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A B S T R A C T

Enhanced oil recovery (EOR) using CO2 injection is promising with economic and environmental benefits as an 
active climate-change mitigation approach. Nevertheless, the low sweep efficiency of CO2 injection remains a 
challenge. CO2-foam injection has been proposed as a remedy, but its laboratory screening for specific reservoirs 
is costly and time-consuming. In this study, machine-learning models are employed to predict oil recovery factor 
(ORF) during CO2-foam flooding cost-effectively and accurately. Four models, including general regression 
neural network (GRNN), cascade forward neural network with Levenberg–Marquardt optimization (CFNN-LM), 
cascade forward neural network with Bayesian regularization (CFNN-BR), and extreme gradient boosting 
(XGBoost), are evaluated based on experimental data from previous studies. Results demonstrate that the GRNN 
model outperforms the others, with an overall mean absolute error of 0.059 and an R2 of 0.9999. The GRNN 
model’s applicability domain is verified using a Williams plot, and an uncertainty analysis for CO2-foam flooding 
projects is conducted. The novelty of this study lies in developing a machine-learning-based approach that 
provides an accurate and cost-effective prediction of ORF in CO2-foam experiments. This approach has the po
tential to significantly reduce screening costs and time required for CO2-foam injection, making it a more viable 
carbon utilization and EOR strategy.   

1. Introduction

Petroleum resources have long been the primary source of fossil-fuel- 
based energy to meet global energy demands. Due to the limited reserves 
available, maximizing the extraction efficiency from oil reservoirs has 
become increasingly important. However, recovering residual oil from 
mature reservoirs in complex geological formations is still a challenge 
[1]. In order to address this difficulty, several enhanced oil recovery 
(EOR) techniques have been developed to extract residual oil further. 
Among these EOR techniques, gas injection into the reservoir is 
considered the most efficient approach for mobilizing trapped oil 
through various recovery processes [2]. Carbon dioxide (CO2) is 
particularly effective for this purpose because it sweeps the residual oil 
via multiple contact miscibility processes suitable for both conventional 

and unconventional formations [3,4], thereby boosting oil production 
[5]. 

In addition, storing CO2 deep underground also mitigates climate 
change [6]. Therefore, CO2-EOR coupled with CO2 storage is considered 
one of the most promising ways to reduce the cost of carbon capture, 
storage, and utilization [7,8]. Various methods have been proposed to 
utilize carbon dioxide (CO2) for improving carbon storage and oil re
covery performance. One of these methods is to combine CO2 with 
bi-polymers to act as a carrier fluid. This approach could enhance the oil 
recovery efficiency and reduce carbon emissions [9]. Singh et al. [10] 
suggested a novel approach using natural surfactants for carbon utili
zation and cleaner production in hydrocarbon fields. This method aims 
to minimize the environmental impact of oil production and reduce 
carbon emissions by using natural surfactants. Another method 
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proposed by Pandey et al. [11] involves using a polymer-based 
carbonation process in an alkaline medium. This approach has impli
cations for reducing carbon emissions and could contribute to carbon 
reduction strategies. By utilizing polymers, the process can increase the 
efficiency of carbon dioxide storage and reduce the amount of CO2 
released into the atmosphere. 

While CO2 injection has shown promise in EOR, it has some draw
backs, such as low sweep efficiency, asphaltene precipitation, and the 
corrosion of wells [12,13]. In response to these issues, CO2 foam has 
been employed to improve the efficiency of CO2-EOR flooding. How
ever, before implementing CO2-foam agents in target reservoirs, 
lab-scale assessments are necessary to identify potential uncertainties 
and risks, with pilot-scale studies often required before field imple
mentation [14]. Numerous lab- and field-scale research has been con
ducted to explore the viability and practical characteristics of CO2-foam 
EOR and identify essential recovery principles [15–18]. Recently, Cha
turvedi et al. [19] conducted a comparative study of different CO2-EOR 
methods, including water-alternating gas (WAG), CO2-foam flooding 

and carbonated water injection. Their study revealed that CO2-foam 
EOR achieved better performance compared to the other methods. This 
finding suggests that CO2-foam EOR may be a more effective approach 
for enhancing oil recovery in certain conditions. 

Simulation models have also been employed to understand variables 
influencing CO2-foam flooding to improve oil recovery and CO2 storage 
capacity [20–22]. However, lab-scale experiments and core-flooding 
simulations are costly and labor-intensive. Thus, machine learning 
(ML) models have been proposed as effective means for predicting 
objective functions in the absence of reservoir big data and mathemat
ical formulations for the target phenomena. 

ML models have been extensively employed for EOR research. For 
example, Cheraghi et al. [23] proposed the use of a deep artificial neural 
network (ANN) and random forest models to screen the most suitable 
EOR methods using data from oil and gas journals. Mohammadi et al. 
[24] evaluated the performance of several neural networks models, 
including multi-layer perceptron (MLP), cascade forward neural 
network (CFNN), generalized regression neural network (GRNN), and 
radial basis function (RBF), in predicting crude oil pyrolysis for thermal 
EOR based on 2000 samples. They found that a CFNN with Lev
enberg–Marquardt optimization (CFNN-LM) achieved the best predic
tion performance, with only 1% of data points labeled as outliers. 
Similarly, Mahdaviara et al. [25] employed MLP, GRNN, and CFNN 
models to predict the permeability of carbonate rock formations. They 
found that the CFNN-LM model exhibited the most accurate predictive 
performance with a root mean square error (RMSE) of 5.213. Mean
while, Pan et al. [26] developed a predictive ML model based on extreme 
gradient boosting (XGBoost) to evaluate reservoir porosity from well log 

Table 1 
Summary of ML modeling studies for prediction of oil production performance.  

ML models Target Number of 
Samples 

Input variables Reference 

GB Prediction Oil recovery factor in 
hydrocarbon fields 

831 Reservoir geometry, geological information, transport, storage and fluid 
properties, saturation ratios and pressure, location 

[48] 

ANN Prediction oil recovery factor for 
microbial enhanced recovery process 

– Microbial kinetic. operational data, and reservoir data [49] 

ANN Prediction oil production performance of 
CO2-WAG process 

2100 Gas injection rate, oil saturation, water injection rate, water cut before gas 
flooding, water injection volume, cycle time, water injection time, production rate, 
injection pressure, permeability, porosity, thickness, grid size, bottom hole 
pressure 

[50] 

ANN Prediction oil production and carbon 
storage performance of CO2-WAG 
flooding 

223 Initial saturation, WAG parameters, time, ratio of vertical and horizontal 
permeability 

[51] 

RF Prediction oil recovery factor of low 
salinity flooding 

1000 LSWI parameters, reservoir & injection temperature, volume injection, formation 
water composition, and injection water composition 

[52] 

CNN, LSTM, DNN Screening EOR methods 735 porosity, depth, oil gravity, permeability, viscosity and temperature [53] 
ANN, DT, ERT, 

GB, RF, 
EXBoost 

Estimation the CO2 foam strength 157 Shear rate, temperature, pressure salinity, surfactant concentration foam quality [54] 

MARS, SVM and 
RF 

Evaluation performance of CO2 storage 
and oil production in residual oil zones 

250 Thickness, depth, permeability, residual oil saturation, CO2 injection rate, bottom 
hole pressure, initial pressure, temperature 

[55] 

LSSVM Prediction oil production performance of 
CO2-EOR project 

46 CO2 injection rate, maximum and minimum bottom hole pressure of injection well, 
oil production rate, CO2 concentration 

[56] 

SVM Prediction shale gas production 573 Gas production, total injection, total proppant, number of stages, horizontal length, 
pressure, thickness, porosity, permeability, gas saturation 

[57] 

DT, EXBoost Prediction oil recovery of experimental 
nanofluid injection 

108 Size, oil density, viscosity, porosity, permeability, salinity, nanoparticles 
concentration 

[58] 

LR, MLP, SVM 
CMIS 

Prediction oil recovery of experimental 
low salinity flooding 

1316 Operational parameters, rock properties, oil properties, brine properties, connate 
water properties 

[59] 

ANN, SVM, DT Estimation oil production performance of 
LSWI core flooding 

117 Petrophysical properties, oil viscosity, oil density, residual oil saturation, 
temperature, brine properties 

[60] 

ANN Prediction oil recovery factor of chemical 
EOR 

847 Polymer concentration, salt concentration, rock type, initial oil saturation, 
petrophysical properties, pore volume flooding, temperature, salinity, molecular 
weight of polymer 

[61] 

ANN Optimization of WAG injection strategy 
in subsurface reservoirs 

166 Injection rate, production rate limit, start of depletion, end of depletion, average 
pressure 

[62] 

ANN Optimization chemical EOR projects 988 Reservoir grid size, petrophysical properties, reservoir temperature, reservoir 
pressure, initial oil saturation, oil viscosity, oil gravity, salinity 

[63] 

RF Optimization oil production and CO2 

storage in WAG process 
216 Reservoir properties, WAG parameters, oil properties, depth, layer thickness, initial 

oil saturation, well operation 
[64]  

Table 2 
Statistical parameters of the collected dataset for CO2-foam flooding.  

Statistical 
parameter 

IOIP 
(%) 

TPVT 
(cm3) 

Ø (%) K 
(mD) 

PV 
(− ) 

ORF 
(%) 

Mean 93.53 43.68 29.48 12.13 9.76 30.12 
Standard 

deviation 
9.44 6.38 6.10 8.83 7.56 21.46 

Minimum 50.00 22.00 16.06 0.10 0.20 1.00 
Maximum 100.00 49.75 34.90 28.2 36.3 84.62  
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data. By using a grid search and nature-inspired method to optimize the 
XGBoost model, they achieved the best predictive results with an RMSE 
of 0.527. Huang et al. [27] assessed the performance of ANN, light 
gradient boosting machine (LightGBM) and XGBoost models to predict 
steam-assisted gravity drainage production. They concluded that 
training data with a high degree of unpredictability would benefit from 
the use of an ANN model. 

In the petroleum industry and underground gas storage, ML-based 
models have been utilized for a variety of purposes, such as reserve 
appraisal in both traditional and non-traditional reservoirs [28–35], 
assessment of natural gas compressibility [36], prediction of reservoir 
quality [37], history matching of simulation models for oil production 
forecasts in fluvial channels [38], lithofacies and petrophysical pre
dictions in carbonate reservoirs [39,40], prediction of cumulative oil 
production in shale formations [41], microbial enhanced oil recovery 
[42], pore pressure estimation using petrophysical well log data [43], 
and distribution 3D geostatistical models [44]. ML models have been 
used to predict oil recovery factors in several studies. Van Si et al. [45] 

built an ANN model for predicting the oil recovery factor (ORF) for 
CO2-EOR. Esene et al. [46] performed the ORF prediction using ANN, 
least-squares support vector machine (LSSVM), and gene expression 
programming (GEP) for a carbonate water-injection process. In their 
work, the ANN yielded the most accurate prediction performance with 
an R2 of 0.99. Recently, Larestani et al. [47] developed a series of ANN 
models and decision trees to predict the ORF and the net present value of 
chemical flooding projects, with the CFNN-LM model generating the 
highest predictive performance. These studies demonstrate the potential 
of ML models to predict recovery factors and optimize oil recovery 
processes. Table 1 highlights the employed machine learning ap
proaches for prediction oil recovery performance in EOR projects. 

Despite previous research on ML models, little attention has been 
given to using them for quickly predicting the ORF in CO2-foam flooding 
systems, and the implications of the developed models have yet to be 
well-studied. Moreover, our literature survey reveals that the CFNN-LM, 
GRNN, XGBoost, and CFNN with Bayesian regularization (CFNN-BR) 
models are innovative approaches for ORF prediction in CO2-foam 

Fig. 1. Scatter plots for the input variables: (a) IOIP, (b) TPVT, (c) Ø, (d) K, and (e) PV for the CO2-foam versus the ORF.  
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injection. As these models have demonstrated their effectiveness in 
various engineering and scientific applications [20–23], we seek to 
evaluate their performance in our study. 

In this study, we aim to develop and evaluate various ML models for 
the swift and accurate prediction of the oil recovery factor (ORF) in CO2- 
foam experiments. Our objective is to identify the optimal ML model 
reducing the time and cost of experimentation while maintaining pre
diction accuracy. For model testing, we consider various types of foam 
and compile a comprehensive dataset. We then utilize the selected ML 
model in uncertainty analysis for CO2-foam experiments to determine 
the optimal ORF for 500 scenarios. Our proposed framework offers an 
effective solution for quickly predicting the ORF in CO2-foam flooding 
systems and can be adapted for other EOR methods. 

The remainder of the paper is organized as follows. Section 2 briefly 
overviews the CO2-foam EOR process and describes the input features. 
Section 3 presents the GRNN, CFNN-BR, CFNN-BR, and XGBoost models. 
Section 4 outlines the research structure, data collection, ML model 
development, and statistical evaluation approach. Section 5 presents 
and discusses the numerical results. Finally, Section 6 summarizes the 
key findings of this study. 

2. Methods

2.1. Data 

To develop robust prediction models for CO2-foam flooding, it is 
essential to establish a comprehensive dataset that reflects the diverse 
range of settings in which this EOR process can operate. In light of this, 
we collected 260 experimental data points for CO2-foam flooding from 
published studies [17,65–69]. This dataset covers seven foam types with 
five main input variables, including initial oil in place (IOIP), total pore 
volume tested (TPVT), porosity (Ø), permeability (K), and injected pore 
volume (PV) of the foam. The objective of the ML models was to predict 
the ORF formulated as follows: 

ORF= f (IOIP,TPVT,Ø,K, PV) (1) 

Previous studies have reported various measurements of CO2 foam, 
but not all of these experiments calculated the (ORF), and the majority 
focused solely on foam stability. Consequently, their data could not be 
included in the dataset of this research. The final dataset included ionic, 
nonionic, and cationic surfactants and silica nanoparticles in the CO2 
foam to ensure a diverse range of experimental conditions. 

A statistical summary of the input variables is presented in Table 2. 
The IOIP, TPVT, Ø, K, and PV for the foam ranged from 50 to 100%, 
22–49.75 cm3, 16.06–34.90%, 0.10 to 28.2 mD and 0.20 to 36.30, 
respectively. The relationship between the input variables and the ORF 
is illustrated in the scatter plots (Fig. 1). 

The correlation heatmap in Fig. 2 shows the relationships between 

Fig. 2. Correlation heat map for the CO2-foam dataset.  

Fig. 3. Box plots to detect outliers in the dataset for the development of the ML models.  
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the variables in the dataset, with darker blue cells indicating a stronger 
positive correlation. Overall, permeability was positively correlated 
with TPVT, injected PV of the foam, and IOIP saturation, with correla
tion coefficients of 0.68, 0.32, and 0.20, respectively. IOIP saturation 
also had a positive correlation with TPVT (0.54). On the other hand, the 
OPF had a negative relationship with permeability, IOIP saturation, 
TPVT, and porosity, but a positive correlation with the injected PV of the 
foam. 

Before using the dataset to train and test machine learning models, 
we detected any outliers. Fig. 3 shows the box plots for the input vari
ables and the ORF of the dataset. Although a few outliers were observed, 
the collected dataset was deemed appropriate for testing models 
designed to predict the ORF in CO2-foam flooding processes for EOR 
applications. 

Table 3 
Comparison of pros and cons of machine learning models [81].  

Methods Pros Cons 

Liner regression Simple, easy to 
interpret, works well 
with small datasets 

Assumes linear 
relationship between 
parameters, cannot 
capture complex 
nonlinear patterns 

Logistic regression Easy to interpret, works 
well with binary 
classification problems 

Assumes linear 
relationship between 
variables, may not 
capture complex 
nonlinear patterns 

Decision tree Easy to interpret, 
handles nonlinear 
relationships, works 
well with both 
categorical and 
numerical data 

Prone to overfitting, can 
create complex trees that 
are difficult to interpret 

Random forest Handles nonlinear 
relationships, works 
well with both 
categorical and 
numerical data, less 
prone to overfitting 
than decision trees 

Can be slow and 
memory-intensive with 
large datasets 

Support Vector Machine Handles high- 
dimensional data well, 
works well with 
nonlinear relationships, 
robust to outliers 

Can be computationally 
expensive, may require 
careful tuning of 
hyperparameters 

General Regression Neural 
Network 

Fast and easy to train, 
handles noisy data well, 
can handle non-linear 
relationships 

May require tuning of 
hyperparameters, less 
interpretable than some 
other methods 

Cascade Forward Neural 
Network with 
Levenberg–Marquardt 
optimization 

Fast and easy to train, 
can handle complex 
relationships, can learn 
from data with noise 

May require tuning of 
hyperparameters, may 
not always converge to a 
good solution 

Cascade Forward Neural 
Network with Bayesian 
regularization 

Handles overfitting 
well, works well with 
small datasets, can 
handle complex 
relationships 

May require tuning of 
hyperparameters, 
computationally 
expensive 

Extreme Gradient Boosting Handles complex 
relationships, works 
well with both 
numerical and 
categorical data, 
computationally 
efficient 

May require tuning of 
hyperparameters, less 
interpretable than some 
other methods  

Fig. 4. Workflow of this study to estimate the ORF using four ML Models.  

Table 4 
Hyperparameter tuning for this study.  

Model Hyperparameter Value 

GRNN Spread coefficient 0.075 
CFNN-LM 

CFNN-BR 
Activation function Tansig 
Number of hidden layers 3 
Number of neurons in the hidden layers 10–18 

XGBoost Booster gbtree 
Learning rate 0.5 
Max depth 9 
Min child weight 10 
n_estimators 400 
reg alpha 0.5 
reg lambda 8  

Table 5 
Comparison of statistical indicators for the four ML models.  

Data Indicator GRNN CFNN-LM CFNN-BR XGBoost 

Training R2 0.9999 0.9954 0.9995 0.9987 
RMSE 0.480 1.097 0.354 0.769 
MAE 0.067 0.670 0.136 0.467 

Testing R2 0.9999 0.9780 0.9970 0.998 
RMSE 0.186 3.571 1.397 0.971 
MAE 0.040 1.237 0.357 0.616 

All R2 0.9999 0.9900 0.9985 0.998 
RMSE 0.414 2.161 0.820 0.910 
MAE 0.059 0.840 0.203 0.515  
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2.2. Theory of machine learning techniques 

2.2.1. Generalized regression neural network (GRNN) 
GRNN is a powerful form of ANN originally developed to predict 

continuous output variables [70]. GRNN employs kernel regression and 
can thus be defined as a normalized radial basis neural network [25]. 
This form of ANN topology has two benefits: rapid learning rates and 
low computational costs [71]. Unlike other ANN models, a GRNN does 
not rely on repetitive computations to predict the relationship between 
input and output matrices. It can accurately predict such relationships 
by only using training samples [72]. Comprising input, pattern, sum
mation, and output layers, a GRNN receives data through its input layer 
and produces model output via its output layer. During the learning 
phase, the efficiency of the GRNN algorithm is fine-tuned solely by a 
spread variable (σ) [73]. 

2.2.2. Cascaded forward neural network (CFNN) 
Improving network analysis can be achieved by identifying the 

connections between dependent and independent variables through the 
addition of more nodes to the feed-forward network [74]. A trainable 
CFNN is a form of back-propagation ANN that has a unique architecture 
compared to a conventional feed-forward network. The primary 
distinction between these topologies is the number of nodes between the 
output and dependent features [24]. In the first layer of the CFNN, a 
weighted connection enters from the input layer, but subsequent levels 
contain weighted connections from both the input layer and all pre
ceding layers. Like other feed-forward networks, the CFNN has one or 
more linked hidden layers and activation functions, with neurons having 
biases and weighted connections [75]. The training stage is crucial for 
optimizing the ANN topology. Thus, two optimization techniques were 
used to train CFNN models in the present study: Bayesian Regularization 
(BR) and Levenberg–Marquardt (LM) optimizations [24]. 

2.2.3. Extreme gradient boosting (XGBoost) 
XGBoost is a boosting algorithm widely utilized in numerous ML 

studies [76–78] and is one of the three types of ensemble methods (i.e., 
bagging, boosting, and stacking) [79]. Ensemble techniques aim to 
improve the generalization and stability of a single estimator by 
combining the results of many base estimators derived from a particular 
learning method [80]. Boosting both the regressor and the classifier 
reduces the training error by combining weak learners into a strong 
learner. A random data sample is selected, the model is trained, and then 
incremental boosting is employed, with each model attempting to 
compensate for the errors of its predecessor [80]. The XGBoost objective 
function consists of a loss function and a regularization term. The loss 
function determines the difference between the estimated value and the 
target value, while the regularization term prevents overfitting. The 
objective function for XGBoost is presented in Eq. (2) [78,79]: 

Obj=
∑n

i=1
l(yi, ŷi ) +

∑K

k=1
Ω(fk) (2)  

Ω(fk)= γT +
1
2

λ
⃦
⃦ω2

⃦
⃦ (3)  

where. 

ŷi: predicted value 
yi: real value 
l(yi, ŷi): loss function 
fk: a term to describe the decision tree structure 
Ω(fk): regularization term 
n: the number of training samples 
γ: a term to regulate the number of leaf nodes 
T: the number of leaves 
λ: a constant used to maintain the leaf node score within acceptable 
limits to avoid overfitting 
ω: the leaf node score 

Table 3 presents a comparative analysis between commonly used 

Fig. 5. Cross-plots for the relationship between the experiment and predicted ORF for the four ML models.  
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machine learning models and four proposed smart schemes, which are 
intended to predict the oil recovery factor of CO2-foam flooding. This 
comparison aims to demonstrate the advantages and disadvantages of 
the proposed methods in relation to the existing machine learning 
models. Overall, all of these methods have their own strengths and 
weaknesses. Both linear and logistic regression are simple and inter
pretable but may not be able to capture complex nonlinear relationships. 
Decision trees and random forests can handle nonlinear relationships 

but may be prone to overfitting. Support vector machines are robust to 
outliers but can be computationally expensive. General regression 
neural networks are fast and can handle noisy data but may require 
tuning of hyperparameters and are less interpretable. Cascade forward 
neural networks with Levenberg-Marquardt optimization can handle 
complex relationships and noise but not guarantee convergence toward 
the optimum at all times. Cascade forward neural networks with 
Bayesian regularization can handle overfitting and complex relation
ships but are computationally expensive. Extreme gradient boosting is 
computationally efficient and can handle complex relationships but may 
require tuning of hyperparameters and is less interpretable than some 
methods. In the context of predicting oil recovery based on CO2 foam 
experiments, it would be significant to carefully consider the trade-offs 
between these different methods and choose the most appropriate one 
for a specific problem at hand. 

2.3. Workflow 

The ML models were trained using the input variables such as IOIP, 
TPVT, porosity, permeability, and injected PV of the foam. Fig. 4 illus
trates the key processes involved in the proposed methodology. 

2.3.1. Data preparation 
Let us recall that the experimental dataset for CO2-foam flooding 

comprised 260 data points collected from previous studies [14,39–43]. 
The dataset was split into training (70%) and testing (30%) data, with 
both groups employed in the training and validation phases for devel
oping the ML models. 

2.3.2. ML model development 
To predict the ORF in CO2-foam experiments, four ML models were 

implemented: GRNN, CFNN-LM, CFNN-BR, and XGBoost. Their hyper
parameters were tuned to obtain optimal prediction results. Table 2 
presents a summary of the tuned hyperparameters for the four ML 
models. The GRNN model utilized the spread constant for the training 
data, while the CFNN-LM and CFNN-BR models were optimized with 
three hidden layers, each trained with a Tansig function composed of 10, 
14, and 18 neurons, respectively. In the case of XGBoost, a random 
search was conducted to identify the optimal parameters for the training 
and testing models. The gbtree booster parameter was employed in the 
trained model, with 400 tress, a learning rate of 0.5, a maximum depth 
per tree of 9, L1 regularization on the weights (reg alpha) of 0.5, L2 
regularization on the weights (reg lambda) of 8, and a minimum child 
weight of 10, as shown in Table 4. 

2.3.3. ML model evaluation 
During the ML model development process, model validation plays a 

critical role in determining the accuracy of the prediction results. In this 
study, three statistical indicators were used to assess the agreement 
between the predicted and experimental ORFs: the coefficient of 

Fig. 6. Statistical performance of the four ML models: (a) R2, (b) RMSE, and 
(c) MAE. 

Fig. 7. Taylor diagram for the predictability of the four ML models.  

Fig. 8. Relative error distribution for the optimal GRNN model.  
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determination (R2), root mean square error (RMSE), and mean absolute 
error (MAE). Equations (4)–(6) were employed to calculate these in
dicators, as follows 

R2 = 1 −

∑n

i=1

(
RFi − RF∗

i

)2

∑n

i=1

(
RF∗

i − RF
)2

(4)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1

(
RFi − RF∗

i

)2

√

(5)  

MAE =
1
n
∑n

i=1

⃒
⃒RFi − RF∗

i

⃒
⃒ (6)  

where n represents the number of experimental data points, RFi is the 
predicted ORF, RF∗

i is the experimental ORF, and RF is the average ORF. 

3. Results and discussion

3.1. Comparative performance of the four proposed ML models 

The predictability of the four ML models was evaluated using sta
tistical analysis and visual inspection. Table 5 shows the R2, RMSE, and 
MAE metrics for each ML model. Overall, the GRNN model was the most 
reliable, closely followed by the CFNN-BR model. During the training 
phase, all four ML models achieved good prediction results (R2 > 0.998), 
with the GRNN model performing the best (R2 = 0.9999, RMSE = 0.48, 
and MAE = 0.67). Similarly, during the testing phase, the GRNN model 
exhibited excellent prediction performance, with an R2 of 0.9999, RMSE 
of 0.186, and MAE of 0.67. 

Fig. 5 presents the relationship between predicted and experimen
tally derived ORFs for CO2-foam core flooding. The correlation co
efficients for the predicted and measured ORFs from the training and 
testing data were mostly distributed along the fitted line (slope = 1), 
with the exception of the CFNN-LM model that exhibited a more 

Fig. 9. Experimental ORFs and the ORFs predicted using the GRNN model in accordance with the (a) porosity, (b) permeability, (c) injected pore volume for the 
foam, (d) total pore volume tested, and (e) the initial oil in place. 

Fig. 10. SHAP values for the influential variables of the proposed model.  



9

scattered distribution. However, all four models achieved reasonable 
results in predicting the ORF in CO2-foam flooding experiments. The 
quality of the training and testing data is illustrated in Fig. 6, which 
presents a comparison of the R2, RMSE, and MAE for the four ML models. 
The GRNN model produced the best results for the training, testing, and 
combined data, while the CFNN-LM model was the lowest-performing 
model in both the training and testing phases. In brief, all of the ML 
models produced an excellent prediction performance, overall. 

Fig. 7 presents a Taylor diagram that illustrates the accuracy of the 
predicted ORF in CO2-foam experiments based on the correlation factor, 
R2, and RMSE. All four ML models showed an excellent ORF prediction 
performance, though the GRNN model demonstrated the closest fit to 
the measured ORF data. This suggested that the GRNN model is the 
optimal choice for the accurate prediction of the ORF in CO2-foam ex
periments. The relative error (RE) distribution for the GRNN model 
further confirms its superiority, with predictions closely clustered 
around the RE = 0 line and no RE surpassing 0.095 (Fig. 8). As a result, 
this study analyzed the GRNN model in more detail to assess its potential 
applicability in CO2-EOR and carbon storage utilization. 

3.2. Effect of variation in the input variables on the GRNN model ORF 
predictions 

Fig. 9 illustrates the relationship between input variables and ORF 
predictions generated by the GRNN model, aiming to enhance our un
derstanding of the topic. The figure displays the predicted and experi
mental ORFs concerning variations in porosity, permeability, injected 
PV of foam, TPVT, and IOIP saturation. Notably, there were only minor 
inconsistencies between the predicted and experimental ORFs each 
input parameter. These findings suggest that the GRNN model is a 
reliable tool for forecasting ORFs in diverse CO2-foam laboratory 
experiments. 

3.3. Input variable impact analysis 

In this section, the Shapley Additive Explanations (SHAP) [55] 
technique was utilized to examine the influence of input parameters on 
the GRNN model. The SHAP values generated using the GRNN model are 
presented in Fig. 10. Porosity has a substantial negative effect on the 
ORF since higher porosity levels allow for easier CO2-foam transport in 
porous media. Total pore volume and initial oil in place are also critical 
factors with a significant distribution of high SHAP values. In contrast, 
permeability and injected pore volume of foam have a weaker effect on 
ORF. Interestingly, the impact of permeability on CO2-foam may vary 
depending on the specific conditions of the reservoir. Permeability is 
believed to have a minor effect on CO2 foam performance for the 
following reasons: (i) CO2 is highly compressible, enabling it to flow 
through both lowly and highly permeable porous media. Even in 
low-permeability formations, CO2 can reach the oil-bearing regions and 
generate a foam; (ii) The surfactants used in CO2-foam applications are 
designed to create a stable foam with a low critical micelle concentration 
(CMC), which means the foam generation even at low surfactant con
centrations. This allows the foam to be effective even in 
low-permeability formations where the surfactant may not be able to 
penetrate the pores as easily; (iii) In some cases, lower permeability may 
actually be beneficial for consistent CO2-foam performance preventing 
form preferential foam flooding through highly permeable conduits. 
Thus, when estimating the ORF in CO2-foam experiments, special 
attention should be paid to porosity and total pore volume to optimize 
the core-flooding process. 

3.4. Applicability domain for the GRNN model 

In assessing the performance of an ML model, it is crucial to deter
mine its applicability domain. Hence, outlier detection was carried out 
using the leverage method and a Williams plot [82–84] to evaluate both 
the GRNN model and the collected dataset. To accomplish it, the stan
dardized residuals (r) derived from the model predictions were plotted 
against the hat (h) values, which represent the diagonal elements of the 
hat matrix [85,86]: 

h=Y(YtY)− 1Yt (7)  

where Y represents a vector of equal dimensions to n× P, P is the set of 
input parameters, and Yt is the transpose X vector. 

In the Williams plot, the leverage limitation (h*), which is calculated 
as 3(P+1)

n , represents the applicability domain for the developed model 

Fig. 11. Williams plot for the GRNN model in the prediction of the ORF for CO2-foam experiments.  

Table 6 
Parameters considered for uncertainty analysis.  

Variable Range 

Porosity (%) 15–40 
Permeability (mD) 10–200 
Initial oil in place saturation (%) 30–100 
Total pore volume 10–50 
Injected pore volume 1–40  
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with n is for total number of data points [87]. Fig. 11 shows the Williams 
plot for the ORF predictions obtained using the GRNN model. The 
analysis revealed that 99.98% of the ORF data points fell within a 
suitable range (0 ≤ h ≤ 0.06923 and − 3≤ r≤ 3). These results 
demonstrate the applicability domain of the GRNN model and the 
dataset used in this study. 

3.5. Implications for the GRNN model 

As previous studies have not adequately examined the implications 
of their developed ML models, this study assessed the potential use of the 

GRNN model in uncertainty assessment for CO2-foam flooding projects. 
The GRNN model can be utilized for conducting Monte Carlo simula
tions to analyze the uncertainty associated with the input parameters. In 
this study, we assumed that engineers need to assess the uncertainty of 
IOIP saturation, TPVT, porosity, permeability, and the injected PV of the 
foam in order to increase the ORF for a CO2-foam flooding project. 
Table 6 summarizes the distribution range of these five input 
parameters. 

The GRNN model has the potential to be a rapid and robust tool for 
CO2-foam experiments in selecting suitable parameters of CO2-EOR 
projects by assessing a large number of simulation scenarios. Fig. 12 

Fig. 12. Distribution of the input range for uncertainty analysis.  
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depicts the distribution of input variables for 500 scenarios generated at 
random. The GRNN model was then utilized to predict the ORF for these 
scenarios, and the predicted results were subjected to Monte Carlo 
simulations for uncertainty analysis of CO2-foam flooding experiments 
(Fig. 13). The resulting ORFs for P90, P50, and P10 were 17%, 30%, and 
58%, respectively, indicating that the GRNN model provided rapid 
predictive results for optimal ORF in chemical EOR projects. This finding 
highlights the potential of ML models to enhance the assessment of CO2- 
foam experiments prior to field applications. 

Based on the 500 simulation scenarios using the GRNN model, 
Table 7 shows the recommended design to achieve the desired ORF. This 
simulation process took only 98 s of CPU time, while corresponding 
experiments could take months or even years to complete. Therefore, if 
the GRNN model demonstrates improvement when applied to CO2-foam 
experiments for specific reservoirs of CO2-EOR projects, a rapid GRNN 
model could be developed to save time and labor costs for those projects. 

4. Conclusion

This study evaluated the performance of four ML models (i.e., GRNN,
CFNN-LM, CFNN-BR, and XGBoost) for predicting the oil recovery factor 
(ORF) in CO2-foam flooding experiments using 260 data points from 
past research. Our key findings are as follows:  

• We presented a method to develop ML models for predicting ORF
quickly and saving time and experimental cost required for CO2-
foam experiments.

• Among the five input variables, porosity had the most significant
impact on ORF predictions, followed by TPVT, IOIP, injected PV of
foam, and permeability.

• The GRNN model was the most accurate in predicting ORF in CO2-
foam experiments, with the lowest MAE of 0.059, highest R2 of
0.9999, and lowest RMSE of 0.414.

• We verified the applicability domain of the GRNN model using a
Williams plot, with only 1.54% of the data points identified as
outliers.

• Although the XGBoost, CFNN-BR, and CFNN-LM models were less
accurate than the GRNN model, they still provided good prediction
results for ORF in CO2-foam laboratory experiments.

• Overall, this study suggests that ML modeling is a promising
approach to reducing time and labor costs associated with CO2-foam
experiments while producing accurate predictions. We also
employed the GRNN model to determine the optimal design based on
500 simulation scenarios, which only took 98 s to complete.

Future work will focus on improving the quality of the developed ML
models to overcome their limitations. Specifically, we will explore how 
to extend the models’ applicability to different statistical characteriza
tions for predicting ORF in CO2-foam flooding experiments. 
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Nomenclature 

ANN Artificial Neural Network 
BR Bayesian Regularization 
CFNN Cascade Forward Neural Network 
CMIS Committee Machine Intelligent System 
CNN Convolutional Neural Network 
DNN Deep Neural Network 
EOR Enhanced Oil Recovery 
ERT Extremely Randomized Trees 
GRNN Generalized Regression Neural Network 
GEP Gene Expression Programming 
IOIP Initial Oil in Place 
LM Levenberg–Marquardt 
LR Linear Regression 
LSSVM Least-Squares Support Vector Machine 
LSTM Long short-term memory 
LWSI Low water salinity injection 
MARS Multivariate Adaptive Regression Splines 
ML Machine Learning 
MLP Multi-Layer Perceptron 
ORF Oil Recovery Factor 
PV Pore Volume 
RF Random Forest 
RMSE Root Mean Square Error 
SVM Support Vector Machine 
TPVT Total Pore Volume Tested 
WAG Water alternating Gas 
XGBoost Extreme Gradient Boosting 
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