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Abstract. Trace clustering has been extensively used to discover
aspects of the data from event logs. Process Mining techniques guide
the identification of sub-logs by grouping traces with similar behaviors,
producing more understandable models and improving conformance indi-
cators. Nevertheless, little attention has been posed to the relationship
among event log properties, the pipeline of encoding and clustering algo-
rithms, and the quality of the obtained outcome. The present study con-
tributes to the understanding of the aforementioned relationships and
provides an automatic selection of a proper combination of algorithms for
clustering a given event log. We propose a Meta-Learning framework to
recommend the most suitable pipeline for trace clustering, which encom-
passes the encoding method, clustering algorithm, and its hyperparame-
ters. Our experiments were conducted using a thousand event logs, four
encoding techniques, and three clustering methods. Results indicate that
our framework sheds light on the trace clustering problem and can assist
users in choosing the best pipeline considering their environment.

Keywords: Process mining · Trace clustering · Meta-learning ·
Recommendation · Pipeline design

1 Introduction

Executing business processes leaves trails of the accomplished activities, perfor-
mances achieved, and resources consumed. This information is stored in event
logs, which embrace the history of the process. Executions generating the same
sequence of activities are observed as the same trace by Process Mining (PM)
algorithms that can group multiple executions in a single representation. Often,
the variability of traces is however remarkable, and traces by themselves do not
offer a helpful representation of the process. This variability causes problems
for existing PM techniques. For instance, business processes with high trace
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variability generate spaghetti-like models, i.e., complex models with an enor-
mous number of relations, often unreadable [1]. Neubauer et al. [24] identified
two elements that contribute primarily to the inherent complexity of business
processes: (i) knowledge-intensive processes where decision-making is human-
dependent, and (ii) processes from large organizations with a fast generation
rate, and therefore high volume output. Therefore, it is of interest to simplify
the analysis representation, thus, allowing an easier interpretation for stakehold-
ers and leveraging efficiency. For instance, consider an event log and its sequences
of activities (traces) L = {〈a, b, c, d, e〉, 〈a, d, c, e〉, 〈a, b, c〉, 〈a, d, c〉}, it is possible
to notice two groups of closely related traces, i.e., trace 〈a, b, c, d, e〉 is similar to
〈a, b, c〉 whereas trace 〈a, d, c〉 has a sequence closer to trace 〈a, d, c, e〉. Grouping
these similar traces may improve the accuracy and comprehensibility of process
discovery techniques [11], and at the same time, support the identification of
deviating or anomalous instances [17]. Moreover, concurrency might also be a
problem in some domains. For instance, traces 〈a, b, c, e〉 and 〈a, c, b, e〉 may be
considered the same from a business perspective if the order of activities b and c
do not affect the process outcome. This way, these trace representations should
be close when projected into the feature space.

Trace clustering techniques have been adopted to solve these issues by iden-
tifying sub-logs grouped by trace similarity. This way, by detecting groups with
homogeneous behavior, process discovery techniques can be executed in sub-logs,
producing higher quality models, which are instead accessible for stakeholders
[14]. Trace clustering has also been studied in the context of explainability for PM
[20] and, more recently, adapted to incorporate expert knowledge [19]. However,
selecting the appropriate clustering technique is a complex task. Many trans-
formation methods were presented, treating traces as vectors generated from
bags of activities [22], edit distance [4] or dependency spaces [12], discriminant
rules [15,26] or log footprints [20]. The set of clustering algorithms applied is
also ample, e.g., k -means [15], hierarchical clustering [4], spectral clustering [12],
constrained clustering [19], among others. Given this large set of options to set
up a clustering pipeline, a non-expert user can likely feel overwhelmed.

Considering the challenge of designing pipelines to identify the correct encod-
ing method, clustering algorithms, and hyperparameters to use for a specific log,
we propose a framework based on Meta-learning (MtL). Our framework recom-
mends the trace clustering pipeline that best fits a specific event log. MtL is a
learning process applied to meta-data representing other learning processes [31]
and has been used successfully to emulate experts’ recommendations, maximize
performance, and improve quality metrics [16].

The problem of simultaneously recommending an algorithm and tuning its
hyperparameters to optimize a task is defined as the combined algorithm selec-
tion and hyperparameter optimization problem [28]. Alternatively, it is possible
to exploit similar recommending tasks, in which algorithms and hyperparameters
are represented as discrete spaces, mapping possible inter-correlations between
the different hyperparameters as a multi-output machine learning problem. In
this work, the meta-data consists of a large set of event log features that are
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provided as input to the MtL workflow that outputs trace clustering pipelines
described by an encoding technique, a clustering algorithm, and hyperparam-
eters modeled using a problem transformation approach. In our scenario, MtL
serves as an automated approach as it suppresses the need for expert interaction
to work correctly. The relationship between event log features and the quality of
PM techniques has been already pointed out in the literature [2,3]. We introduce
a general framework for studying this relationship for the trace clustering task
using MtL. Moreover, we instantiate this framework to provide an example of its
functionality. In particular, in our experiments, we submit the method to a set
of 1091 event logs described by 93 log features, four encoding techniques, and
three clustering algorithms. Results show that our approach achieves consider-
able performance for recommending encoding and clustering techniques. We also
provide a comparison with two baseline methods, highlighting the improvement
supported by the MtL strategy.

The remainder of this paper is organized as follows. Section 2 gives a historical
overview of trace clustering solutions, focusing on the employed transformation
and clustering methods. Section 3 defines the task and its configuration steps,
while Sect. 4 presents our proposed framework to solve the trace clustering rec-
ommendation problem. Section 5 presents the material used for experiments, the
techniques, and quality metrics adopted. Section 6 shows the results and raises
a discussion around them. Section 7 concludes the paper and Sect. 8 lists its
broader impact.

2 Related Work

Trace clustering research is deeply connected to the variant analysis problem,
that is, detecting groups of similar behavior within a single business process [20].
Clustering traces is partitioning an event log into groups of comparable traces
such that each trace is assigned to a unique group [19]. Since its initial adoption,
trace clustering has been proposed as an instrument to reduce variability. Dis-
covering process models from clusters, for example, generally improves quality
[14]. An early work in the area used a set of n-grams to encode a trace activ-
ity sequence, thus, mapping traces to a feature vector space [15]. Song et al.
[26] went further by defining multiple encoding procedures, named profiles, to
represent traces as vectors. Furthermore, the authors call attention to the mod-
ularity between the profiling and clustering steps. Bose and Aalst [4] represent
traces as strings and apply edit distance to measure trace similarity. Delias et
al. [12] proposed a measure to calculate trace distance based on dependency.
However, approaches based on instance-level similarity may be applicable only
to particular domains. Thaler et al. [27] highlight that bags of activities may lose
critical information regarding the execution order. Delias et al. [12] show that
no single optimal similarity metric is applicable for all domains and applications
while Zandkarimi et al. [34] stated that trace clustering is a context-specific task.
Koninck et al. [20] characterize the complexity of clustering with the assessment
of the best event log splitting operations. A well-performing encoding method
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improves a wide range of posterior analyses without the need to tune them [3].
The authors also showed that there is no best encoding method for every sce-
nario, that is, different event logs are encoded better, considering several quality
criteria, by different encoding techniques. A similar conclusion is achieved in [27]
when analyzing clustering algorithms applied to PM.

The authors stated that some techniques are suitable for particular scenar-
ios, reinforcing the argument that process characteristics may guide the deci-
sion of the appropriate clustering technique. Besides, different from supervised
approaches, unsupervised learning performance is severely affected by small
changes in hyperparameters, depending heavily on user-domain knowledge [18].
This implies that the solutions proposed today are far from optimal as they are
attached to a unique set of encoding and clustering algorithms.

Considering the multiple available profiling and clustering algorithms, we
envision two main building blocks regulating the success of clustering techniques.
The first regards the encoding method, i.e., converting the trace sequences
into feature vectors, and the latter comprises the clustering techniques. The
approaches currently available in the literature are strictly attached to a specific
combination of these building blocks; hence, they neither offer a means to study
the relationship between the different steps that compose a pipeline nor relate
process behavior to optimal solutions.

3 Problem Statement

Given the plethora of configuration steps and parametrization, designing the
appropriate trace clustering pipeline is a complex issue even for experts. We
identified in the literature three configuration steps that highly affect the clus-
tering results: (i) trace encoding, (ii) clustering algorithm, and (iii) hyperparam-
eters regulating the clustering algorithm. The choice of each step is critical since
slight changes deeply affect the clustering results.

PM techniques ingest event logs. An event log is the set of events executed
in a business process. An event records the execution of an activity. It follows
that each event is strictly related to a unique process instance, identified by its
case. A unique end to end sequence of activities within a case is known as a
trace. Let Σ be the event universe, i.e. the set of all possible event identifiers;
Σ∗ denotes the set of all sequences over Σ. A trace is a non-empty sequence of
events t ∈ Σ∗ where each event appears only once and time is non-decreasing,
i.e., for 1 ≤ i < j ≤ |t| : t(i) �= t(j). In PM applications, encoding aims at
transforming traces into vectors, mapping process instances into a feature space.
Therefore, an encoding method is a function E() that maps a set of traces into
a n-dimensional feature space, projecting the instances’ distances according to
their trace sequence.

The problem of selecting a trace clustering pipeline is different from the
traditional algorithm selection, in which it is expected to recommend a tuple
〈encoding, clustering, hyperparameters〉. It is worth mentioning that the hyperpa-
rameters are continuous values with a high dimensional space that might present
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different inter-correlations between them. Here, they were discretized at frequent
intervals to cover a wide range of promising possibilities. Further, we employed a
multi-output strategy to take advantage of inter-correlations from the clustering
algorithm and its hyperparameters.

We formulate the problem as a set of encoding methods E = {E(1), ..., E(j)},
clustering algorithms C = {C(1), ..., C(l)} associated with a hyperparameter
space H = {H(1), ...,H(l)} and event log data mapped by meta-features and
best pipeline as D = {(x(i), Y (s)|s = 2)}. We have j encoding methods, l com-
binations of clustering algorithms and hyperparameters, and s is the number of
expected pipelines’ steps to be recommended. It is important to mention that
the clustering algorithm and hyperparameter recommendation were modeled as
a single step of the pipeline. For each event log sample (x(i), Y (i)), x(i) ∈ X is
a d-dimensional meta-feature vector (x(i1), x(i2), ..., x(id)) and Y (i) ⊆ Y is the
tuple 〈encoding, clustering, hyperparameters〉 associated to x(i). The goal is that
for any unseen event log x, the MtL model hE() recommends hE(x) ∈ E as
the proper encoding method for x and hCH() recommends hCH(x) ∈ L. In the
proposed setup, we are facing a multi-output problem, where a set of labels
C ×H ⊆ L is associated with a single instance [29]. Following the taxonomy pro-
posed in [29], we adopt a problem transformation approach, which converts the
data into a format that can be used in conjunction with traditional techniques.
More specifically, we employed the Binary Relevance (BR) problem transforma-
tion approach [33]. BR works by transforming the original data set into q data
sets Dλj

, where j = [1, ..., q] contains all instances of the original data that are
labeled according to the existence or not of single labels λj . Thus, BR learns q
binary classifiers, one for each label L. Given a new instance, BR provides the
union of the labels λj predicted by the q classifiers.

There are several ways to model this problem. In this paper, we followed the
supervised machine learning approach to build hE() and hCH() towards deter-
mining a promising pipeline candidate configuration. The problem is, in nature,
a multi-output problem. Therefore, we model this through the BR approach
to combine outputs from both hE() and hCH(). Alternative optimization-based
modeling methods to control the trade-off between exploitation versus explo-
ration of pipeline combinations exists, but as an initial study exploring new
meta-features and meta-target selection in a new application on the PM domain,
we adopted this modeling strategy for simplicity.

4 MtL-Based Solution for Trace Clustering

Trace clustering solutions must be able to adapt according to domain charac-
teristics. We then propose a framework grounded in MtL capable of delivering
suitable recommendations according to different business process behaviors. The
main goal of our approach is to recommend a tuple 〈encoding, clustering, hyper-
parameters〉 that maximizes quality metrics for the trace clustering problem.
Figure 1 shows the overview of the framework. First, an event log repository is
created to represent different business scenarios. The Meta-Feature Extraction
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step mines features for each event log in the repository, creating meta-features
according to MtL terminology. The description quality of the meta-features is an
important constraint bounding the performance of the complete pipeline. More-
over, the Meta-Target Definition defines a set of encoding and clustering (cou-
pled with its hyperparameter) techniques that are assessed by quality metrics
and ranked according to a ranking function. Then, the Meta-Database combines
the meta-features and meta-targets defined in previous steps, creating a data set
populated by meta-instances. Using the meta-database, the Meta-learning step
induces a Meta-model that is, then, used to recommend a pipeline for a given
event log considering its meta-features. It is worth mentioning that multi-output
machine learning modeling for the meta-model can bring important achieve-
ments in terms of performance, considering the interrelations between each step
of the pipeline. In Fig. 1, green arrows indicate the steps that are used for the
creation and training of the framework, while blue arrows represent a production
environment where one assesses the meta-model for recommendation.

Given the adaptable setup of our framework, one can implement it using
a different set of meta-features and meta-targets. The automatic aspect of this
approach provides the user with recommendations based on event log behavior,
considering the possible options among the configurable steps. Moreover, other
aspects are adaptable, such as the adopted quality metrics and the ranking
function. Nonetheless, we note that the robustness of the approach depends on
the MtL structure, which must be maintained when the framework is instantiated
in real scenarios.

Fig. 1. Overview of MtL proposal for trace clustering.

5 Experimental Setup

In this section, we expose the details of each framework step, as seen in Fig. 1,
and reveal the experiments implemented to study a possible instance of our MtL
framework. The implementation is available for replication purposes1.
1 https://github.com/gbrltv/meta trace clustering/.
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5.1 Event Logs and Featurization

MtL benefits from using a large set of instances in the meta-database. Hence, we
are aiming at a heterogeneous set of business process logs representing different
scenarios and behaviors. For that, we rely on the set of logs proposed in [2]. These
event logs were grouped to represent a plethora of business behaviors, mapping
the relationship between process characteristics and quality metrics. This set
contains both real and synthetic event logs. Regarding real-life data, there are
six logs from past Business Process Intelligence Challenges (BPIC)2, the envi-
ronmental permit3, helpdesk4 and sepsis5 logs. For synthetic data, the authors
adopted 192 logs from the Process Discovery Contest (PDC) 20206, an annual
event organized to evaluate the efficiency of process discovery algorithms. The
PDC logs are complex given the nature of employed behaviors, such as depen-
dent tasks, loops, invisible and duplicate tasks, and noise. The next group of
synthetic data contains 750 logs proposed in the context of online PM [7]. These
logs are built to depict process drifts, i.e., behavior change during the business
process execution, containing four drift types, five noise percentages, and three
trace lengths. The final group of synthetic event logs was proposed for the evalu-
ation of trace encoding techniques [3]. This set contains 140 logs generated from
five process models, six anomaly types, and four frequency percentages.

The performance of the meta-model is directly dependent on the quality
of the meta-features. Thus, the meta-features extracted from event logs must
capture the process behavior and describe it from complementary perspectives.
We adopted the featurization introduced in [2]. The authors presented a group
of features that capture several layers of business processes. These features are
based on the distribution of trace behavior, considering trace length, activity
frequencies, and trace variants. Regarding activity-level features, the group is
subdivided into all activities, start activities, and end activities. 12 features are
extracted for each group, they are the number of activities, minimum, maximum,
mean, median, standard deviation, variance, the 25th and 75th percentile of
data, interquartile range, skewness, and kurtosis coefficients. To capture the
behavior at the trace level, the authors propose features for trace lengths and
trace variants. The former group contains 29 attributes: minimum, maximum,
mean, median, mode, standard deviation, variance, the 25th and 75th percentile
of data, interquartile range, geometric mean and standard variation, harmonic
mean, coefficient of variation, entropy, and a histogram of 10 bins along with its
skewness and kurtosis coefficients. Trace variants are captured by 11 descriptors:
mean number of traces per variant, standard variation, skewness coefficient,
kurtosis coefficient, the ratio of the most common variant to the number of
traces, and ratios of the top 1%, 5%, 10%, 20%, 50% and 75% variants to the total
number of traces. Log-level behavior is captured by: number of traces, unique
2 https://www.tf-pm.org/resources/logs.
3 https://doi.org/10.4121/uuid:26aba40d-8b2d-435b-b5af-6d4bfbd7a270.
4 https://doi.org/10.17632/39bp3vv62t.1.
5 https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460.
6 https://doi.org/10.4121/14626020.v1.
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traces, their ratio, and number of events. To describe log complexity, entropy-
based measures have been adopted recently in PM literature [1] aiming at the
discretization between logs that are better mined by declarative or imperative
algorithms. Hence, such metrics capture the structuredness and variability of
the log. The 14 entropy features we adopt are: trace, prefix, k -block difference
and ratio (k values of 1, 3 and 5), global block, k -nearest neighbor (k values of
3, 5, and 7), Lempel-Ziv, and Kozachenko-Leonenko. Considering all groups, 93
meta-features were used to extract log behavior covering log structuredness and
variability, statistical dispersion, probability distribution shape, and tendency.

5.2 Trace Encoding Techniques

Many PM techniques rely on encoding to transform event log-specific represen-
tations to other formats [8,25,30]. The transformation usually applies at the
trace-level, that is, converting the sequence of activities respective to a unique
trace into a feature vector. In [3], the authors compared ten different encoding
techniques through the lens of quality metrics measuring data dispersity, repre-
sentativeness, and compactedness. They concluded that there is no encoding that
excels in all tasks and perspectives concomitantly. For instance, graph embed-
dings outperform the others in the classification task and representation quality.
However, these encoding methods are costly and usually sparse, meaning that
there are better encoding techniques considering space and time complexity. The
trace clustering literature has already experimented with several types of encod-
ing methods, such as one-hot encoding [15,26], edit distance [4], log footprints
[20], activity profiles and n-grams [9]. Nonetheless, no trace similarity measure
is general enough to be applicable in all scenarios [10].

In this work, we adopt four encoding techniques that were frequently applied
in the context of trace clustering. The first one is one-hot encoding. This tech-
nique encodes activities as categorical dimensions, creating a feature vector of
binary values for each trace based on the occurrence of activities in a trace. Next,
we adopt n-grams, a common technique used in text mining applications. This
encoding maps groups of activities of size n into a feature vector, accounting for
their occurrence or not. More specifically, we apply bi-gram and tri-gram. Finally,
we applied position profiles [6], an approach that relates activity frequency and
position. A log profile is created by computing the activity appearances in each
trace position and its respective frequency. A trace is encoded considering the
frequency of its activities in their positions according to the log profile.

5.3 Trace Clustering Algorithms

We selected three clustering techniques commonly applied in data mining and
trace clustering literature. These techniques are grounded in different heuristics,
and with this, we aim to evaluate if a particular clustering structure outperforms
the others. The choice of parameters was also guided by considering the literature
on trace clustering, comprising different trace behaviors and complexities. It is
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important to note that we selected a range of possible values to support the
exploration of the algorithmic space.

First, we adopt the Density-based Spatial Clustering of Applications with
Noise (dbscan) algorithm [13]. The dbscan method guides its clustering based on
the density of the feature space, hence, instances in high-density regions form
a cluster while instances sitting at low-density regions are regarded as outliers.
The main hyperparameter affecting the clustering results is eps, which regulates
the maximum distance between two points for them to be considered of the same
neighborhood. We explore different configurations of the eps hyperparameter to
evaluate its impact and to recommend the best configuration in the meta-model
step. For that, we apply the following eps values: 0.001, 0.005, 0.01, 0.05, 0.1,
0.5, 1. Moreover, we adopt k -means [21], a clustering technique that randomly
selects centroids, which are the initial cluster points, and works by iteratively
optimizing the centroid positions. The k -means technique requires the expected
number of clusters (k) from a given data set as a hyperparameter. We set k to
these values: 2, 3, 4, 5, 6, 7, 8, 9, 10. Finally, the last technique is agglomerative
clustering [32], a type of hierarchical clustering with a bottom-up approach. The
algorithm starts by considering each point as a cluster and merges the clusters as
the hierarchy moves up, creating a tree-like structure depicting the cluster levels
and merges. As with k -means, agglomerative clustering requires the number of
clusters as input, we then adopted the same range of values for the k parameter.

5.4 Ranking Metrics

To complete the creation of a meta-database, meta-targets must be defined for
each meta-instance. This way, a ranking strategy is required to compare the
possible trace clustering pipelines. Hence, the technique sitting at the top of the
ranking strategy is the one recommended for a meta-instance, i.e., it is defined
as the meta-target. As pointed out in the literature [3,10], there is no unique
solution for a problem that outperforms the others from all perspectives. Con-
sidering this hypothesis, we propose three complementary metrics to evaluate
trace clustering solutions, this way, capturing different degrees of performance.
Moreover, a user applying a trace clustering solution may expect to evaluate
the results from several perspectives. Here, we support such a user by assessing
clustering quality from a set of criteria.

Silhouette coefficient (s), the first metric we propose to measure performance,
is based on the traditional clustering literature. The Silhouette score is computed
at the cluster level to capture its tightness and separation, judging instances
that fit their cluster or are in between different clusters. The scores of a group of
clusters can be combined to assess the relative quality of the clustering technique.

v =

∑
Ci∈C var(Ci) − 1

#traces
(1)

To complement this evaluation with a PM-
inspired metric, we propose to measure the qual-
ity of clusters concerning trace variants. This way,
by computing the trace variant frequency in each
cluster, we can evaluate if the solution provides a clear separation of variants in
the feature space. For that, we compute the unique traces in a cluster, and by
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a weighted mean, the Variant score (v) is obtained. Consider C the group of all
clusters, Ci the cluster of index i, var(Ci) the number of unique traces found in
cluster Ci and #traces the total number of traces in the event log, Eq. 1 depicts
the Variant score calculation, 0 is the optimal value. As resource consumption
is an important aspect in organizations, we also consider the clustering time (t)
as a metric to assess its quality. The lower the t metric for a particular solution,
the better it is ranked compared to others.

Table 1. Ranking trace clustering
pipelines.

Log Encoding Clustering s v t Rs Rv Rt R
L E1 C1 0.9 0.5 50 1 2 3 2
L E2 C2 0.3 0 10 3 1 1 1.67
L E3 C3 0.8 0.7 15 2 3 2 2.33

Given this set of metrics, i.e. s for
silhouette coefficient, v for the vari-
ant score, and t for computational
time, a meta-target 〈encoding, cluster-
ing, hyperparameters〉 has to success-
fully balance between all metrics to be
considered good. This way, the app-
roach rewards techniques that excel in the three metrics, such as ignoring one or
more may lead to a lack of tightness, improper variant identification, and high
resource consumption. Hence, we propose a ranking strategy (R) that combines
all dimensions. Table 1 presents an example of the ranking strategy we propose.
For each pair of encoding techniques and clustering algorithms, we apply it for
a given event log (L) and measure the quality metrics (s, v, t). Following, a
positional rank is built for each metric (Rs, Rv, Rt), i.e, comparing the pairs of
encodings and clustering in each dimension. Finally, a rank (R) is computed by
the average of the metrics ranks. For example, considering the pairs 〈E1, C1〉,
〈E2, C2〉 and 〈E3, C3〉, their respective final ranks are 2, 1.67 and 2.33. The solu-
tion chosen as the meta-target is the one that minimizes the R function, which,
in this example, is the pair 〈E2, C2〉.

5.5 Meta-model

Regarding the meta-learner, we applied the Random Forest (RF) algorithm [5]
due to its robustness, being less prone to overfitting. Moreover, we applied a
hyperparameter tuning technique to improve performance in the recommenda-
tion task. For that, we adopted a holdout strategy where 80% of the meta-
database was used for tuning and 20% as the validation set. After a grid search
tuning strategy with 5-fold cross-validation, the best hyperparameters were: (i)
50 as the number of trees composing the forest, (ii) gini as the criterion measur-
ing split quality, (iii) 3 as the required minimum number of samples for a node
split, (iv) 1 as the minimum number of samples required to be a leaf node, and
(v) log2 as the number of considered features for a split. The results reported in
Sect. 6 were extracted when applying the tuned meta-model to validation data.

6 Results and Discussion

This section explores the meta-database composition by observing the encoding
techniques and clustering algorithms chosen by their performance and balancing.
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Next, an overall analysis, including the comparison of the proposed strategy with
the baselines, is introduced.

6.1 Meta-learning Exploratory Analysis

The rank results, considering all algorithms for setting the meta-database,
including the metrics used for ranking the meta-targets, are presented in Fig. 2.
The heatmap plots show the ranking of the metrics s, v, and t for encoding
(Fig. 2a) and clustering (Fig. 2b) used to sort and identify promising algorithms
as meta-targets. Each ranking varies from 1 to 81, in which 1 is the best-ranked
algorithm for a given metric.

(a) Encoding Ranking (b) Clustering Ranking

Fig. 2. Encoding and clustering rankings. Color gradient represents the ranking posi-
tion variation.

Observing the encoding techniques (Fig. 2a), it is possible to identify a large
discrepancy between them when evaluated by s, revealing the superiority of
one-hot and position profile algorithms, whereas v score and t do not present
a such prominent variation, leading to closer ranking positions. Note that the
results report the average ranking position. In other words, one-hot encoding is
the most well-ranked across the set of event logs, although it is not unanimous.
However, when observing the clustering algorithms (Fig. 2b), it is possible to
note a balance regarding s while v and t reveal discrepancies. The former (v)
exposes the importance of hyperparameter definition since agglomerative and
k -means ranged throughout the rankings when changing their hyperparameter
k. Moreover, the t metric delivered an important perspective, in which each clus-
tering algorithm is recognizable regardless of its hyperparameters. In particular,
agglomerative and dbscan were superior to k -means. This superiority led to no
usage of k -means as a clustering meta-target.

The meta-database was built using the combination of the top-ranked
algorithms for each meta-instance (event logs). This combination leads to
an imbalanced multi-output dataset. Combinations such as one-hot encoding
with agglomerative clustering using 10 as k value (onehot agglomerative k10)
represented 469 meta-instances. The second most frequent combination (171
meta-instances) was position profile with agglomerative clustering using 10 as
k (position profile agglomerative k10). The third was one-hot using dbscan
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adopting a eps equals 0.001 (onehot dbscan eps0.001) in 125 meta-instances.
These meta-target frequencies show the evident dominance of one-hot and posi-
tion profile over the other encoding methods. Bi-gram was the best encoding
technique for 37 meta-instances while tri-gram was the best one, combined with
dbscan, only with four meta-instances. When evaluating from a clustering per-
spective, we observe a balance between dbscan with a wide range of eps and
agglomerative using k as 10. Different values of k for agglomerative did not
meet many meta-instances. Conversely, dbscan demonstrates the necessity of
hyperparameter adjustments since different values of eps could match particular
meta-instances. The imbalance issue was addressed by removing the minority
class combinations, that is, meta-targets that appear less than five times. The
final meta-database was composed of 1036 samples, with fifteen different com-
binations of one-hot, position profile, and bi-gram with agglomerative (k in {8,
9, 10}) and dbscan (eps in {0.001, 0.005, 0.05, 0.01, 0.1, 0.5, 1}).

6.2 Meta-model Performance

Using RF as our meta-model built over the meta-database, we analyzed the per-
formance for both encoding and clustering algorithm recommendations (Fig. 3).
It is worth mentioning that the problem was modeled as a multi-output problem
using the BR transformation approach, addressing encoding and clustering at
once. Since there are no other literature references, we employed majority voting
and random selection as baseline approaches for comparison reasons. Majority
voting works by always indicating the most common meta-target, i.e., the major-
ity class in the meta-database. In this setup, one-hot and agglomerative k10
are the most common encoding technique and clustering algorithm, respectively.
Although a simple baseline, majority voting is a suitable comparison in machine
learning applications, clearly specifying the minimum performance threshold.
The random selection approach randomly chooses one of the possible pipeline
combinations (coming from the set of meta-targets). This technique simulates
a PM practitioner in a scenario without the availability of experts, a common
situation in real environments. This way, we situate our method’s performance
both in relation to the machine learning and PM landscapes, creating an initial
assessment and benchmark for the trace clustering problem.

Fig. 3. Performance of the MtL framework to recommend the encoding technique and
clustering algorithm in terms of accuracy and F1.
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As observed in Fig. 3, our proposal obtained an F1 of 0.81 (±0.01) when
recommending the encoding technique and an F1 of 0.59 (±0.01) for the rec-
ommendation of the clustering algorithm. The majority baseline for encoding
obtained an F1 of 0.71 while the random baseline achieved 0.42 (±0.03). Regard-
ing clustering, the majority obtained 0.49 of F1, and random selection reached
0.14 (±0.03). Our approach obtained a mean predictive performance of 0.7 for
the whole trace clustering pipeline. The results were superior to the majority
and random baselines, which averaged 0.59 and 0.28, respectively. Note that the
majority voting results are boosted by the imbalanced scenario, for balanced
meta-databases, the tendency is to underperform. The superior performance of
our proposal confirms our hypothesis, i.e., there is a relationship between event
log behavior and optimal pipelines. Since this relationship exists (and is partially
captured by our proposed meta-features), our method outperforms the baselines.
Given the universe of possibilities (81 combinations) and the limitations imposed
by the imbalanced scenario, we consider the F1 performances suitable. Further-
more, this assessment serves as a benchmark for the area to be compared to
alternative solutions proposed in the future.

7 Conclusion

This paper proposes an MtL framework to recommend the best pipeline for trace
clustering based on a specific event log and its behavior. For that, we extract
meta-features to describe event logs and match them with the best clustering
pipeline by assessing three complementary metrics. The framework recommends
a tuple 〈encoding, clustering, hyperparameters〉, making trace clustering solutions
accessible for non-expert users and assisting experts with guided recommenda-
tions. Results have shown that the framework outperforms baseline approaches.
In future research, we aim to extend the experimental evaluation to gather fur-
ther insights into the relationship between trace clustering quality and event
log behavior. Moreover, we plan to improve the modeling of the multi-output
approach by testing different techniques, possibly taking advantage of the inter-
correlation between different steps of the recommended pipeline.

8 Limitations and Broader Impact Statement

Our approach could be applied in a wide range of PM tasks, including process
discovery, conformance checking, trace clustering, anomaly detection, and several
others. This way, our research paves the way for automation in the business pro-
cess domain, complemented with a supporting data-driven framework to study
PM problems. Therefore, there are multiple benefits unlocked by the proposed
technology, such as guidance for non-expert users and insights for experienced
analysts. However, not enough attention has been paid to the over-application of
automation techniques in PM. An important aspect touches the validity of the
research and experimental design [23]. More specifically, the underlying behavior
distribution of event logs might lead to unexpected results. This way, adopters
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of this tool should be careful in selecting a representative set of event logs to
serve as the basis of the meta-database. Otherwise, the insights or recommen-
dation quality might decrease. Being a technique that abstracts the pipeline for
non-experts, the possibility of results misuse rises, thus requiring understanding
about the possible domain risks when applying the tool.
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