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Abstract

The Global Leadership Initiative on Malnutrition (GLIM) provides consensus criteria

for the diagnosis of malnutrition that can be widely applied. The GLIM approach is

based on the assessment of three phenotypic (weight loss, low body mass index, and

low skeletal muscle mass) and two etiologic (low food intake and presence of disease

with systemic inflammation) criteria, with diagnosis confirmed by any combination of

one phenotypic and one etiologic criterion fulfilled. Assessment of muscle mass is

less commonly performed than other phenotypic malnutrition criteria, and its

interpretation may be less straightforward, particularly in settings that lack access to

skilled clinical nutrition practitioners and/or to body composition methodologies. In

order to promote the widespread assessment of skeletal muscle mass as an integral

part of the GLIM diagnosis of malnutrition, the GLIM consortium appointed a

working group to provide consensus‐based guidance on assessment of skeletal

muscle mass. When such methods and skills are available, quantitative assessment of

muscle mass should be measured or estimated using dual‐energy x‐ray absorptiom-

etry, computerized tomography, or bioelectrical impedance analysis. For settings

where these resources are not available, then the use of anthropometric measures

and physical examination are also endorsed. Validated ethnic‐ and sex‐specific

cutoff values for each measurement and tool are recommended when available.

Measurement of skeletal muscle function is not advised as surrogate measurement

of muscle mass. However, once malnutrition is diagnosed, skeletal muscle function

should be investigated as a relevant component of sarcopenia and for complete

nutrition assessment of persons with malnutrition.
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INTRODUCTION

The Global Leadership Initiative on Malnutrition (GLIM) is a recent

initiative by major global clinical nutrition societies, aimed at

providing criteria and guidance for a consensus‐based approach to

diagnosis of malnutrition in adults applicable in diverse global clinical

settings.1,2 Among its main features, the GLIM construct aims at

combining clinical accuracy and consistency with simple implementa-

tion that may be applied by nonspecialized healthcare personnel in

everyday practice.1,2 Therefore, the GLIM malnutrition diagnosis is

based on widely recognized criteria that were selected based on their

inclusion in all major existing diagnostic tools.1,2 Three phenotypic

(weight loss, low body mass, and low skeletal muscle mass) and two

etiologic (low food intake and presence of disease or systemic
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inflammation) criteria were proposed, with malnutrition confirmed by

any combination of one phenotypic and one etiologic criterion. After

publication in 2019, the GLIM criteria for malnutrition diagnosis have

been embraced by many in the clinical nutrition community, and their

utilization in clinical practice is growing.1–4 Recent research publica-

tions suggest that the GLIM approach is comparable to other long‐

established nutrition assessment tools in diagnosis of malnutrition

and associated risk of adverse outcomes.5–21 The GLIM approach

also offers simplicity that supports practical use by a wide variety of

practitioners and healthcare professionals.

Among the criteria included in the GLIM malnutrition diagnosis,

assessment of skeletal muscle mass is, however, less commonly

performed in clinical nutrition practice, and even less so in those

settings that lack access to skilled clinical nutrition practitioners and

to specialized body composition methods.5–21 In addition, whereas

the original GLIM guidance remained provisionally open to the

inclusion of skeletal muscle function as a surrogate or proxy measure

for skeletal muscle mass,1,2 the role of muscle function both as an

indicator of malnutrition and as a potential surrogate for skeletal

muscle mass remains under debate. In order to further promote the

use of skeletal muscle mass as an integral part of the GLIM approach

for the diagnosis of malnutrition, the GLIM consortium of represen-

tatives of the four global clinical nutrition societies appointed a

working group to provide consensus‐based guidance on assessment

of skeletal muscle mass and the role of skeletal muscle function in the

malnutrition diagnostic and assessment process. The GLIM Body

Composition Working Group hereby provides five consensus‐based

statements on methods for measuring/assessing skeletal muscle

mass and its related body compartments for the diagnosis of

malnutrition, related cutoffs, and the role of skeletal muscle function.

METHODS

The GLIM core leadership of representatives of four major global

clinical nutrition societies (the American Society for Parenteral and

Enteral Nutrition [ASPEN], the European Society for Clinical Nutrition

and Metabolism [ESPEN], the Latin American Federation for

Nutritional Therapy, Clinical Nutrition and Metabolism [FELANPE],

and the Parenteral and Enteral Nutrition Society of Asia [PENSA])

appointed a Steering Committee of two representatives for each

Society (R. B., T. C., C. C., G. J., M. I. T. D. C., M. C. G., T. H., and H. S.)

for this task. Two cochairs (R. B. and C. C.) were selected by the

Steering Committee and each society was further invited to appoint

four to six experts to create the working group.

On behalf of the Steering Committee, the cochairs proposed an

initial, preliminary survey with the main goals to (1) evaluate existing

tools for direct or indirect skeletal muscle measurement, (2) evaluate

potential proposals and approaches for cutoff utilization, and (3)

identify the level of agreement on the use of skeletal muscle function

parameters as a surrogate of skeletal muscle mass in the diagnosis of

malnutrition. The survey results were evaluated and discussed during

virtual meetings of the working group during the ESPEN virtual

Congress in September 2020. Based on results and subsequent

discussions, a set of five summary statements was circulated by the

cochairs on behalf of the Steering Committee in the beginning of

2021. The whole working group was asked to express agreement on

a 5‐point scale (strongly agree; agree; neither agree nor disagree;

disagree; strongly disagree; 75% of combined agree or strongly agree

votes was the required threshold for consensus on each state-

ment).22 In addition, succinct comments for initial discussion of each

statement were provided by the Steering Committee and the whole

group was invited to write additional comments or suggestion for

discussion, independent of agreement on the related statement.

STATEMENTS FROM THE GLIM BODY
COMPOSITION WORKING GROUP

Measuring muscle mass for the diagnosis of
malnutrition (Figure 1)

Statement 1. In general, use of validated tools is acceptable based

on availability, reference values, and operator expertise for direct

and indirect measurement of skeletal muscle mass or its related

body compartments, such as fat‐free mass (FFM), appendicular

lean soft tissue, and skeletal muscle area. Use and dissemination of

techniques like bioelectrical impedance analysis (BIA), dual‐energy

x‐ray absorptiometry (DXA), and computerized tomography (CT) is

recommended when the methods and access to expert analysis are

available.

Level of agreement 96%

General comments on technology‐based methods

We support a general inclusive approach to use established tools for

direct or indirect measurement of skeletal muscle mass and body

composition. We advocate that priority be given to utilization and

further dissemination of technologies such as BIA, DXA, and CT for

body composition assessment. In addition, the group emphasizes the

importance of quantitative assessments such as those obtained with

BIA, DXA, and CT as well as anthropometry for comparison and

validation purposes. BIA, DXA, and CT have been used in clinical

research for some time and have generated a large body of evidence

supporting their ability to identify changes in body composition and/

or skeletal muscle mass and its related body compartments.1,23 BIA,

DXA, and CT use for clinical malnutrition diagnosis is therefore

supported, when the method is available along with appropriate

expertise by experienced personnel. Operator expertise is particularly

important to avoid errors and misleading conclusions from mis-

interpretation of data. It is anticipated that advances in the field will

soon bring further improvements in portable bedside body composi-

tion technologies that may enhance widespread access and use.

Limitations and advantages for each tool are acknowledged as

follows.
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Comments on the use of BIA

BIA provides practical advantages including relatively low cost and

device portability, with potential for repeated measurements. Many

studies have generally reported good results for BIA in terms of

predictive value for relevant clinical outcomes, as its use has

increased over the past several years.24–27

However, several limitations need to be considered for the use of

BIA in routine clinical practice. BIA‐derived assessment of body

composition relies on electrical impedance to provide estimates of

total body water, leading to equation‐derived estimates of body fat‐

and FFM, the latter of which includes various nonmuscle compo-

nents.23 These equations have been usually established within

specific populations (persons with undernutrition or obesity, older

populations) and against specific methodologies (water dilution, DXA,

magnetic resonance imaging [MRI]), so that use of direct results from

different devices and in different populations should be cautiously

analyzed. BIA results are also influenced by hydration status with

overhydration and edema resulting in overestimation, and dehydra-

tion resulting in underestimation of FFM. It is also important to note

that BIA devices vary and include single‐ and multiple‐frequency

electrical analyses as well as segmental BIA.24 Multiple‐frequency

BIA allows better estimates of extracellular fluid separately from

intracellular and therefore fluid distribution and different fluid

compartments.28 Different methods will likely require additional

comparisons for validation and generation of cutoffs.25 Importantly,

equations for estimates of body compartments are device and

population‐specific, and parameters derived from the direct assess-

ment of reactance and resistance, for example, phase angle, have

been proposed as surrogate markers for muscle mass with studies

supporting its predictive value for clinical outcomes.29,30

Comments on the use of DXA

DXA provides accurate measurements of body composition, based on

x‐ray attenuation through different body components.23 DXA is

routinely used in clinical practice for measurement of bone density

and it is a cornerstone in osteoporosis diagnostics and management.31

Additional information on fat and lean soft tissue mass can be

determined with validated accuracy from whole‐body DXA

scans.23,32–34 Relatively few assumptions are required for DXA‐

based body composition analyses, although it should be pointed out

that skeletal muscle is not directly measured as such, but is estimated

from appendicular lean soft tissue.23 DXA can also provide regional

body composition assessment with separate measurements for limbs

(appendicular) and trunk.23 Appendicular lean soft tissue (also

commonly termed appendicular muscle mass) estimates may be

particularly useful in clinical estimates of body composition and

skeletal muscle mass, with some limitations in persons with over-

weight, obesity, or in older age groups.35

However, DXA is generally less available than BIA, and dedicated

devices are significantly more expensive and often not available or

applicable for routine use in clinical settings across the globe.36

Furthermore, lean soft tissue assessed by DXA is not well validated in

clinical populations.35 Except for bone density, DXA is not commonly

used for measurement of body composition in many countries and

healthcare systems. X‐ray exposure is considered to be modest23 but

should be considered in certain clinical conditions and for repeated

measurements.

Comments on the use of CT

CT has been increasingly employed in clinical research for measure-

ment of selected skeletal muscle areas, which may be used as

F IGURE 1 GLIM approach to diagnosis of malnutrition with focus on muscle mass assessment. The use of technology‐based measurements is
primarily recommended when devices, expertise for device utilization and result interpretation, and appropriate validated cutoffs are available. We
recognize that no criterion‐standard or superior technique is currently acknowledged, and use of different techniques should be based on availability
criteria and with consideration for strengths and limitations described in the text. If use of technology‐based measurements is not possible because of
any of the above reasons, use of anthropometry or trained physical examination for signs of low skeletal muscle mass is recommended. In this case,
trained personnel and validated cutoffs for the desired application should also be available. BIA, bioelectrical impedance analysis; CT, computerized
tomography; DXA, dual‐energy x‐ray absorptiometry; GLIM, Global Leadership Initiative on Malnutrition; US, ultrasound.
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surrogate markers of whole‐body skeletal muscle. CT imaging of

regional body skeletal muscle has been validated against clinical

outcomes in various disease settings.37,38 Typically, skeletal muscle

index at L3 (cross‐sectional area divided by height squared) is

recommended from abdominal CT scans,39 although other muscles

and muscle groups have been proposed, for example, from chest and

mid‐thigh scans.40–42

Use of CT scans specifically for routine diagnosis of malnutrition

may be limited because of practical reasons including availability of

images from medical records, additional radiation exposure that

results from CT scans potentially obtained only for skeletal muscle

assessment, significant costs, operational complexity and heteroge-

neity in the protocols and technical settings used. Nonetheless, there

is a strong rationale and the opportunity to incorporate body

composition and muscle mass assessment in large groups of patients

undergoing CT examinations related to standard care for various

disease conditions. For example, many patients with cancer undergo

CT imaging for cancer staging and they are also at high risk to

develop malnutrition. Radiologists or other trained personnel can be

engaged in pursuing muscle mass assessments by CT imaging

completed for other diagnostic reasons. The increasing number of

automated analysis software applications may facilitate this task.

Routine implementation of muscle assessment from available images

will require increased awareness on the clinical relevance of

malnutrition diagnosis in many patients undergoing CT scans. This

in turn may further enhance availability of automated software for

muscle analysis, as well as training and commitment of personnel.

Statement 2. When technology‐based devices and the expertise

to interpret them are not readily available, then the use of

anthropometric measures like calf circumference and mid‐arm muscle

circumference are supported, as well as physical examination, due to

universal availability, and according to preference and training.

Level of agreement 92%

Comments on the use of arm and leg anthropometry

When BIA, DXA, or CT are not available or feasible, we support the

use of anthropometric measures for assessment of skeletal muscle

mass. For estimation of upper arm muscle area, anthropometry

measures include calf circumference or mid‐arm muscle circumfer-

ence,43–46 the latter being calculated as mid‐arm circumference

minus π times triceps skinfold thickness. Both techniques require

appropriate methodological training,47 although less training may be

needed for calf circumference. They are suitable and applicable to

many clinical settings, including bedside hospital rounds, skilled

nursing and rehabilitation facilities, outpatient clinics, and community

settings. Ethnic‐specific cutoffs must also be considered, and cutoffs

may be unavailable for oldest age groups (>80 years). Anthropometry

is focused on the selected muscle groups which have been found to

be reduced in individuals with malnutrition. Note that anthropometry

is generally less sensitive than appropriately implemented imaging or

bioelectrical impedance methods.

Comments on the use of physical examination

Physical examination to detect qualitative signs of reduced muscle

mass at the temple, neck, clavicle, shoulder, scapula, thigh, and calf

sites is a component of major assessment tools such as Subjective

Global Assessment (SGA) and the Academy/ASPEN approach.48,49

Physical examination has been validated for assessment of nutrition

status when implemented by trained personnel.50 The subjective

nature of physical examination can be limited by operator expertise

and training as well as standardization of results.50 Physical

examination is therefore supported according to preference and

training, particularly in the context of using standardized examination

approaches for nutrition assessment in order to limit potential

interobserver variability.

Statement 3. Ultrasound (US) is supported in the presence of

experienced operators, particularly for repeated measurements.

Level of agreement 79%

Comments on the use of US

US technique is widely available also for bedside measurements, and

may be practical for repeated longitudinal measurements of muscle

thickness and cross‐sectional area. Standardization methods have

been proposed in consensus statements.51 Studies have reported

strong comparisons against techniques like MRI and DXA52–55 for

thickness and cross‐sectional area measures at various sites including

thigh, calf, upper arm, and musculus rectus abdominis. However,

relevant limitations remain, particularly in terms of interoperator

reproducibility, and standardized techniques and protocols in terms

of degree of compressibility of the skin at measurement site, and cut‐

points in specific patient populations.56 We support the use of US,

particularly in settings where its practical applicability provides

potential for patient follow‐up through repeated measurements,57,58

but it requires standardization through experienced operators, and

repeated measurements performed by the same individual.56–58

Further validation studies for US are encouraged.

COMMENTARIES ON SECTION
A—MEASURING MUSCLE MASS FOR
THE DIAGNOSIS OF MALNUTRITION

General limitations imposed by obesity and edema

Current body composition measures to assess skeletal muscle mass

suffer limitations in settings of excess fat or fluid accumulation such

as commonly observed in persons with significant obesity or edema,

respectively.59

With regard to technology‐based methods, persons with very

high body mass often cannot be accommodated on standard CT or

DXA examination tables. Obesity may also reduce the DXA accuracy

for body composition estimation.23 Edema may confound CT

interpretation since water and skeletal muscle can be difficult to
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distinguish. Equations derived for body composition determinations

by BIA suffer limitations in accuracy for persons at high extremes of

body fatness or edema. It may also be difficult to place such persons

in supine position with adequate separation of the extremities for

BIA. In addition, obesity and edema make land marking and

visualization of muscle groups difficult for US assessment.

Regarding anthropometry and physical examination, muscle circum-

ferences can be difficult to accurately obtain in individuals with obesity or

edema, and appreciation of reduced skeletal muscle mass is also

challenging by physical examination in such individuals. Older persons

with obesity frequently have low skeletal muscle mass (sarcopenic

obesity) as do persons with comorbidities.60,61 The issue of obesity for

calf circumference has been addressed in the NHANES general US

population cohort,62 demonstrating that use of body mass index

(BMI)–based adjustment factors resulted in the ability to detect age‐

associated, and sex‐specific lower values of calf circumference.62 Further

studies are needed to validate adjustment for BMI to detect low calf

circumference, low skeletal muscle mass, and associated malnutrition in

persons with obesity. In the presence of edema, if it is observed at lower

and not at upper extremities, mid‐arm muscle circumference could be

considered as alternative preferred measurement.

Research methods

MRI and novel techniques like the Deuterium and D3‐creatine

dilution tests are recommended for research purposes in experienced

research facilities.

Level of agreement 79%

Research is advocated to develop innovative methods, devices, and

artificial intelligence, aimed at advancing the field of body composi-

tion measurement, and for further validation testing of such methods

against existing approaches used in clinical practice. Although MRI23

and deuterium and D3‐creatine dilution tests63,64 are currently

available, we consider it unlikely that they will soon be available for

routine clinical practice. Some of these methods are being currently

tested and validated.63–65 In general, their relevance to the

implementation of the GLIM criterion of low skeletal muscle mass

for diagnosis of malnutrition in clinical practice remains limited until

more widespread implementation and comparison with clinically

established methods becomes possible.

Use of cutoffs for identification of reduced muscle
mass for the diagnosis of malnutrition

Statement 4. Cutoff values are needed for use for each measure-

ment and method, including ethnic‐ and sex‐specific cutoffs, and

validated cutoffs are recommended for use when available. At

present, there is not enough evidence to clearly define cutoffs

between moderately and severely reduced muscle mass using the

available data for currently recommended techniques.

Level of agreement 88%

Comments on the choice of cutoff values to use

We recommend a general inclusive approach to use consensus‐

based cutoffs at this time (Table 1). It is acknowledged that some

devices and techniques do not currently rely on universally

accepted cutoff values for normality and disease.35,75 Age‐, sex‐,

ethnicity‐specific cutoffs may not be universally available and

accepted for all methods. Research is encouraged to extend cutoff

validation testing where needed. Identification of cutoffs may be

based on standard approaches such as 1–2 SD below mean values

of young (T‐scores) or age‐matched (z scores) individuals, respec-

tively, or below 5th−10th percentile in reference to a general

healthy population.71,72 Receiver operating characteristic curves

(using a validated tool as the criterion standard to classify low or

normal) could be used to identify the best cutoff for a new

approach when there are no data from a reference population.

Although use of general comparison to reference population is

encouraged, disease‐specific cutoffs also may be used for clinical

practice, particularly in chronic disease states when cutoffs could

be validated against clinical outcomes (survival rate, hospitalization

rate, complications, clinical events).

TABLE 1 Examples of recommended thresholds for reduced
muscle mass or its surrogate markers

Thresholds Males Females

ALMI, kg/m2a,66,67 (DXA) <7 <5.5

ASMI or ALMI, kg/m2b,67–69

BIAb,69 <7 <5.7

DXAb,70 <7 <5.4

FFMI, kg/m72,271 (BIA) <17 <15

ALM/weight, %73 (DXA) <25.7 <19.4

ALM/BMI, m274 (DXA) <0.827 <0.518

Calf circumference, cmc,d,62 <33 <32

Note: Adjustments by height or weight (for use in persons with obesity).
The recommendations are feasible for adults.

Abbreviations: ALM, appendicular lean mass; ALMI, appendicular lean
mass index (ie, lean soft tissue index); ASMI, appendicular skeletal muscle
mass index; BIA, bioelectrical impedance analysis; BMI, body mass index;
DXA, dual‐energy x‐ray absorptiometry; FFMI, fat‐free mass index.
aRecommendation from The European Working Group on Sarcopenia in
Older People 2 (for White people).66

bRecommendation from The Asian Working Group for Sarcopenia (for
Asian populations).69

cRecommendation based on the agreement between the authors of this
consensus report.
dIn adults with obesity, decrease the measured value by 3 cm (BMI,

25–30) or 7 cm (BMI, 30–40).62
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Besides definition of normal values, reliable cutoffs that can

be accepted for the definition of moderate vs severe reductions

of skeletal muscle mass are generally lacking. This limitation

is a serious short‐coming particularly in the context of

GLIM implementation, since GLIM aims at differentiating

between moderate and severe malnutrition stages. Clinical

research and testing to identify severity cutoffs for low

muscle mass are therefore urgently advocated. In persons with

obesity, low muscle mass may be especially common with older

age and in the presence of comorbidities.60 In these settings

standardization of approaches to interpretation of muscle mass is

needed.61

As we recognize the importance of summarizing validated cutoffs

as an important step to further facilitate implementation of the

muscle mass assessment and interpretation, we advocate for a

literature review to indicate available cutoffs which should include

ethnicity‐, sex‐specific values as well as age‐ and disease‐specific

ones whenever available.

The role of muscle function for the diagnosis of
malnutrition

Statement 5. Although important, measurements of muscle function are

not recommended as surrogates or proxies for muscle mass. Once

malnutrition is diagnosed, skeletal muscle function should be investi-

gated as a relevant component of nutrition assessment of individuals

with malnutrition. Detection of low muscle function and potentially

mass, ie, sarcopenia should however increase suspicion for associated

malnutrition. Full implementation of the GLIM approach should

therefore be applied to patients with suspected or probable sarcopenia.

Level of agreement: 92%

Comments on the role of muscle function assessment

Skeletal muscle mass and function are commonly associated, but

their changes following various pathophysiological stimuli may not

F IGURE 2 Graphical summary. Flowchart for implementation of the five GLIM criteria for malnutrition diagnosis, with summarized algorithm
for muscle mass assessment and need for nutrition assessment and evaluation of muscle strength in case of malnutrition diagnosis. BIA,
bioelectrical impedance analysis; BMI, body mass index; CT, computerized tomography; DXA, dual‐energy x‐ray absorptiometry; GLIM, Global
Leadership Initiative on Malnutrition.
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align, especially in disease conditions.76–81 Reduction in function may

often precede loss of muscle mass.68 However, muscle function may

be adversely impacted by nonnutrition factors and, therefore, should

not replace muscle mass assessment in the malnutrition diagnostic

process.

We recognize and emphasize the important clinical contiguity

between malnutrition and sarcopenia, low muscle function being a

defining feature of the latter.66,71,82 Malnutrition may be a key

contributing factor in sarcopenia and both conditions frequently

coexist. Therefore, when low muscle function is detected or becomes

apparent in a person of any age or under any clinical circumstances,

especially in persons with overweight or obesity, we recommend that

skeletal muscle mass should be investigated, and GLIM criteria

implemented.

Although not necessarily reflecting changes in muscle mass,

evaluation of skeletal muscle function should continue to be included in

the assessment of patients at risk or with malnutrition because muscle

function may still be variably affected by reduced muscle mass.76–81

Furthermore, muscle function is important in the general evaluation of

patient functional status. In addition, muscle function parameters may be

useful in assessment of effectiveness of nutrition treatment. Muscle

strength measurement may include handgrip test, or knee‐extension

when available, as complementary harmonized methods. Additional tests

that may be conveniently performed in clinical practice include repeated

sit‐to‐stand or 4‐meter walking test. In sum, we consider evaluation of

muscle function to be an integral part of nutrition and functional

assessment of patients, even though not required for the diagnosis of

malnutrition.

General commentary and conclusions (Figure 2)

The current paper aims at providing practical guidance on

implementation of the GLIM phenotypic criterion of low skeletal

muscle mass for malnutrition diagnosis. The paper is therefore not

intended to provide a review of available evidence on body

composition and muscle mass assessment methods, nor an

evidence‐based guideline to evaluate methods and recommend

criterion‐standard techniques in various clinical conditions. The

GLIM initiative aims at increasing opportunities to diagnose

malnutrition in all clinical settings, including healthcare personnel

without specialized nutrition training. The working group therefore

provides expert opinion‐based guidance to select acceptable

methods and cutoffs, and thereby encourage the widespread use

of skeletal muscle mass assessment in malnutrition diagnosis.

Altered body composition with low skeletal muscle mass is a key

clinical feature of malnutrition, and it should be a widely available

criterion for diagnosis as well as treatment and follow‐up of

patients with malnutrition. To this aim, we hereby advocate that

validated tools for assessing muscle mass and its surrogates, such

F IGURE 3 Future research plans. Main lines of action for further extension of skeletal muscle mass assessment in routine clinical practice for
GLIM implementation are identified and described. Actions include (1) enhancing awareness of the relevance of skeletal muscle mass for clinical
outcomes; (2) extending research for cutoff identification and validation in different settings and for different techniques, including identification
of severity cutoffs for low muscle mass; and (3) extending standardization of different procedures.
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as lean soft tissue, are considered to be acceptable based on

availability, reference values. and operator expertise. In order to

promote the global implementation of the GLIM approach to

malnutrition diagnosis, the use of anthropometric measures and

physical examination are supported Because of their potential

widespread availability in clinical settings that may lack access to

other methods for assessment of muscle mass. Validated cutoff

values for each measurement and tool are recommended for use

when available, including ethnic‐ and sex‐specific cutoffs. Availa-

ble cutoffs should be ideally summarized for practical guidance for

implementation. Although important, measurements of skeletal

muscle function are not advised as surrogates or proxies for

muscle mass. However, once malnutrition is diagnosed, skeletal

muscle function should be investigated as a relevant component of

nutrition assessment of individuals with malnutrition.

Perspectives (Figure 3)

Priorities for future research and action are strongly advocated to

include (1) development and refinement of appropriately identified

cutoff values, when missing, for each technique and method, and

identification of cutoffs for stratification of moderate vs severe

reduction in muscle mass; (2) development and refinement of

standardized procedures for skeletal muscle mass assessment and

malnutrition diagnosis for each technique and method, particularly

when they are currently more commonly primarily employed for

different purposes (eg, DXA, CT, US); (3) promotion of awareness

of the importance of skeletal muscle mass assessment in clinical

practice, both for malnutrition diagnosis and for the independent

relevance of low muscle mass as a negative prognostic factor in

several conditions including but not limited to sarcopenia, frailty,

disability, and chronic disease.
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