. DSPadd , DSPmul t , and DSPadd are the number of DSP consumed for each operation, and

U F the unrolling factor.

DSPF = ⌈(
Nopadd ×DSPadd +Nopmul t ×DSPmul t +Nopsub ×DSPsub

)×U F
⌉

(5.12)

If the pipeline directive is applied for the estimation of DSP in the presence of resource sharing,

the minimum number of instances for computation (Nr) is defined according to [85, 217]; thus,

Nr =
⌈

Nop

I I

⌉
, where Nop is the number of operations that are performed inside a loop.

BRAM estimation

BRAM estimation is associated with arrays that are stored in BRAM modules. For example, BRAM

in UltraScale architecture-based devices stores up to 36 kb of data and can be configured as either

two independent 18 kb RAMs or one 36 kb RAM. Each BRAM has two write and read ports [218].

To obtain the number of BRAM, for a given number of arrays in the source code, the algorithm

iterates for each array, and based on the data type nB and number of words w (elements), if the

result of nB ×w ≥ 1024 an array will be stored in a block RAM.

To compute the amount of BRAM required by the algorithm, Eq. 5.13 expresses this relation-

ship, where the number 8192 represents the 18 kb RAM and k represents the number of arrays in

the applications. The final value is rounded to the next integer value. If nB ×w ≤ 1024, the array is

stored in FFs.

BR AM =
⌈∑ nBk ∗wk

8192

⌉
(5.13)

5.4 Design space explorer

In the literature, design space explorers based on black-box optimizations (BBO) are employed

using HLS in the loop , being a time-consuming stage because of its synthesis time [71]. In MARTE

DSE, the evaluation of the objective and constraint functions involve the execution of the hardware

70

Chapter 5 – MARTE: A comprehensive hardware acceleration performance estimator

acceleration performance model presented in Section 5.1, avoiding the execution of HLS tools in

the loop, thus reducing the DSE engine runtime.

One of the main features of a DSE engine is the ability to predict an optimal (or suboptimal)

combination of directives to be suggested to the user. To accomplish this with MARTE, the DSE

engine comprises two sub-engines: single-objective Bayesian optimization and multi-objective

optimization based on evolutionary algorithms (EA). The former optimizes latency. The latter op-

timizes both objective functions (area and latency) using EA.

Moreover, MARTE DSE prunes the exploration space, under hardware and user constraints,

reducing the design points and helping to retrieve the feasible solutions, with less amount of points

that are suitable for the cost model. Furthermore, a set of rules to guide the exploration of DSE

engine are contemplated, as in [85, 127, 168].

In turn, when using FPGA-based devices, the first metric to be optimized is latency, taking

advantage of the features of the architecture. Therefore, MARTE will explore the design space

looking to optimize latency.

5.4.1 Single-objective Bayesian optimization

The sub-engine based on single-objective Bayesian optimization aims to optimize latency. There-

fore, the objective function f (x) is defined as the analytical model for estimating this metric pre-

sented in Section 5.1.

For single-objective optimization, the search space is defined as the combination of directives,

their parameters, and user constraints. The surrogate function is based on a Gaussian process (GP)

with the kernel defined as Matérn [219], one of the most common kernels for GP. The acquisition

function a(x) is defined as the expected improvement (EI) [220, 221], with which a reward equal to

the improvement obtained is received, avoiding getting stuck in local optima. EI is employed to

decide where to sample next.

Fig. 5.8 presents the flow of the single-objective based on BO. As the first step, the selection

of the initial sample to evaluate can be performed in several manners: (i) HLS tool is executed to

obtain a base estimation, and the generated report is loaded into MARTE through an XML parser,

(ii) MARTE computes the first performance estimation without directives applied, (iii) randomly

samples the search space to select the first configuration and execute MARTE to obtain the initial

71

Chapter 5 – MARTE: A comprehensive hardware acceleration performance estimator

estimation.

After the initialization step, the surrogate models the objective function with the Bayesian sta-

tistical model. If the stopping criterion is not met, then the search space sampling looks to max-

imize EI (acquisition function). This process implies selecting the following configuration to be

evaluated through MARTE to obtain the latency estimation. Afterward, the posterior distribution

is updated. This process continues until the search is stopped, retrieving the proposed configura-

tions to the hardware developer.

The number of variables involved in the optimization process is defined according to the num-

ber and type of directives and their parameters (e.g., if pipelining is applied, I I becomes a variable

for the optimization problem). The variable types are integers because the parameters are repre-

sented by integer values. The principal constraint applied is that the maximum area occupied by a

hardware design is at most 80% of programmable logic [170].

Gaussian process model

Sample search space to
maximize EI

Directives, configurations,
user constraints

MARTE

 latency model

Initialization:

sample the search space

and compute latency

Selecting among

Proposed configurations

Stopping criteria

Yes

No

Evaluation of
new sample

Construct

Update

Figure 5.8: Flow diagram of the single-objective BO for DSE.

5.4.2 Evolutionary multi-objective optimization (EMO)

To implement a DSE engine using EMO, the problem to be solved is to optimize two objective

functions: latency and area, that conflict with each other, which means that as latency decreases,

72

Chapter 5 – MARTE: A comprehensive hardware acceleration performance estimator

the area utilized increases.

The procedure for the implementation of the multi-objective optimization based on EA is pre-

sented in Fig. 5.9. The solver to drive the rule-based DSE is based on NSGA-II, that, as was exposed

in Section 2.4.2, is an elitism algorithm that keeps the best solutions of the previous iterations, with

a reduced complexity due to the non-sorting algorithm. The stopping criterion is fixed accord-

ing to the maximum number of generations. Genetic operators, such as crossover, mutation, and

selection, help to guide the search towards the solution, preventing the DSE engine from getting

stuck in a local minimum.

Regarding the variables in the process of DSE based on EMO, the same considerations for DSE

based on BO are taken into account.

Initialize population First generation

Evaluate

objective functions

MARTE

area model

MARTE

latency model

Non-dominated sorting

Proposed configurationsIncrement generation

Genetic operators

Stopping criteria

No Yes

Crowding distance sorting

Figure 5.9: Flow diagram of the EMO for DSE with NSGA-II solver.

MARTE EMO DSE was implemented through Pymoo library [222], that is a framework for im-

plementing state-of-the-art single- and multi-objective optimization algorithms.

73

Chapter 5 – MARTE: A comprehensive hardware acceleration performance estimator

5.4.3 Rules for guiding the DSE engine

According to [223], there are three types of constructs in the behavioral description that impact

the final microarchitecture generated with HLS tools: loops, arrays, and functions. Moreover, three

main exploration dimensions are available with HLS tools: local synthesis directives, number of

functional units, and global synthesis options, which are orthogonal and can overlap. Based on

this premise, exploration of the design space is constrained to loops, arrays, and functions under

the influence of local synthesis directives.

HLS tools have automatic modes when a specific directive is applied [7, 9], which are used to

build a set of rules to guide the exploration of the DSE engine, described as follows:

• In a nested loop, if the outer-loop is pipelined, the inner-loop is unrolled; if the top-level

function is pipelined, all loops inside the functions must be unrolled.

• The optimal balance between area and performance is typically found by pipelining the in-

nermost loop.

• Automatic flattening of the loop in absence of data dependencies.

• The maximum number of elements that can be partitioned completely is defined by the o

HLS partitioning limit and tied to the tool version: 4,096 or 1,024 elements. If an array con-

tains fewer elements than the maximum number of elements constrained by the vendor, an

automatic array partition is considered.

• Some parameters are available depending on the applied directive. For example, if pipelining

is applied, the unroll factor cannot be specified.

5.5 Outputs

In this last stage, the outputs of the performance estimator are reported to the hardware developer:

design points after the exploration of the design space, area, latency, and a high-performance con-

figuration suggestion.

As in the Roofline model, scalability SC of the system is defined as the ratio between the total

resource available in the reconfigurable architecture and the maximum resource utilization by a

74

Chapter 5 – MARTE: A comprehensive hardware acceleration performance estimator

given PE, thus the SC of one PE is constrained by the most utilized resource, as it is shown in Eq.

5.14.

SC = min
{ BR AMT

BR AMPE
,

DSPT

DSPPE
,

LU TT

LU TPE
,

F FT

F FPE

}
(5.14)

5.6 Summary of the chapter

This chapter introduced MARTE, a comprehensive performance estimator for hardware accelera-

tion composed of cost models and DSE engines.

The performance estimator is based on analytical and statistical techniques to compute la-

tency and area (resource utilization), considering several modes in each case. The DSE engines

are based on two independent sub-engines: single-objective based on BO and EA multi-objective

optimization.

Bayesian optimization is one of the most used black-box optimization techniques to explore

the design space, as presented in Section 4.1.2. For this reason, single-objective BO was paired

with MARTE as DSE for latency optimization.

For optimizing latency and area, a DSE engine based on EMO is integrated, allowing a set of

feasible solutions to assist the hardware developer when selecting the proper combination of di-

rectives with the area-latency trade-off. MARTE DSE engines consider a set of rules for guiding the

exploration of the search space, reducing the points to be evaluated.

Furthermore, since one of the main drawbacks of evolutionary algorithms is that the search

can stop at a local minimum, the single-objective optimization based on BO acts as a redundant

algorithm to explore the search space, which increases the runtime. Furthermore, the different

genetic operators allow a better convergence, trying to prevent the algorithm from remaining at a

local minimum.

75

Chapter 6

Image analysis and highly demanding

applications

This chapter presents the different cases of study considered in this thesis: pulse shape discrim-

inator for cosmic rays in Section 6.2, automatic pest classification in Section 6.3, and re-ranking

algorithm for information retrieval in Section 6.4. The applications are traversed for an ensem-

ble of compression techniques to obtain a suitable implementation on FPGA/SoC, emphasizing

the benefits when these types of applications are traversed by the compression techniques when

targeting SoC-based FPGA devices.

6.1 Image analysis and other highly demanding applications

Applications in the field of image analysis are a relevant research focus in the scientific commu-

nity [16–18]. The growth of artificial vision techniques for the processing, recognition, and classifi-

cation of images has made it possible to expand the expectations of systems to solve problems that

are otherwise much more difficult or impossible in different fields, such as security, industry, and

autonomous driving.

As presented in [1], in recent years, ML techniques have been applied in multiple fields such

as fluid dynamics, high-energy physics, information retrieval, image processing, video processing,

security, and biology [19–21]. Because of this trend, models for FPGA-based architectures are be-

ing developed to accelerate ML applications with efficient exploitation of hardware resources to

76

Chapter 6 – Image analysis and highly demanding applications

improve productivity in the design phase [22–24].

This research considers three cases of study: pulse shape discriminator for cosmic rays, auto-

matic pest classification, and re-ranking algorithm. The applications are traversed for an ensemble

of compression techniques and targeting FPGA/SoC.

6.2 Pulse shape discrimination for cosmic rays

Cosmic rays consist of very high-energy particles that come from outer space. Primary cosmic

rays may collide with other particles, splitting the molecules to form secondary cosmic ray parti-

cles. As a result of the collision, an air shower is created, containing secondary cosmic ray particles,

such as neutrons, protons, positive and negative pions, and positive and negative kaons. Pions and

kaons may decay into muons and neutrinos [226].

Data acquisition systems (DAQ) based on FPGAs and System-on-Chip are often used in ex-

perimental physics to perform data acquisition, and processing [51, 224, 225]. Experiments such

as COMPASS at CERN [227] and the Latin American Giant Observatory (LAGO) [25] are examples

where these devices are used as DAQ.

Water Cherenkov Detector (WCD) consists of a pure water tank used as a scintillator, coupled to

a photomultiplier tube, connected to a high-voltage power supply, and an analog front-end [25], as

presented in Fig. 6.1. The analog data from this setup are often digitized, captured, and processed

within the detector electronics. However, some of the captured data traces may not be relevant and

will have to be deleted in the subsequent offline data analysis.

In the context of WCD and cosmic rays, a WCD DAQ system has been utilized as a test base

for deploying a neural network (NN) design within an existing project. The main goal was to verify

advanced processing algorithms’ versatility as co-existing processing blocks. The original system

Section 6.2 is based on the contributions published in [51, 224, 225]: [51] Molina, R. S., Garcia, L. G., Morales, I. R.,
Crespo, M. L., Ramponi, G., Carrato, S., Cicuttin, A., Perez, H. (2022). "Compression of NN-Based Pulse-Shape Dis-
criminators in Front-End Electronics for Particle Detection". In International Conference on Applications in Electronics
Pervading Industry, Environment and Society, pp. 93-99. Springer, Cham. [224] Molina, R. S., Crespo, M. L., Carrato,
S., Ramponi, G., Cicuttin, A., Morales, I. R. Perez, H. (2021). "Muon–Electron Pulse Shape Discrimination for Water
Cherenkov Detectors Based on FPGA/SoC". Electronics 2021, 10, 224. MDPI. [225] García Ordóñez, L. G., Molina, R. S.,
Morales Argueta, I. R., Crespo, M. L., Cicuttin, A., Carrato, S., Ramponi, G., Pérez Figueroa, H. E., Ballina Escobar, M. G.
(2021). "Pulse shape Discrimination for Online Data Acquisition in Water Cherenkov Detectors Based on FPGA/SoC".
In 37th International Cosmic Ray Conference (ICRC2021), p. 274. PoS Sissa. In collaboration with the Abdus Salam
International Centre for theoretical Physics (ICTP) - MLAB in Trieste Italy.

77

Chapter 6 – Image analysis and highly demanding applications

design has been paired with a NN to work as a trace/event discrimination block.

Figure 6.1: Cosmic rays DAQ system for Water Cherenkov Detectors.

In the literature, machine learning techniques have been used for offline pulse shape discrimi-

nation (PSD), obtaining high accuracy using floating-point precision [228–231]. From this starting

point, performing a PSD within the FPGA/SoC based on ML-models is desirable.

6.2.1 Dataset

A set of ∼3 million triggered pulses have been acquired with the DAQ system. An objective way

of classifying the incoming signals is by grouping them by their similarities. For this case of study,

such classification was done with a centroid-based clustering algorithm, an unsupervised machine

learning technique that allows the dataset division into several groups called clusters. A distance

metric is used to perform this classification in different groups based on similarity. If the distance

between 2 elements is minimum, then both elements belong to the same cluster. Based on this,

elements in the same cluster have similar features or properties. If the similarity measure is based

on shape or pattern, the correlation as a distance measure is useful in this context [232], allowing

the system to distinguish among pulse waveforms. The acquired pulses were classified using this

method, and Fig. 6.2 presents a subset of raw pulses within each cluster of interest.

78

Chapter 6 – Image analysis and highly demanding applications

(a) Cluster 0 (b) Cluster 1

(c) Cluster 2 (d) Cluster 2a. (saturated)

Figure 6.2: Samples of raw pulse traces of each cluster. From [224].

6.2.2 ML-based architecture

This application’s main objective is to classify four types of signals through an MLP architecture.

As FPGA/SoC is the final platform for implementing PSD based on MLP, the model should be com-

pressed to make efficient use of this technology, considering resource utilization and latency, with-

out compromising the final performance of the overall system in terms of accuracy. In this direc-

tion, model compression was performed using the methodology presented in Section 2.2.

An MLP architecture that defines the teacher model is presented in Fig. 6.3, composed of four

hidden layers with ReLu as the activation function and an output layer with four neurons with

Softmax as the activation function. Through BO hyperparameter tuning, the number of neurons

and the learning rate are obtained for each dense layer.

79

Chapter 6 – Image analysis and highly demanding applications

FC
, 7

2

FC
, 9

2

FC
, 5

0

FC
, 5

0

C0

C1

C2

C3

Input signal

Figure 6.3: MLP teacher architecture.

After the BO hyperparameters tuning, the best configuration is selected. The network training

is performed using early stopping callback to prevent the model from training with minimal bene-

fits. The loss function is categorical cross-entropy, the batch size is 128, and the number of epochs

is 32. The total number of parameters for the teacher architecture is 16,352, and the area under the

curve (AUC) is higher than 0.95 for all the classes.

Several architectures with a precision of 32-bit floating-point precision are proposed as student

networks, varying the number of hidden layers, as presented in Table 6.1. BO hyperparameters

tuning is employed to obtain the number of neurons and kernels for each layer and the learning

rate during the distillation process. Once the best configuration for the hyperparameters is found,

the distillation of the student is performed.

Model Hidden layers Parameters CR Configuration

M1 3 529 30.91 I-15-O

M2 4 869 18.82 I-25-3-O

M3 5 731 22.37 I-15-13-3-O

M4 6 1623 10.08 I-35-13-3-3-O

M5 7 2245 7.28 I-45-13-3-3-3-O

Table 6.1: Distilled architectures based on MLP.

The verification of the effectiveness of the different networks is made by using the area under

the curve (AUC) of receiver operating characteristic (ROC) [233], AUC-ROC, extended to multi-class

classification by applying a one-vs-all technique. Various works in the literature support the use of

80

Chapter 6 – Image analysis and highly demanding applications

ROC for analyzing the behavior of machine learning classifiers [234,235]. Fig. 6.4 presents AUC per

class for each student network.

Figure 6.4: AUC per class for each student network.

6.2.3 ML-based model compression

After the student selection (M1 model), the next step is to perform the compression through quan-

tization (4, 8, and 16 bits) and pruning (constant sparsity-based pruning 20%, 60%, and 80%).

Moreover, quantization and pruning aware-training is combined with distillation (Distillation +

constant sparsity-based pruning 20% + quantization 8 bits), considering the number of neurons

and kernels obtained for the 32-bit floating-point distilled version with BO. Table 6.2 presents the

result of this process.

M14b , M18b , and M116b are models generated after quantization-aware training, considering

4, 8, and 16 bits fixed-point. As can be noticed with M14b model, 4-bit fixed point showed a de-

crease in accuracy, affecting the final system’s performance. Between models with 8 and 16 bits,

the accuracy slightly drops from 95.46% to 93.2% for class 1. Considering the 3 models and the

final device to deploy the model, 8-bit fixed-point is a good candidate to quantize the model.

Regarding pruning, increasing the percentage of sparsity leads to a slight decrease in accuracy.

Nevertheless, considering the 20% 60%, and 80% of sparsity, the accuracy values are higher than

96% for the three models.

Therefore, selecting model M18b to be combined with a sparsity factor of 20% (M1_8bP20), the

accuracy remains higher than 95%, obtaining the benefits of both techniques.

81

Chapter 6 – Image analysis and highly demanding applications

M1AQK represents the model obtained through AutoQKeras, a functionality provided by QK-

eras to use optimization techniques (random grid, random search, Bayesian) to find an adequate

number of bits for quantization. In this application, the result obtained for M1_8b_P20 is better

than the one with AutoQKeras, considering the accuracy as a metric.

Finally, the last model, M1DQP , was obtained by combining quantization (8-bit fixed-point),

pruning (20% of sparsity), and knowledge distillation using a teacher architecture defined with

32-bit floating points. M1DQP has a good trade-off between the benefits of compression and the

accuracy obtained for each class.

Model Parameters AC c0 AC c1 AC c2 AC c3

M14b 529 99.98 83.12 98.68 100

M18b 529 99.8 93.2 99.72 100

M116b 529 100 95.46 99.72 100

M1_32bP20 529 99.89 99.48 99.92 100

M1_32bP60 529 99,98 98.06 99.9 100

M1_32bP80 529 99.94 96.26 99.46 100

M1_8bP20 529 95.32 99.11 98.58 100

M1AQK 242 99.66 84.01 98.88 99.9

M1DQP 529 100 96.2 99.64 100

Table 6.2: Distilled architectures based on MLP. The four classes of pulse are represented by c0, c1,
c2, and c3. AC stands for accuracy.

6.2.4 Implementation results

Once the compression process is completed, the next step is to generate the HLS project through

the hls4ml [52] package. Different combinations based on the reuse factor (RF) for 1, 8, 16, 32,

and 64 values are reported in Table 6.3 for two types of devices: ZCU102 and PYNQ-Z1. For KRIA

platform, only the RF of 1 is presented.

As the sparsity is defined to be 20% of the total number of parameters, the total non-zero

82

Chapter 6 – Image analysis and highly demanding applications

weights determine the computational intensity and their impact on the hardware utilization. Thus,

the operations that involve zero weights are not implemented with DSP.

In all the cases, the input and Softmax layers were implemented with 32-bit fixed-point, defined

through hls4ml package before building the HLS project.

In order for hls4ml to be supported for Vitis HLS 2021.1.1, the source code was adapted, chang-

ing manually the directives used by the needed firmware.

Platform BRAM DSP FF LUT Latency [clk] RF SC factor

ZCU102 3 (0%) 25 (0%) 1275 (0%) 12939 (0%) 14 1 21

ZCU102 2 (0%) 21 (0%) 1681 (0%) 13085 (4%) 22 8 20

ZCU102 2 (0%) 13 (0%) 2369 (0%) 13272 (4%) 23 16 20

ZCU102 2 (0%) 8 (0%) 2716 (0%) 13261 (4%) 28 32 20

ZCU102 2 (0%) 5 (0%) 2949 (0%) 13222 (4%) 31 64 20

PYNQ-Z1 3 (1%) 29 (13%) 9334 (8%) 12858 (24%) 32 1 4

PYNQ-Z1 2 (0%) 25 (11%) 7129 (6%) 12574 (23%) 36 8 3

PYNQ-Z1 2 (0%) 14 (6%) 6465 (6%) 12789 (24%) 38 16 3

PYNQ-Z1 2 (0%) 8 (3%) 6293 (6%) 12769 (24%) 42 32 3

PYNQ-Z1 2 (0%) 5 (2%) 6028 (5%) 12749 (23%) 44 64 3

KRIA 4 (0%) 27 (1%) 2866 (1%) 7809 (2%) 12 1 35

Table 6.3: HLS reports for M1 MLP @200MHz, without AXI interface. Latency in clock cycles. RF:
reuse factor (configuration option in hls4ml). For ZCU102 and PYNQ-Z1, the reports were obtained
with Vivado HLS 2019.2.1. For the KRIA device, the report was obtained from Vitis HLS 2021.1.1.

After exporting the corresponding IP core, and targetting KRIA device, the final resource uti-

lization after place & route (P & R) for the inference task (without data transfer) is reported in Table

6.4, for a clock of 200 MHz.

Platform BRAM DSP FF LUT RF

KRIA 4 (2.78%) 33 (2.64%) 504 (0.22%) 3007 (2.6%) 1

Table 6.4: Place & route report for the KRIA device. From Vivado 2021.1.1.

83

Chapter 6 – Image analysis and highly demanding applications

Considering uniform quantization for the whole network, Table 6.5 presents the results for re-

source utilization obtained from Vitis HLS and Vivado 2021.1.1, considering 8-bits fixed-point data

type, targetting KRIA device.

Platform BRAM DSP FF LUT RF

Vitis HLS 4 (2.78%) 4 (2.64%) 358 (2.4%) 6035 (5.05%) 1

Vivado (P & R) 2 (1.4%) 17 (1.36%) 64 (0.03%) 218 (0.19%) 1

Table 6.5: Metric estimations for KRIA device, obtained from Vivado 2021.1.1. P & R stands for
place & route.

6.3 Automatic pest classification based on CNN

In agriculture, fruit crops are mainly affected by various diseases and pests during their growth.

If the control is not timely, this will lead to a reduction in the soil or harvest loss. The accurate

and effective control of insect pests is essential to help fruit growers improve fruit yield. One of

the methods to solve this task is a manual approach, which is time-consuming and susceptible to

errors. New trends in data processing have provided different ways to solve this problem, using

automatic and efficient image recognition methods. Contributions in the literature have been pre-

sented to address this problem using machine learning techniques, obtaining high accuracy, and

employing state-of-the-art neural networks [238–242].

Using embedded systems based on FPGA for IoT enables different measurements to be per-

formed in parallel. Thus, logic design can collect and process information from the environment

using different types of sensors (air temperature, solar radiation, soil temperature, among others)

while processing complex algorithms based on machine learning (ML) and reducing power con-

sumption. Owing to its flexibility in reconfiguration, this type of device has begun to be used in

agriculture [243].

Section 6.3 is based on the works published in [236] and [237]: [236] Suárez, A., Molina, R. S., Ramponi, G., Petrino,
R., Bollati, L., Sequeiros, D. (2021, November). "Pest detection and classification to reduce pesticide use in fruit crops
based on deep neural networks and image processing". In 2021 XIX Workshop on Information Processing and Control
(RPIC), pp. 1-6. IEEE. [237] Molina, R. S.; Carrer. V.; Ballina; M., Crespo, M. L.; Bollati, L.; Sequeiro, D.; Marsi, S. and
Ramponi, G. (2022) “ML-based classifier for precision agriculture on embedded systems”. In International Conference
on Applications in Electronics Pervading Industry, Environment and Society [Accepted - Waiting for publication]. Col-
laboration with ICTP-MLAB, Nectras, and UNSL-LEIS.

84

Chapter 6 – Image analysis and highly demanding applications

6.3.1 ML-based architecture

When implementing ML-based models in embedded systems, the complexity and performance of

the design are related to the number of required resources. Compression techniques are essential

for deploying ML models on resource-constrained devices while maintaining efficiency and effec-

tiveness [42]. Based on this, part of the methodology presented in Section 2.2 is employed to obtain

the final DNN architecture to be deployed into resource-constrained devices, shown in Fig. 6.5.

Stage 1

Teacher FP training

Teacher network
Dataset

Train model

teacherFP trained

student_PQ

Loss

teacherFP trained

Stage 2

Distillation, quantization, and pruning aware training

studentDQP

Dataset

Figure 6.5: Methodology for compression.

Transfer learning technique [244] is used to obtain the teacher architecture, which is a binary

classifier based on VGG16, presented in Fig. 6.6. The last layers of the model are replaced by a

classifier based on [236]. The first four layers of this network are frozen, so they are not trainable,

and the rest of the model will be fine-tuned. The final architecture is composed of 14,818,706 pa-

rameters.

3x
3

C
on

v2
D

, 6
4

M
ax

Po
ol

3x
3

C
on

v2
D

, 1
28

3x
3

C
on

v2
D

, 1
28

M
ax

Po
ol

3x
3

C
on

v2
D

, 2
56

3x
3

C
on

v2
D

, 2
56

3x
3

C
on

v2
D

, 2
56

M
ax

Po
ol

3x
3

C
on

v2
D

, 5
12

3x
3

C
on

v2
D

, 5
12

3x
3

C
on

v2
D

, 5
12

M
ax

Po
ol

3x
3

C
on

v2
D

, 5
12

3x
3

C
on

v2
D

, 5
12

3x
3

C
on

v2
D

, 5
12

M
ax

Po
ol

Fl
at

te
n

FC
, 5

0

FC
, 2

5

FC
, 1

0

New classifier

3x
3

C
on

v2
D

, 6
4

FC
, n

_c
la

ss
es

Figure 6.6: Teacher architecture based on VGG16, including the new classifier.

The teacher’s knowledge (32-bits floating-point) is distilled to a student network, previously

85

Chapter 6 – Image analysis and highly demanding applications

defined with quantization and pruning strategies. The overall student network architecture (QStu-

dentFPGA) is presented in Fig. 6.7, composed of 1,677 parameters and with the same number of

layers as the teacher but with fewer kernels and neurons. The number of bits is 8 for the first four

2D-convolutional layers and 4 for the remaining layers. Finally, a target sparsity of 50% is applied to

remove redundant parameters. Quantization- and pruning-aware training (QP-AT) is performed,

which implies pruning, quantizing, and retraining the model to adjust and learn according to the

newly quantized values and the distribution of neurons and connections.

3x
3

C
on

v2
D

, 1

3x
3

C
on

v2
D

, 1

M
ax

Po
ol

3x
3

C
on

v2
D

, 2

3x
3

C
on

v2
D

, 2

M
ax

Po
ol

3x
3

C
on

v2
D

, 3

3x
3

C
on

v2
D

, 3

3x
3

C
on

v2
D

, 3

M
ax

Po
ol

3x
3

C
on

v2
D

, 4

3x
3

C
on

v2
D

, 4

3x
3

C
on

v2
D

, 4

M
ax

Po
ol

3x
3

C
on

v2
D

, 5

3x
3

C
on

v2
D

, 5

3x
3

C
on

v2
D

, 5

M
ax

Po
ol

Fl
at

te
n

FC
, 6

FC
, 4

FC
, 3

FC
, n

_c
la

ss
es

 (2
)

Figure 6.7: Distilled architecture.

6.3.2 Dataset

Several datasets for pest analysis in precision agriculture are available in the open literature. They

differ in the source of the images and the captured insects: (i) internet, such as IP102 [245], which

is based on the collection of different images obtained from the internet, (ii) crop fields, such as

AgriPest [246], where the insects are captured directly in their habitat in different parts of the plant;

and (iii) traps, such as Pest24, which is composed of images where the insects get stuck after being

attracted, usually by pheromone lures. The selection of Pest24 for this research is motivated by the

need for a particular purpose dataset for sticky paper traps.

Pest24 [247] is selected for fine-tuning the teacher and training the student networks. The

dataset is divided into two classes for binary classification: Coleoptera (class 0) and Lepidoptera

(class 1). Some samples are shown in Fig. 6.8. Regarding the inference process for the student net-

works, the test is performed with two different datasets composed of images from in-field traps:

Pest24 and a test set from the original application in Argentina (ARG dataset) provided by Nectras.

Figure 6.8: Samples of Pest24 dataset [247].

86

Chapter 6 – Image analysis and highly demanding applications

6.3.3 CNN assessment

The teacher network is obtained through transfer learning technique. The framework to imple-

ment the learning process is Keras, which allows the VGG-16 model to be loaded with the weights

obtained from previous training with ImageNet. Regarding the hyperparameters, the Adam opti-

mizer is used with a learning rate of 0.001, and the regularizer in each layer is L2 with a factor of

0.0001. The batch size is 32, as is the number of epochs. However, an early stopping mechanism

is employed, which stops the training when the validation loss does not improve for five epochs

(where a change of 0.005 counts as no improvement), then the weights of the model are restored

when the loss starts to plateau. The confusion matrix for the teacher network is shown in Fig.

6.9. The final model size is 177.6Mb, making it challenging to implement in an embedded system.

Thus, a compressed student network is generated through the knowledge distillation technique.

For the distillation process, the loss is configured as KLDivergence, Adam optimizer with 0.0001,

batch size of 32, 128 epochs, an early stopping mechanism, and a callback monitor to reduce the

learning rate when a specific metric has stopped improving after five epochs. The L2 regularizer is

configured as in the teacher training. Pruning and quantization-aware training is performed.

Fig. 6.9 presents the confusion matrix for the student network (QStudentFPGA) tested on

Pest24 dataset, where high accuracy is noticed despite the compressed network.Nevertheless, the

potential of transfer learning can be observed when working with datasets directly related to an ap-

plication, as presented in Fig. 6.9 (QStudentFPGA ARG dataset). This could help in the early stages

of the implementation of this system. Indeed, in-field fine-tuning is unnecessary if the reduced

performances shown in matrix 3 in Fig. 6.9 are deemed acceptable.

Figure 6.9: Confusion matrix: VGG-16-based teacher (1), QStudentFPGA Pest24 dataset (2), QStu-
dentFPGA ARG dataset (3).

87

Chapter 6 – Image analysis and highly demanding applications

6.3.4 Implementation results

For the SoC-based FPGA deployment, the memory footprint is measured in terms of hardware

utilization (DSP, RAM, FF, and LUT). Therefore, the hls4ml package is employed to generate a high-

level synthesis project to map the inference into the programmable logic. Once the IP core is cre-

ated and integrated with the baseline hardware, the P & R reports provide the final resource uti-

lization. For this purpose, we employed architectures based on FPGA: Xilinx PYNQ-Z1 and KRIA,

considering a clock of 5ns. Table 6.6 presents the final resource utilization after P & R implemen-

tation, considering the whole hardware (inference IP core, processing system, DMA controller, AXI

interconnect, and reset system). Moreover, table 6.7 presents the resource utilization after place

and route implementation for the isolated inference IP core.

SoC-FPGA Fabric BRAM DSP FF LUT

KRIA 63 (22%) 20 (1.6%) 23920 (10.21%) 29772 (25.42%)

PYNQ-Z1 88 (63%) 26 (12%) 29441 (28%) 21543 (41%)

Table 6.6: Complete system. Utilization from P & R reports (post-implementation). Reports were
obtained with Vivado 2021.1.1.

SoC-FPGA Fabric BRAM DSP FF LUT

KRIA 58 (20%) 20 (1.6%) 16297 (7%) 24513 (21%)

PYNQ-Z1 81 (63%) 26 (12%) 24886 (28%) 17937 (41%)

Table 6.7: Isolated inference IP core. Utilization from P & R reports (post-implementation). Reports
were obtained with Vivado 2021.1.1.

6.4 Re-ranking algorithm

Section 6.4 is based on the works published in [248, 249]: [248] Romina Molina, Fernando Loor, Veronica Gil-Costa,
Franco Maria Nardini, Raffaele Perego, and Salvatore Trani. 2021. Efficient traversal of decision tree ensembles with
FPGAs. J. Parallel Distrib. Comput. 155, C (Sep 2021), 38–49; [249] Gil-Costa, V.; Loor, F.; Molina, R.; Nardini, F.; Perego,
R.; Trani, S. (2022). Ensemble Model Compression for Fast and Energy-Efficient Ranking on FPGAs. In: Advances in
Information Retrieval. ECIR 2022. Lecture Notes in Computer Science, vol 13185. Springer, Cham.. In collaboration
with the Consiglio Nazionale delle Ricerche (CNR) - ISTI in Pisa.

88

Chapter 6 – Image analysis and highly demanding applications

6.4.1 Information retrieval system

Given an input query and a database composed of documents (millions or billions of elements),

an information retrieval system is devoted to retrieve relevant documents for a given query. As

depicted in Fig. 6.10, the information retrieval system comprises several steps: retrieval, initial

ranking, re-ranking, and output of the final ranked documents.

RetrievalDatabase Initial ranking Final ranking

documents
Re-ranking

Query

Figure 6.10: Information retrieval.

The retrieval stage aims to retrieve documents for a given user query and should be scalable

and non-computationally expensive to facilitate data processing in subsequent stages. With a good

set of relevant documents, an initial ranking is performed to determine the order in which the

output will be presented to the user. In the final stage, a re-ranking operation of the candidates is

performed to consider additional criteria or constraints. Finally, ranked documents are delivered

to the user [250].

The information retrieval system is usually a part of web-scale search services deployed on

cluster infrastructures and designed to support a peak request stream of thousands of queries per

second. In this context, the database is distributed using redundancy strategies: each server holds

a portion of the data, and the same partition is replicated on several servers to improve data avail-

ability and throughput and support fault tolerance. The results of each query are computed in

parallel on all data partitions and are then merged and ranked for high precision using the ranking

model [249].

6.4.2 Re-ranking through an ensemble of decision trees

The learned models to be accelerated are the additive ensembles of decision trees. These models are

the most general and competitive solutions for several “difficult” tasks, such as ranking documents,

items, or posts in Web search engines, e-Commerce platforms, or online social networks. They

89

Chapter 6 – Image analysis and highly demanding applications

are generated by boosting meta-algorithms that iteratively learn decision trees by incrementally

optimizing a given loss function.

Owing to the incoming rate of requests and quality-of-service expectations, the traversal of

such tree ensembles for many input instances must be fast and completed within small budgets.

Because all these requirements are very challenging to fulfill, QS has been implemented on several

architectures, such as manycore/multicore [251] and GPU-based implementaiton [252]. In ad-

dition, SoC-based FPGA architectures have shown their ability to accelerate intensive computing

applications while saving power consumption, owing to their high parallelism and the architec-

ture’s reconfiguration capability. Therefore, the focus is on exploiting SoC-based FPGA features

to efficiently deploy QUICKSCORER (QS), the state-of-the-art algorithm for the traversal of large

tree ensembles [26, 27] constituting the de facto solution for the industrial deployment of complex

ranking ML models (e.g., see [253–256]); considering, in the future, the implementation in AWS F1

instances.

The ML tree ensemble encompasses several binary decision trees, as illustrated in the right-

most part of Fig. 6.11. The internal nodes of each ensemble tree are associated with a Boolean test

of the value of a specific feature that characterizes the input instance to be scored/predicted. Each

leaf node stores a value representing the contribution of a specific tree to the final prediction.

f1f0

increasing values

f|F|�1

num. leaves num. leaves num. leaves

num.leaves � num. trees

num. leaves

num. leaves

x[f0]  �0

x[f0]  �1 x[f0]  �2 x[f0]  �3x[f1]  �4

x[f1]  �5

leafvalues

mask
<latexit sha1_base64="H6xJ2snzI6WLKthWSd6i7gPSODY=">AAAB/3icbVC7TsNAEDyHVwivACXNiYBEFdkICcpINJRBIg8psaL1ZRNOOT+4WyMiKwVfQQsVHaLlUyj4F2zjAhKmGs3samfHi5Q0ZNufVmlpeWV1rbxe2djc2t6p7u61TRhrgS0RqlB3PTCoZIAtkqSwG2kE31PY8SaXmd+5R21kGNzQNELXh3EgR1IApZLbJ3wgosQHM5kNqjW7bufgi8QpSI0VaA6qX/1hKGIfAxIKjOk5dkRuApqkUDir9GODEYgJjLGX0gB8NG6Sh57x49gAhTxCzaXiuYi/NxLwjZn6XjrpA92aeS8T//N6MY0u3EQGUUwYiOwQSYX5ISO0TNtAPpQaiSBLjlwGXIAGItSSgxCpGKf1VNI+nPnvF0n7tO7Ydef6rNY4KpopswN2yE6Yw85Zg12xJmsxwe7YE3tmL9aj9Wq9We8/oyWr2Nlnf2B9fAN49ZcQ</latexit><latexit sha1_base64="H6xJ2snzI6WLKthWSd6i7gPSODY=">AAAB/3icbVC7TsNAEDyHVwivACXNiYBEFdkICcpINJRBIg8psaL1ZRNOOT+4WyMiKwVfQQsVHaLlUyj4F2zjAhKmGs3samfHi5Q0ZNufVmlpeWV1rbxe2djc2t6p7u61TRhrgS0RqlB3PTCoZIAtkqSwG2kE31PY8SaXmd+5R21kGNzQNELXh3EgR1IApZLbJ3wgosQHM5kNqjW7bufgi8QpSI0VaA6qX/1hKGIfAxIKjOk5dkRuApqkUDir9GODEYgJjLGX0gB8NG6Sh57x49gAhTxCzaXiuYi/NxLwjZn6XjrpA92aeS8T//N6MY0u3EQGUUwYiOwQSYX5ISO0TNtAPpQaiSBLjlwGXIAGItSSgxCpGKf1VNI+nPnvF0n7tO7Ydef6rNY4KpopswN2yE6Yw85Zg12xJmsxwe7YE3tmL9aj9Wq9We8/oyWr2Nlnf2B9fAN49ZcQ</latexit><latexit sha1_base64="H6xJ2snzI6WLKthWSd6i7gPSODY=">AAAB/3icbVC7TsNAEDyHVwivACXNiYBEFdkICcpINJRBIg8psaL1ZRNOOT+4WyMiKwVfQQsVHaLlUyj4F2zjAhKmGs3samfHi5Q0ZNufVmlpeWV1rbxe2djc2t6p7u61TRhrgS0RqlB3PTCoZIAtkqSwG2kE31PY8SaXmd+5R21kGNzQNELXh3EgR1IApZLbJ3wgosQHM5kNqjW7bufgi8QpSI0VaA6qX/1hKGIfAxIKjOk5dkRuApqkUDir9GODEYgJjLGX0gB8NG6Sh57x49gAhTxCzaXiuYi/NxLwjZn6XjrpA92aeS8T//N6MY0u3EQGUUwYiOwQSYX5ISO0TNtAPpQaiSBLjlwGXIAGItSSgxCpGKf1VNI+nPnvF0n7tO7Ydef6rNY4KpopswN2yE6Yw85Zg12xJmsxwe7YE3tmL9aj9Wq9We8/oyWr2Nlnf2B9fAN49ZcQ</latexit><latexit sha1_base64="H6xJ2snzI6WLKthWSd6i7gPSODY=">AAAB/3icbVC7TsNAEDyHVwivACXNiYBEFdkICcpINJRBIg8psaL1ZRNOOT+4WyMiKwVfQQsVHaLlUyj4F2zjAhKmGs3samfHi5Q0ZNufVmlpeWV1rbxe2djc2t6p7u61TRhrgS0RqlB3PTCoZIAtkqSwG2kE31PY8SaXmd+5R21kGNzQNELXh3EgR1IApZLbJ3wgosQHM5kNqjW7bufgi8QpSI0VaA6qX/1hKGIfAxIKjOk5dkRuApqkUDir9GODEYgJjLGX0gB8NG6Sh57x49gAhTxCzaXiuYi/NxLwjZn6XjrpA92aeS8T//N6MY0u3EQGUUwYiOwQSYX5ISO0TNtAPpQaiSBLjlwGXIAGItSSgxCpGKf1VNI+nPnvF0n7tO7Ydef6rNY4KpopswN2yE6Yw85Zg12xJmsxwe7YE3tmL9aj9Wq9We8/oyWr2Nlnf2B9fAN49ZcQ</latexit>

leafindexes

<latexit sha1_base64="pGBy+gkWQ4GNXo4rFKw8MlgJVAk=">AAAB/HicbVBNS8NAEN34WetXtEcvwSJ4KomIeix68VjBfkAbymYzaZZuPtidiCHUv+LFgyJe/SHe/Ddu2xy09cHA470ZZuZ5qeAKbfvbWFldW9/YrGxVt3d29/bNg8OOSjLJoM0SkcieRxUIHkMbOQropRJo5AnoeuObqd99AKl4Et9jnoIb0VHMA84oamlo1gYIj4hYYChBhYnw1WRo1u2GPYO1TJyS1EmJ1tD8GvgJyyKIkQmqVN+xU3QLKpEzAZPqIFOQUjamI+hrGtMIlFvMjp9YJ1rxrSCRumK0ZurviYJGSuWRpzsjiqFa9Kbif14/w+DKLXicZggxmy8KMmFhYk2TsHwugaHINaFMcn2rxUIqKUOdV1WH4Cy+vEw6Zw3nomHfndeb12UcFXJEjskpccglaZJb0iJtwkhOnskreTOejBfj3fiYt64Y5UyN/IHx+QMQz5Wv</latexit>

thresholds

<latexit sha1_base64="axaY5+5NSK4URqiCiWL83fW6+Fs=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16CRbBU0lE1GPRi8cKthaaEDabSbt088HuRFpC/4oXD4p49Y9489+4bXPQ1gcDj/dmmJkXZIIrtO1vo7K2vrG5Vd2u7ezu7R+Yh/WuSnPJoMNSkcpeQBUInkAHOQroZRJoHAh4DEa3M//xCaTiafKAkwy8mA4SHnFGUUu+WXcRxohYoARwfR6qqW827KY9h7VKnJI0SIm2b365YcryGBJkgirVd+wMvYJK5EzAtObmCjLKRnQAfU0TGoPyivntU+tUK6EVpVJXgtZc/T1R0FipSRzozpjiUC17M/E/r59jdO0VPMlyhIQtFkW5sDC1ZkFYIZfAUEw0oUxyfavFhlRShjqumg7BWX55lXTPm85l076/aLRuyjiq5JickDPikCvSInekTTqEkTF5Jq/kzZgaL8a78bForRjlzBH5A+PzBwFOlRA=</latexit>

tree ids

Figure 6.11: Data layout of the QS algorithm. From [248].

The QS algorithm 1 is composed by 3 main loops: mask initialization (MI_L), mask compu-

tation (MC_L), and score computation (SC_L). For details regarding QS algorithm, the reader can

refer to [26, 27].

90

Chapter 6 – Image analysis and highly demanding applications

Algorithm 1: QUICKSCORER [26, 248]
Input :
• x: input feature vector
• T : ensemble of binary decision trees, with

- thresholds: sorted sublists of thresholds, one sublist per feature
- tree_ids: tree’s ids, one per internal split node
- mask: node bitvectors, one per internal split node
- offsets: offsets of the blocks of triples
- leafindexes: result bitvectors of sizeΛ, one per each tree
- leafvalues: output values, one per each tree leaf

Output:
• Final score of x

1 QUICKSCORER(x,T):
2 foreach t ∈ 0,1, . . . , |T |−1 do // Mask Initialization (MI_L)
3 leafindexes[t]← 11 . . .11

4 foreach f ∈ 0,1, . . . , |F |−1 do // Mask Computation (MC_L)
5 i ← offsets[f]
6 end ← offsets[f +1]
7 while x[f] > thresholds[i] do
8 t ← tree_ids[i]
9 leafindexes[t]← leafindexes[t] ∧ mask[i]

10 i ← i +1
11 if i ≥ end then
12 break

13 scor e ← 0
14 foreach t ∈ 0,1, . . . , |T |−1 do // Score Computation (SC_L)
15 j ← index of leftmost bit set to 1 of leafindexes[t]
16 l ← t ·Λ+ j
17 scor e ← scor e +leafvalues[l]

18 return scor e

6.4.3 Towards the hardware implementation

The first QS hardware implementation was performed using a 32-bit floating point to obtain the

performance estimation of the baseline application. To this end, the algorithm was ported to

HLS tools (version 2019.1.1) by adding adequate directives and targeting the xczu9eg-ffvb1156-

2-e FPGA with a clock frequency of 200 MHz. To perform the validation of the created hardware,

a publicly available LtR dataset was used, namely MSLR-WEB30K-F1 (Fold 1)1 [257], hereinafter

abbreviated as MSN30K. The results of the hardware implementations are presented in Table 6.8,

for 100 and 1000 number of trees. Due to the dynamic loop bounds of the internal loop in MC_L,

HLS cannot accurately estimate the latency. Thus, a directive is added to force the tool to estimate

the maximum number of iterations. It can be seen how, as the number of trees increases, so does

latency.

1http://research.microsoft.com/en-us/projects/mslr/

91

Chapter 6 – Image analysis and highly demanding applications

HLS report

HD BRAM DSP FF LUT Latency min. Latency max.

A. 19 2 497 697 2181 [10.9 µs] 64481 [0.32 ms]

Utilization(%) 1.04 0.079 0.09 0.25 - -

B. 343 3 1619 1563 8348 [41.74 µs] 1568348 [7.84 ms]

Utilization(%) 18.8 0.12 0.29 0.57 - -

Table 6.8: Re-ranking algorithm - 32-bits floating-point version. Latency in clock cycles. The
acronyms used in the table are: HD: Hardware design. [A]QS 100 Trees. No directives. [B]. QS
1000 Trees. No directives. Reports obtained through Vivado HLS 2019.1.1.

As noticed, to have an improvement in latency, some strategies based on code restructuring

and memory footprint reduction should be implemented.

Binning and quantization strategies were used to reduce the memory occupation of ensemble

models on FPGA-based devices [249]. A 32-bit real value is stored in each leaf with a data type of 8-

bit unsigned integer for quantization, reducing 3/4 the space for storing the leaves of the ensemble.

As presented in [249], Fig. 6.12 shows the performance of the QS algorithm on the efficiency

of the scoring process through NDCG metric [258]. Two versions of QS were implemented: the

original version [26] and a new version supporting binned and quantized models. Both techniques

devoted to reducing the memory footprint do not significantly affect the ranking effectiveness.

92

Chapter 6 – Image analysis and highly demanding applications

0 100 200 300 400 500
Trees

0.500

0.505

0.510

0.515

0.520

0.525

ND
CG

@
10

Original (32 bit)
Quantized (8 bits)
Quantized (4 bits)

0 100 200 300 400 500
Number of Leaves

0

1

2

3

4

5

ND
CG

@
10

 \
M

B

64

64 128

128
256

256 512
512

Original
Binning+Quantization

Figure 6.12: λ-MART efficiency/effectiveness trade-off. Right: NDCG@10 per MB of model size.
Left: impact of quantization on NDCG@10. From [249].

The code restructuring technique is performed using several strategies. The MI_L is replaced

by a data structure previously initialized. Then, the while-loop inside MC_L loop is transformed

into a for-loop with variable bounds. Since HLS needs to know the size of the loop boundaries at

compile time, two versions are proposed: (i) MC_L with fixed lower and upper bounds, (ii) MC_L

is divided into four loops with fixed lower and upper bounds. Finally, MC_L and SC_L are divided

into two different functions. The high-level representation of the IP core based on QS is presented

in Fig. 6.13.

IP Core QS

Input Stream Output scorer

In
pu

t s
tr

ea
m

 to
ar

ra
y

O
ut

pu
t a

rr
ay

 to
st

re
am

QS

Mask
computation

Score
computationFeatures

Input vector

Figure 6.13: High-level representation of the QS IP core.

Table 6.9 presents the synthesis reports obtained using the HLS tools for the QS algorithm.

From [A] to [D] QS binned and quantized versions, and from [E] to [F] 32-bit floating-point im-

plementations. The best result is obtained with the hardware design [D] in terms of latency for a

clock @ 200 MHz. The BRAM for the model storage was reduced from 377 to 198, revealing the

impact of quantization. [D] has the loop MC_L divided by a factor of four, where each loop has a

93

Chapter 6 – Image analysis and highly demanding applications

PIPELINE II=1 directive, and array partitioning applied to the arrays input, output, tree_ids, thresh-

olds, masks, and feature_remap (presented in Fig. 6.11). These directives are the same applied to

the hardware design [F].

HLS report

HD BRAM DSP FF LUT Latency min. Latency max.

A. 188 2 1546 1647 10584 [52.9 µs] 3130584 [15.6 ms]

B. 188 0 1150 1621 2920 [14.6 µs] 1080992 [5.4 ms]

C. 188 0 499 1192 2784 [13.9 µs] 1091464 [5.5 ms]

D. 198 4 80252 39176 974 [4.9 µs] 282494 [1.42 ms]

E. 377 7 76406 38057 6569 [32.84 µs] 5584065 [27.9 ms]

F. 377 7 84937 44634 4895 [24.5 µs] 288319 [1.44 ms]

Table 6.9: Re-ranking algorithm. From [A] to [D] with binning and quantization strategies; [E] to
[F] 32 floating-point version. Latency in clock cycles. The acronyms used in the table are: HD:
Hardware design. [A]. No directives. Base implementation. [B]. No directives. One fixed loop [C].
No directives. Loop MC_L divided by a factor of four. [D]. Same case as [C], but with directives
applied. [E]. Floating-point with code restructuring. No directives. [F]. Floating-point with Loop
MC_L divided by a factor of four and directives.

6.5 Summary of the chapter

This chapter exposed three cases of study for image analysis and other highly demanding appli-

cations. It was observed how ad-hoc techniques, such as compression and machine learning, can

lead to optimal hardware implementation with a good compromise between efficiency, effective-

ness, memory footprint, and inference time. For all cases of study, a fully-on-chip deployment was

achieved.

The pulse shape discriminator was implemented through an MPL architecture, using the method-

ology presented in Section 2.2 to obtain an efficient classifier. This case study aimed to perform a

pulse shape discriminator in an electronic front-end for particle detection.

A CNN-based classifier for precision agriculture was developed for automatic pest classifica-

tion, exploiting compression techniques to reduce the application’s memory footprint. Moreover,

94

Chapter 6 – Image analysis and highly demanding applications

the potential of transfer learning when working with a dataset directly related to the application

was exposed, thereby facilitating the introduction of ML-based classifiers during the early stages

of implementing this type of system in the field. Nevertheless, changes in the external conditions

can impact the input images, leading to accuracy degradation over time.

Re-ranking algorithm for information retrieval was implemented, taking into account 32-bit

floating-point and 8-bit fixed-point data structures. Moreover, this case of study exhibited the

effect of code restructuring techniques when targeting SoC-based FPGA, showing their benefits

when targetting SoC-based FPGA devices. Moreover, this application is suitable for its acceleration

through high-end FPGAs and AWS-F1 instances.

The three applications proved the benefits of compression techniques when targetting SoC-

based FPGA to improve memory footprint and inference time.

The next chapter will present MARTE performance assessment.

95

Chapter 7

Experiments and results

This chapter presents the experiments and results related to the evaluation of MARTE, which is

obtained through assessing the cost models, DSE engine, runtime, and portability. Section 7.2

presents the metrics used to assess the overall performance, Section 7.4 discusses the performance

of the cost models for area and latency, considering basic (multiplication, matrix multiplication,

and FIR filter) and highly demanding applications (PSD based on MLP, CNN-based pest classifi-

cation, and re-ranking). Section 7.5 exposes the results of the MARTE DSE engine. Runtime and

compatibility are shown in Section 7.6 and 7.7, respectively.

7.1 Experimental setup

The experimental setup is composed of:

• CPU1: Intel Core i7 3.4GHZ 64GB RAM, GeForce GTX 1070.

• CPU2: Intel Core i7 9750H, 24GB RAM, GeForce GTX 1050.

• High-level synthesis tools: Vivado 2019.1.1 and Vitis 2021.1.1

• SoC: Kria KV260 Vision AI Starter Kit and ZCU102.

• Libraries: Python 3.9, hls4ml 0.6, QKeras 0.9, Keras-tuner 1.1.2, Keras 2.9, TensorFlow 2.4.1,

Pymoo 0.6.

96

Chapter 7 – Experiments and results

7.2 Metrics

When studying a system through a macro approach, the global behavior of the application and

its performance are measured. Based on this, to achieve MARTE performance evaluation, the

following metrics are employed:

• Prediction error (Per r or [%]): Because the total amount of each resource presented in the

FPGA (FF, LUT, DSP, and BRAM) differs from each other, the prediction error Per r or is mea-

sured as the absolute difference between the relative error corresponding to each resource

computed with the HLS tool RHLS and MARTE RM ART E . This relation is presented in Eq. 7.1.

RTR represents the total amount available for a given resource R.

Per r or =
∣∣∣∣RHLS ×100

RTR
− RM ART E ×100

RTR

∣∣∣∣ (7.1)

In this Chapter, RTR represents the available resources on KRIA board, presented in Table

7.1, with R corresponding to a specific resource: BRAM, DSP, LUT, or FF.

Kria KV260 - Available resources

BRAM DSP FF LUT

288 1248 234240 117120

Table 7.1: Available resources on Kria KV260 development board.

• Absolute difference (ADL [clk]): Defined as the absolute difference between the latency re-

ported by HLS tool and MARTE, as presented in Eq. 7.2 and measured in terms of clock

cycles [clk].

ADL = |LHLS −LM ART E | (7.2)

• Latency ratio (Lr ati o): is measured as the relation between the latency computed with the

HLS tool (LHLS) and the latency obtained with MARTE (LM ART E), as presented in the Eq. 7.3.

Lr ati o = LHLS

LM ART E
(7.3)

97

Chapter 7 – Experiments and results

• Running metric: allows observing the convergence of the system for EMO implementation,

showing the difference in the objective space between the different generations, and it is

used to evaluate the performance of the non-dominant solution set when the Pareto front is

unknown [259].

7.3 Basic applications

The pseudo-codes corresponding to the basic applications are presented in Algorithms 2, 3, and

4 for multiplication, matrix multiplication, and FIR filter, respectively, to assist the explanation of

the results presented in this Chapter.

Algorithm 2: Multiplication
Input :

• a: input vector 1

• b: input vector 2

Output:

• c: Final multiplication value between vectors a and b

1 Multiplicationa, b:

2 foreach i ∈ 0,1, . . . , |N|−1 do // Multiplication

3 c[i]← a[i]∗b[i]

4 return c

Algorithm 3: Matrix multiplication
Input :
• A[MAT_A_ROWS][MAT_A_COLS]: input matrix 1
• B[MAT_B_ROWS][MAT_B_COLS]: input matrix 2
Output:
• C[MAT_A_ROWS][MAT_A_COLS]: Output matrix

1 Matrix multiplicationA, B, C:
2 foreach i ∈ 0,1, . . . , |M AT _A_ROW S|−1 do // Row
3 foreach j ∈ 0,1, . . . , |M AT _B_COLS|−1 do // Col
4 C[i][j] ← 0
5 foreach k ∈ 0,1, . . . , |M AT _B_ROW S|−1 do // Product
6 C[i][j]← C[i][j] + A[i][k] × B[k][j]

7 return C

98

Chapter 7 – Experiments and results

Algorithm 4: FIR filter
Input :
• x: input signal
• c[N]: input coefficients
Output:
• ∗y: Output signal

1 shif_reg[N]
2 acc ← 0
3 data ← 0

4 FIR filter a, b, c:
5 foreach i ∈ N −1, . . . ,0 do // Shift_Accum_Loop
6 if i = 0 then

shift_reg[0] ← x

data ← x

7 else

shift_reg[0] ← shift_reg[i-1]

data ← shif_reg[i]

acc ← acc + acc × c[i]

8 *y ← acc;

7.4 MARTE performance evaluation

MARTE performance assessment is presented, considering the models for latency and area. The

results were obtained for the basic applications (multiplication, matrix multiplication, and FIR fil-

ter) and highly demanding applications (pulse shape discriminator, automatic pest classification,

and re-ranking), showing the comparison between the HLS tool and MARTE.

7.4.1 Analytical models for resource and latency estimation

This section presents the metric estimations obtained using MARTE and HLS tools for the basic

applications: multiplication, matrix multiplication, and finite impulse response (FIR) filter. It is

considered a precision of 32-bit floating point for data structures and manual setting of directives.

Tables 7.2, 7.4, and 7.6 present a comparison between the metric estimation using the HLS tool

and MARTE for DSP, BRAM, FF, LUT, and latency.

99

Chapter 7 – Experiments and results

Multiplication

HLS tool Model

HD BRAM DSP FF LUT Latency BRAM DSP FF LUT Latency

A. 0 5 238 202 51 0 5 205 196 51

B. 0 30 1282 1364 2 0 30 1324 1411 2

C. 0 3 305 228 15 0 3 226 207 13

Table 7.2: Metric estimation through HLS tool and MARTE for multiplication. The acronyms used
in the table are: HD: Hardware design. A. No directives. [B] Unroll and array partition complete.
[C] Pipeline II=1.

The corresponding Per r or , ADL , and Lr ati o are shown in Tables 7.3, 7.5, and 7.7. In these three

cases, the Per r or for the resource utilization was below 1% and the Lr ati o is lower than 2 for the

three applications.

Per r or [%]
ADL [clk] Lr ati o

HD BRAM DSP FF LUT

A. 0 0 0.014 0.005 0 1

B. 0 0 0.03 0.04 0 1

C. 0 0 0.033 0.018 2 1.15

Table 7.3: Per r or , ADL , and Lr ati o for multiplication. The acronyms used in the table are: HD:
Hardware design. [A]. No directives. [B] Unroll and array partition complete. [C] Pipeline II=1.

100

Chapter 7 – Experiments and results

Matrix multiplication

HLS tool Model

HD BRAM DSP FF LUT Latency BRAM DSP FF LUT Latency

A. 0 5 516 551 241 0 5 456 717 240

B. 0 5 931 677 153 0 5 1083 691 154

C. 0 5 1351 1435 44 0 5 1308 1418 48

D. 0 15 2883 2212 27 0 15 1803 1892 27

E. 0 15 2206 1959 28 0 15 1748 1896 27

Table 7.4: Metric estimation through HLS tool and MARTE for matrix multiplication. The
acronyms used in the table are: HD: Hardware design. [A]. No directives. [B] AP + Product Loop:
Pipeline II=3. [C] AP + Col Loop: Pipeline II=3. [D]. AP + Row Loop: Unroll Factor=2 [E]. AP + Row
Loop: Pipeline Factor=3.

Per r or [%]
ADL [clk] Lr ati o

HD BRAM DSP FF LUT

A. 0 0 0.026 0.142 0.415 1.004

B. 0 0 0.065 0.012 0.654 0.994

C. 0 0 0.018 0.015 9.091 0.917

D. 0 0 0.461 0.273 0.000 1.000

E. 0 0 0.196 0.054 3.571 1.037

Table 7.5: Per r or , ADL , Lr ati o and for matrix multiplication. The acronyms used in the table are:
HD: Hardware design. [A]. No directives. [B] AP + Product Loop: Pipeline II=3. [C] AP + Col Loop:
Pipeline II=3. [D]. AP + Row Loop: Unroll Factor=2 [E]. AP + Row Loop: Pipeline Factor=3.

101

Chapter 7 – Experiments and results

FIR filter

HLS tool Model

HD BRAM DSP FF LUT Latency BRAM DSP FF LUT Latency

A. 0 5 576 526 100 0 5 456 415 100

B. 0 5 667 578 40 0 5 540 419 40

C. 0 5 571 557 60 0 4 540 419 60

D. 0 5 913 910 36 0 5 890 870 35

Table 7.6: Metric estimation through HLS tool and MARTE for FIR filter. The acronyms used in
the table are: HD: Hardware design. [A]. No directives. [B]. Pipeline II = 3, [C]. Pipeline II = 5, [D].
Pipeline II = 3 + AP complete.

Per r or [%]
ADL [clk] Lr ati o

HD BRAM DSP FF LUT

A. 0.000 0.000 0.003 0.000 1.000 0.990

B. 0.000 0.000 0.051 0.095 0.000 1.000

C. 0.000 0.08 0.054 0.136 0.000 1.000

D. 0.000 0.000 0.010 0.034 0.107 1.029

Table 7.7: Per r or , ADL , and Lr ati o for FIR filter. The acronyms used in the table are: HD: Hardware
design. [A]. No directives. [B]. Pipeline II = 3, [C]. Pipeline II = 5, [D]. Pipeline II = 3 + AP complete.

7.4.2 Pulse shape discriminator: performance estimation

The implementation of the MLP architecture is performed using the hls4ml package to obtain the

HLS project, from which the corresponding IP core is generated to map the inference phase to the

FPGA. An 8-bit fixed point is used for the weights and bias of the MLP architecture. Because in

hls4ml the directives are fixed, a reuse factor (RF) of 1 was considered in this implementation.

Table 7.8 presents a comparison between metric estimation using the HLS tool and MARTE for

102

Chapter 7 – Experiments and results

DSP, BRAM, FF, and LUT. As presented in Table 7.9, the prediction error was below 2% for the FF

and LUTs, with a latency ratio of 1.1.

HLS tool Model

HD BRAM DSP FF LUT Latency BRAM DSP FF LUT Latency

A. 4 4 358 6035 10 4 4 739 7591 9

Table 7.8: Metric estimation through HLS tool and MARTE for pulse shape discriminator. The
acronyms used in the table are: HD: Hardware design. [A]. 8-bits fixed-point, reuse factor = 1.

Per r or [%]
ADL [clk] Lr ati o

HD BRAM DSP FF LUT

A. 0.000 0.000 0.163 1.328 1 1.1

Table 7.9: Per r or , ADL , and Lr ati o for pulse shape discriminator. The acronyms used in the table
are: HD: Hardware design. [A]. Reuse factor = 1,

Considering the resource utilization reported after place and route, Table 7.10 exhibits the pre-

diction error, showing that the highest value for LUT estimation, with a Per r or of 6.3%.

BRAM DSP FF LUT

Vivado (P & R) 2 17 64 218

MARTE 4 4 739 7591

Per r or [%] 0.69 1.04 0.283 6.3

Table 7.10: Pulse shape discriminator. Per r or considering MARTE estimation and place and route
report (Vivado 2021.1.1).

7.4.3 Automatic pest classification: performance estimation

In this implementation, 8-bit fixed point is considered for the weights and bias of the first two

layers of the CNN architecture, while the remainder layers are defined with 4-bit fixed point. Table

103

Chapter 7 – Experiments and results

7.11 presents a comparison between metric estimation using the HLS tool and MARTE for DSP,

BRAM, FF, and LUT, considering the manual setting of directives. As presented in Table 7.12, the

prediction error was below 1% for the DSP and FFs, while for BRAM and LUT was below 50%, with

a latency ratio of 0.92.

HLS tool Model

HD BRAM DSP FF LUT Latency BRAM DSP FF LUT Latency

A. 208 16 30480 71536 13477 64 21 29413 24582 14594

Table 7.11: Metric estimation through HLS tool and MARTE for automatic pest classification algo-
rithm. The acronyms used in the table are: HD: Hardware design. [A]. Reuse factor = 1.

Per r or [%]
ADL [clk] Lr ati o

HD BRAM DSP FF LUT

A. 49.31 0.401 0.58 41.381 1117 0.92

Table 7.12: Per r or , ADL , and Lr ati o for pest classification algorithm. The acronyms used in the
table are: HD: Hardware design. [A]. Reuse factor = 1.

Nevertheless, taking into consideration Table 6.7 from Section 6.3, it can be observed the lower

prediction error compared with the P & R results for KRIA device, exposed in Table 7.13.

BRAM DSP FF LUT

Vivado (P & R) 58 20 16297 24513

MARTE 64 21 29413 24582

Per r or [%] 2.083 0.08 5.6 0.06

Table 7.13: Automatic pest classification. Per r or considering MARTE estimation and P & R report
(Vivado 2021.1.1).

104

Chapter 7 – Experiments and results

7.4.4 Re-ranking algorithm: performance estimation

In this implementation, a 32-bit floating point is considered for the data structures for a re-ranking

algorithm composed by an ensemble of 100 trees. Table 7.14 presents a comparison between met-

ric estimation using the HLS tool and MARTE for DSP, BRAM, FF, and LUT, considering a manual

setting of directives. As presented in Table 7.15, the absolute percentage error is below 2% for FF

and LUTs, with a latency ratio of 1.025.

HLS tool Model

HD BRAM DSP FF LUT Latency BRAM DSP FF LUT Latency

A. 19 2 497 697 53379 19 2 508 466 52068

B. 19 2 579 852 53557 19 2 1218 789 52670

C. 17 2 13715 23651 126707 17 2 10556 21887 138703

Table 7.14: Metric estimation through HLS tool and MARTE for re-ranking algorithm. The
acronyms used in the table are: HD: Hardware design. [A]. No directives. [B]. Pipeline II=12 (loop
1.1) [C]. Pipeline II=12 (loop 1.1) + Pipeline II=6 (loop 2) + Array Partition complete

Per r or [%]
ADL [clk] Lr ati o

HD BRAM DSP FF LUT

A. 0.000 0.000 0.005 0.197 1,311 1.025

B. 0.000 0.000 0.273 0.054 887 1.017

C. 0.000 0.000 1.349 1.506 11,996 0.914

Table 7.15: Per r or , ADL , and Lr ati o re-ranking algorithm. The acronyms used in the table are: HD:
Hardware design. [A]. No directives. [B]. Pipeline II=12 (loop 1.1) [C]. Pipeline II=12 (loop 1.1) +
Pipeline II=6 (loop 2) + Array Partition complete

Table 7.16 presents the prediction error for the re-ranking algorithm, considering the estima-

tions reported by MARTE and the results after P & R, showing a Per r or lower than 3% for BRAM,

while the rest of the resources exhibit a Per r or below 1%.

105

Chapter 7 – Experiments and results

BRAM DSP FF LUT

Vivado (P & R) 11 2 754 976

MARTE 19 2 579 852

Per r or [%] 2.77 0 0.075 0.103

Table 7.16: Re-ranking (implementation of [B] option from Table 7.14). Per r or considering MARTE
estimation and P & R report (Vivado 2021.1.1).

7.4.5 Discussion

The results above showed that MARTE predicted the performance of the designs with a latency

ratio nearby. For the basic operations (multiplication, matrix multiplication, and FIR filter), the

prediction error was below 1%, estimating with high precision this metric.

Regarding the PSD for cosmic rays classification, the Per r or was below 2% for the comparison

between MARTE and HLS. Considering MARTE and P & R reports, Per r or was lower than 7% for

the LUT resource, which is one of the resources found in large quantities. For DSP and BRAM,

Per r or was below 2%.

For the automatic pest classification based on CNN architecture, the Per r or obtained for BRAM

and LUT was below 50%. Nevertheless, when comparing MARTE and P & R reports, the Per r or was

below 6% for FF and lower than 2% for BRAM.

Finally, for the re-ranking algorithm, Per r or for LUT and FF was below 2% when comparing

with HLS results and lower than 3% for BRAM considering P & R reports.

It is worth mentioning that MARTE does not execute the synthesis or place and route tools in

the prediction process. Moreover, MARTE was developed targetting HLS tool without considering

P & R reports.

7.5 Assessment of MARTE DSE engine

One of the challenges when developing a design space explorer is the ability for suggesting differ-

ent combinations of directives to obtain an optimal (or suboptimal) hardware design with a good

compromise between area and latency. MARTE, through the DSE engines, is able to propose to

the hardware developer a set of configuration, avoiding the execution of HLS in the loop for each

106

Chapter 7 – Experiments and results

of them.

This section presents the performance evaluation of the MARTE DSE engines. In the first

place, the assessment of the DSE based on a single-objective BO for latency optimization is pre-

sented. Subsequently, the results obtained through the DSE based on evolutionary multi-objective

optimization are exposed. To this end, multiplication, matrix multiplication, FIR filter, MLP, and

re-ranking applications are considered.

7.5.1 Assessment of the DSE engine based on BO

BO configuration: surrogate function: GP, acquisition function: EI, eliminate duplicates: enable,

termination criteria: 300 (maximum number of iterations).

The analysis of the DSE based on BO implemented as a single-objective optimization prob-

lem is presented, considering the directive combinations proposed by the explorer. The objective

function is the latency estimation, defined by the corresponding analytical model incorporated in

MARTE.

The objective space is presented in Fig. 7.1, considering multiplication, matrix multiplication,

and FIR filter applications. The red mark represents the values obtained through the HLS tool,

corresponding to the ones presented in Section 7.4.1, and the blue dots are the solutions retrieved

by the EMO DSE engine. For multiplication and matrix multiplication, the solutions reported with

HLS tools match with solutions in the objective space, with an error lower than 1% for the area and

with the values of latency near the HLS solutions. In the case of FIR filter, it can be remarked that

the solutions with higher values

107

Chapter 7 – Experiments and results

Figure 7.1: DSE based on BO. Objective space for multiplication, matrix multiplication, and FIR
filter.

Table 7.17 presents the configuration suggested by the DSE engine for each application.

Algorithm Best configuration - Latency optimization

Mult D = 2, uFactor = 10, AP = complete

Matrix mult AP = complete; (loop1:row) D = 2 uFactor = 2

FIR AP = block with factor 3; D = 1 II=3

MLP AP = complete , D=1 II=1 for each external loop (Product1, ResetAccum, Accum1, Result)

QS_100T_32FP
AP = complete (structures with less than 1000 elements)

D=1 II=13 (MC loop:product), D=1 II=6 (loop:SC)

Table 7.17: Configurations provided by MARTE DSE based on single-objective BO for latency op-
timization. The acronyms are: D=0 No directive, D=1 Pipeline, D=2 Unroll, AP: array partition.

108

Chapter 7 – Experiments and results

7.5.2 Assessment of the DSE engine based on EMO

NSGA-II configuration: Number of generations: 300, population size: 60, number of offspring: 5,

sampling: integer random, cross-over: simulated binary crossover (SBX) [260], mutation: polyno-

mial mutation (PM) [260], eliminate duplicates: enable, termination criteria: number of genera-

tions, seed: random initialization.

This section presents the analysis of the DSE based on EA implemented as a multi-objective

optimization problem. The objective functions are latency and area estimation, defined by the

corresponding analytical models. First, the convergence of the DSE is presented, followed by the

recommended directives for each application. Then, runtime and compatibility assessment are

exposed.

Convergence

The convergence of EMO DSE for the basic applications is presented in Fig. 7.2, obtained through

the running metric. The convergence is plotted every five generations (blue, orange, and green

lines corresponds to generations 5, 10, and 15 respectively). The algorithm significantly improved

for multiplication algorithm from the 2nd to the 3rd generation. Regarding matrix multiplication,

the progress to convergence is noticeable from the 8th to the 9th generation. In the case of the

FIR filter, the algorithm showed the first improvement from the 3rd to the 5th generation. Mul-

tiplication and FIR filter applications took lesser generations to reach a stable value than matrix

multiplication.

109

Chapter 7 – Experiments and results

Figure 7.2: Running metric. Convergence EMO DSE for basic applications.

Fig. 7.3 presents the convergence curves for the highly demanding applications. The PSD based

on MLP algorithm shows an increase in the convergence between generations until the 9th. After

this, the curve exhibits a fast improvement until the 10th generation, leading to the algorithm’s

convergence. For the re-ranking application, the first improvement was initiated from the 3rd to

the 4th generation. Then, the progress to convergence continued until the 12th generation. Then,

the improvement tends to be constant. The algorithms converged fast in the first four generations

in the basic applications. Regarding the highly demanding applications, convergence was reached

after nine generations.

110

Chapter 7 – Experiments and results

Figure 7.3: Running metric. Convergence EMO DSE for highly demanding applications.

High-performance configuration

A desirable functionality for a DSE engine is the suggestion of a suitable combination of directives

with a good trade-off between latency and area. Table 7.18 presents the configuration suggested by

MARTE for each application when de DSE engine is based on EMO.

Algorithm Best configuration - Latency-area optimization

Mult D = 2, uFactor = 10, AP = complete

Matrix mult (loop3) D = 2 , uFactor = 2 , AP = complete

FIR D = 1, AP = 3, uFactor = 1

MLP
AP = complete , D = 1 II = 1 for each external loop (Product1, ResetAccum, Accum1, Result)

D = 2 for each internal loop (Product2, Acumm2)

QS (MC loop:outer_loop) D=1, II=20; (SC loop) D=1, II=8

Table 7.18: MARTE EMO DSE efficient configurations. The acronyms are: D=0 No directive, D=1
Pipeline, D=2 Unroll, AP: array partition.

The objective spaces are presented in Fig. 7.4, considering multiplication, matrix multiplica-

tion, and FIR filter applications. The red mark represents the values obtained through HLS tool,

presented in Section 7.4.1, and the blue dots represent the solutions retrieved by the EMO DSE en-

gine. As can be noticed, the difference between blue and red marks is lower than 0.25% in the case

of the area and lesser than two clock cycles in regard to the latency.

111

Chapter 7 – Experiments and results

Figure 7.4: Objective space EMO DSE for basic applications.

Fig. 7.5 shows the objective space for the highly demanding applications. As the optimization

algorithm searches for the optimal solution, the final objective space may include some possible

(non-optimal) solutions. Fig. 7.5 presents The objective space retrieved for the re-ranking algo-

rithm. The red marks, placed in a value for area around 20%, represent the solutions obtained

manually by tuning the directives. These are not optimal because they imply an increment of area

and latency. Hence, the DSE engine avoids retrieving them. The same behavior appears for matrix

multiplication in the objective space from Fig. 7.4.

112

Chapter 7 – Experiments and results

Figure 7.5: Objective space EMO DSE for MLP and pre-ranking algorithms.

From the objective spaces presented in Fig. 7.4, 7.5, it can be noted that MARTE obtains with

high precision the solutions that have the lowest latency of the explored space.

The variability of the retrieved objective space can be associated with the genetic operations

(mutation, crossover, selection), that may need to be adjusted for each application if the complete

set of optimal solutions need to be obtained [28]. Given that this research aims to obtain a set

of solutions that serve as a starting point to avoid manual exploration of the search space, the

retrieved solutions present a good compromise between latency and area.

7.6 MARTE runtime analysis

An essential aspect of DSE is the time to explore the whole design space (or a section of it), retriev-

ing a set of feasible solutions. Table 7.19 presents the runtime obtained with the different tools:

single-objective BO, EMO, EMO without termination, MARTE single estimation, and HLS single

execution (directives applied). Even if the DSE based on EA and BO proposed reasonable solu-

tions, BO is slower than both EA implementations (with and without termination criterion). In this

experiment, a section of the search space was sampled considering that DSE engines comprises 2

objective functions and 3 different variables per loop linked with the directives (3 type of directive,

II value, and UF).

Considering the MLP application, HLS took 58.58 seconds to obtain the resource estimation

with directives applied to obtain the highest parallelization level (unroll, pipelining at top-level

113

Chapter 7 – Experiments and results

function, and array partition). In contrast, for the same scenario, MARTE took 0.033 seconds to

perform the performance estimation. Regarding the DSE engine, to find a set of feasible solutions,

MARTE DSE employed 235 seconds with termination criterion, representing a smaller runtime

compared to HLS execution to obtain one single estimation.

Application Single-objective BO EMO EMO nT MARTE single estimation HLS single execution

Mult 434 83.18 9.31 0.015 7.91

Matrix mult 207 332 83.21 0.004 8.56

FIR 358 71.4 8.52 0.025 4.87

MLP 187.68 235 35.6 0.033 58.58

QS_100T_32FP 479 180.7 22.4 0.02 8.51

Table 7.19: Runtime measured in seconds. HLS single execution with directives. Single-objective
BO with stopping-criterion 100 iterations.

7.7 MARTE compatibility analysis

One of the main challenges for a performance estimator is that it should guarantee compatibility

among different HLS tool versions. For this assessment, the target device was xczu9eg-ffvb1156-2-

e, considering a target clock of 5ns. The available resources for the device are presented in Table

7.20. In addition, the hardware developer should check the inherent rules related to the use of

directives and the HLS tool version.

ZCU102 - Available resources

BRAM DSP FF LUT

1824 2520 548160 274080

Table 7.20: Available resources on ZCU102 development board.

Table 7.21 compares MARTE and the results obtained with Vivado HLS 2019.1.1, using only

the basic cases (multiplication, matrix multiplication, and FIR filter) to demonstrate its portability

among different versions, and the corresponding Per r or and Lr ati o are shown in Table 7.22. The

114

Chapter 7 – Experiments and results

latter shows that the Per r or is below 0.5%, while the Lr ati o is lesser than 1.5. The use of micro-

benchmarks helps to grant compatibility among different HLS tool versions.

HLS tool Model

Multiplication

HD BRAM DSP FF LUT Latency BRAM DSP FF LUT Latency

A. 0 3 268 222 81 0 3 205 209 79

B. 0 30 1515 1483 4 0 30 1345 1411 4

C. 0 3 395 282 18 0 3 251 213 13

Matrix multiplication

HD BRAM DSP FF LUT Latency BRAM DSP FF LUT Latency

D. 0 5 616 629 430 0 5 542 590 432

E. 0 5 1320 912 57 0 5 1300 801 59

F. 0 30 3675 3081 32 0 30 2760 2956 31

FIR filter

HD BRAM DSP FF LUT Latency BRAM DSP FF LUT Latency

G. 0 5 699 583 177 0 5 528 522 179

H. 0 3 922 1070 63 0 5 1034 814 63

I. 0 3 662 760 63 0 5 610 532 64

Table 7.21: Comparison results between MARTE and Vivado HLS 2019.1.1, targetting xczu9eg-
ffvb1156-2-e part. The acronyms used in the table are: HD: Hardware design. Multiplication: [A].
No directives, [B] AP + Unroll. [C] Pipeline II=1, Matrix Multiplication: [D]. No directives. [E].
Pipeline II=3 (Loop: Col) + AP. [F]. Pipeline II=3 (Loop: Row) + AP. FIR filter: [G]. No directives. [H].
Pipeline II = 3 + AP complete. [I]. Pipeline II = 3.

115

Chapter 7 – Experiments and results

Error

Multiplication

Per r or [%]
ADL [clk] Lr ati o

HD BRAM DSP FF LUT

A. 0 0 0.011 0.005 2 1.03

B. 0 0 0.031 0.026 0 1.00

C. 0 0 0.026 0.025 5 1.38

Matrix multiplication

D. 0 0 0.013 0.014 2 0.99

E. 0 0 0.004 0.040 2 0.97

F. 0 0 0.167 0.046 1 1.03

FIR filter

G. 0 0 0.031 0.022 2 0.98

H. 0 0.079 0.020 0.093 0 1.00

I. 0 0.079 0.010 0.083 1 0.98

Table 7.22: Per r or , ADL , and Lr ati o for the basic applications considering MARTE and Vivado HLS
2019.1.1. The acronyms used in the table are: HD: Hardware design. Multiplication: [A]. No direc-
tives, [B] AP + Unroll. [C] Pipeline II=1. Matrix Multiplication: [D]. No directives. [E]. Pipeline II=3
(Loop: Col) + AP. [F]. Pipeline II=3 (Loop: Row) + AP. FIR filter: [G]. No directives. [H]. Pipeline II =
3 + AP complete. [I]. Pipeline II = 3.

7.8 Summary of the chapter

This chapter presented MARTE performance assessment, considering basic and highly demand-

ing applications for evaluating the cost models, DSE engines, runtime, and compatibility.

116

Chapter 7 – Experiments and results

The results regarding analytical models for resource and latency estimation, compared with

HLS tool, exhibited a prediction error lesser than 1% for resource utilization and a latency ratio

below 2 for the basic applications. At the same time, the evaluation of MARTE for PSD, CNN, and

QS reported a prediction error lesser than 2% for area estimation and a latency ratio below 1 for

PSD and QS. Nevertheless, for CNN algorithm, the prediction error was near 49%. However, when

compared MARTE with P & R reports for the highly demanding applications, the prediction error

was below 6.3% for LUT and FF, which are the most abundant resources.

Furthermore, MARTE estimated the latency for all the applications with high precision be-

cause the ratio obtained was near 1, compared with HLS tool.

DSE engines based on single- and multi-objective optimization were evaluated when provid-

ing hardware designs with a good compromise between area and latency. One of the differences

between both engines was the runtime to obtain a set of feasible solutions, being DSE-based on

EMO the fastest. This behavior was possible because of the use of MARTE cost models in the de-

sign exploration loop instead of the HLS tool to synthesize each design point. Nevertheless, one of

the essential things to reaching the balance between execution time and exploration-exploitation

of the search space is the high accuracy that should have the cost models.

Since one of the main drawbacks of evolutionary algorithms is that the search can stop at a local

minimum, the single-objective optimization based on BO acts as a redundant algorithm to explore

the search space, which increases the runtime. Furthermore, the different genetic operators allow

a better convergence, trying to prevent the algorithm from remaining at a local minimum.

Given that this research aims to obtain a set of solutions that serve as a starting point to avoid

the manual exploration of the search space, the retrieved solutions by MARTE present a good com-

promise between latency and area, considering both DSE sub-engines. Furthermore, the results of

compatibility and runtime show the benefits of using the design flow to improve productivity when

designing efficient hardware through HLS tools.

The next chapter will present the integration of MARTE with the Roofline model.

117

Chapter 8

Integration of MARTE with the state of

the art

This chapter presents the integration of MARTE with Roofline, the leading parallel computing

model adapted to FPGA architectures, showing the benefits of performing this combination. The

target application is the pulse shape discriminator based on MLP architecture.

8.1 Roofline Model

Roofline is a parallel computing model adapted for FPGA architectures, as introduced in Sec-

tion 3.2.5. This model can be considered complementary to MARTE because it provides informa-

tion regarding operational intensity and attainable performance, avoiding the direct estimation

of latency and resource utilization. Based on this assumption, this chapters present the integra-

tion between MARTE and Roofline. MARTE is employed to estimate the latency and the resource

utilization of a PE. When working with neural networks, Roofline model can provide information

about the size of the network, the trade-off between FPGA hardware resources linked to the attain-

able performance, and the impact on the overall system due to quantization.

The peak performance PC is re-defined in terms of the total number of operations nop and the

desired frequency f for the programmable logic, linked to the ideal implementation, as it is shown

Section 8 is the result of an intership relized on October 2022 at NECST Laboratory, Dipartimento di Elettronica,
Informazione e Bioingengeria (DEIB), Politecnico di Milano.

118

Chapter 8 – Integration of MARTE with the state of the art

in the Eq. 8.1.

PC =∑
nop × f (8.1)

The horizontal roof depends on the computational performance, and with SoC-FPGA archi-

tectures, it is a dynamic roof tied to the algorithm and resource utilization. For a given kernel, the

performance cannot be higher than that of the horizontal roof because that is the hardware limit.

The computational intensity (CI) links the algorithm to the architecture. It is computed as the

ratio between the sum of the arithmetic, indexing, and comparison operations and the memory

traffic (read and write operations). The last parameter is associated with the number of bytes that

should be read or written during the computations. Hence, the number of operations is linked to

the resources available in the FPGA.

The Roofline model is constructed using the information provided by MARTE when the ap-

plication is based on DNN and implemented using hls4ml. The tree data structure is the input

of MARTE, which is used to estimate the latency and resource utilization. Hence, the roof of the

Roofline model is tied to the hardware required to implement the DNN on the FPGA.

Furthermore, the weights and biases of the DNN models are stored in the on-chip memory,

reducing the bandwidth pressure and shifting the bottleneck to the available computational re-

sources inside the chip.

With hls4ml, the most affected resource for computation is the number of DSPs. Nevertheless,

the resource utilization is modified when the reuse factor increases: DSPs are exchanged with LUTs.

Therefore, two plots based on roofline can be obtained: one linked to DSP utilization and the other

to LUTs, since both resources affect the position of the horizontal roof, tied with the attainable

performance. The hardware resource constraints the optimal performance with the highest ratio,

affecting the replication factor for a given PE.

8.1.1 Pulse shape discriminator

The Roofline model is constructed to analyze the attainable performance for each distilled archi-

tecture, as presented in Table 6.1 of Section 6.2.

The slope of the plot gives information about the memory bandwidth, correlated with the de-

vice’s throughput. For an UltraScale+ ZCU102 development board, the theoretical DDR through-

119

Chapter 8 – Integration of MARTE with the state of the art

put is 2400 MT/s × 64-bit, and this theoretical performance for ZCU102 is larger than the available

throughput of a single AXI port. In practice, 75% of the theoretical value is considered. The ag-

gregated throughput between the PS and PL is 12.8 GB/s (four AXI ports at 2x1.6 GB/s each) [261].

For the PSD implementation presented in this Chapter, the throughput corresponds to one of the

high-performance (HP0) ports.

The Roofline model is adapted with the aim of assisting the hardware developer in selecting

the distilled network to be deployed on the SoC-based FPGA, selecting the ideal implementation

in hardware as the starting point: maximum precision and no data dependencies. Therefore, the

ideal upper bound for attainable performance is established [127]. As a starting point, Fig. 8.1

presents the attainable performance of each student’s architecture from Table 6.1 considering 32-

bit floating-point.

Figure 8.1: Roofline model for MLP-based models targeting ZCU102 platform.

For an FPGA/SoC implementation with data structures defined in 32-bit floating point, the

peak performance is affected mainly by DSP and multiply-accumulate operations. Based on this,

the hardware developer can choose to implement the one with the highest performance to exploit

the architecture or one with lower performance if design constraints limit the application.

Once the student network is selected, and due to that hls4ml supports fixed-point operations

and data structures, the Roofline is generated for 32-bit fixed-point precision.

Furthermore, for 32-bit fixed-point precision, the latency and resource utilization associated

with each elementary arithmetic operation are presented in Table 8.1, considering multiplication

120

Chapter 8 – Integration of MARTE with the state of the art

and addition, which are the most used operations in an MLP architecture.

Operation BRAM DSP LUT FF Clock cycles

Multiplication - 3 20 0 1

Addition - 0 39 0 1

Table 8.1: Resource and latency estimation for the elementary operations obtained through HLS
tool, considering 32-bits fixed point precision.

The Roofline model has the y-axis defined in GFLOPs/sec, which directly correlates with the

resource utilization of the FPGA/SoC device. From this premise, the y-axis can be adapted to fixed-

point operations per second, which means that the y-axis is redefined as GFPOPs/sec.

The peak performance defines the roof of the new Roofline, linked to the hardware implemen-

tation and the platform. Fig. 8.2 presents the attainable performance of the M1 model defined

with 32-bit fixed-point precision. As can be noticed, the M1’s roof is distant from the peak perfor-

mance because, in this case, it is tied to the multiply-accumulate operations and their impact on

DSP utilization.

Figure 8.2: Roofline model for MLP M1 model 32-bit fixed-point precision, targeting ZCU102 plat-
form.

Fig. 8.3 presents the impact of the RF for the 32-bit fixed-point implementation. By varying the

121

Chapter 8 – Integration of MARTE with the state of the art

RF in the hls4ml package, the attainable performance of the model will decrease. This means that,

for the same computational intensity, fewer DSPs will be needed, allowing the implementation

of the application in low-end devices without losing accuracy but compromising performance in

terms of latency.

The position of the horizontal roof is linked to the RF and the DSPs, impacting the resource

utilization for a given SoC-based FPGA. The highest performance is achieved for a ruse factor of

1, which corresponds to the plot presented in Fig. 8.2, while the lower position of the roof corre-

sponds to a reuse factor of 32.

Figure 8.3: Roofline model for MLP M1 model 32-bit fixed-point precision, targeting ZCU102 plat-
form. Reuse factor impact in the attainable performance.

Fig. 8.4 presents the relationship between the reuse factor and the latency for ZCU102 and

Zedboard devices, showing that increasing the reuse factor implies an increase in latency.

122

Chapter 8 – Integration of MARTE with the state of the art

Figure 8.4: Reuse factor vs latency for MLP architecture.

Moreover, the scalability of the system is affected by RF, which means that the PE can be repli-

cated in the PL part at expenses of resource utilization and, in consequence, latency. This can

be observed in Fig. 8.5 for ZCU102 and Zedboard devices. The difference in resource utilization

between both architectures is evident, while it is possible to replicate the PE by a factor of 35 for

ZCU102, in the case of the Zedboard is a factor of 6. This exposes the effect of the RF showing that

the same architecture can be deployed in high- and low-end FPGA architectures.

Figure 8.5: Reuse factor vs scalability for MLP architecture.

123

Chapter 8 – Integration of MARTE with the state of the art

8.2 Discussion

As presented in Chapter 4.1, contributions in the literature such as [125,127] showed the benefits of

the Roofline model applied to FPGA/SoC devices, to estimate the attainable performance. Accord-

ing to Section 3.3, a parallel computing model can be coupled with a performance estimator for

FPGA/SoC, where latency and area are the main metrics to optimize. Thus, the estimator provides

the information needed to build the parallel model, specially when the target architecture is based

on reconfigurable logic.

In the particular case of Roofline, MARTE is executed for modeling the FPGA logic, estimating

the resource utilization and the latency for a given application, avoiding the execution of the syn-

thesis process in the estimation flow. Thus, the combination of both estimators allows obtaining

the attainable performance of the system, improving the productivity of the developers.

Moreover, MARTE includes parts of COMBA [85] in the cost models for latency and area, ex-

posing the potentiality when combining existing estimators in the literature, improving the pro-

ductivity cycles of the hardware designer.

8.3 Summary of the chapter

This chapter presented the integration between MARTE and Roofline model, the leading parallel

computing model adapted to FPGA architectures. This combination allows observing the attain-

able performance and operational intensity considering latency and resource estimation obtained

through MARTE.

In addition, when considering DNN implementations, information about the ML model, the

impact of quantization, and the trade-off between FPGA resources (mainly DSP and LUT) can be

inferred from MARTE and Roofline.

Based on the presented results, this combination can be improved by ...

124

Chapter 9

Conclusions

This thesis presented the use of SoC-based FPGA architectures for image analysis and other highly

demanding applications focused on obtaining efficient hardware designs through HLS tools. Thus,

two complementary strategies were considered: using ad-hoc techniques and performance esti-

mators.

Regarding ad-hoc techniques, three highly demanding applications were accelerated through

HLS tools: pulse shape discriminator for cosmic rays, automatic pest classification, and re-ranking

for information retrieval. It was observed how ad-hoc techniques, such as compression and ma-

chine learning, can lead to optimal hardware implementation with a good compromise between

efficiency, effectiveness, memory footprint, and inference time. For all the cases of study, a fully-

on-chip deployment was achieved through HLS tools, considering code restructuring and directive

selection to obtain a hardware design with a good trade-off between latency and resource utiliza-

tion.

Furthermore, the use of a methodology for DNN compression based on hyperparameter tun-

ing, quantization, pruning, and knowledge distillation allowed the implementation of efficient

classifiers in applications based on neural networks.

Regarding each application, it can be said that:

• The pulse shape discriminator was implemented through an MPL architecture, aimed to per-

form the signal classification in an electronic front-end for particle detection, obtaining an

inference time of 14 clock cycles for ZCU102 board @ 200 MHz.

• A CNN-based classifier for precision agriculture for automatic pest classification was intro-

125

Chapter 9 – Conclusions

duced, showing the potential of transfer learning when working with a dataset directly re-

lated to the application, with a compression ratio of 7409x, in the number of parameters, for

the student architecture. In this application, the on-chip deployment stressed the LUT re-

source with 21% of utilization, which means a reduced memory footprint on an embedded

system.

• A re-ranking algorithm for information retrieval was implemented, taking into account 32-

bit floating-point and 8-bit fixed-point data structures. Moreover, this study case exhibited

the benefits of code restructuring techniques when targeting SoC-based FPGA.

The different applications exhibited the benefits of compression techniques when targetting

SoC-based FPGA to improve memory footprint and inference time.

Regarding the second strategy focused on performance estimators, to bridge the gap between

the application and FPGA/SoC architecture, MARTE was proposed as a compressive performance

estimator for reconfigurable hardware accelerators. MARTE is composed of a cost model and a

DSE engine. The former aims to predict the objective functions of latency (clock cycles) and area

(defined by LUT, BRAM, DSP, and FF), considering directives for loop handling and array partition-

ing, typically employed to improve latency, performance, throughput, and area. The DSE engine is

based on two sub-engines to explore the design space: one based on single-objective BO and one

based on EMO, retrieving a set of feasible solutions for the user. A set of rules defined in the HLS

tool guided the search space exploration.

Since one of the main drawbacks of evolutionary algorithms is that the search can stop at a

local minimum, the single-objective optimization based on BO acts as a redundant algorithm to

explore the search space at the expense of an increase in the runtime. Furthermore, the different

genetic operators allow a better convergence, trying to prevent the algorithm from remaining at a

local minimum. Nevertheless, DSE based on EMO can converge quickly to solutions with a good

compromise between latency and area. This research was focused on obtaining performance esti-

mations at the macro level and fast convergence to obtain a set of feasible solutions that can assist

the developer in increasing productivity in the early stages of the designs. From this premise and

based on the obtained results, it can be affirmed that DSE based on EMO is a suitable approach.

The results showed that MARTE predicted the designs’ performance with a latency ratio nearby

one. For the basic operations (multiplication, matrix multiplication, and FIR filter), the Per r or was

126

Chapter 9 – Conclusions

below 1%.

Regarding the highly demanding applications, for the PSD, the Per r or was below 2% for the

comparison between MARTE and HLS. Considering MARTE and P & R reports, Per r or was lower

than 7% for LUT resource, which is one of the resources found in large quantities; for DSP and

BRAM, Per r or was below 2%. For the automatic pest classification based on CNN architecture, the

Per r or obtained for BRAM and LUT was below 50%. Nevertheless, when comparing MARTE and P

& R reports, the Per r or was below 6% for FF and lower than 2% for BRAM. Finally, for the re-ranking

algorithm, Per r or for LUT and FF was below 2% when comparing with HLS results and lower than

3% for BRAM considering P & R reports.

Furthermore, one way of granting compatibility between MARTE and different versions of HLS

tools is through micro-benchmarks and the adequate incorporation of the HLS rules.

In this research, obtaining a set of solutions that serve as a starting point is desirable to avoid

the manual exploration of the search space. The retrieved solutions by MARTE present a good

compromise between latency and area, considering both DSE sub-engines. Furthermore, the re-

sults of compatibility and runtime show the benefits of using the design flow to improve produc-

tivity when designing efficient hardware through HLS tools.

In addition, it was presented the feasibility of the integration of MARTE with Roofline model,

the leading parallel computing model adapted to FPGA architectures.

Based on the presented research, it can be said that it is possible to develop a methodology

for SoC-based FPGA architectures composed of analytical models and integrated with a DSE en-

gine based on mathematical programming, guiding the exploration process through HLS rules to

estimate performance metrics, while improving the productivity of the hardware developers.

9.1 Future directions

As future research can be considered:

• Integration of MARTE in strategies to perform compression of ML-based models, being able

to adapt the ML models to the hardware in the training step.

• Extend the compression methodology to other types of ML architectures.

• Integration of MARTE with other parallel computing models, such as BSP.

127

Chapter 9 – Conclusions

• Exploration of others solvers and methods for DSE based on EMO.

• Inclusion of more directives and modes to MARTE, to have a robust estimator.

• Generation of a library that includes MARTE so that it can be accessed by the developers and

easily integrated into the design flow.

• Automation of the source code translation into the tree data structure.

• Verification of MARTE’s functionality with other cases of study.

• Creation of a custom mechanism to balance the exploitation-exploration phase in single-

and multi-objective optimization.

128

Bibliography

[1] R. S. Molina, V. Gil-Costa, M. L. Crespo, and G. Ramponi, “High-level synthesis hardware

design for fpga-based accelerators: Models, methodologies, and frameworks,” IEEE Access,

vol. 10, pp. 90 429–90 455, 2022.

[2] Z. Wan, B. Yu, T. Y. Li, J. Tang, Y. Zhu, Y. Wang, A. Raychowdhury, and S. Liu, “A survey of

FPGA-based robotic computing,” CoRR, vol. abs/2009.06034, 2020.

[3] M. Bakiri, C. Guyeux, J.-F. Couchot, and A. K. Oudjida, “Survey on hardware implementa-

tion of random number generators on FPGA : Theory and experimental analyses,” Computer

Science Review, vol. 27, pp. 135 – 153, 2018.

[4] A. Ebrahimi and M. Zandsalimy, “Evaluation of FPGA hardware as a new approach for accel-

erating the numerical solution of CFD problems,” IEEE Access, vol. 5, pp. 9717 – 9727, 2017.

[5] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, “[DL] a survey of FPGA-based neural network in-

ference accelerators,” ACM Transactions on Reconfigurable Technology and Systems, vol. 12,

no. 1, 2019.

[6] R. Nane, V. M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen, H. Hsiao, S. D. Brown,

F. Ferrandi, J. H. Anderson, and K. Bertels, “A survey and evaluation of FPGA high-level syn-

thesis tools,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems, vol. 35, no. 10, pp. 1591–1604, 2016.

[7] X. Inc., “Vivado design suite user guide: High-level synthesis. UG-902,” 2020.

[8] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. A. Vissers, and Z. Zhang, “High-level synthesis

for FPGAs: From prototyping to deployment,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 30, no. 4, pp. 473–491, 2011.

129

Chapter 9 – BIBLIOGRAPHY

[9] Intel Corp., “Intel high level synthesis compiler, best practices guide. UG-20107,” 2020.

[10] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson, S. D. Brown, and T. S.

Czajkowski, “LegUp: high-level synthesis for FPGA-based processor/accelerator systems,” in

International Symposium on Field Programmable Gate Arrays, FPGA, 2011, pp. 33–36.

[11] C. Pilato and F. Ferrandi, “Bambu: A modular framework for the high level synthesis of

memory-intensive applications,” in International Conference on Field programmable Logic

and Applications, FPL, 2013, pp. 1–4.

[12] R. Nane, V. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen, H. Hsiao, S. Brown, F. Ferrandi,

J. Anderson, and K. Bertels, “A survey and evaluation of FPGA high-level synthesis tools,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 35,

no. 10, pp. 1591–1604, 2016.

[13] Y. Liang, K. Rupnow, Y. Li, D. Min, M. Do, and D. Chen, “High-level synthesis: Productivity,

performance, and software constraints,” Electrical and Computer Engineering, vol. 2012, pp.

649 057:1–649 057:14, 2012.

[14] Khronos OpenCL Working Group, The OpenCL Specification, Version 1.1, 2011.

[15] C. Kessler and J. Keller, “Models for parallel computing: Review and perspectives,” Mitteilun-

gen - Gesellschaft für Informatik e.V., Parallel-Algorithmen und Rechnerstrukturen, vol. 24,

pp. 13–29, 2007.

[16] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. van der Laak,

B. van Ginneken, and C. I. Sánchez, “A survey on deep learning in medical image analysis,”

Medical Image Analysis, vol. 42, pp. 60–88, 2017.

[17] S. Li, W. Song, L. Fang, Y. Chen, P. Ghamisi, and J. A. Benediktsson, “Deep learning for hy-

perspectral image classification: An overview,” IEEE Transactions on Geoscience and Remote

Sensing, vol. 57, no. 9, pp. 6690–6709, 2019.

[18] H. Jang and J.-S. Lee, “Analysis of deep features for image aesthetic assessment,” IEEE Access,

vol. 9, pp. 29 850–29 861, 2021.

130

Chapter 9 – BIBLIOGRAPHY

[19] M. Feickert and B. Nachman, “A living review of machine learning for particle physics,” CoRR,

vol. abs/2102.02770, 2021.

[20] A. M. Deiana, N. Tran, J. Agar, M. Blott, G. D. Guglielmo, J. Duarte, P. C. Harris, and

S. H. et al., “Applications and techniques for fast machine learning in science,” CoRR, vol.

abs/2110.13041, 2021.

[21] S. L. Brunton, B. R. Noack, and P. Koumoutsakos, “Machine learning for fluid mechanics,”

Annual Review of Fluid Mechanics, vol. 52, no. 1, pp. 477–508, 2020.

[22] S. I. Venieris, A. Kouris, and C. Bouganis, “Toolflows for mapping convolutional neural net-

works on FPGAs: A survey and future directions,” ACM Computing Surveys, vol. 51, no. 3, pp.

56:1–56:39, 2018.

[23] A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi, and J. Kepner, “Survey and bench-

marking of machine learning accelerators,” in 2019 IEEE high performance extreme comput-

ing conference (HPEC). IEEE, 2019, pp. 1–9.

[24] A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi, and J. Kepner, “Survey of machine

learning accelerators,” in 2020 IEEE high performance extreme computing conference (HPEC).

IEEE, 2020, pp. 1–12.

[25] I. Sidelnik, H. Asorey, L. Collaboration et al., “Lago: the latin american giant observatory,”

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers,

Detectors and Associated Equipment, vol. 876, pp. 173–175, 2017.

[26] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto, and R. Venturini,

“QuickScorer: A fast algorithm to rank documents with additive ensembles of regression

trees,” in Proceedings of the 38th International ACM SIGIR Conference on Research and De-

velopment in Information Retrieval, 2015, pp. 73–82.

[27] D. Dato, C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto, and R. Venturini,

“Fast ranking with additive ensembles of oblivious and non-oblivious regression trees,” ACM

Trans. Inf. Syst., vol. 35, no. 2, pp. 15:1–15:31, 2016.

131

Chapter 9 – BIBLIOGRAPHY

[28] B. C. Schäfer and Z. Wang, “High-level synthesis design space exploration: Past, present,

and future,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 39, no. 10, pp. 2628–2639, 2020.

[29] Q. Xu, T. Mytkowicz, and N. S. Kim, “Approximate computing: A survey,” IEEE Design Test,

vol. 33, no. 1, pp. 8–22, 2016.

[30] Q. Huang, R. Lian, A. Canis, J. Choi, R. Xi, S. Brown, and J. Anderson, “The effect of compiler

optimizations on high-level synthesis for FPGAs,” in Annual International Symposium on

Field-Programmable Custom Computing Machines, 2013, pp. 89–96.

[31] Z.-H. Zhou, Machine learning. Springer Nature, 2021.

[32] P. R. Norvig and S. A. Intelligence, “Artificial intelligence: A modern approach,” Prentice Hall

Upper Saddle River, NJ, USA: Rani, M., Nayak, R., & Vyas, OP (2015). An ontology-based adap-

tive personalized e-learning system, assisted by software agents on cloud storage. Knowledge-

Based Systems, vol. 90, pp. 33–48, 2002.

[33] S.-C. Wang, Artificial Neural Network. Springer US, 2003.

[34] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization.” Journal of

machine learning research, vol. 13, no. 2, 2012.

[35] F. Friedrichs and C. Igel, “Evolutionary tuning of multiple svm parameters,” Neurocomput-

ing, vol. 64, pp. 107–117, 2005.

[36] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization of machine learn-

ing algorithms,” Advances in neural information processing systems, vol. 25, 2012.

[37] J. Wu, X.-Y. Chen, H. Zhang, L.-D. Xiong, H. Lei, and S.-H. Deng, “Hyperparameter optimiza-

tion for machine learning models based on bayesian optimization,” Journal of Electronic Sci-

ence and Technology, vol. 17, no. 1, pp. 26–40, 2019.

[38] B. Shekar and G. Dagnew, “Grid search-based hyperparameter tuning and classification of

microarray cancer data,” in 2019 Second international conference on advanced computa-

tional and communication paradigms (ICACCP). IEEE, 2019, pp. 1–8.

132

Chapter 9 – BIBLIOGRAPHY

[39] M. A. Amirabadi, M. H. Kahaei, and S. A. Nezamalhosseini, “Novel suboptimal approaches

for hyperparameter tuning of deep neural network [under the shelf of optical communica-

tion],” Physical Communication, vol. 41, p. 101057, 2020.

[40] A. H. Victoria and G. Maragatham, “Automatic tuning of hyperparameters using bayesian

optimization,” Evolving Systems, vol. 12, no. 1, pp. 217–223, 2021.

[41] T. Aarrestad, V. Loncar, N. Ghielmetti, M. Pierini, S. Summers, J. Ngadiuba, C. Petersson,

H. Linander, Y. Iiyama, G. Di Guglielmo, J. Duarte, P. Harris, D. Rankin, S. Jindariani, K. Pedro,

N. Tran, M. Liu, E. Kreinar, Z. Wu, and D. Hoang, “Fast convolutional neural networks on

fpgas with hls4ml,” Machine Learning: Science and Technology, vol. 2, no. 4, 7 2021.

[42] T. Choudhary, V. Mishra, A. Goswami, and J. Sarangapani, “A comprehensive survey on model

compression and acceleration,” Artificial Intelligence Review, vol. 53, no. 7, pp. 5113––5155,

October 2020.

[43] H. Qin, R. Gong, X. Liu, X. Bai, J. Song, and N. Sebe, “Binary neural networks: A survey,”

Pattern Recognition, vol. 105, p. 107281, 2020.

[44] C. Buciluǎ, R. Caruana, and A. Niculescu-Mizil, “Model compression,” in Proceedings of the

12th ACM SIGKDD international conference on Knowledge discovery and data mining, 2006,

pp. 535–541.

[45] G. E. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” CoRR,

vol. abs/1503.02531, 2015.

[46] T. Liang, J. Glossner, L. Wang, S. Shi, and X. Zhang, “Pruning and quantization for deep neural

network acceleration: A survey,” Neurocomputing, vol. 461, pp. 370–403, 2021.

[47] P. Ganesh, Y. Chen, X. Lou, M. A. Khan, Y. Yang, H. Sajjad, P. Nakov, D. Chen, and M. Winslett,

“Compressing large-scale transformer-based models: A case study on BERT,” Transactions

of the Association for Computational Linguistics, vol. 9, pp. 1061–1080, 2021.

[48] C. Buciluundefined, R. Caruana, and A. Niculescu-Mizil, “Model compression,” in Proceed-

ings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining. Association for Computing Machinery, 2006, pp. 535––541.

133

Chapter 9 – BIBLIOGRAPHY

[49] B. Hawks, J. Duarte, N. J. Fraser, A. Pappalardo, N. Tran, and Y. Umuroglu, “Ps and qs:

Quantization-aware pruning for efficient low latency neural network inference,” Frontiers

in Artificial Intelligence, vol. 4, p. 676564, 2021.

[50] S. Francescato, S. Giagu, F. Riti, G. Russo, L. Sabetta, and F. Tortonesi, “Model compression

and simplification pipelines for fast deep neural network inference in fpgas in hep,” The Eu-

ropean Physical Journal C, vol. 81, p. 969, 11 2021.

[51] R. S. Molina, L. G. Garcia, I. R. Morales, M. L. Crespo, G. Ramponi, S. Carrato, A. Cicuttin, and

H. Perez, “Compression of NN-based pulse-shape discriminators in front-end electronics

for particle detection,” in Lecture Notes in Electrical Engineering. Springer International

Publishing, 2022, pp. 93–99.

[52] J. Duarte, S. Han, P. Harris, S. Jindariani, E. Kreinar, B. Kreis, J. Ngadiuba, M. Pierini, R. Rivera,

N. Tran et al., “Fast inference of deep neural networks in fpgas for particle physics,” Journal

of Instrumentation, vol. 13, no. 07, p. P07027, 2018.

[53] G. Urban, K. J. Geras, S. E. Kahou, O. Aslan, S. Wang, R. Caruana, A. Mohamed, M. Philipose,

and M. Richardson, “Do deep convolutional nets really need to be deep and convolutional?”

arXiv preprint arXiv:1603.05691, 2016.

[54] M. W. Jeter, Mathematical programming: an introduction to optimization. Routledge, 2018.

[55] K. Deb, “Multi-objective optimization,” in Search methodologies. Springer, 2014, pp. 403–

449.

[56] C. A. C. Coello, G. B. Lamont, D. A. Van Veldhuizen et al., Evolutionary algorithms for solving

multi-objective problems. Springer, 2007, vol. 5.

[57] S. Alarie, C. Audet, A. E. Gheribi, M. Kokkolaras, and S. Le Digabel, “Two decades of blackbox

optimization applications,” EURO Journal on Computational Optimization, vol. 9, p. 100011,

2021.

[58] P. I. Frazier, “Bayesian optimization,” in Recent advances in optimization and modeling of

contemporary problems. Informs, 2018, pp. 255–278.

134

Chapter 9 – BIBLIOGRAPHY

[59] W. Gan, Z. Ji, and Y. Liang, “Acquisition functions in bayesian optimization,” in 2021 2nd In-

ternational Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE).

IEEE, 2021, pp. 129–135.

[60] S. Greenhill, S. Rana, S. Gupta, P. Vellanki, and S. Venkatesh, “Bayesian optimization for adap-

tive experimental design: A review,” IEEE Access, vol. 8, pp. 13 937–13 948, 2020.

[61] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas, “Taking the human out of

the loop: A review of bayesian optimization,” Proceedings of the IEEE, vol. 104, no. 1, pp.

148–175, 2016.

[62] T. Bartz-Beielstein, J. Branke, J. Mehnen, and O. Mersmann, “Evolutionary algorithms,” Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 4, no. 3, pp. 178–195,

2014.

[63] S. Das, B. K. Panigrahi, and S. S. Pattnaik, “Nature inspired methods for multi-objective op-

timization,” in Handbook of Research on Machine Learning Applications and Trends: Algo-

rithms, Methods, and Techniques. IGI Global, 2010, pp. 95–108.

[64] H. Du, Z. Wang, W. Zhan, and J. Guo, “Elitism and distance strategy for selection of evolu-

tionary algorithms,” IEEE Access, vol. 6, pp. 44 531–44 541, 2018.

[65] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast elitist non-dominated sorting genetic

algorithm for multi-objective optimization: Nsga-ii,” in International conference on parallel

problem solving from nature. Springer, 2000, pp. 849–858.

[66] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic

algorithm: Nsga-ii,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–

197, 2002.

[67] K. D. Tran, “Elitist non-dominated sorting ga-ii (nsga-ii) as a parameter-less multi-objective

genetic algorithm,” in Proceedings. IEEE SoutheastCon, 2005., 2005, pp. 359–367.

[68] A. Zhou, B.-Y. Qu, H. Li, S.-Z. Zhao, P. N. Suganthan, and Q. Zhang, “Multiobjective evolu-

tionary algorithms: A survey of the state of the art,” Swarm and evolutionary computation,

vol. 1, no. 1, pp. 32–49, 2011.

135

Chapter 9 – BIBLIOGRAPHY

[69] S. Verma, M. Pant, and V. Snasel, “A comprehensive review on nsga-ii for multi-objective

combinatorial optimization problems,” IEEE Access, vol. 9, pp. 57 757–57 791, 2021.

[70] K. Deb, “Multi-objective optimisation using evolutionary algorithms: an introduction,” in

Multi-objective evolutionary optimisation for product design and manufacturing. Springer,

2011, pp. 3–34.

[71] D. R. F. de Bulnes, Y. Maldonado, and L. Trujillo, “Development of multiobjective high-level

synthesis for FPGAs,” Scientific Programming, vol. 2020, pp. 7 095 048:1–7 095 048:25, 2020.

[72] Z. Zeng, R. Sedaghat, and A. Sengupta, “A novel framework of optimizing modular com-

puting architecture for multi objective VLSI designs,” in 2009 International Conference on

Microelectronics-ICM, 2009, pp. 328–331.

[73] Y. Ma, S. Roy, J. Miao, J. Chen, and B. Yu, “Cross-layer optimization for high speed adders: A

pareto driven machine learning approach,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 38, no. 12, pp. 2298–2311, 2018.

[74] D. Roy and A. Sengupta, “Low overhead symmetrical protection of reusable ip core using ro-

bust fingerprinting and watermarking during high level synthesis,” Future Generation Com-

puter Systems, vol. 71, pp. 89–101, 2017.

[75] L. Piccolboni, P. Mantovani, G. D. Guglielmo, and L. P. Carloni, “Broadening the exploration of

the accelerator design space in embedded scalable platforms,” in High Performance Extreme

Computing Conference (HPEC), 2017, pp. 1–7.

[76] R. Resmi and B. B. T. Sundari, “Allocation of optimal reconfigurable array using graph merg-

ing technique,” in 2014 International Conference on Embedded Systems (ICES), 2014, pp. 49–

54.

[77] D. H. Ram, M. Bhuvaneswari, and S. Logesh, “A novel evolutionary technique for multi-

objective power, area and delay optimization in high level synthesis of datapaths,” in Annual

Symposium on Computer Society VLSI, 2011, pp. 290–295.

136

Chapter 9 – BIBLIOGRAPHY

[78] A. Sengupta, R. Sedaghat, and P. Sarkar, “A multi structure genetic algorithm for integrated

design space exploration of scheduling and allocation in high level synthesis for DSP ker-

nels,” Swarm and Evolutionary Computation, vol. 7, pp. 35–46, 2012.

[79] A. Sengupta, R. Sedaghat, and P. Sarkar, “Rapid exploration of integrated scheduling and

module selection in high level synthesis for application specific processor design,” Micro-

process. Microsyst., vol. 36, no. 4, pp. 303—-314, 2012.

[80] B. C. Schafer and K. Wakabayashi, “Design space exploration acceleration through operation

clustering,” IEEE Transactions on computer-aided design of integrated circuits and systems,

vol. 29, no. 1, pp. 153–157, 2009.

[81] B. C. Schafer, T. Takenaka, and K. Wakabayashi, “Adaptive simulated annealer for high level

synthesis design space exploration,” in 2009 International Symposium on VLSI Design, Au-

tomation and Test, 2009, pp. 106–109.

[82] C. Lattner and V. Adve, “LLVM: a compilation framework for lifelong program analysis amp;

transformation,” in International Symposium on Code Generation and Optimization, 2004.

CGO 2004., 2004, pp. 75–86.

[83] LLVM Developer Group, “Clang.” [Online]. Available: https://clang.llvm.org

[84] L. Huang, D. Li, K. Wang, T. Gao, and A. Tavares, “A survey on performance optimization of

high-level synthesis tools,” Journal of Computer Science and Technology, vol. 35, pp. 697–720,

2020.

[85] J. Zhao, L. Feng, S. Sinha, W. Zhang, Y. Liang, and B. He, “COMBA: A comprehensive model-

based analysis framework for high level synthesis of real applications,” in International Con-

ference on Computer-Aided Design (ICCAD), pages=430–437, year=2017, doi = 10.1109/IC-

CAD.2017.8203809.

[86] Y.-k. Choi and J. Cong, “HLS-based optimization and design space exploration for applica-

tions with variable loop bounds,” in International Conference on Computer-Aided Design (IC-

CAD), 2018, pp. 1–8.

137

Chapter 9 – BIBLIOGRAPHY

[87] J. S. Monson and B. L. Hutchings, “Using source-level transformations to improve high-

level synthesis debug and validation on FPGAs,” in International Symposium on Field-

Programmable Gate Arrays, 2015, pp. 5–8.

[88] C. Li, Y. Bi, Y. Benezeth, D. Ginhac, and F. Yang, “High-level synthesis for FPGAs: code op-

timization strategies for real-time image processing,” Real-Time Image Processing, vol. 14,

no. 3, pp. 701–712, 2018.

[89] R. Campos and J. M. Cardoso, “On data parallelism code restructuring for HLS targeting FP-

GAs,” in International Parallel and Distributed Processing Symposium Workshops (IPDPSW),

2021, pp. 144–151.

[90] J. de Fine Licht, M. Besta, S. Meierhans, and T. Hoefler, “Transformations of high-level syn-

thesis codes for high-performance computing,” IEEE Trans. Parallel Distrib. Syst., vol. 32,

no. 5, pp. 1014—-1029, may 2021.

[91] A. C. Ferreira and J. M. Cardoso, “Graph-based code restructuring targeting HLS for FPGAs,”

in International Symposium on Applied Reconfigurable Computing, 2019, pp. 230–244.

[92] J. de Fine Licht, M. Besta, S. Meierhans, and T. Hoefler, “Transformations of high-level

synthesis codes for high-performance computing,” IEEE Transactions on Parallel and Dis-

tributed Systems, vol. 32, no. 5, pp. 1014–1029, 2021.

[93] M. Quoc Hoang, P. Luu Nguyen, H. Viet Tran, H. Quan Nguyen, V. Thang Nguyen, and C. Vo-

Le, “FPGA oriented compression of DNN using layer-targeted weights and activations quan-

tization,” in Eighth International Conference on Communications and Electronics (ICCE),

2021, pp. 157–162.

[94] Q. Zhang, J. Cao, Y. Zhang, S. Zhang, Q. Zhang, and D. Yu, “FPGA implementation of quan-

tized convolutional neural networks,” in International Conference on Communication Tech-

nology (ICCT), 2019, pp. 1605–1610.

[95] P. Bacchus, R. Stewart, and E. Komendantskaya, “Accuracy, training time and hardware effi-

ciency trade-offs for quantized neural networks on FPGAs,” in International symposium on

applied reconfigurable computing, 2020, pp. 121–135.

138

Chapter 9 – BIBLIOGRAPHY

[96] X. Xu, Q. Lu, T. Wang, Y. Hu, C. Zhuo, J. Liu, and Y. Shi, “Efficient hardware implementation of

cellular neural networks with incremental quantization and early exit,” Journal on Emerging

Technologies in Computing Systems, vol. 14, no. 4, pp. 1–20, 2018.

[97] S. A. Cook and R. A. Reckhow, “Time-bounded random access machines,” Symposium on

Theory of Computing, vol. 7, no. 4, pp. 354–375, 1972.

[98] S. Fortune and J. Wyllie, “Parallelism in random access machines,” in Symposium on Theory

of Computing, 1978, pp. 114–118.

[99] P. B. Gibbons, “A more practical PRAM model,” in Symposium on Parallel Algorithms and

Architectures, SPAA, 1989, pp. 158–168.

[100] L. G. Valiant, “A bridging model for parallel computation,” Communications of the ACM,

vol. 33, no. 8, p. 103–111, 1990.

[101] M. Kechid and J. Myoupo, “Towards a more realistic bsp cost model,” in Eighth International

Conference on High-Performance Computing in Asia-Pacific Region (HPCASIA’05), 2005, pp.

10–12.

[102] L. Valiant, “A bridging model for multi-core computing,” Journal of Computer and System

Sciences, vol. 77, no. 1, pp. 154–166, 2011.

[103] A. Goldchleger, A. Goldman, U. Hayashida, and F. Kon, “The implementation of the BSP par-

allel computing model on the InteGrade Grid Middleware,” in International Workshop on

Middleware for Grid Computing, ser. MGC ’05, 2005, pp. 1—-6.

[104] V. Allombert, F. Gava, and J. Tesson, “Toward performance prediction for Multi-BSP programs

in ML,” in International Conference on Algorithms and Architectures for Parallel Processing,

2018, pp. 159–174.

[105] G. Trabes, V. Gil-Costa, M. Printista, and M. Marin, “Multi-BSP vs. BSP: A case of study for

dell AMD multicores,” in Euromicro International Conference on Parallel, Distributed and

Network-based Processing (PDP), 2018, pp. 579–587.

[106] A. Savadi, M. Moradi, and H. Deldari, “Multi-DaC programming model: A variant of Multi-

BSP model for divide-and-conquer algorithms,” 2012, pp. 41—-46.

139

Chapter 9 – BIBLIOGRAPHY

[107] M. Alaniz and S. Nesmachnow, “A semi-automatic approach for parallel problem solving us-

ing the Multi-BSP model,” Programming and Computer Software, vol. 45, no. 8, pp. 517–531,

2019.

[108] Z. Zeng and X. Sun, “Electric vehicle regional management system based on the BSP model

and multi-information fusion,” Systems Science & Control Engineering, vol. 9, no. sup1, pp.

114–121, 2021.

[109] X. Zhao, M. Papagelis, A. An, B. X. Chen, J. Liu, and Y. Hu, “ZipLine: an optimized algo-

rithm for the elastic bulk synchronous parallel model,” Machine Learning, vol. 110, no. 10,

pp. 2867–2903, 2021.

[110] K. Siddique, Z. Akhtar, H. Lee, W. Kim, and Y. Kim, “Toward bulk synchronous parallel-based

machine learning techniques for anomaly detection in high-speed big data networks,” Sym-

metry, vol. 9, no. 9, p. 197, 2017.

[111] X. Zhao, M. Papagelis, A. An, B. X. Chen, J. Liu, and Y. Hu, “Elastic bulk synchronous parallel

model for distributed deep learning,” in International Conference on Data Mining, ICDM,

2019, pp. 1504–1509.

[112] M. Amaris, D. Cordeiro, A. Goldman, and R. Y. De Camargo, “A simple bsp-based model to

predict execution time in GPU applications,” in International Conference on High Perfor-

mance Computing (HiPC), 2015, pp. 285–294.

[113] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E. Schauser, E. E. Santos, R. Subramonian,

and T. von Eicken, “LogP: Towards a realistic model of parallel computation,” in SIGPLAN

Symposium on Principles & Practice of Parallel Programming (PPOPP), 1993, pp. 1–12.

[114] A. Nomura, H. Matsuba, and Y. Ishikawa, “Network performance model for TCP/IP based

cluster computing,” in International Conference on Cluster Computing, 2007, pp. 194–203.

[115] “LogGP: Incorporating long messages into the LogP model for parallel computation,” Paral-

lel and Distributed Computing, vol. 44, no. 1, pp. 71–79, 1997.

[116] C. Moritz and M. Frank, “LoGPG: Modeling network contention in message-passing pro-

grams,” Transactions on Parallel and Distributed Systems, vol. 12, no. 4, pp. 404–415, 2001.

140

Chapter 9 – BIBLIOGRAPHY

[117] T. Touyama and S. Horiguchi, “Performance evaluation of practical parallel computation

model LogPQ,” in Proceedings Fourth International Symposium on Parallel Architectures, Al-

gorithms, and Networks (I-SPAN’99), 1999, pp. 216–221.

[118] T. Kielmann, H. E. Bal, and K. Verstoep, “Fast measurement of LogP parameters for message

passing platforms,” in Parallel and Distributed Processing IPDPS, vol. 1800, 2000, pp. 1176–

1183.

[119] L. Li, X. Zhang, J. Feng, and X. Dong, “mPlogP: A parallel computation model for heteroge-

neous multi-core computer,” in International Conference on Cluster, Cloud and Grid Com-

puting, 2010, pp. 679–684.

[120] G. Liu, Y. Wang, T. Zhao, J. Gu, and D. Li, “mHLogGP: A parallel computation model for

cpu/gpu heterogeneous computing cluster,” vol. 7513, 2012, pp. 217–224.

[121] J. L. Roda, F. Sande, C. Leon, J. A. Gonzalez, and C. Rodriguez, “The collective computing

model,” in Euromicro Workshop on Parallel and Distributed, 1999, pp. 19–26.

[122] S. Williams, A. Waterman, and D. A. Patterson, “Roofline: an insightful visual performance

model for multicore architectures,” Commun. ACM, vol. 52, no. 4, pp. 65–76, 2009.

[123] C. Yang, T. Kurth, and S. Williams, “Hierarchical roofline analysis for GPUs: Accelerating per-

formance optimization for the NERSC-9 Perlmutter system,” Concurrency and Computation:

Practice and Experience, vol. 32, 2020.

[124] C. Yang, Y. Wang, T. Kurth, S. Farrell, and S. Williams, “Hierarchical roofline performance

analysis for deep learning applications,” in Intelligent Computing, 2021, pp. 473–491.

[125] B. da Silva, A. Braeken, E. H. D’Hollander, and A. Touhafi, “Performance modeling for FP-

GAs: Extending the roofline model with high-level synthesis tools,” International Journal of

Reconfigurable Computing, vol. 2013, pp. 428 078:1–428 078:10, 2013.

[126] B. da Silva, A. Braeken, E. H. D’Hollander, A. Touhafi, J. G. Cornelis, and J. Lemeire, “Com-

paring and combining GPU and FPGA accelerators in an image processing context,” in 23rd

International Conference on Field programmable Logic and Applications, FPL 2013, Porto,

Portugal, September 2-4, 2013, 2013, pp. 1–4.

141

Chapter 9 – BIBLIOGRAPHY

[127] M. Siracusa, L. Di Tucci, M. Rabozzi, S. Williams, E. D. Sozzo, and M. D. Santambrogio, “A

CAD-based methodology to optimize HLS code via the roofline model,” in International

Conference on Computer-Aided Design, 2020.

[128] N. Kapre and H. Patel, “Applying models of computation to opencl pipes for FPGA comput-

ing,” in International Workshop on OpenCL, IWOCL 2017, 2017, pp. 9:1–9:4.

[129] M. Hora, V. Koncický, and J. Tetek, “Theoretical model of computation and algorithms for

FPGA-based hardware accelerators,” CoRR, vol. abs/1807.03611, 2018.

[130] E. Calore and S. F. Schifano, “Performance assessment of FPGAs as HPC accelerators using

the FPGA empirical roofline,” in 2021 31st International Conference on Field-Programmable

Logic and Applications (FPL), 2021, pp. 83–90.

[131] T. Nguyen, S. Williams, M. Siracusa, C. MacLean, D. Doerfler, and N. J. Wright, “The per-

formance and energy efficiency potential of FPGAs in scientific computing,” in Performance

Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS),

2020, pp. 8–19.

[132] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proceedings of the IEEE, vol. 75,

no. 9, pp. 1235–1245, 1987.

[133] Y. Choi and J. Cong, “HLScope: High-level performance debugging for FPGA designs,”

in Annual International Symposium on Field-Programmable Custom Computing Machines

(FCCM), 2017, pp. 125–128.

[134] Y. Choi, P. Zhang, P. Li, and J. Cong, “HLScope+ : Fast and accurate performance estimation

for FPGA HLS,” in International Conference on Computer-Aided Design, ICCAD, 2017, pp.

691–698.

[135] K. Papadimitriou, A. Dollas, and S. Hauck, “Performance of partial reconfiguration in FPGA

systems: A survey and a cost model,” ACM Transactions on Reconfigurable Technology and

Systems, vol. 4, no. 4, pp. 36:1–36:24, 2011.

142

Chapter 9 – BIBLIOGRAPHY

[136] S. Wang, Y. Liang, and W. Zhang, “FlexCL: An analytical performance model for OpenCL

workloads on flexible FPGAs,” in Annual Design Automation Conference, DAC, 2017, pp. 27:1–

27:6.

[137] H. Mohammadi Makrani, F. Farahmand, H. Sayadi, S. Bondi, S. M. Pudukotai Dinakarrao,

H. Homayoun, and S. Rafatirad, “Pyramid: Machine learning framework to estimate the op-

timal timing and resource usage of a high-level synthesis design,” in International Conference

on Field Programmable Logic and Applications FPL, 2019, pp. 397–403.

[138] F. Farahmand, A. Ferozpuri, W. Diehl, and K. Gaj, “Minerva: Automated hardware optimiza-

tion tool,” in International Conference on ReConFigurable Computing and FPGAs (ReConFig),

2017, pp. 1–8.

[139] Z.-k. Wang, B. He, W. Zhang, and S. Jiang, “A performance analysis framework for optimizing

OpenCL applications on FPGAs,” in International Symposium on High Performance Com-

puter Architecture, HPCA, 2016, pp. 114–125.

[140] C. Larman and V. R. Basili, “Iterative and incremental developments. a brief history,” IEEE

Computer, vol. 36, no. 6, pp. 47–56, 2003.

[141] Y. Nasser, J. Lorandel, J.-C. Prévotet, and M. Hélard, “Rtl to transistor level power modeling

and estimation techniques for FPGA and ASIC: A survey,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 40, no. 3, pp. 479–493, 2021.

[142] J. Lorandel, J.-C. Prévotet, and M. Hélard, “Efficient modelling of FPGA-based IP blocks us-

ing neural networks,” in 2016 International Symposium on Wireless Communication Systems

(ISWCS), 2016, pp. 571–575.

[143] A. N. Tripathi and A. Rajawat, “An accurate and quick ann-based system-level dynamic power

estimation model using LLVM IR profiling for FPGA designs,” Embedded Systems Letters,

vol. 12, no. 2, pp. 58–61, 2020.

[144] G. Verma, T. Singhal, R. Kumar, S. Chauhan, S. Shekhar, B. Pandey, and D. M. A. Hussain,

“Heuristic and statistical power estimation model for FPGA based wireless systems,” Wireless

Personal Communications, vol. 106, no. 4, pp. 2087–2098, 2019.

143

Chapter 9 – BIBLIOGRAPHY

[145] G. Verma, V. Khare, and M. Kumar, “More precise FPGA power estimation and validation tool

(fpev_tool) for low power applications,” Wirel. Pers. Commun., vol. 106, no. 4, pp. 2237–2246,

2019.

[146] L. Deng, K. Sobti, and C. Chakrabarti, “Accurate models for estimating area and power of

FPGA implementations,” in International Conference on Acoustics, Speech and Signal Pro-

cessing, 2008, pp. 1417–1420.

[147] J. Davis, E. Hung, J. Levine, E. Stott, P. Cheung, and G. Constantinides, “KAPow: High-

accuracy, low-overhead online per-module power estimation for FPGA designs,” ACM Trans-

actions on Reconfigurable Technology and Systems, vol. 11, pp. 2:1–2:22, 2018.

[148] Y. Liang, S. Wang, and W. Zhang, “FlexCL: A model of performance and power for opencl

workloads on FPGAs,” Transactions on Computers, vol. 67, no. 12, pp. 1750–1764, 2018.

[149] K. O’Neal, M. Liu, H. Tang, A. Kalantar, K. DeRenard, and P. Brisk, “HLSPredict: Cross plat-

form performance prediction for FPGA high-level synthesis,” in International Conference on

Computer-Aided Design (ICCAD), 2018, pp. 1–8.

[150] Z. Lin, J. Zhao, S. Sinha, and W. Zhang, “HL-Pow: A learning-based power modeling frame-

work for high-level synthesis,” in Asia and South Pacific Design Automation Conference, ASP-

DAC, 2020, pp. 574–580.

[151] Z. Lin, Z. Yuan, J. Zhao, W. Zhang, H. Wang, and Y. Tian, “PowerGear: Early-stage power

estimation in FPGA HLS via heterogeneous edge-centric GNNs,” pp. 1341–1346.

[152] Y. S. Shao, B. Reagen, G. Wei, and D. Brooks, “Aladdin: A pre-RTL, power-performance ac-

celerator simulator enabling large design space exploration of customized architectures,” in

International Symposium on Computer Architecture, ISCA, 2014, pp. 97–108.

[153] M. Makni, S. Niar, M. Baklouti, and M. Abid, “HAPE: A high-level area-power estimation

framework for fpga-based accelerators,” Microprocessors and Microsystems, vol. 63, pp. 11–

27, 2018.

144

Chapter 9 – BIBLIOGRAPHY

[154] J. Cong, W. Jiang, B. Liu, and Y. Zou, “Automatic memory partitioning and scheduling for

throughput and power optimization,” ACM Transactions on Design Automation of Electronic

Systems, vol. 16, no. 2, pp. 15:1–15:25, 2011.

[155] P. N. Khanh, A. K. Singh, A. Kumar, and K. M. M. Aung, “Exploiting loop-array dependencies

to accelerate the design space exploration with high level synthesis,” in Design, Automation

& Test in Europe Conference & Exhibition, DATE, 2015, pp. 157–162.

[156] L. Ferretti, J. Kwon, G. Ansaloni, G. D. Guglielmo, L. P. Carloni, and L. Pozzi, “Leveraging prior

knowledge for effective design-space exploration in high-level synthesis,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 39, no. 11, pp. 3736–3747,

2020.

[157] L. Piccolboni, P. Mantovani, G. D. Guglielmo, and L. P. Carloni, “COSMOS: Coordination of

high-level synthesis and memory optimization for hardware accelerators,” vol. 16, no. 5s,

2017.

[158] C. Lo and P. Chow, “Model-based optimization of high level synthesis directives,” in Interna-

tional Conference on Field Programmable Logic and Applications (FPL), 2016, pp. 1–10.

[159] J. Kwon and L. P. Carloni, “Transfer learning for design-space exploration with high-level

synthesis,” in Workshop on Machine Learning for CAD, 2020, pp. 163–168.

[160] S. Dai, Y. Zhou, H. Zhang, E. Ustun, E. F. Y. Young, and Z. Zhang, “Fast and accurate estimation

of quality of results in high-level synthesis with machine learning,” in Annual International

Symposium on Field-Programmable Custom Computing Machines, FCCM, 2018, pp. 129–132.

[161] G. Zhong, A. Prakash, Y. Liang, T. Mitra, and S. Niar, “Lin-Analyzer: A high-level performance

analysis tool for FPGA-based accelerators,” in Annual Design Automation Conference, DAC,

Austin, TX, USA, June 5-9, 2016, pp. 136:1–136:6.

[162] A. Bannwart Perina, J. Becker, and V. Bonato, “Lina: Timing-constrained high-level syn-

thesis performance estimator for fast DSE,” in 2019 International Conference on Field-

Programmable Technology (ICFPT), 2019, pp. 343–346.

145

Chapter 9 – BIBLIOGRAPHY

[163] G. Zhong, A. Prakash, S. Wang, Y. Liang, T. Mitra, and S. Niar, “Design space exploration

of FPGA-based accelerators with multi-level parallelism,” in Design, Automation & Test in

Europe Conference & Exhibition, DATE, 2017, pp. 1141–1146.

[164] L. Ferretti, G. Ansaloni, and L. Pozzi, “Cluster-based heuristic for high level synthesis design

space exploration,” IEEE Transactions on Emerging Topics in Computing, vol. 9, no. 1, pp.

35–43, 2021.

[165] L. Ferretti, G. Ansaloni, and L. Pozzi, “Lattice-traversing design space exploration for high

level synthesis,” in International Conference on Computer Design (ICCD), 2018, pp. 210–217.

[166] J. Zhao, L. Feng, S. Sinha, W. Zhang, Y. Liang, and B. He, “Performance modeling and direc-

tives optimization for high level synthesis on FPGA,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 39, no. 7, pp. 1428–1441, 2019.

[167] N. Wu, Y. Xie, and C. Hao, “IronMan: GNN-assisted design space exploration in high-level

synthesis via reinforcement learning,” in GLSVLSI ’21: Great Lakes Symposium on VLSI 2021,

Virtual Event, USA, June 22-25, 2021, 2021, pp. 39–44.

[168] M. Siracusa, E. Delsozzo, M. Rabozzi, L. Di Tucci, S. Williams, D. Sciuto, and M. D. Santam-

brogio, “A comprehensive methodology to optimize FPGA designs via the roofline model,”

Transactions on Computers, pp. 1–1, 2021.

[169] S. W. Nabi and W. Vanderbauwhede, “FPGA design space exploration for scientific HPC ap-

plications using a fast and accurate cost model based on roofline analysis,” Journal of Parallel

and Distributed Computing, vol. 133, pp. 407–419, 2019.

[170] R. Tessier and H. Giza, “Balancing logic utilization and area efficiency in FPGAs,” in Field-

Programmable Logic and Applications, The Roadmap to Reconfigurable Computing, 10th In-

ternational Workshop, vol. 1896, 2000, pp. 535–544.

[171] D. Koeplinger, R. Prabhakar, Y. Zhang, C. Delimitrou, C. Kozyrakis, and K. Olukotun, “Auto-

matic generation of efficient accelerators for reconfigurable hardware,” in Annual Interna-

tional Symposium on Computer Architecture, ISCA, 2016, pp. 115–127.

146

Chapter 9 – BIBLIOGRAPHY

[172] A. Sohrabizadeh, C. H. Yu, M. Gao, and J. Cong, “AutoDSE: Enabling software programmers

to design efficient FPGA accelerators,” 2021.

[173] Q. Gautier, A. Althoff, C. L. Crutchfield, and R. Kastner, “Sherlock: A multi-objective design

space exploration framework,” ACM Transactions on Design Automation of Electronic Sys-

tems, vol. 27, no. 4, 2022.

[174] B. C. Schafer and K. Wakabayashi, “Machine learning predictive modelling high-level synthe-

sis design space exploration,” IET computers & digital techniques, vol. 6, no. 3, pp. 153–159,

2012.

[175] F. Ferrandi, P. L. Lanzi, D. Loiacono, C. Pilato, and D. Sciuto, “A multi-objective genetic algo-

rithm for design space exploration in high-level synthesis,” in 2008 IEEE Computer Society

Annual Symposium on VLSI, 2008, pp. 417–422.

[176] C. Pilato, A. Tumeo, G. Palermo, F. Ferrandi, P. L. Lanzi, and D. Sciuto, “Improving evolution-

ary exploration to area-time optimization of fpga designs,” Journal of Systems Architecture,

vol. 54, no. 11, pp. 1046–1057, 2008.

[177] M. Yu, S. Huang, and D. Chen, “Chimera: A hybrid machine learning driven multi-objective

design space exploration tool for fpga high-level synthesis,” 2022.

[178] A. Mehrabi, A. Manocha, B. C. Lee, and D. J. Sorin, “Bayesian optimization for efficient accel-

erator synthesis,” vol. 18, no. 1, 2021.

[179] H. Mohammadi Makrani, H. Sayadi, T. Mohsenin, S. Rafatirad, A. Sasan, and H. Homay-

oun, “XPPE: cross-platform performance estimation of hardware accelerators using ma-

chine learning,” in Asia and South Pacific Design Automation Conference, ASPDAC, 2019, pp.

727–732.

[180] P. Meng, A. Althoff, Q. Gautier, and R. Kastner, “Adaptive threshold non-pareto elimination:

Re-thinking machine learning for system level design space exploration on FPGAs,” in De-

sign, Automation Test in Europe Conference Exhibition (DATE), 2016, pp. 918–923.

147

Chapter 9 – BIBLIOGRAPHY

[181] S. Xu, S. Liu, Y. Liu, A. Mahapatra, M. Villaverde, F. Moreno, and B. C. Schäfer, “Design space

exploration of heterogeneous MPSoCs with variable number of hardware accelerators,” Mi-

croprocessors and Microsystems, vol. 65, pp. 169–179, 2019.

[182] Y. Nasser, J. Prévotet, and M. Hélard, “Power modeling on FPGA: a neural model for RT-level

power estimation,” in International Conference on Computing Frontiers, CF, 2018, pp. 309–

313.

[183] S. Liu, F. C. Lau, and B. C. Schafer, “Accelerating FPGA prototyping through predictive model-

based HLS design space exploration,” in Annual Design Automation Conference, DAC, 2019,

p. 97.

[184] S. Xu and B. C. Schafer, “Approximating behavioral HW accelerators through selective partial

extractions onto synthesizable predictive models,” in International Conference on Computer-

Aided Design (ICCAD), 2019, pp. 1–8.

[185] A. S. B. Lopes and M. M. Pereira, “A machine learning approach to accelerating DSE of recon-

figurable accelerator systems,” in 2020 33rd Symposium on Integrated Circuits and Systems

Design (SBCCI), 2020, pp. 1–6.

[186] C. Du and Y. Yamaguchi, “High-level synthesis design for stencil computations on FPGA with

high bandwidth memory,” MDPI Electronics, vol. 9, no. 8, 2020.

[187] M. Karp, A. Podobas, N. Jansson, T. Kenter, C. Plessl, P. Schlatter, and S. Markidis, “High-

performance spectral element methods on field-programmable gate arrays : Implementa-

tion, evaluation, and future projection,” in International Parallel and Distributed Processing

Symposium, IPDPS, 2021, pp. 1077–1086.

[188] K. Nagasu, K. Sano, F. Kono, and N. Nakasato, “FPGA-based tsunami simulation: Perfor-

mance comparison with GPUs, and roofline model for scalability analysis,” Parallel and Dis-

tributed Computing, vol. 106, pp. 153–169, 2017.

[189] C. Du, I. Firmansyah, and Y. Yamaguchi, “FPGA-based computational fluid dynamics simu-

lation architecture via high-level synthesis design method,” in Applied Reconfigurable Com-

puting. Architectures, Tools, and Applications, vol. 12083, 2020, pp. 232–246.

148

Chapter 9 – BIBLIOGRAPHY

[190] E. Reggiani, G. Natale, C. Moroni, and M. D. Santambrogio, “An FPGA-based acceleration

methodology and performance model for iterative stencils,” in International Parallel and

Distributed Processing Symposium Workshops (IPDPSW), 2018, pp. 115–122.

[191] M. Manuel, A. Kreddig, S. Conrady, N. Anh Vu Doan, and W. Stechele, “Model-based design

space exploration for approximate image processing on FPGA,” in Nordic Circuits and Sys-

tems Conference, NorCAS 2020, Oslo, 2020, pp. 1–7.

[192] E. Reggiani, M. Rabozzi, A. M. Nestorov, A. Scolari, L. Stornaiuolo, and M. Santambrogio,

“Pareto optimal design space exploration for accelerated CNN on FPGA,” in International

Parallel and Distributed Processing Symposium Workshops (IPDPSW), 2019, pp. 107–114.

[193] P. Gysel, V. Akella, and S. Ghiasi, “Design space exploration of FPGA-based deep convolu-

tional neural networks,” 2016, pp. 575–580.

[194] J. Xu, Z. Liu, J. Jiang, Y. Dou, and S. Li, “CaFPGA: An automatic generation model for CNN

accelerator,” Microprocessors and Microsystems, vol. 60, pp. 196–206, 2018.

[195] J. Shan, M. T. Lazarescu, J. Cortadella, L. Lavagno, and M. R. Casu, “CNN-on-AWS: Efficient

allocation of multikernel applications on multi-fpga platforms,” Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 40, no. 2, pp. 301–314, 2021.

[196] S. O. Ayat, M. Khalil-Hani, and A. Rahman, “Optimizing FPGA-based CNN accelerator for

energy efficiency with an extended roofline model,” Turkish Journal of Electrical Engineering

and Computer Sciences, vol. 26, pp. 919–935, 2018.

[197] L. Xie, X. Fan, W. Cao, and L. Wang, “High throughput CNN accelerator design based on

FPGA,” in 2018 International Conference on Field-Programmable Technology (FPT), 2018, pp.

274–277.

[198] C. Park, S. Park, and C. S. Park, “Roofline-model-based design space exploration for dataflow

techniques of CNN accelerators,” IEEE Access, vol. 8, pp. 172 509–172 523, 2020.

[199] Y. Ma, Y. Cao, S. B. K. Vrudhula, and J. Seo, “Performance modeling for CNN inference ac-

celerators on FPGA,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 39, no. 4, pp. 843–856, 2020.

149

Chapter 9 – BIBLIOGRAPHY

[200] S. Conrady, A. Kreddig, M. Manuel, N. A. V. Doan, and W. Stechele, “Model-based design

space exploration for fpga-based image processing applications employing parameterizable

approximations,” Microprocessors and Microsystems, vol. 87, p. 104386, 2021.

[201] T. Geng, T. Wang, A. Li, X. Jin, and M. C. Herbordt, “A scalable framework for acceleration

of CNN training on deeply-pipelined FPGA clusters with weight and workload balancing,”

CoRR, vol. abs/1901.01007, 2019.

[202] W. Zhao, H. Fu, W. Luk, T. Yu, S. Wang, B. Feng, Y. Ma, and G. Yang, “F-CNN: An FPGA-

based framework for training convolutional neural networks,” in International Conference

on Application-specific Systems, Architectures and Processors (ASAP), 2016, pp. 107–114.

[203] Y.-C. Lin, B. Zhang, and V. Prasanna, “HP-GNN: Generating high throughput GNN training

implementation on CPU-FPGA heterogeneous platform,” 2022, pp. 123—-133.

[204] A. Ghaffari and Y. Savaria, “CNN2Gate: An implementation of convolutional neural networks

inference on FPGAs with automated design space exploration,” MDPI Electronics, vol. 9,

no. 12, p. 2200, 2020.

[205] S. I. Venieris and C.-S. Bouganis, “fpgaConvNet: Automated mapping of convolutional neural

networks on FPGAs,” in International symposium on field-programmable gate arrays, 2017,

pp. 291–292.

[206] Y. Chen, J. He, X. Zhang, C. Hao, and D. Chen, “Cloud-DNN: An open framework for map-

ping DNN models to cloud FPGAs,” in International symposium on field-programmable gate

arrays, 2019, pp. 73–82.

[207] A. Biondi, A. Balsini, M. Pagani, E. Rossi, M. Marinoni, and G. Buttazzo, “A framework for

supporting real-time applications on dynamic reconfigurable FPGAs,” in Real-Time Systems

Symposium (RTSS), 2016, pp. 1–12.

[208] J. Mu, W. Zhang, H. Liang, and S. Sinha, “A collaborative framework for FPGA-based CNN

design modeling and optimization,” in 2018 28th International Conference on Field Pro-

grammable Logic and Applications (FPL), 2018, pp. 139–1397.

150

Chapter 9 – BIBLIOGRAPHY

[209] O. Reiche, M. A. Özkan, R. Membarth, J. Teich, and F. Hannig, “Generating FPGA-based im-

age processing accelerators with hipacc: (invited paper),” in International Conference on

Computer-Aided Design (ICCAD), 2017, pp. 1026–1033.

[210] C. H. Yu, P. Wei, M. Grossman, P. Zhang, V. Sarker, and J. Cong, “S2FA: An accelerator au-

tomation framework for heterogeneous computing in datacenters,” in Design Automation

Conference (DAC), 2018, pp. 153:1–153:6.

[211] P. Xu, X. Zhang, C. Hao, Y. Zhao, Y. Zhang, Y. Wang, C. Li, Z. Guan, D. Chen, and Y. Lin, “Au-

toDNNchip: An automated DNN chip predictor and builder for both FPGAs and ASICs,” in

International Symposium on Field-Programmable Gate Arrays, 2020, pp. 40–50.

[212] J. Jobson, “Multiple linear regression,” in Applied multivariate data analysis. Springer, 1991,

pp. 219–398.

[213] G. K. Uyanık and N. Güler, “A study on multiple linear regression analysis,” Procedia - Social

and Behavioral Sciences, vol. 106, pp. 234–240, 2013, 4th International Conference on New

Horizons in Education.

[214] W. T. Ambrosius, Topics in biostatistics. Springer Science & Business Media, 2007, vol. 404.

[215] L. E. Eberly, “Multiple linear regression,” Topics in Biostatistics, pp. 165–187, 2007.

[216] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-

tenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Per-

rot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine Learn-

ing Research, vol. 12, pp. 2825–2830, 2011.

[217] X. Gao, J. Wickerson, and G. A. Constantinides, “Automatically optimizing the latency, area,

and accuracy of c programs for high-level synthesis,” in Proceedings of the 2016 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays, 2016, pp. 234–243.

[218] X. Inc., “Vitis high-level synthesis user guide. UG1399,” 2021.

[219] M. G. Genton, “Classes of kernels for machine learning: A statistics perspective,” J. Mach.

Learn. Res., vol. 2, pp. 299––312, mar 2002.

151

Chapter 9 – BIBLIOGRAPHY

[220] J. Močkus, “On bayesian methods for seeking the extremum,” in Optimization techniques

IFIP technical conference. Springer, 1975, pp. 400–404.

[221] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global optimization of expensive black-

box functions,” Journal of Global optimization, vol. 13, no. 4, pp. 455–492, 1998.

[222] J. Blank and K. Deb, “Pymoo: Multi-objective optimization in python,” IEEE Access, vol. 8, pp.

89 497–89 509, 2020.

[223] B. C. Schäfer, “Probabilistic multiknob high-level synthesis design space exploration accel-

eration,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 35, pp. 394–406, 2016.

[224] L. G. G. Ordóñez, R. S. Molina, I. R. M. Argueta, M. L. Crespo, A. Cicuttin, S. Carrato, G. Ram-

poni, H. E. P. Figueroa, and M. G. B. Escobar, “Pulse shape discrimination for online data

acquisition in water cherenkov detectors based on FPGA/SoC,” in Proceedings of 37th Inter-

national Cosmic Ray Conference PoS(ICRC2021). Sissa Medialab, jul 2021.

[225] L. G. Garcia, R. S. Molina, M. L. Crespo, S. Carrato, G. Ramponi, A. Cicuttin, I. R. Morales, and

H. Perez, “Muon–electron pulse shape discrimination for water cherenkov detectors based

on fpga/soc,” Electronics, vol. 10, no. 3, 2021.

[226] T. K. Gaisser, R. Engel, and E. Resconi, Cosmic rays and particle physics. Cambridge Univer-

sity Press, 2016.

[227] P. Abbon, E. Albrecht, V. Y. Alexakhin, Y. Alexandrov, G. Alexeev, M. Alekseev, A. Amoroso,

H. Angerer, V. Anosov, B. Badełek et al., “The compass experiment at cern,” Nuclear Instru-

ments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and

Associated Equipment, vol. 577, no. 3, pp. 455–518, 2007.

[228] E. Mace, J. Ward, and C. Aalseth, “Use of neural networks to analyze pulse shape data in

low-background detectors,” Journal of Radioanalytical and Nuclear Chemistry, pp. 1–8, 07

2018.

[229] J. Griffiths, S. Kleinegesse, D. Saunders, R. Taylor, and A. Vacheret, “Pulse shape discrimina-

tion and exploration of scintillation signals using convolutional neural networks,” 2018.

152

Chapter 9 – BIBLIOGRAPHY

[230] P. Holl, L. Hauertmann, B. Majorovits, O. Schulz, M. Schuster, and A. J. Zsigmond, “Deep

learning based pulse shape discrimination for germanium detectors,” The European Physical

Journal C, vol. 79, no. 6, May 2019.

[231] D. Droz, A. Tykhonov, and X. Wu, “Neural Networks for Electron Identification with DAMPE,”

in Proceedings of 36th International Cosmic Ray Conference — PoS(ICRC2019), vol. 358, 2019,

p. 064.

[232] M. Berthold and F. Höppner, “On clustering time series using euclidean distance and pearson

correlation. arxiv 2016,” arXiv preprint arXiv:1601.02213.

[233] F. J. Provost and T. Fawcett, “Analysis and visualization of classifier performance with nonuni-

form class and cost distributions,” 1997.

[234] L. Omar and I. P. Ivrissimtzis, “Using theoretical ROC curves for analysing machine learning

binary classifiers,” Pattern Recognit. Lett., vol. 128, pp. 447–451, 2019.

[235] K. Feng, H. Hong, K. Tang, and J. Wang, “Decision making with machine learning and ROC

curves,” CoRR, vol. abs/1905.02810, 2019.

[236] A. Suarez, R. S. Molina, G. Ramponi, R. Petrino, L. Bollati, and D. Sequeiros, “Pest detec-

tion and classification to reduce pesticide use in fruit crops based on deep neural networks

and image processing,” in 2021 XIX Workshop on Information Processing and Control (RPIC).

IEEE, nov 2021.

[237] Molina, R. S.; Carrer. V.; Ballina; M., Crespo, M. L.; Bollati, L.; Sequeiro, D.; Marsi, S. and

Ramponi, G., “Ml-based classifier for precision agriculture on embedded systems,” in In-

ternational Conference on Applications in Electronics Pervading Industry, Environment and

Society, 2022.

[238] A. Albanese, M. Nardello, and D. Brunelli, “Automated pest detection with dnn on the edge

for precision agriculture,” IEEE Journal on Emerging and Selected Topics in Circuits and Sys-

tems, vol. 11, no. 3, pp. 458–467, 2021.

153

Chapter 9 – BIBLIOGRAPHY

[239] L. Liu, R. Wang, C. Xie, P. Yang, F. Wang, S. Sudirman, and W. Liu, “Pestnet: An end-to-end

deep learning approach for large-scale multi-class pest detection and classification,” IEEE

Access, vol. 7, pp. 45 301–45 312, 2019.

[240] N. T. Nam and P. D. Hung, “Pest detection on traps using deep convolutional neural net-

works,” ser. ICCCV ’18. New York, NY, USA: Association for Computing Machinery, 2018, p.

33–38.

[241] M. Karar, F. Alsunaydi, S. Albusaymi, and S. Alotaibi, “A new mobile application of agricul-

tural pests recognition using deep learning in cloud computing system,” AEJ - Alexandria

Engineering Journal, vol. 60, pp. 4423–4432, March 2021.

[242] C.-J. Chen, Y.-Y. Huang, Y.-S. Li, C.-Y. Chang, and Y.-M. Huang, “An AIoT based smart agricul-

tural system for pests detection,” IEEE Access, vol. 8, pp. 1–1, January 2020.

[243] V. K. Quy, N. V. Hau, D. V. Anh, N. M. Quy, N. T. Ban, S. Lanza, G. Randazzo, and A. Muzi-

rafuti, “Iot-enabled smart agriculture: Architecture, applications, and challenges,” Applied

Sciences, vol. 12, no. 7, 2022.

[244] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He, “A comprehensive survey

on transfer learning,” Proceedings of the IEEE, vol. 109, no. 1, pp. 43–76, 2020.

[245] X. Wu, C. Zhan, Y.-K. Lai, M.-M. Cheng, and J. Yang, “IP102: A large-scale benchmark dataset

for insect pest recognition,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), 2019, pp. 8779–8788.

[246] R. Wang, L. Liu, C. Xie, P. Yang, R. Li, and M. Zhou, “AgriPest: A large-scale domain-specific

benchmark dataset for practical agricultural pest detection in the wild,” Sensors, vol. 21,

February 2021.

[247] Q.-J. Wang, S.-Y. Zhang, S.-F. Dong, G.-C. Zhang, J. Yang, R. Li, and H.-Q. Wang, “Pest24: A

large-scale very small object data set of agricultural pests for multi-target detection,” Com-

puters and Electronics in Agriculture, vol. 175, p. 105585, 2020.

154

Chapter 9 – BIBLIOGRAPHY

[248] R. Molina, F. Loor, V. Gil-Costa, F. M. Nardini, R. Perego, and S. Trani, “Efficient traversal of

decision tree ensembles with FPGAs,” Journal of Parallel and Distributed Computing, vol.

155, pp. 38–49, sep 2021.

[249] V. Gil-Costa, F. Loor, R. Molina, F. M. Nardini, R. Perego, and S. Trani, “Ensemble model com-

pression for fast and energy-efficient ranking on FPGAs,” in Lecture Notes in Computer Sci-

ence. Springer International Publishing, 2022, pp. 260–273.

[250] G. J. Kowalski, Information retrieval systems: theory and implementation. springer, 2007,

vol. 1.

[251] F. Lettich, C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto, and R. Venturini,

“Multicore/manycore parallel traversal of large forests of regression trees,” in 2017 Interna-

tional Conference on High Performance Computing Simulation (HPCS), 2017, pp. 915–915.

[252] F. Lettich, C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto, and R. Venturini,

“Parallel traversal of large ensembles of decision trees,” IEEE Transactions on Parallel and

Distributed Systems, vol. 30, no. 9, pp. 2075–2089, 2019.

[253] I. Segalovich, “Machine learning in search quality at Yandex,” Presentation at the industry

track of the 33rd Annual ACM SIGIR Conference, 2010.

[254] A. Shchekalev, “Using gpus to accelerate learning to rank,” in Proceedings of the NVIDIA GTC-

GPU Technology Conference, 2014.

[255] D. Sorokina and E. Cantu-Paz, “Amazon search: The joy of ranking products,” in Proc. ACM

SIGIR, 2016, pp. 459–460.

[256] X. He, J. Pan, O. Jin, T. Xu, B. Liu, T. Xu, Y. Shi, A. Atallah, R. Herbrich, S. Bowers, and J. Q.

Candela, “Practical Lessons from Predicting Clicks on Ads at Facebook,” in Proc. 8th Interna-

tional Workshop on Data Mining for Online Advertising, 2014, pp. 5:1–5:9.

[257] T.-Y. Liu, “Learning to rank for information retrieval,” Foundations and Trends in Information

Retrieval, vol. 3, no. 3, pp. 225–331, March 2009.

[258] K. Järvelin and J. Kekäläinen, “Cumulated gain-based evaluation of ir techniques,” ACM

Transactions on Information Systems (TOIS), vol. 20, no. 4, pp. 422–446, 2002.

155

Chapter 9 – BIBLIOGRAPHY

[259] J. Blank and K. Deb, “A running performance metric and termination criterion for evaluating

evolutionary multi-and many-objective optimization algorithms,” in 2020 IEEE Congress on

Evolutionary Computation CEC. IEEE, 2020, pp. 1–8.

[260] K. Deb, K. Sindhya, and T. Okabe, “Self-adaptive simulated binary crossover for real-

parameter optimization,” in Proceedings of the 9th annual conference on genetic and evo-

lutionary computation, 2007, pp. 1187–1194.

[261] K. Manev, A. Vaishnav, and D. Koch, “Unexpected diversity: Quantitative memory analy-

sis for zynq ultrascale+ systems,” in 2019 International Conference on Field-Programmable

Technology (ICFPT). IEEE, 2019, pp. 179–187.

156

