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Abstract. Modular robots, in particular those in which the modules
are physically interchangeable, are suitable to be evolved because they
allow for many different designs. Moreover, they can constitute ecosys-
tems where “old” robots are disassembled and the resulting modules
are composed together, either within an external assembling facility or
by self-assembly procedures, to form new robots. However, in practical
settings, self-assembly may result in morphologies that are slightly differ-
ent from the expected ones: this may cause a detrimental misalignment
between controller and morphology. Here, we characterize experimentally
the robustness of neural controllers for Voxel-based Soft Robots, a kind
of modular robots, with respect to small variations in the morphology.
We employ evolutionary computation for optimizing the controllers and
assess the impact of morphology variations along two axes: kind of mor-
phology and size of the robot. Moreover, we quantify the advantage of
performing a re-optimization of the controller for the varied morphology.
Our results show that small variations in the morphology are in general
detrimental for the performance of the evolved neural controller. Yet, a
short re-optimization is often sufficient for aligning back the performance
of the modified robot to the original one.

Keywords: Embodied cognition · Soft robotics · Adaptation

1 Introduction and Related Works

Fully autonomous robotic systems require to be adaptable to environmental
changes without an external intervention. One main path toward adaptation of
an entire robotic ecosystem, instead of the single robot, consists in having a
population of robots that are built, “live”, and are disposed in such a way that
their robotic material can be reused for building other robots [3]. Modular robots
are particularly suitable to form such ecosystems, because their modularity eases
the building and disposal phases [4,12]. Moreover, modular robots also favor
adaptation, in particular through evolution [2], because they allow for great
expressiveness for the morphology and the controller [1,9].

However, actually realizing the scenario of real (i.e., with hardware robots)
evolution of a robotic ecosystem poses several challenges [2], ranging from the
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well-known reality gap problem [14,20], to the much longer times for evaluating
candidate solutions [13], to the need of employing automatic assembly and dis-
assembly procedures for robots, in order to make the system scalable and really
autonomous.

The recent progresses on manipulators [12,13], as well as on self-
assembly [17], make the automatic assembly of modular robots feasible. However,
it can happen that the morphology obtained by unassisted assembly differs from
the designed one, in particular for soft modular robots [5]. In such a case, the con-
troller that was designed to be associated with the expected morphology might
not be equally effective with the slightly different one. The drop in effective-
ness might be large, according to the embodied cognition paradigm that states
that the intelligent behavior of an embodied agent depends on the combined
work of both its body and brain, since the body-brain misalignment might be
detrimental.

In this paper, we experimentally investigate the impact of small variations in
the morphology on the effectiveness of evolved neural controllers, i.e., of closed-
loop controllers based on neural networks whose parameters are optimized, for
a given morphology and task, by means of an evolutionary algorithm (EA). We
consider the case of Voxel-based Soft Robots (VSRs), a kind of modular robots
whose modules are soft cubes that can expand or contract individually based on
signals dictated by the controller.

We perform a number of experiments with six morphologies, consisting in
three base morphologies in small and large versions, with controllers evolved for
the task of locomotion, a classic task of evolutionary robotics. We apply small
random variations to each morphology and measure the impact on the degree
to which the resulting VSRs solve the task (i.e., their velocity, for locomotion).
We find that the decrease in robot velocity, i.e., the controller effectiveness, is
large even for small modifications (one voxel for small original morphologies)
and we explain this finding in terms of the great potential for morphological
computation that VSRs offer. This potential results in the body having a key
role in determining VSR behavior and hence make the body-brain misalignment
particularly detrimental.

We also experimentally verify whether a re-optimization for the slightly mod-
ified morphology can make the controller back on par with the effectiveness of
the one evolved for the original morphology. We found that (a) modified mor-
phologies are not intrinsically worse and (b) seeding the re-optimization with
the original controller makes the re-optimization efficient, besides effective.

We believe that our results contribute to strengthen the understanding of
how body and brain interact in modular robots and, more broadly, constitute a
further step toward autonomous and evolvable robotic ecosystems.

2 Evolutionary Optimization of Voxel-based Soft Robots

Voxel-based Soft Robots (VSRs) are a kind of modular robots where each module,
called voxel, is a deformable cube that is attached to adjacent cubes at the
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vertexes. The volume of each voxel changes according to external forces acting
on it, such as the gravity and those deriving from the contact with the ground,
and to an internal force, itself modulated by a control value dictated by the
controller of the robot. The way the controller varies the control value of each
voxel over time determines, together with the robot-environment interaction, the
behavior of the VSR.

Both the controller and the morphology of a VSR can be optimized in order
to obtain a behavior that allows the robot to achieve a predefined task. For
the purpose of this study, we are only concerned with the optimization of the
controller; as an aside, previous works have shown that VSRs are particularly
suitable for the concurrent optimization of controller and morphology [9,15].

In this study, we consider a 2-D variant of VSRs that can be simulated in
discrete time and continuous space [8]. In the next sections, we describe in detail
the morphology and the controller of our VSRs, as well as the way we optimize
the latter by means of an EA.

2.1 VSR Morphology

A VSR morphology is unequivocally described by a 2-D grid in which each
non-empty element describes a voxel. A voxel is modeled, in the simulation, as a
compound of four rigid bodies (at the corners) and many spring-damper systems,
for softness and elasticity, connecting the rigid bodies [8]. Adjacent voxels are
glued together at the vertexes: that is, their rigid bodies at the corners are bound
with joints that do not permit relative rotation, nor distance variation.

By varying the parameters of this mechanical model, the designer may vary
the properties of the (simulated) material the voxel consists of, possibly impact-
ing on the overall behavior of the VSR [11]. In this work, we assume that all
the voxels consist of the same material, hence a morphology is unequivocally
described by a Boolean grid (or matrix) m ∈ {T,F}w×h, where the mx,y is set
if there is a voxel at coordinates (x, y).

During the simulation, the area of voxels changes upon the combined effect
of external forces and the voxel control value, dictated by the controller. For
a voxel at (x, y), we denote the control value at time step k as a

(k)
x,y ∈ [−1, 1],

where −1 corresponding to maximum requested expansion, and 1 corresponding
to maximum requested contraction. Contraction and expansion are modeled as
linear variations of the rest-length of the spring-damper systems, proportional
to value of a

(k)
x,y. We used the default values of the simulator 2D-VSR-Sim [8] for

the minimum and maximum rest-length values.

2.2 VSR Controller

The controller of a VSR is in charge of determining the control value for each
voxel of the VSR at each time step of the simulation.

In this study, we use a distributed neural controller [7] that determines the
control values based on some sensory inputs acquired from the voxels, hence
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realizing a closed-loop control of the robot. Our controller is distributed in the
sense that, for each voxel, the control value is determined locally based on local
sensory inputs and information acquired from adjacent voxels. Moreover, it is
neural because the processing of that information is performed with a feed-
forward artificial neural network (NN) embedded in the voxel.

In detail, the distributed neural controller works as follows. At each time
step k and for each voxel at (x, y), we collect a sensor reading s

(k)
x,y ∈ [−1, 1]4

consisting of: (a) the ratio between the current area of the voxel and its rest
area, (b) a binary value set to 1 if the voxel is in contact with the ground or −1
otherwise, and (c) the velocities of the center of mass of the voxel along the x-
and y-axes. We normalize the values of the ratio and the velocities in order to
ensure they are in the [−1, 1] domain. Then, we use the NN located in the voxel
to compute the control value a

(k)
x,y and the information to be passed to adjacent

voxels at the next time step:
[
a(k)

x,y i�(k)
x,y i�(k)

x,y i�(k)
x,y i�(k)

x,y

]
= NNθ

([
s(k)

x,y i
�(k−1)
x,y−1 i

�(k−1)
x,y+1 i

�(k−1)
x+1,y i

�(k−1)
x+1,y

])
,

where i�(k)
x,y , i�(k)

x,y , i�(k)
x,y , i�(k)

x,y ∈ [−1, 1]ncomm is the information output by the
voxel at (x, y) for its neighbors at (x, y + 1) (�), (x, y − 1) (�), (x − 1, y) (�),
and (x + 1, y) (�), respectively, and θ ∈ R

p is the vector of the parameters (or
weights) of the NN. The NN hence acts as a function R

4+4ncomm → R
1+4ncomm .

The information propagation to and from adjacent voxels allows the dis-
tributed neural controller to realize a form of collective intelligence that results,
upon optimization, in an emergent behavior of the VSR, despite being composed
of independents controller modules (the NNs) [16]. Moreover, the one-step delay
in propagation resulting from the fact that, at time k, a NN uses the information
produced by adjacent NNs at time k−1, makes the distributed neural controller
capable of exhibiting complex dynamical behaviors, despite being composed of
static modules. However, it has been observed that this richness may often lead
to vibrating behaviors [9] that would hardly be effective in reality (hence result-
ing in the so-called reality gap problem [14,20]). For this reason, we actually
change the control value at a lower frequency, namely 5 Hz, than the one of the
simulation, being 60 Hz.

Concerning the dimension of the information passed to and from NNs and the
architecture of each NN, we here use the same architecture, with one inner layer
with 8 neurons, and parameters θ for each NN and ncomm = 1, as this setting has
been proven to allow for effective control without increasing too much the search
space [9,16]. We hence have θ ∈ R

p, with p = (4+4+1)·8+(8+1)·(1+4) = 117,
where the trailing +1s are the bias. We use tanh as activation function.

A key property of the distributed neural controller that holds when, as in
this case, all the NNs use the same parameters θ is that a controller may be
coupled with any morphology. This perfectly fits the scenario where voxels self-
assemble to form a desired morphology on which a pre-trained controller is hence
“installed”. In our work, we exploit this this property to evolve a controller for
one morphology and then couple it with slightly different morphologies to study
its effectiveness in the new conditions.
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2.3 Evolution of VSR Controller

In order to evolve the controller for a VSR, namely its parameters θ ∈ R
p, we

employ a standard μ + λ EA, as follows.
We iteratively evolve a population of npop solutions, i.e., numerical vectors,

until we have performed nevals fitness evaluations. At each iteration, we build the
offspring by repeating npop times the following steps: (1) we randomly select the
crossover (with probability pxover) or the mutation (with probability 1 − pxover)
genetic operator; (2) we select one or two parents (depending on the chosen
operator) with a tournament selection of size ntour; (3) we apply the operator
to the parents obtaining a new individual for which we evaluate the fitness.
Then, we merge the parents and the offspring, we retain only the npop best
individuals, and proceed to the next generation. At the end of the evolution, we
pick the solution in the population with the best fitness as the evolved controller.

For initializing the population, we build each initial solution θ by sampling
each θi from U(−1, 1). Concerning the genetic operators, we use the extended
geometric crossover, where the child θ ∈ R

p is obtained from the parents θ1,θ2 ∈
R

p as θ = θ1 + α(θ2 − θ1) + β, where α ∈ R
p is sampled as αi ∼ U(−0.5, 1.5),

and β ∈ R
p is sampled as βi ∼ N(0, σxover). As mutation, we use the Gaussian

mutation, where θ = θ1 + β, with betas sampled from N(0, σmut).

3 Experiments and Discussion

Our broad aim is to study the impact of small variations in the morphology on the
effectiveness of evolved neural controllers. More precisely, we aim at answering
the following research questions:

RQ1 To which degree do small morphology variations affect the controller effec-
tiveness? Do overall robot size and initial morphology have an impact on
how variations affect effectiveness?

RQ2 Is it possible to mitigate the decrease in effectiveness of an evolved con-
troller by re-optimizing it on the varied morphology?

In order to answer these questions, we performed a large number of experi-
ments in which we (i) evolved the controllers for a few pre-defined morphologies,
taking note of their effectiveness upon evolution on a pre-defined task, (ii) modi-
fied the morphologies to different extents, and (iii) measured the effectiveness on
the task of the evolved controller applied to the modified morphology. Moreover,
for the purpose of addressing RQ2, we performed a further re-optimization of the
evolved controller on the modified morphology, taking note of its effectiveness.

We experimented with the task of locomotion, in which the robot is placed on
a flat surface and has to move the farthest possible towards the right (i.e., along
the positive direction of the x-axis). For this task, we measure the effectiveness as
the average velocity vx along the x-axis computed by considering the x-position
of the center of mass of the VSR at the beginning and at the end of a simulation
lasting tsim = 30 s. We use vx as the fitness of the robot during the evolution:
clearly, the larger, the better.
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Concerning the pre-defined morphologies, i.e., the ones on which we evolved
the controllers, we experimented with 6 different cases, that we show in Fig. 1
(in darker green). They are a biped, a comb, and a worm, each one in two sizes
(small and large): the biped consists of an horizontal body and two legs, the
comb extends this concept to four legs, resembling indeed a comb, and the worm
is just a full rectangle. They are composed by 10, 11, and 10 voxels (biped, comb,
worm), for small morphologies, and 40, 44, and 40 voxels, for large ones.

Fig. 1. The 6 morphologies of our experiments (in darker green) with 10 (small, with
δ = 1) or 5 (large, with δ = 2) example variations (in lighter green). (Color figure
online)

For producing the variations in the morphology, that are a key component of
this study, we proceeded as follows. Given a morphology m and a target extent
δ of the variation, in number of voxels, we iteratively and randomly removed
or added voxels, i.e., we randomly changed the Boolean values of m, until the
Hamming distance between the varied morphology m′ and the original one was
dhamming(m,m′) = δ. At each random addition or removal of a voxel from a
morphology, we ensured that it remained connected, i.e., a single body; that
is, we always dealt with proper polyominoes. Figure 1 shows, for each original
morphology and in lighter green, some example variations obtained with δ = 1
(small) or δ = 2 (large).

We performed our experiments with 2D-VSR-Sim [8], for simulating the
VSRs, and with JGEA [10], for the evolutionary optimization. Concerning the
former, we set all the parameters to their default values. For the latter, we set
npop = 100, nevals = 10000, pxover = 75%, ntour = 5, and σmut = σxover = 0.35.
We used δ ∈ {1, 2, 3} for small morphologies and δ ∈ {2, 4, 6} for large ones.

We performed statistical significance tests with the Mann-Whitney U rank
test with the null hypothesis of equality of the median, after having verified all
other relevant hypotheses, and with α = 0.05.

3.1 Results and Discussion for RQ1: Impact of Variations

Figure 2 shows the results concerning the impact on controller effectiveness vx

(on the y-axis) of morphology variations of extent δ (on the x-axis) applied after
the evolution of the neural controller (red line) and without any re-optimization,
for the six considered morphologies—the blue line is discussed in the next section

6



as it pertains to RQ2. The value of vx for δ = 0 corresponds to the fitness at
the end of the evolution on the original morphology, i.e., without any variation,
and is computed as the median across 10 independent evolutionary runs. The
value of vx for δ > 0 is the median of the velocities of the 10 controllers obtained
with the original morphology applied each one to 10 variations, for each δ, of
the original morphology; i.e., for each δ > 0, there are 100 values.

Fig. 2. Controller effectiveness vx (median and interquartile range) vs. the extent δ
of the variation for different original morphologies, for the original controller (red) or
with re-optimization (blue). (Color figure online)

The main finding we infer from Fig. 2 is that there is a clear decrease in the
effectiveness of the neural controller once the morphology it has been evolved on
changes. The decrease is apparent for all the original morphologies in both sizes
and it is statistically significant for any δ > 0. The difference between the vx on
the original morphology and the one on the modified morphology ranges from
≈ 10 (≈ 70%) for the small biped to ≈ 5 (≈ 55%) for the large comb.

Interestingly, the extent δ of the morphology variation appears to play a
minor role in the decrease of effectiveness, in particular for the small original
morphologies—the differences for pairs of δ > 0 are statistically significant only
in a few cases. The drop in effectiveness looks smoother, with respect to δ, only
for the large biped.

For understanding the reason for such a drastic decrease in the effectiveness,
even when the variation in the morphology consists in just one voxel, we analyzed
many simulations visually, i.e., we observed the behaviors in locomotion of the
corresponding VSRs. In general, the degree to which the behavior appears suc-
cessful in the task of locomotion depends on the original morphology, the small
biped being the best one. For this case, it is sharply clear that the gait is very
negatively affected by addition of removal of just one voxel: we made a video for
the gait of the VSR with the original morphology and with δ = 1 publicly avail-
able at https://youtu.be/bB1u3Yj6FTo. The gait for the original small biped
is effective because the controller evolved to master the dynamics of the body:
the latter has a peculiar periodicity that can be exploited to obtain an effective
gait. When just one block is removed or added, the periodicity changes and the
controller is no more able to exploit it. More broadly, the VSR is a dynamical
system whose attractor in the space of poses is cyclic and highly functional to
the locomotion: when some properties of the morphology change, the attractor
becomes much less effective.
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We believe that these experiments further corroborate the validity of the
embodied cognition paradigm: the ability of the VSR to perform a task is hosted
jointly in the VSR brain and body, not just, nor mostly in the former. This is
particularly true for VSRs because their body, being an aggregation of many
soft components, each corresponding to a simple dynamical system, offers a
great potential for performing morphological computation [18,22].

3.2 Results and Discussion for RQ2: Re-Optimization

With the experiments discussed in the previous section, we found that the small
variations in the morphology are greatly detrimental for the effectiveness of the
evolved neural controllers. We also hypothesized that the decrease in effective-
ness is rooted in the misalignment between body and brain that arises from
the morphology variation. Here we wonder if another, not necessary alternative,
motivation is in the fact that the modified morphologies are intrinsically less
suitable for performing the task. For investigating this scenario, we considered,
for each original morphology and each value of δ > 0, the 10 · 10 varied mor-
phologies and performed one evolutionary optimization of a neural controller for
each of them. We used the same EA, with the same parameters, we used for the
previous experiments.

Figure 2 presents the results of this experiment. It shows, through the blue
lines, the controller effectiveness vx (on the y-axis) obtained at the end of the
re-optimization vs. the morphology variations of extent δ (on the x-axis), for the
six considered morphologies.

The foremost finding is that the controller effectiveness vx for the modified
morphologies is, upon re-optimization, almost on par with the effectiveness of the
original controller on the original morphology—the small differences are always
statistically significant, with the exception of the large comb and worm. From
another point of view, if a new neural controller is evolved for the modified
morphology, it is clearly better than the non re-optimized controller that was
obtained for the original morphology.

A second observation concerns the variability of vx for the re-optimized
controllers—we recall that both red and blue lines of Fig. 4 are, for δ > 0,
computed on 100 values. The figure suggests that, for half of the morphologies,
the interquartile range for re-optimized controllers is larger than the one for the
original controllers. We looked at a few behaviors of the VSRs with re-optimized
controllers and we found that, indeed, some of the morphologies appeared more
suitable for locomotion than others. While it has already been showed that
“regular”, hand-designed morphologies are not, in general, better than evolved
ones [9,21], we were not able to identify a single criterion of improvement. In
particular, it was not the size of the VSR, i.e., bigger (and hence stronger) robots
were not in general faster—we discuss this analysis more deeply in Sect. 3.2.

Summarizing, this experiment showed that the modified morphologies are
not, in general clearly worse than the original ones and that a evolving a new
controller for them can make them work.
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Smarter Re-Optimization. Re-optimizing a new neural controller for a mod-
ified morphology proved to be effective, according to the experiment discussed
above. In a practical realization of the scenario considered in this study, how-
ever, this finding would hardly be exploitable. The requirement of fully evolving
from scratch a neural controller for a morphology resulting from self-assembly
that just slightly differ from the expected one would make self-assembly a fragile
component of the adaptation of the robotic ecosystem. On the other hand, every
skill acquired by optimizing the controller for the original morphology would be
dropped entirely, hence wasting previous optimizations effort.

To address this point, we explored the possibility of starting the re-
optimization from the neural controller evolved for the original morphology
instead of starting from scratch. In detail, for each one of the 10 controllers
evolved for each original morphology, we took each of the 10 corresponding varia-
tions and performed an evolutionary optimization in which the initial population
was not entirely random, but partly built based on the original controller θ�.
In particular, we built 1

2npop individuals randomly, i.e., by sampling U(−1, 1),
1
2npop − 1 individuals by applying the Gaussian mutation to θ�, and finally
included θ� itself—that is, we seeded the initial population with θ� as done
in [7,19]. For reducing the computational effort, we considered only the small
morphologies with δ = 1.

Figure 3 shows the results of this experiments. It shows how vx on the mod-
ified morphologies changes during the evolution when starting from a random
initial population (blue line) or from a population seeded with θ� (green line).
For comparison, the figure also shows the evolution of vx on the original mor-
phology (red line). This is computed on 10 values, differently than the other two
lines that are computed on 100 values, and results hence less smooth.

Fig. 3. Controller effectiveness vx (median and interquartile range) during the evo-
lution with the original morphology (red), a modified morphologies with δ = 1 with
re-optimized controller with random (blue) or seeded (green) population. (Color figure
online)

The main finding arising from Fig. 3 is that re-using the controller evolved for
the original morphology is very effective. For the biped and worm morphologies,
vx for the best individual at the first iteration of the EA with the seeded initial
population is very close to the random initial population case after 5000 fitness
evaluations. For the comb, the initial seeded best is on par with the final best
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of the random case. In other words, with the seeded population, one can obtain
an effective neural controller even with a very short re-optimization, i.e., much
more efficiently.

A secondary, yet important finding, is that not only the seeded popula-
tion positively impacts on efficiency of the optimization, but it also allows to
obtain more effective controllers. For the biped and comb morphologies, the
re-optimized controllers on the modified morphologies are not statistically sig-
nificantly worse than the original controller on the original morphology.

Overall, this experiments show that a short re-optimization of the controller
is enough to re-align it to the modified body, hence making the VSR ecosystem
truly capable of adaptation and robustness.

Discovery of More Effective Morphologies. While analyzing the raw
results for the discussion of Sect. 3.2, we discovered that for some modified mor-
phologies, the neural controllers resulting from re-optimization (from random
initial population) achieved sharply better vx than those obtained with the orig-
inal morphology.

In Fig. 4 we present the vx obtained for all the variants of the small biped
morphology, including the original, unmodified one. We chose this case because
it was the one resulting, in general, in the most effective gaits. The figure shows
one point for each of morphology, with coordinates given by its vx (upon re-
optimization, on the x-axis) and its size (number of voxels, on the y-axis) and
color based on the morphology: green for the original one, gray for other cases,
and blue and red for the Talos and horse variants.

Fig. 4. Controller effectiveness vx vs. size (num. of voxels) for all the 100 small biped
morphologies, each with a re-optimized controller.

The latter two morphologies exhibited larger vx values that were easily
explainable by visually inspecting their behavior. The Talos variant, which we
named after the main character of the book “Lo scudo di Talos” [6], had a thicker
rear leg that conferred it greater strength for hopping faster. The horse variant
used its “head”, moved in counter-phase with other parts of its body, to balance
the overall movement and hence advance faster.

In order to validate this casual observation, we performed 10 evolutionary
runs for each of the two variants and found that their suitability for locomotion
was systematic. The evolved controllers obtained a better vx than the one for
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the original biped, with statistically significant differences. We deem this finding
particularly promising, in perspective. If new, more effective morphologies can be
discovered “by chance” by re-optimizing existing controllers from morphologies
that present small, erratic variations, then there is an opportunity for a further
adaptation that propagates these small, yet positive advancements, hence mak-
ing the robotic ecosystem, as a whole, more adaptive. We plan to investigate
this possibility more deeply in future works.

Finally, Fig. 4 also shows that there is no correlation between the size of the
VSR and vx (R2 ≈ 0.005). In other words, for the biped variants, it does not
hold that bigger morphologies result in faster robots, despite having, in principle,
greater available strength.

4 Concluding Remarks

We considered the case of Voxel-based Soft Robots (VSRs) and experimentally
characterized the impact of small morphology variations on the effectiveness
of evolved neural controllers. We found that even small variations are highly
detrimental for controller effectiveness, i.e., robots with a controller evolved for
a morphology are much smaller if applied on morphologies differing in one or
more voxels. By analyzing robot behaviors, we motivated this finding in terms
of body-brain misalignment: since VSRs are soft, their bodies exhibit a rich
dynamics which plays a key role in determining the behavior.

We also experimented with the re-optimization of controllers for the modified
morphologies and found that it is both efficient and effective if it is seeded with
the controller evolved for the original morphology. As an aside, we discovered
that random morphology variants can give rise to morphologies that are more
effective than the original ones. We believe this constitute an opportunity that
can potentially be exploited for making the full process (automated assembly,
possibly with errors, and robot life with evaluation being the key steps) more
adaptable. We plan to investigate this possibility in future works.
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