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Abstract. In this chapter, we survey the most significant applications
of EML to robotics. We first highlight the salient characteristics of the
field in terms of what can be optimized and with what aims and con-
straints. Then we survey the large literature concerning the optimization,
by the means of evolutionary computation, of artificial neural networks,
traditionally considered a form of machine learning, used for control-
ling the robots: for easing the comprehension, we categorize the various
approaches along different axes, as, e.g., the robotic task, the represen-
tation of the solutions, the evolutionary algorithm being employed. We
then survey the many usages of evolutionary computation for optimizing
the morphology of the robots, including those that tackle the challenging
task of optimizing the morphology and the controller at the same time.
Finally, we discuss the reality gap problem, that consists in a potential
mismatch between the quality of solutions found in simulations and their
quality observed in reality.

1 Robot optimization and its peculiarities

The field of robotics involves the design, construction, and operation of robots.
In this chapter, we define as robot any agent, be it real or simulated, which can
interact with an environment. We require said interaction to be bidirectional,
meaning that the agent can affect the environment with its actions, and is in
turn affected by the environment, either through sensory perceptions or simple
mechanical effects.

A robot is defined by its body and its controller, which are deeply intercon-
nected. The controller (often called brain) is responsible for making decisions
concerning the actions to be made. Oftentimes, such decisions consist of com-
puting control values which are sent to the body, which then actuates them.
The body of the agent involves all the physical aspects of the robot, such as its
external aspect, its constituting materials, or its modules and connecting parts
(joints). In addition, the body is responsible for actuating actions, and also for
proprioception and environmental awareness.

In general, the actions of a robot are driven towards the achievement of a goal,
which we define as the task of the agent. Within this paradigm, it is possible,
and often desirable, to optimize the agent for a task, that is, achieving a design
that enables the robot to most successfully accomplish its goal. However, due
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to the complexity of the design process, given the usually extremely vast search
space, handcrafting satisfying solutions is practically unfeasible. Therefore, au-
tomatic optimization techniques play a fundamental role in assisting designers
in the achievement of successful robots. Among those, evolutionary algorithms
(EAs) stand out for their effectiveness and efficiency in exploring the solution
space, yielding to extremely successful results with relatively little human ef-
fort. In particular, in most cases, they only require to define a suitable measure
of quality (i.e., the fitness) of the solution under optimization (i.e., the robot):
while defining such fitness is not always easy [37], it is in general much easier
than attempting to manually design the solution.

The application of evolutionary computation (EC) to robotics constitutes
the field of evolutionary robotics (ER) [39, 132]: in a broad sense, ER consists
in optimizing the robot (or some of its parts) for a given task, using EC. In this
chapter, we deal with EML in robotics, which can be considered the subfield of
ER where ML is somehow involved. As a matter of fact, the vast majority of EML
applications to robotics deal with the optimization of a robot controller which
is based on an artificial neural network (ANN): indeed, ANNs are traditionally
considered an artifact belonging to the field of machine learning (ML). As a
consequence, the largest part of this chapter, namely Section 2, is devoted to
surveying the body of literature dealing with evolutionary optimization of ANN-
based controllers for robotic agents. There are, however, other artifacts that
can be employed as controllers and can be optimized with EC: for example,
behavioral trees can be evolved using genetic programming. From the point of
view of the definition given in this book, they can be considered at the boundary
of EML. We survey some of these approaches in Section 2.2.

From a broader point of view, robotics is a field that exhibits a few peculiar-
ities that are relevant to the usage of EC as a form of optimization.

First, optimization can be performed at various levels, targeting different fea-
tures of a robot. Namely, most applications of EML in robotics are either aimed
at optimizing the controller, the body of the agent, or both, but there are also
some more peculiar examples of EML in robotics, as we will see in Section 4.
It is worth to note that, even when just the controller is subjected to optimiza-
tion, the body still plays a relevant role, because it actively takes part in the
way the robot interacts with the environment by processing perception to decide
actions to be performed; in other words, the body is capable of performing some
morphological computation [66]. This phenomenon is captured by the embodied
cognition paradigm [143].

Second, robots are not static artifacts, but change over time. In the simplest
case, the only thing that changes is their spatial configuration, i.e., their po-
sition within the environment or the relative position of their components. In
more complex scenarios, they can suffer malfunctions [99, 108] or even grow over
time [97, 123]. What is of key importance, however, is that a robot existence
(or life) is not instantaneous: hence, the evolution time-scale may interact with
the life time-scale and adaptation can occur at both levels. This opportunity has
been exploited by researchers for combining EC with learning, morphological
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development, or other forms of adaptation in order to obtain robots that are
eventually better in performing their task.

Third, robots, and the environment they are immersed in, are usually com-
plex and sometimes dangerous. The straightforward application of the main EC
steps, i.e., evaluation, selection, and variation, is often not feasible using the real
robot in its real environment, because the evaluation stage is too costly, not scal-
able, or even dangerous (for the robot itself, the environment, or other human
operators involved in the optimization process). For this reason, the optimization
is often carried out in simulation, possibly exploiting computing machinery that
allows fast computation and well fits the inherent feature of EAs to be massively
parallelizable. However, the simulation is rarely capable of capturing each subtle
aspect of the reality and this can eventually result in an optimized robot whose
behavior in reality is different to the one observed in simulation. This problem
is known as the reality gap problem: we discuss it in Section 5.

2 EML for controller optimization

The controller of a robot is responsible for deciding which actions need to be
performed. In many practical cases, this boils down to computing the control
values that are sent to the body to guide actuation. Since robots are embodied
agents, it is often convenient to equip them with sensors of various kinds, whose
readings can be used as feedback by the controller to effectively guide movements
(closed loop controllers). For these controllers, the control values are, broadly
speaking, a function of the sensor readings and possibly of past experience, in
case there is some form of memory.

In the field of ML, ANNs are everywhere being deployed to approximate
functions for solving a very diverse variety of tasks. The robotics domain is no
exception, and ANNs are among the most used tool within the agent controller
to compute its next actions. Since engineering ANNs is not an easy task, re-
quiring a lot of domain expert knowledge, experience, and trial and error, EAs
often come in handy for obtaining well-optimized ANNs that can successfully
control artificial agents. More in details, neuroevolution (NE) has been benefi-
cially applied both for neural architecture search (NAS) and for training various
flavors of ANNs (see Section 2.1). In addition, EAs have also been combined
with Reinforcement Learning (RL) to effectively train ANNs to solve robotics
tasks.

Aside from ANNs, several other approaches have been proposed merging ML
techniques with evolutionary optimization for robot control, as we will detail
in Section 2.2. Among them, we can include behavior trees and more classical
control theory approaches.

2.1 Neuroevolution

Neuroevolution (NE) is the sub-field of evolutionary computation that deals
with ANNs. Here, NE has the objective of searching for a good robot controller,
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i.e., a good robot brain, meaning that it has to effectively search the space of
ANNs, eventually finding the most suitable one for guiding an agent towards the
accomplishment of its task. Several works exist in which NE has been applied
to optimize robot controllers. Even though it is not feasible to analyze each of
them in detail, we aim at providing an overview of the features of some relevant
studies, together with a characterization along the following axes:

– task to be solved by the robot
– ANN model and architecture
– EA used for the optimization
– presence of another adaptation time-scale (e.g., learning)

Finally, we discuss the case where NE has been used for evolving one or more
controllers that are shared by many robots that interact, more or less tightly, to
achieve a common goal.

Tasks considered. For allowing NE to truly shine, the tasks which have been
mostly taken into consideration in the examined literature are those which re-
quire advanced controllers, either because of the task difficulty itself or because
of the complexity of the robot involved. Among the first ones, we can mention
navigation [18, 19, 50, 62, 161, 162, 165] (see Figure 1), predator-prey tasks [31],
or locomotion tasks in complex environments [157], for which the sensor-actuator
mapping becomes non-trivial, even considering a simple agent with a restricted
set of actions.

Fig. 1: A schematic view of a navigation task for a differential drive wheeled
robot (left) and its realization with a few human mock-ups (right); both images
are taken from [165]. The task has been solved by Seriani et al. [165] with NEAT.

Among the latter ones, locomotion is usually the go-to task, as for legged
robots (see Figure 2), for instance, it already requires the control of several
robotic parts [3, 57, 152]. In the case of legged robots, the task of obtaining a
policy governing the movements of the legs is often referred to as gait generation.
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Fig. 2: Top view of two legged robots, each with four legs, for which the gait has
been optimized by Reyes and Escobar [152] using a few variants of HyperNEAT.
Image taken from [152].

Neuroevolution has been employed also for solving tasks related to industrial
robots, among which the task of manipulating an object using a robotic arm
with a suitable effector is a prominent example [71, 181] (see Figure 3).

Last, when dealing with modular robots or swarm robotics, self-assembly [88]
or reconfiguration [194] tasks are also noteworthy test beds for evolutionary
optimization: the use of ANNs for solving these tasks, and hence of NE for
optimizing them, is still an open front.

ANN model and architecture. Focusing more on the NE aspect, the first
features we concentrate on are the neuron model and the neural architecture
employed. The McCulloch and Pitts neuron model (perceptron) is one of the most
commonly used [109] for computing neurons outputs, thanks to its simplicity and
computational efficiency [1, 176]. However, quite a few works have considered
more biologically plausible models of neurons, such as the bio-inspired spiking
neuron model [75, 178] (see Figure 4).

Concerning the architecture, again most of the works aim at simplicity and
computational efficiency, choosing a fully-connected or a sparse feed-forward
ANN. The latter ones in particular, can either result from a process of NAS (as
we will see in the following paragraph) or can be obtained by pruning [122, 125],
that is the removal of some neural structures (e.g., synapses) during the lifetime
of the agent.

Some more sophisticated architectures of ANNs have also been used, namely
Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM), in
order to endow the controller with a form of memory, which is particularly useful
for the accomplishment of tasks that benefit from tracking previous perceptions
and/or actions [2, 196] such as navigation. In addition, recent advances in the
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Fig. 3: An overview of the task tackled with neuroevolution by Tuci et al. [181]:
the goal is to make the antropomorphic robotic arm (equipped with a human-like
hand as effector) able to discriminate different kinds of objects using perception.
The robot is controlled with an ANN with a single hidden layer of few nodes: the
input layer is fed with readings coming from arm and hand proprio-sensors and
tactile sensors; the output layer provides the arm and hand actuators values and
the category of the object being manipulated as estimated by the robot. Image
taken from [181].

field of deep learning (DL) have ignited the experimentation with deeper and
more complex ANNs as robotic controllers, involving DL inspired elements such
as self-attention modules [145, 177] (see Figure 5).

Last, a slightly separate role is played by Central Pattern Generators (CPGs),
which are biological neural circuits that produce rhythmic outputs in the absence
of rhythmic input [16], that have been successfully employed in those tasks (e.g.,
locomotion) where a periodic behavior is useful for achieving stability and high
performance [81, 90, 105, 179] (see Figure 6).

Evolutionary algorithm. Another axis of categorization regards the evolu-
tionary aspect, i.e., what is being evolved and what EA is being used to this
extent. As seen in the previous paragraph, many works have relied on fixed neu-
ral architectures, be them feed-forward, recurrent, or more refined. In those cases,
the most common approach to training involves evolving the parameters, i.e., the
synaptic weights, of the ANN with EAs that are suitable for fixed-length numeric
genotypes, such as evolutionary strategies (ES). Not only have ES been proved to
achieve state-of-the-art performance on a wide set of tasks [157], but, as opposed
to gradient-based optimization methods (e.g., backpropagation) they need not
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Fig. 4: A schematic view of a neuron model based on spikes, instead of continuous
values; image taken from [156]. Nadizar et al. [124] optimized a controller for
modular soft robots based on this model.

enforce any particular constraint on the outputs of neurons. As such, ES have
been profitably used to overcome training issues like the non-differentiability in
Spiking Neural Networks (SNNs) [32, 34, 50, 62, 124, 149, 161, 162]. In addition,
within the domain of fixed architectures, quality-diversity (QD) approaches have
also been explored, in order to avoid getting stuck in local optima [28, 49] (see
Figure 7).

On the other hand, many studies have encompassed non-fixed neural archi-
tectures, relying on the evolutionary process for obtaining the most suitable
ANN structure for the task at hand. In fact, as recently shown by Gaier and
Ha [53], often the architecture of the ANN plays such an important role, that
even random weights could be used, as long as the architecture stays untouched.
Along this line, many have resorted to EC applied to NAS, mainly applying
the NeuroEvolution of Augmenting Topologies (NEAT) algorithm [173, 174] for
obtaining well performing and robust robot controllers [18, 19, 165, 188].

A step further has been taken with Hyper-NEAT [172], a generative encoding
which evolves large scale ANNs with the principles of NEAT. This approach has
led to outstanding results for the control of robots with high symmetry, such as
legged ones [3, 26, 31, 61, 152], since Hyper-NEAT can automatically identify
and effectively exploit problem regularities (see Figure 8), yielding to emergent
controller modularity and high coordination. As a side note, some older works
have also focused on the importance of ANN modularity for control tasks [20],
yet handcrafted solutions which tried to take advantage of symmetry and rep-
etitions [57, 183] were in general less fortunate than those obtained through a
generative encoding.
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Fig. 5: A neural controller incorporating an attention module, optimized by
Pigozzi et al. [145] for controlling a modular soft robot; image taken from [145].
Self-attention is a mechanism that allows the ANN to enhance some of the inputs
with respect to other ones, resulting, in practice, in a form of auto-adaptation.
Thanks to the attention module, the authors were able to make modules (col-
ored squares in the images on the right) not needing any form of communication
among them, still obtaining a collective behavior highly effective for the con-
sidered task (locomotion): specifically, the ANN in each module becomes more
attentive to sensor readings that are more useful locally, hence performing a sort
of specialization.

Adaptation time-scale. Another significant aspect to take into consideration
when analyzing literature on ANNs for robot control regards the adaptation
aspect. More precisely, most works focus on evolutionary adaptation, namely
relying on the time-scale of different generations for improving the ANNs of the
agents. However, some researchers have experimented with a shorter adaptation
time-scale, that is life time learning, with the goal of fostering generalization to
unforeseen circumstances, as for biological creatures [51, 133, 134]. In this con-
text, the most fruitful results have been achieved with unsupervised Darwinian
learning, i.e., learned traits are not transferred to the offspring, in the form of
neural plasticity, i.e., Hebbian learning. These ideas have been ignited by Na-
jarro and Risi [126] which have proposed to evolve the synapse-specific Hebbian
learning rules instead of the synaptic weights, and have been productively ap-
plied for controlling different types of robots to enhance their resilience to body
alterations and/or environmental changes [47, 141].

Modular robots and swarm robotics. The last view-point considers the
amount of “independent” modules or robots involved. In the first case, we con-
sider modular robots, for which the modules may be able to detach or at least
to control themselves independently of the others (see Figure 9), whereas for the
latter case we fall into the category of swarm robotics. In this context, we can
put forward the concepts of monomorphic and polymorphic systems, where the
first indicates modular agents or swarms were all components are alike, while the
second refers to heterogeneous compounds. Some works have found monomor-
phism to be preferable [139, 144] for both modular robots with truly embodied
controllers [111] and robot swarms [15, 88]. Intuitively, optimizing monomorphic
components (i.e., modules or robots) is easier because the search space is smaller;
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Fig. 6: The main component of a CPG (a differential oscillator, on left) and
its usage within a specific morphology of a modular robot; both images are
taken from [81]. In brief, a CPG constitutes a dynamical system whose evolution
over time (i.e., the dynamics) is determined by a few numerical parameters.
Jelisavcic et al. [81] used CPGs and CPPNs (see Section 3.1) for evolving both
the morphology and the controller of simulated modular robots for the task
of locomotion. Specifically, they used a compound of CPGs as an open-loop
controller, i.e., one in which the CPGs are not fed with sensory feedback, since
gait learning on a flat surface can be solved without such feedback. Moreover,
the authors employed a Lamarckian approach, i.e., one in which some traits are
developed after birth and are then inherited by the offspring.

moreover, the interaction between several indipendent components is facilitated
when they are similar to each other. In addition, it has been observed that de-
spite the independence of the agents, coordination can still emerge [15, 61, 124],
even in the absence of explicit inter-agent communication [145].

2.2 Other combinations of ML and EC for controller optimization

Besides ANNs, several other approaches to robot controller optimization have
involved the application of EC. In this section we try to cover some relevant
works within this broad area.

Combining evolution with Reinforcement Learning. Reinforcement Learn-
ing (RL) is the field of ML in which an agent learns the desired behavior through
a trial-and-error process of interaction with an environment [175]. Due to its for-
mulation, RL is naturally suited for the robotics context, in which it is applied
to learn a controller, called policy in the RL context, which maximizes a cer-
tain reward signal during a given time span, e.g., during the life time of the
agent. The core of RL, is hence the agent policy, which can be represented in
several manners, and needs to be optimized through a policy search process [166]
that can be conducted in various ways, depending mostly on the representation
chosen and on the related search space.
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(a) Four variants of ES, three of which employing a form of QD; image from [28].
Conti et al. [28] used ES for optimizing the neural network controlling a simulated
humanoid for the task of locomotion. The plots show the behaviors of different
agents in terms of position (top view): QD is clearly beneficial, as it allows the
robot to overcome an obstacle being placed in front of it at its initial position (the
star).

(b) Overview of the outcomes of several optimizations performed
with ES or Map-Elites (ME, a form of QD evolution [121]) in
terms of fitness (above) and evolvability (below), in the case of
controller optimization for modular soft robots; image taken from
[49]. x and y axes of each plot represent two behavioral descrip-
tors. Ferigo et al. [49] compared different representations and EAs
in terms of their ability to favor evolvability and exploring the
space of solutions.

Fig. 7: Two examples of usage of QD EAs for optimizing the ANN-based con-
troller of robotic agents.
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Fig. 8: Schematic view of the usage of Hyper-NEAT for optimizing the controller
of a robotic-like eight-legged character: on the right, the mapping between in-
puts and output that exploits the physical structure of the robot; on the left, a
representation of the best ANN obtained for the task of locomotion. Both images
are taken from [3].

For instance, it is possible to rely only on EC for policy search with different
EAs according to the specific representation chosen [28, 147, 157, 173, 190]. In
this context, the dependency between the policy and the effectiveness of the
corresponding behavior is not explicitly modeled; instead of trying to estimate
the model, the search process only aims at moving solutions towards points
in the search space which maximize the final objective, i.e., yield to a higher
cumulative reward. Even though EC for policy search suffers from lower sample
efficiency as compared to classical RL algorithms, there have been some attempts
to tackle this issue [92, 147]. In addition, it has been shown how EC can be a
scalable alternative to classical RL [157], achieving state-of-the-art performance
on a benchmark of control tasks.

Other examples in which EC has been applied to RL, aim at leveraging the
advantages of the two approaches. In particular, two mainstream ideas suggest
to make use of EC to improve the outcome of RL techniques or to allow EC
and RL to act as two concurrent forms of adaptation occurring along different
time-scales, as in [63] (see Figure 10). Concerning the former idea, EC has been
used for reward shaping, to discover a reward signal that allows the agent to
efficiently learn [131].

Some have tried to achieve explainable policies, which are of primary im-
portance in critical settings, relying on tree-based representations and genetic
programming (GP) in combination with RL [30, 67, 193]. Last, EC and RL
have often been combined, in and out of the robotic context for algorithm ac-
celeration [41, 106, 107, 119, 140], using EC as bootstrapping for RL, or for
hyper-parameters tuning [76].
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Fig. 9: An overview of an evolutionary approach for optimizing the controller
of simple robotic modules that have the capacity of joining and hence forming
complex morphologies; image taken from [139]. Single modules are governed
by ANNs that determine the actions to be performed (i.e., how to control the
actuator) and the messages to be sent to neighbor modules. Despite the approach
is described by Pathak et al. [139] as a form of co-evolution of morphology and
controller, the optimization is actually a form of RL.

Behavior trees. Behavior Trees (BTs) describe the controller of an agent by
the means of a tree, which is meant to be traversed until reaching a terminal state
(see Figure 11). The leaves in BTs correspond to executable behaviors, whereas
internal nodes represent control flows. This representation was first invented to
enable modularity in artificial intelligence for computer games, but has recently
received an increasing amount of attention in the robotics community [73]. The
main advantage of BTs lies in their interpretability, which comes in particularly
handy when the considered task is critical or there is the need to adjust the
learned behavior by hand to address reality gap issues [163] (see Section 5).
Given their tree-based structure, GP is naturally suited for optimizing BTs [74],
and it can also be boosted with grammatical evolution (GE) to enhance the
final performance [64, 82]. BTs have also been profitably applied in various
multi-agent contexts, to ease the understanding and prediction of the emergent
swarm behavior [84, 128, 129].

Evolution in control systems. Despite not belonging fully to the ML context,
several classical control theory approaches have benefited from EC techniques
in robotics, so we briefly report some relevant works in the field here. For in-
stance, EC has been used in combination with forward kinematics equations for
trajectory planning in robotics [186], in order to reduce the impact of noisy envi-
ronments [71]. In addition, GP has often been exploited to address the problem
of inverse kinematics in manipulators (see Figure 12), aiming at obtaining precise
yet interpretable results [21, 38, 89, 151]. Moreover, EC has been often applied
in combination with control algorithms for parameter fine tuning in robots like
Unmanned Aerial Vehicles (UAVs) [11] or walkers [69].

Last, we quickly mention some applications of EC on fuzzy control systems
[45, 130, 148], that are those control systems based on fuzzy logic. In this context,
EC has mostly been used for tuning the parameters of the fuzzy controller, in
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Fig. 10: The scheme principled by Hallawa et al. [63] for combining RL and
evolutionary computation for ER; image taken from [63]. During the evolution,
robotic agents are initially developed with an instinctive behavior dictated by
a policy inherited from parents; their policy can change during their life based
on their interactions with the environment, according to an RL approach; the
selection phase of the evolutionary process takes finally into account the fitness
resulting from the learned behavior, rather than just the instinctive one. The
authors assessed their approach on a few (simulated) robotic tasks and found
promising results.

several robotic scenarios. In particular, autonomous vehicles have been a widely
used test-bed for deploying fuzzy controllers with feedback [58]. Various works
have encompassed wheeled robots in navigation tasks [25, 85], and have used EC
to achieve more interpretable results [86, 87].

3 EML for body and body-and-brain optimization

The embodied cognition paradigm [143] posits that the intelligence of an agent
(natural or artificial it may be) emerges from the complex interactions between
the body, the brain, and the environment. Intelligence is not only rational, but
is also embedded in the body. The paradigm stands in contrast with the tradi-
tional view inside the computer science community of intelligence being abstract,
purely Platonic “reason” [191]. Indeed, bodies co-evolved with brains and shaped
them, inasmuch as the body defines the actions that the brain can “afford” [54].
As a matter of fact, there exist organisms capable of performing complex com-
putations by the means of their bodies only. Individuals of the genus Planaria
regrow amputated limbs by virtue of biological processes localized in the severed
portion of their bodies [101]. Individuals of the species Trichoplax adhaerens
self-organize their cilia to locomote in the absence of any nervous system [17].
As a notable instance in the artificial domain, passive walkers locomote by the
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Fig. 11: An example of a BT for a mobile manipulator, i.e., a robot composed of
a manipulator mounted on a wheeled platform; image taken from [73].

means of body dynamics only [110] and are already a mature field of study
within robotics [27], to the point that artist Theo Jansen applied EC to design
the Strandbeests (see Figure 13), passive walkers that rely on wind energy only,
to raise environmental awareness [80].

To no surprise, researchers delved into the issue of agent body optimization;
such topic is relevant for EML as it is deals with problems of RL, itself a part
of ML. With respect to controller optimization, the body places an additional
challenge: most agent bodies are not differentiable and thus cannot be opti-
mized by the means of gradient-based optimization methods. Ha [60] explored
policy search to jointly optimize the control and body parameters of simulated
bipedal walkers, but restricted the search to different configurations of the same
morphology (e.g., length of the pedals). To fully unleash its potential, body op-
timization must be capable of open-ended complexity. EAs fit this goal, since
they can evolve any artifact given an appropriate representation and a fitness
function.

Starting from the seminal work of Sims [168]—the “father” of ER—who first
unveiled the power of evolution for optimizing the bodies of virtual creatures,
researchers have increasingly relied on EC also for body optimization and body-
brain optimization. Both of them pose unique challenges when compared to
controller optimization, as we shall see in the following.

3.1 EML for body optimization

As representing a body is non-trivial, body optimization propelled researchers to
put effort into conceiving representations that are: (a) scalable, in terms of the
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Fig. 12: An overview of the approach of Dolinsky et al. [38] for performing the
inverse static kinematic calibration of industrial robots using GP; image taken
from [38]. The authors used the capability of GP of optimizing both the structure
and parameters of a regression model for building concurrently six models for
the six joints of the robot.

solution complexity, and (b) effective, in terms of the quality of the solutions.
The literature usually groups body representations into two categories: direct
and indirect (sometimes also called generative). Direct representations provide a
one-to-one mapping between genotype and solution, whereas indirect represen-
tations, on the other hand, evolve a data structure that we can map to a solution
in a non-trivial procedure. In a certain sense, indirect representations evolve the
blueprint that can generate a solution by decoding the instructions contained in
the genotype (hence the name “generative”).

Direct body representations. Direct representations provide a one-to-one
mapping between genotype and solution. They are, in general, easy to craft, but
potentially less scalable than indirect ones, as the complexity of the genotype
directly depends on the complexity of the solution. Examples include graphs and
numeric vectors.

Numeric vectors are the most direct of the representations. In that case,
every gene (i.e., scalar) encodes a specific trait of the solution. For example,
[144] evolved the morphologies of 2D voxel-based soft robots encoding each voxel
(given a maximum enclosing grid) with a real number in a vector (see Figure 14).
Albeit simple, this representation proved effective to evolve a variety of shapes
and behaviors, also using a speciation mechanism [174].

Sims [168] first evolved virtual creatures by encoding their morphology as a
directed graph, with nodes being the rigid parts and the edges being the connec-
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Fig. 13: One of the Strandbeests realized by the dutch artist Theo Jansen, named
by the creator Animaris Percipiere; image taken from [80].

tions among those. The resulting creatures not only evolved life-like patterns for
locomotion, but also for competitive co-evolution, where individuals belonging
to different populations (forming species) evolve to win a one-on-one fight for
the control of a resource (a cube in the arena where the simulated creatures
fight) [167]. As testified by adoption of open-source platforms, graphs (including
trees [72]) have proved an intuitive representation for modular robots [4, 195].

Indirect body representations. Indirect representations evolve a data struc-
ture that we can map to a solution in a non-trivial procedure.

Indirect representations attracted the most interest in the community. In fact,
they bear similarities to what happens in biological organisms, whose complexity
and diversity are the result of an astonishing data compression feat, the “genomic
bottleneck” [153]: just a handful of genes in the DNA encode the instructions to
build a complex organism (humans, with 30 trillion cells and all their cerebral
complexity, just have 30 000 genes in their genome [189]). As a result, indirect
representations might provide a bridge toward more complex robotic systems.

Examples of indirect representations include:

– Compositional Pattern Producing Networks (CPPNs);
– sequences mapped to strings belonging to languages defined by grammars;
– Gene Regulatory Networks (GRNs).

Indirect representations allow great freedom to the designer and are suit-
able to evolve properties we know are beneficial a priori. As a matter of fact,
CPPNs [171]—univariate function networks resulting in multivariate functions
expressing repetitions and symmetries—evolved to express multi-material 3-D
morphologies with life-like patterns, e.g., symmetry [5] (see Figure 15). On
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Fig. 14: A schematic view of the grid-based, fixed-length direct representation
for evolving the body of 2D voxel-based soft robots used by Nadizar et al. [123];
image taken from [123]. A fixed-length real vector is first reshaped in a matrix;
then, starting from the cell with the largest values, subsequent voxels are added
in correspondence with cell with next largest values that are adjenct to already
visited cells. Similar representations have been used, e.g., in [49, 144, 145].

the same research line, evolved CPPNs expressed effective morphologies for
3-D voxel-based soft robots for squeezing through tight spaces [22], underwa-
ter locomotion [29], and recovering from damages [99]. Most notably, evolved
CPPNs expressed—in silico—the morphologies for organisms to be assembled—
in vivo—from cells of Xenopus laevis (a frog); such organisms (the xenobots) can
locomote by themselves [98] as well as self-replicate [96] and are, to date, one
of the most impressive simulation-to-reality feats within the robotics EML com-
munity.

Similarly to CPPNs, grammars allow the designer to bias the search space,
but in a different way: grammars specify the building blocks of a solution and
what relationships are admissible among those blocks. There exists a rich liter-
ature on the evolution of solutions defined in languages described by grammars,
starting from Grammatical Evolution (GE), a form of GP [95], and its more
recent variants, as Probabilistic Structured GE [112] or Weighted Hierarchical
GE [8]. Lindenmayer systems (L-systems) [102]—first developed to model the
biological development of multi-cellular organisms—consist of an alphabet of
symbols to be replaced with replacement rules (see Figure 16): symbols can be
robot modules and instructions on how to assemble them [68]. As a result, L-
systems have succeeded at evolving modular robots [116, 117] on the Revolve
framework [72].

When evolving embodied agents, the effect of mutations is non-trivial and
hampers evolvability [44]. To this end, Bongard and Pfeifer [14] conceived GRNs
as linear genotypes that, through differential gene expression and the diffusion
of gene products, transform a single structural unit into a complete robot mor-
phology via a development process: mutations expressed earlier in development
tend to have a more variable effect than mutations expressed later, lending to
the evolvability of the representation.
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Fig. 15: Schematic view (on the left) of an indirect representation based on
CPPNs for optimizing the body of 3D voxel-based soft robots; in the middle, an
example of an evolved body that is effective in locomotion and exhibits life-like
patterns as repetitions and simmetries; on the right, a robot evolved with a di-
rect representation (conceptually similar to the one of Figure 14)—all the three
images are taken from [24]. Cheney et al. [24] used NEAT as the EA driving the
evolution of the CPPNs describing the robot bodies. The controller here simply
consists in different phases of the expansion-contraction cycle of the voxel com-
posing the body, here visually encoded with different colors.

Comparisons among representations. Considering how important the choice
of the representation is, some works did consider comparing different represen-
tations; most of them considered the scenario of modular robots, because they
allow for great expressive power in describing the bodies, due to their inherent
nature of systems composed of many components (see Figure 17).

Extending the work of Auerbach and Bongard [5], Cheney et al. [24] showed
that evolution of CPPNs is more effective than a direct representation at express-
ing morphologies for multi-material voxel-based agents, as it produces regular
patterns as seen in nature (see Figure 15). Also using modular robots, Veenstra
et al. [185] argued that indirect representations are more suitable for evolving
small-sized robots, a conclusion that we find counter-intuitive. De Carlo et al.
[33] found an indirect L-system representation to underperform a tree-based di-
rect one in terms of locality of the representation [154], since many genes needed
to align to create a positive effect on the solution (epistatic effects).

In the context of voxel-based soft robots, both Nadizar et al. [123] and Ferigo
et al. [49] compared different representations (a direct and indirect ones) for the
body of the robots. In the former study, the authors considered the case of
morphological development of robots, i.e., the addition of new voxels to the
body during the life of the individual, as dictated by the genotype according
to the chosen representation. In [49] (see Figure 17c), the aim was to compare
the representations in terms of their ability to favor the evolvability, i.e., the
possibility to produce fit offspring, of found solutions.

Despite the efforts devoted by the authors of the studies surveyed above, a
comprehensive comparison among representations is arduous, given the abun-
dance of them; even indirect ones can differ wildly in terms of properties of the
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Fig. 16: A schematic overview of an indirect body representation for modular
robots based on L-systems; image taken from [118]. There is a symbol in the
grammar for each available module and a few symbols for operating on the cur-
rent expression, by replacing symbols, and for changing the reference point. Mi-
ras et al. [118] used this representation for evolving (simulated) modular robots
composed of three possible modules: a controller, a joint actuated by a servo-
motor, and a passive structural module.

representation [155]. Moreover, the works mentioned so far consider different
robot types and frameworks. Thus, the community still misses a full under-
standing of the trade-offs among representations.

3.2 EML for body-and-brain optimization

Body-and-brain optimization has historically been difficult [83], due to the deep
entanglement between the brain and the body. The seminal work of Lipson
et al. [103] suggested the reason to be the ruggedness of the fitness landscape:
they proved that evolving the morphology of voxel-based agents for a fixed con-
troller results in more premature convergence to local minima than evolving
the controller for a fixed morphology. Controllers need to adjust to their mor-
phology [43], as the body modulates the communication (motor and sensory)
between the brain and the environment.

Researchers have since then tackled body-and-brain optimization either by
joining the body and the brain in the same optimization or decoupling the two
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(a) Veenstra et al. [185] considered
modular rigid robots composed of up
to 20 modules and found that, in par-
ticular at the initial stage of the evolu-
tion, a generative representation is bet-
ter than a direct representation. Mod-
ules are of two kinds: a fixed cube and
a cube-like one with a face that can be
displaced with respect to the others by
actuating a rotational joint. The gen-
erative representation is based on L-
systems. Image taken from [185].

(b) Miras [114] compared a represen-
tation based on CPPN and one based
on L-systems for evolving the body of
modular rigid robots composed of four
kinds of modules. The authors consid-
ered not only the impact on the effec-
tiveness, i.e., the ability of the robot
to move, but analyzed how the two
representation bias and constrain the
search space. They found that CPPN
gives slower but more stable gaits. Im-
age taken from [114].

(c) Ferigo et al. [49] compared two representations, a grid-based direct
one and an indirect based on Gaussian-mixtures, and two EAs in
terms of their ability to foster the evolvability of found solutions, in
the context of 2D voxel-based soft robots. The authors found that the
evolvability is mostly influenced by the EA, while the representation
largely affects the fitness. They also found an evident bias towards
larger robots with the indirect representation (bottom in this figure).
Image taken from [49].

Fig. 17: A visual summary of the outcome of three studies comparing different
representations for the body of modular robots. In all the cases, the figure shows
a few individuals obtained by the means of evolutionary optimization using one
or two representations.
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(e.g., with two nested optimization loops). Both approaches have benefits and
costs: the former simplifies the optimization, while the latter explicitly takes into
account how brains need to adapt to their bodies.

Joining body-and-brain optimization. Joining body-and-brain optimiza-
tion allows to solve two (entangled) optimization problems as one single opti-
mization problem.

When the representation is direct (as in Section 3.1), that amounts to join-
ing the two representations (for brain and body) into one single representation
[144]. For instance, Nygaard et al. [136] successfully evolved real four-legged
robots (see Figure 18) using one single numerical genotype for both morpho-
logical (leg lengths) and control (gait) parameters and showed adaptation as
physical conditions changed. Going back, Sims [168] evolved the neural network
controllers of his virtual creatures as graphs embedded inside the nodes of the
morphology graph (see Section 3.1), with mutations applying to both types of
graphs.

Fig. 18: The four-legged robot used by Nygaard et al. [136] for the joint evolution
of morphology and control; image taken from [136]. The robot can (slowly)
change the length of the legs: since the time-scale of this variation is much
longer than that of the gait, the change is made offline, i.e., between subsequent
fitness evaluations, and is hence considered a form of morphological evolution.

Indirect representations (as in Section 3.1), on the other side, can potentially
encode body and brain with the same data structure. Cheney et al. [23] evolved
voxel-based agents with two CPPNs, one to express the morphology and one to
express the distributed open-loop controller, and reducing selection pressure on
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individuals with recent morphological mutations: evolution was free to mutate
one CPPN or the other, while having time to “readapt” to new morphologies.
Their approach showed potential to avoid local optima. Finally, Pontes-Filho
et al. [146] evolved one single neural cellular automaton for developing the body
and functioning as the brain for multi-material car racers and is a promising line
of research (see Figure 19).

Fig. 19: A schematic overview of the approach proposed by Pontes-Filho et al.
[146] for the concurrent evolution of the body and the brain of a simulated
robotic mobile agent composed of a few modules with different roles. The key
contribution of this work is in the neural cellular automaton used for determin-
ing both the way the body develops, in an initial instantaneous stage at the
beginning of the agent life, and how it behaves during its life: in the latter stage,
actuable modules (i.e., those equipped with wheels) are controlled based on the
state of the automaton. Image taken from [146].

Decoupling body-and-brain optimization. Decoupling approaches usually
cast the body-and-brain optimization problem as a nested optimization problem.
An outer evolutionary loop searches in the space of bodies, while an inner opti-
mization loop searches—for each body—in the space of brains; intuitively, that is
how nature shaped animal life on Earth. Approaches then differ according to the
algorithm employed at the inner loop. Interestingly, both evolution and learning
(the slowest and the fastest time-scales of adaptation, respectively [169]) appear.

Some works adopted RL to learn the brains, as RL is a sample-efficient op-
timization over the lifetime of a robot. Most notably, Gupta et al. [59] evolved
bodies with a genetic algorithm and learned their brains with RL to master a
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wide gamut of tasks for tree-based simulated robots, verifying that such envi-
ronmental complexity fosters the ability of a body to facilitate learning of novel
tasks. Additionally, bodies that are more physically stable and energy efficient
facilitate learning the most.

On the other side, the inner loop need not consist of learning, but may
be evolutionary just like the outer loop. In particular, every body comes with a
population of brains that evolve and whose best individual determines the fitness
to the body-brain pair. Using this approach, Jelisavcic et al. [81] compared a
Darwinian and Lamarckian approach for the inner loop and found that the latter
considerably reduces the time to learn a good solution. Similarly, Le Goff et al.
[100] showed that initiating learning from a brain inherited from an archive of
learned brains, rather than from a randomly initialised one, both the speed and
magnitude of learning increased over time. Subsequently, Miras et al. [115] found
that indeed the inner evolutionary loop produces robots that perform better on
a given task and Luo et al. [105] quantified the learning delta—the performance
difference between inherited and “learned” brains—in terms of morphological
descriptors.

4 Other combined usages of EC and ML in robotics

There are many other cases in which EC has been successfully used for optimiz-
ing other components of scenarios involving robots than “just” body and brain.
These cases include other parts of the robots, such as the sensory apparatus
of voxel-based soft robots [46, 48] or the object recognition part of robot grip-
pers [70], the way robot develops during their life [97, 123, 127], as well as the
task itself [135, 187], or even the simulator used for optimizing, in simulation, a
real robot [12]. While all these approaches can be encompassed in the field of ER,
they hardly fit the definition of EML, since they do not directly and explicitly
employ ML.

In a few other cases, ML and EC “met” in contexts where they both con-
curred in determining a solution for a broader problem. For example, Pigozzi
et al. [144] studied what are the key evolutionary factors (namely, the employed
EA) affecting the diversity of evolved voxel-based soft robots: the authors in-
terpreted the notion of diversity taking the inspiration from biology, where a
human observer categorizes individuals within a predefined structure of cate-
gories (species). In the cited work, the authors used a supervised ML pipeline to
replace the human observer with a model learned from a few data points labeled
by an actual human observer. The model is hence used for measuring the diver-
sity of a large number of evolved populations of robots that, for the scale, could
not have been manually inspected by an actual human. The authors found that
those EAs that are designed to promote diversity are indeed able to achieve this
goal, in particular when behavioral traits are used for telling apart individuals.
However, they also found that external conditions (i.e., the environment) may
have an even greater impact on observed diversity: e.g., robots evolved for doing
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locomotion on a downhill terrain very often ended up having a rounded shape
which facilitated rolling.

A similar approach, i.e., one in which ML powers a component of a larger
system in which at least another part is based on EC, has been adopted by Koos
et al. [94]. For the aim of fighting the reality gap (see Section 5), the authors
trained a ML model for estimating the transferability of robot controllers evolved
in simulation, i.e., the degree to which their performance, as seen in simulation,
do not change when moved in reality. The evolution itself was bi-objective, with
one objective being the transferability and the other being the effectiveness.
According to the authors, evolving for transferability and effectiveness together
is practical way for fighting the reality gap problem.

5 The reality gap problem

As already mentioned in the previous sections of the chapter, in ER an EA
operates on a population of robots plunged into an environment. The ultimate
goal is that of designing a robot (its brain, body, or both) which maximizes all
the desired performance when involved in a given task.

Since EAs are loosely inspired by natural evolution, which has been quite suc-
cessful in evolving various kinds of biological agents, i.e., living creatures, they
appear promising for optimizing artificial agents, i.e., robots, too [104]. However,
their stochastic nature implies that multiple executions have to be performed to
assess their outcome in practice, and calls for a solid statistical analysis for deter-
mining the best strategy to be adopted [9, 39]. Unfortunately, repeating several
(often thousands) experiments on real robotic platforms can be hugely expen-
sive, time consuming, and often potentially dangerous. For this reason, most ER
applications focus on evolving robots using simulated robot-environment inter-
actions, and then transfer the obtained results to the real robot-environment
system (i.e., simulator-to-reality transfer, otherwise known as sim-to-real trans-
fer) [94]. Only few works evolve controllers directly on the robot, and often
optimize few individuals during few generations, which reduces the effectiveness
of the evolutionary methods [40, 56, 104, 150].

Simulation is therefore considered a very powerful and useful tool in the
context of evolution of robots, since a long time [184]. However, at the same
time, it carries some disadvantages that often result in an under-performing,
or, in the worst case, completely ineffective solutions when applied on the real
system [42, 65]. This effect is often called reality-gap [79], i.e., the difference
between the effectiveness measured in simulation and the one measured in reality
of a solution that has been obtained in simulation (see Figure 20).

Although the term reality gap is widely used in the ER community, this prob-
lem is not limited only to applications of EAs in robotics. Instead, as a matter of
fact, it can occur on any system designed and developed using simulators, and
then implemented in reality. RL applications, for example, can also be affected
by this problem when trained using simulators [158, 159]. More generally, in
the control system community, where dynamic systems are controlled typically
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Fig. 20: Example of reality gap, from [142]. The robot effector reaches the target
(the red circle) in simulation (left), but fails to reach it in the real application
(right).

relying on model-based approaches—i.e., where the way the simulation models
the real system is known and exploited in the control strategy—the reality gap
problem is for example referred to as model-plant mismatch [6, 7, 91, 138, 164].
In this section, however, we focus our attention on the reality gap in ER.

The main questions one needs to ask when dealing with a reality gap are:

1. what are the differences between simulators and reality that affect the effec-
tiveness of the solution found in the simulation?

2. how can the mismatch be reduced?

Of course, as one might expect, the above questions are interrelated, often de-
pendent on the problem addressed, and thus have no one-size-fits-all answers.

From a practical point of view, the mismatches between simulator and re-
ality, being the cause of the reality gap, can be classified into three macro-
categories [137]:

– robot-robot correspondence,
– robot-environment correspondence,
– environment-environment correspondence.

The former refers to the physical differences between the simulated robot and
the real one, such as morphological differences. Robot-environment differences
refer to errors, or approximations, in the dynamic interactions between the robot
and the environment, and include both perception and actuation. On the other
hand, the latter, i.e., environment-environment correspondence, concerns the
misrepresentation of significant features of the environment.

Clearly, once the source of such differences is recognized, there is a trivial
solution to reduce the gap: improving the simulator by bringing it as close as
possible to the real system. In [113], for example, simulator is integrated with
real data, in [79] with noise on sensor level, while in [12, 192] the robot model is
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directly learned online. Klaus et al. [93] presented a broad comparison of model
improvement approaches in dealing with the reality gap.

However, this general solution has a negative impact on the efficiency of
EAs even when applied in simulation: the time or computational effort needed
for finding a solution increases. Simulators with higher accuracy tend to be
more demanding in terms of computational time, thus losing one of the main
advantages of using simulators. Hence, a trade-off exists between the effectiveness
of an optimization technique (i.e., the quality of the solution it finds for a given
task), and its efficiency. Assuming, therefore, that a certain amount of reality
gap must be tolerated, it is necessary to build or tune optimization techniques
(including evolutionary ones) in such a way that they match the user expectation
in terms of reality gap, effectiveness, and efficiency.

There are different works in the literature proposing approaches able to mit-
igate the reality gap effect in ER. Although we cannot discuss each of them
in-depth, we provide below a categorization of those which work in the opti-
mization phase—i.e., the vast majority of them. A rather different approach is
to try to fill the reality gap by building robots that can adapt to changes while
they operate. For example, Song et al. [170] employed ES to realize a form of
meta-learning that allows a real legged robot to adapt to changes in its body
dynamics (due to robot load and battery voltage change). In principle, this kind
of adaptation could be achieved also with controllers that exhibit plasticity, such
as SNNs or ANNs with Hebbian learning.

Domain randomization. The idea of domain randomization is to improve the
simulator robustness by providing sufficient simulated variability at the training
time, such that the model is able to generalize to real-world data in test. The
result is a more robust solution to model variation, and it can be achieved fol-
lowing different strategies: performing adaptive feedback control [35, 120, 149],
i.e., closed-loop control strategies in which some measurements are fed back to
the controller to properly adapt the control law to instantaneous changes in the
environment or in the robot itself, developing robots within a variety of different
environments [10, 13, 55], or randomly perturbing model parameters during the
evolution [77, 78, 180].

Simulator flaws avoidance. Avoid the exploitation of simulator flaws is grounded
on the idea that, if the solution search-space during evolution is such that it
exploits the defects of the simulator, then the learned solution will necessar-
ily be subject to the reality gap when transferred to the real robot. There-
fore, the approaches that address the reality gap out of this point of view try
to reduce the exploitation of simulator pitfalls automatically adjusting hyper-
parameters [50, 51, 182], or slowly increasing the representative power of the
search space [52].

Fostering transferability. A promising idea is the one that consists in learn-
ing a model that can roughly quantify the reality gap between a simulator
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and a real robot for each investigated design, i.e., to estimate the design (non-
)transferability, and use the estimate to constrain the design process. This is
the main idea of [94], where authors formulated the transferability approach,
i.e., a bi-objective algorithm in which a task-dependent performance metric is
maximized, while a disparity measure between performance in simulation and
in reality (i.e., a non-transferability measure) is simultaneously minimized (see
Figure 21). The cited work is particularly relevant to this chapter because the
authors use a classical ML pipeline for estimating the transferability based on
some features that can computed for each possible solution being evolved.

Fig. 21: An overview of the algorithm proposed by Koos et al. [94] for evolv-
ing robot controllers avoiding to fall in the reality gap problem. The designer
needs to identify a few behavioral descriptors that can be computed both in
simulation and reality; based on these descriptors, an estimation of the (non-
)transferability (STR, i.e., sim-to-real, disparity) of each solution evaluated
in simulation is produced using a supervised ML model. The evolution is bi-
objective, with one objective being the non-transferability, to be minimized, and
the other being the task-dependent effectiveness. The ML model for estimating
the non-transferability is maintained updated by assessing in reality some of the
solutions found in simulation at regular intervals. Image taken from [94].

The same idea has been subsequently pursuit in other works in which, for
example, the discrepancy between simulator and real robot has been monitored
in morphology [36, 98, 160].



28 E. Medvet et al.

6 Concluding remarks and open challenges

The field of robotics offers a plethora of opportunities for applying evolutionary
optimization. Many components of robots and their tasks can be optimized,
rather than manually designed, and the corresponding search spaces are often
very large and hardly amenable to be searched with more traditional search
methods: hence EAs can deploy their potential as universal search techniques.
Moreover, the combination of EC and ML appears to be particularly effective
when used to tackle different facets of a larger problem.

There are, however, some open challenges. We believe they are well captured
by the recent work of Eiben [42], who suggested that future research in ER
should attempt to:

1. Target more realistic robots and real tasks: this will require to (i) focus on
robotic subsystems that are currently overlooked, such as sensors, (ii) con-
sider more complex tasks, such as, e.g., object transportation instead of the
simple locomotion, and (iii) make assessment more scalable, in such a way
that it can actually be executed for many candidate solutions. We think that
the latter point is a particularly fertile terrain for the combined use of EC
and ML.

2. Increase sample efficiency, i.e., reduce the number of assessments that are
needed to obtain a given solution quality upon optimization.

3. Provide a more solid formalization of the properties of a robotic system
that can affect the success of evolutionary optimization. In particular, we
think that a finer characterization of the body-brain duality, i.e., their ability
to host the cognition that the robot needs to perform its task, would be
beneficial.
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