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A B S T R A C T

The most suitable parameter to summarize the viscoelastic response of asphalt concrete (AC) mixtures is the 
complex modulus, defined by means of its two main components: the dynamic modulus |E*| and the phase angle 
φ. They are frequently determined by means of expensive and time-consuming laboratory procedures that 
require suitable equipment and high-skilled technicians. As an alternative, machine learning models can be 
trained to make very accurate predictions and thus, substitute at least some of these lab tests. This study proposes 
an innovative Categorical Boosting (CatBoost) approach for the simultaneous prediction of both |E*| and φ. Nine 
different AC mixtures were prepared, and an extensive 4-point bending test (4PBT) experimental campaign was 
carried out under ten loading frequencies and six testing temperatures. In order to thoroughly compare the 
developed model with two well-established empirical equations (Witczak-Fonseca and Witczak 1–37A), the same 
input features were selected. Pre-processing and resampling techniques were implemented to both reduce 
computational effort and improve model efficiency, whereas an in-depth sensitivity analysis was also performed. 
The entire methodology was implemented in Python 3.8.5. Six different goodness-of-fit metrics were used to 
robustly evaluate the performance of the developed CatBoost model and to compare it with the results of two 
regression-based models and a reference state-of-the-art artificial neural network (SoA-ANN). Findings showed 
that both machine learning (ML) models outperformed the regression-based ones, displaying significantly better 
performance for all metrics used. CatBoost and SoA-ANN showed roughly comparable results, characterized by a 
mean coefficient of determination (R2) slightly higher than 0.98. Since goodness-of-fit metrics resulted in no 
marked differences between machine learning models, CatBoost approach might be preferred because of its easy 
implementation in Python and its high interpretability. Within the context of pavement engineering, such an 
advanced machine learning model could provide a useful and powerful tool for asphalt mixtures’ design 
applications.   

1. Introduction

One of the most important engineering properties to analyze the
mechanical behaviour of asphalt concretes (ACs) and evaluate their 
performance is represented by the complex modulus E*. This funda-
mental parameter allows the variation in a mixture’s stiffness to be 
described in detail as the test conditions, namely loading frequency and 
testing temperature, change [1]. 

Complex modulus is defined by means of two main components: the 
dynamic modulus |E*| and the phase angle φ. The former describes the 
material stiffness at given temperature and frequency conditions, 
whereas the latter determines the corresponding elastic and viscous 

amounts under those test settings. By means of time–temperature su-
perposition principle (TTSP) [2], these data are usually processed to 
obtain master curves. These continuous curves allow the complex 
modulus to be estimated for a wide range of temperature and frequency 
combinations. Complex modulus is a crucial parameter for both the 
design of asphalt pavement structures and the evaluation of pavement 
performance [3] and is required as input by major pavement design 
procedures such as the Mechanistic-Empirical Pavement Design guide 
(M − EPDG) [4]. 

Basically, two main methods are used to determine complex modulus 
and phase angle: experimental and computational. The former consists 
of performing laboratory tests on different mixture specimens. The latter 
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involves using predictive empirical equations or, alternatively, mathe-
matical models to estimate the desired parameters. However, an 
expensive and time-consuming procedure is necessary for the experi-
mental determination of |E*| and φ: it is required to produce and prepare 
compacted specimens, to test them for wide ranges of temperature and 
frequency by means of suitable equipment used by high-skilled techni-
cians [5]. The efforts of many researchers have consequently shifted to 
predictive methods, thus limiting the use of onerous laboratory tests and 
predicting |E*| and φ by means of ad-hoc semi-empirical equations. Early 
successful attempts resulted in the predictive equation introduced by 
Fonseca and Witczak [6], followed by the well-established viscosity 
based Witczak’s model [7]. Features such as aggregate gradation per-
centages, air voids (AV) content, effective binder content (Vbeff ), as well 
as binder viscosity (ηb) and loading frequency (fl) are required as input, 
with the dynamic modulus value returned as output. The resulting 
predictions proved to be accurate and reliable: however, since both 
methodologies were developed from data of standard mixtures, they 
showed some applicability limitations [8]. 

Over the years, many other models have been developed and used 
more or less frequently to produce AC mixture dynamic modulus pre-
dictions [9–12]. Although fewer in number, regression-based models to 
make phase angle predictions have also been introduced [13,14]. 
Nevertheless, in order to better understand and capture the relationships 
between the complex modulus and its several influencing variables, 
regression-based models have been progressively replaced by machine 
learning (ML) techniques [15–19]. Unlike regression-based models, 
these innovative techniques have the remarkable capability to model 
and predict even very different phenomena, whose fundamental re-
lationships do not necessarily need to be thoroughly known. 

One of the most widely practiced ML techniques is the artificial 
neural network (ANN), which has proven to be capable of understanding 
even highly nonlinear phenomena and producing remarkably accurate 
predictions [20–23]. However, it has some drawbacks such as 
complexity in identifying the best topology and hyperparameters 
coupled with poor interpretability of the overall model. 

Other supervised ML algorithms, such as decision-tree (DT) based 
ones, address these problems by returning comparably accurate pre-
dictions in multiple domains [24–26] although with more easily inter-
pretable models. In fact, such DT based approaches consist in generating 
a tree-like model to solve classification or regression problems by means 
of simple decision rules [27]. Some of their applications to solve dy-
namic modulus-related regression problems are fully described in the 
relevant literature [28,29]. 

The objective of this study is to develop an advanced ML model, 
capable of implementing an innovative DT based algorithm, namely the 
Categorical Boosting or CatBoost, in order to accurately predict both the 
dynamic modulus and phase angle of multiple AC mixtures. The Cat-
Boost technique results from the combination of innovative feature 
processing algorithms focused on computational efficiency and high 
predictive accuracy that have made it outperform other leading 
gradient-boosting competitors on a wide variety of datasets [30]. 

An extensive four-point bending test (4PBT) experimental campaign 
was carried out: 1680 observations of AC mixture samples were recor-
ded, and the resulting information served to train the model to simul-
taneously predict both dynamic modulus and phase angle. 

This paper represents one of the first studies implementing the Cat-
Boost approach to model the complex modulus of several AC mixtures. 
In order to fairly compare the developed model with state-of-the-art 
(SoA) ANN and two well-established empirical equations, the assigned 
input features remained unchanged in all four different approaches. 
Furthermore, an in-depth sensitivity analysis was performed to fully 
understand model functioning and the impact the different features 
respectively have on the outputs. 

Considering the remarkable performance achieved by the model, it 
could provide a fast and reliable tool for simultaneously predicting |E*|

and φ values to be implemented in the most common design procedures. 
Furthermore, this research confirms what is known about the correla-
tions between compositional variables and performance parameters and 
could lead to an even better understanding of the existing relationships 
between these variables and the mechanical behaviour of the corre-
sponding asphalt concretes. In this sense, the present study represents a 
contribution to the existing literature and an interesting inspiration for 
future applications. 

2. Material and methods

2.1. Material selection and dynamic modulus testing 

To create a large data base for the modelling efforts in this study, 
nine different asphalt mixtures were designed, produced, and tested to 
receive data on the viscoelastic response of the respective mixtures. A 
schematic representation of the entire methodology followed is pro-
vided in Fig. 1. For surface layers (AC 11, SMA 11), diabase was used as 
fine and coarse aggregates, while for binder and base mixtures (AC 22, 
AC 32), limestone was the choice. In all cases, the filler is powdered 
limestone. Unmodified, as well as polymer-modified binders were 
implemented in the study. Mineral aggregate gradation follows the 
respective European product standards for asphalt mixtures (EN 13108- 
x [31]). The optimal binder content was determined by the procedure 
according to Marshall. Details on mix parameters and the grading curves 
are shown in Table 1 and Fig. 2. 

For all mixtures, asphalt mix slabs were compacted in a steel segment 
compactor according to EN 12697-33 [32]. Of each slab, three speci-
mens with nominal dimensions of 60x60x500 mm were cut. After 
determining volumetric properties of each specimen, they were sub-
jected to stiffness tests by 4PBT with a temperature and frequency 
sweep. The 4PBT was carried out according to EN 12697-26 [33] in 
displacement-controlled mode at temperatures ranging from –15 ◦C to 
+ 45 ◦C and a frequency sweep from 0.1 Hz to 40 Hz at each tempera-
ture. The horizontal strain amplitude at the bottom of the beam was set 
to 35 µm/m to prevent any damage during testing. For each mix, at least 
3 single specimens were tested. Stiffness and phase angle results used in 
this study are mean values from these single tests derived from the 
recorded test data according to the equations given in EN 12697-26 
[33]. 

2.2. Empirical equations for|E*|

Several models have been investigated and developed over the years 
to establish a relationship between the dynamic modulus |E*| and the 
main physical parameters of asphalt mixtures. One of the most scien-
tifically sound was proposed by Witczak in 1996 and is based on the 
TTSP. E* values at different test temperatures are shifted to the same 
reference temperature in order to develop the so-called master curve 
[6]. For asphalt mixtures, this curve is assumed as nonlinear sigmoidal 
(Equation 1) since it is able to represent the mixture’s dependence on 
temperature: 

log|E*| = ρ+ α
1 + eβ+γlog(fred)

(1) 

|E*| represents the dynamic modulus, ρ is the logarithm of |E*| min-
imum value, ρ+α is the logarithm of |E*| maximum value, β and γ are 
shape parameters, and fred represents the reduced frequency. Master 
curves for AC11, AC22, AC32, and SMA11 mixtures have been reported 
in Fig. 3. For each mixture and for each reference temperature, the shift 
factor value (loga(T)) required to determine the corresponding reduced 
frequency was given in Table 2. 

Still in 1996, based on a large experimental data set (1430 obser-
vations of 149 conventional asphalt mixes), Witczak and Fonseca 
investigated the relationship between the sigmoidal function parameters 
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and the physical-volumetric properties of asphalt mixtures. The 
following empirical equation was then derived: 

|E*| is the asphalt mixture dynamic modulus (105 psi), ρNo.200 is the 
aggregate percentage passing the No. 200 sieve, ρNo.4 is the aggregate 
percentage retained on the No. 4 sieve, ρ3/8 is the aggregate percentage 
retained on the 3/8 inch sieve, ρ3/4 is the aggregate percentage retained 
on the ¾ inch sieve; AV is the percentage by volume of air voids in the 
mixture, Vbeff is the percentage by volume of effective binder content, fl is 
the loading frequency (Hz), and ηb is the asphalt viscosity (106 poises) 
determined as follows: 

log10log10ηb = A+VTS • log10(TR) (3) 

TR is the temperature in Rankine, whereas A and VTS are regression 
parameters whose values have been estimated as a function of perfor-
mance grade (PG) [4]. 

In 2006, Witczak et al. [7] combined the observations used in Fon-
seca and Witczak’s original model with 1320 additional observations 
related to 56 mixes (34 of them used modified binders) developing a new 
model (Equation 4). This was named Witczak 1-37A and is currently 
used in the United States to predict the dynamic modulus of asphalt 
mixes in Level 2 and 3 projects, according to the M-EPDG [4]. 

Fig. 1. Schematic representation of the methodology followed.  

log|E*| = − 0.261+ 0.008225 • ρNo.200 − 0.00000101•(ρNo.200)
2
+ 0.00196 • ρNo.4 − 0.03157 • AV − 0.415

•
Vbeff(

Vbeff + AV
)+

1.87 + 0.002808 • ρNo.4 + 0.0000404 • ρ3/8 − 0.0001786 •
(
ρ3/8
)2

+ 0.0164 • ρ3/4

1 + e(− 0.716•log(fl)− 0.7425•log(ηb) )
(2)   

log|E*| = − 1.249937+ 0.029232 • ρNo.200 − 0.001767•(ρNo.200)
2
+ 0.002841 • ρNo.4 − 0.058097 • AV − 0.802208

•
Vbeff(

Vbeff + AV
)+

3.871977 + 0.0021 • ρNo.4 + 0.003958 • ρ3/8 − 0.000017 •
(
ρ3/8
)2

+ 0.005470 • ρ3/4

1 + e(− 0.603313− 0.313551•log(fl)− 0.393532•log(ηb) )
(4)   
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where the parameter meanings are the same as those described above. 

2.3. Model development and implementation 

2.3.1. An introduction to CatBoost approach 
A Machine Learning technique that in recent years has shown to be 

successful in addressing both regression and classification problems is 
Gradient Boosting. It consists in producing an ensemble predictive 
model by performing gradient descent in a functional space and dem-
onstrates how a strong predictor can be obtained starting from the 
greedy iterative combination of several weak models or base predictors 
(typically decision trees [34]). This methodology has proven to be 
competitive in several fields, being able to handle heterogeneous 

features, noisy data, and complex dependencies [35–38]. 
The experimental dataset can be represented as D =

{(
xk, yk)

}

k=1⋯n, 
having assumed xk = (x1

k ,⋯, xm
k ) as a random vector of the m features 

and yk ∈ R as a target. The supervised training phase of the model is 
aimed at training a function F : Rm→R that minimizes the expected loss 
L defined as L (F) := L(y, F(x) ) , with L a smooth loss function. 

The gradient boosting procedure improves the prediction of y by 
means of a function Ft+1: 

Ft+1 = Ft + α • ht+1t = 0, 1,⋯ (5) 

α is defined as step size and ht+1 as base predictor, selected from a set 
of functions H in order to minimize the loss function. 

ht+1 = argmin
h∈H

L (Ft + h) = argmin
h∈H

EL(y,Ft(x)+ h(x) ) (6) 

Either by means of the Taylor approximation or by using the negative 
gradient step approach: 

ht+1 = argmin
h∈H

E( − gt(x, y) − h(x) )2 (7) 

having defined: − gt(x, y) := ∂L(y,s)
∂s |s=Ft (x). 

However, Gradient Boosting has two major critical issues called 
prediction shift and target leakage [39]. For this reason, within the 
present work it was decided to use the innovative CatBoost algorithm 
instead of the standard gradient boosting. In CatBoost, the basic pre-
dictors are oblivious decision trees [40,41], also referred to as decision 
tables [42]. The term oblivious means that the same split criterion is 
used for the whole tree level, resulting in a more balanced architecture, 
less prone to overfitting, and significantly faster during the test phase. 
Furthermore, by means of a modification of the standard Gradient 
Boosting algorithm called Ordered Boosting [39], CatBoost avoids pre-
diction shift and target leakage. It allows model’s generalization capa-
bilities to be improved, outperforming the current best implementations 
of gradient boosted decision trees [30], namely XGBoost [43] and 
LightGBM [44]. Finally, CatBoost also allows categorical features to be 
automatically handled and processed [45]. 

2.3.2. Model implementation 
A careful identification of CatBoost model relevant hyperparameters, 

i.e., those parameters whose values are set before the learning process
begins, is necessary in order to optimize its performance. Once the 

Fig. 2. Grading curves of the mixtures.  

Table 1 
AC mixtures summary description.  

Mixture Aggregate Mix 
Design 

AV 
(%) 

Stability 
(kN) 

Bulk 
specific 
gravity 

AC11_70_100 Diabase 5.6% 
PG 
63–24  

3.4%  12.6  2.56 

AC11_PmB45_80_50 Diabase 5.6% 
PG 
69–27  

3.7%  13.9  2.56 

AC11_PmB45_80_65 Diabase 5.6% 
PG 
76–25  

3.4%  13.3  2.56 

AC22_mB160_220FT Limestone 4.5% 
PG 
73–22  

3.8%  11.1  2.62 

AC22_PmB45_80_65 Limestone 4.5% 
PG 
76–25  

4.1%  13.3  2.61 

AC22_50_70 Limestone 4.5% 
PG 
67–24  

4.4%  11.2  2.62 

AC32_50_70 Limestone 4.3% 
PG 
67–24  

3.2%  –  2.64 

SMA11_70_100 Diabase 6.5% 
PG 
63–24  

3.6%  7.2  2.54 

SMA11_PmB45_80_65 Diabase 6.5% 
PG 
76–25  

3.4%  9.9  2.52  
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training algorithm has been assigned, the fine-tuning process aims to 
define the optimal training parameters along with the best model to-
pology. The first major parameter to be defined is the number of itera-
tions, which represents the maximum number of trees that can be built 
trying to solve the considered machine learning problem. Another sig-
nificant parameter is the maximum depth, defined as the maximum 
number of splits. This value must be chosen carefully because too low 
maximum depth allows for fast but inaccurate modelling, whereas too 
high one may result in an accurate model probably prone to overfitting 
[46]. Such phenomenon was addressed by randomly selecting training, 
validation and test subsamples and by implementing a 5-fold cross- 
validation technique. In addition, an overfitting detection method was 
also implemented in order to stop the training if overfitting occurs. Even 
before each new tree is built, CatBoost algorithm determines how many 
iterations have occurred since the one with the optimal loss function 
value. If this number exceeds what has been set as the upper limit for the 
overfitting detector, training is stopped. Such threshold has been set at 
its default value, i.e., 20. Lastly, an additional parameter that must be 
fine-tuned is the learning rate, used for reducing the gradient step during 
the training. An exhaustive grid search was carried out in Python 3.8.5 
whose search domains are described in detail in Table 3. The optimal 
hyperparameters set was determined on the basis of the loss function 
value. In the present study, since two variables are simultaneously 

predicted, MultiRMSE was implemented as loss function (Equation 8). 
The best performing model, namely the one that achieved the lowest 
value of MultiRMSE, has a number of iterations equal to 5000, max 
depth equal to 6 and learning rate equal to 0.05. 

MultiRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1

∑D

d=1

(
yTi,d − yPi,d

)2

√
√
√
√ (8)  

2.3.3. Dataset and input/output variables 
CatBoost approach was used to analyze the outcomes of the experi-

mental campaign and create a model that could simultaneously predict 
both the dynamic modulus and the phase angle of 9 different AC mix-
tures. For each mixture, three replicates of each specimen were tested at 
6 testing temperatures (for two mixtures the testing temperatures were 
actually 7) and 10 loading frequencies thus generating 1680 observa-
tions. However, data averaged over the 3 replicates were assigned as 
model inputs, resulting in a total of 560 observations for each variable. 
The input variables implemented within the model refer to the particle 
size characteristics, physical properties and test conditions, in line with 
Witczak-Fonseca and Witczak 1-37A empirical models (Equations 2 and 
4). Specifically, they have been described within the first 12 rows of 
Table 4: ρ3/4, ρ3/8, ρNo.4, ρNo.200, AV, Vbeff , fl, T, ηb, A, VTS, and a cate-
gorical variable distinguishing the aggregate nature (limestone or dia-
base). The output variables refer to the mixtures’ mechanical behaviour 
and are represented by the last 2 rows of Table 3, namely E* and φ. 

Table 2 
Master Curves shift factors (loga(T)).  

Mixture  Temperature [◦C] 
45 30 20 15 10 0 –15 

AC11_70_100 – 9.8 – 5.1 – 1.8 – 1.8  5.7  12.1 
AC11_PmB45_80_50 – 9.9 – 5.2 – 1.8 – 1.8  5.7  12.2 
AC11_PmB45_80_65 – 9.9 – 5.2 – 1.8 – 1.8  5.7  12.2 
AC22_mB160_220FT – 9.5 – 5.0 – 1.7  0.0  – 5.5  11.7 
AC22_PmB45_80_65 – 10.4 – 6.3 – 3.2 – 0.0  3.5  9.2 
AC22_50_70 – 11.4 – 6.8 – 3.5 – 0.0  3.8  10.0 
AC32_50_70 – 9.2 – 4.8 – 1.7  0.0  – 5.3  11.3 
SMA11_70_100 – 9.9 – 5.2 – 1.8 – 1.8  5.7  12.2 
SMA11_PmB45_80_65 – 9.4 – 4.9 – 1.7 – 1.8  5.5  11.6

Table 3 
Summary of Grid Search.  

Feature Grid Selected Value 

Number of iterations 1000, 5000, 10,000 5000 
Max depth 4, 5, 6 6 
Learning Rate 0.1, 0.05, 0.01 0.05 
k-fold Cross-validation – 5 
Overfitting Detector – 20 
Loss Function – MultiRMSE  

Fig. 3. Master curves for AC11 (up-left), AC22 (up-right), AC32 (down-left), and SMA11 (down-right) mixtures referred to the temperature of 15 ◦C.  
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2.3.4. Model evaluation 
Six different goodness-of-fit metrics were selected and implemented 

in order to evaluate the performance of the developed CatBoost model as 
accurately as possible. Specifically, they included: mean absolute error 
(MAE), mean absolute percentage error (MAPE), mean squared error 
(MSE), root mean squared error (RMSE), Pearson correlation coefficient 
(R), and the coefficient of determination (R2). Their description along 
with their mathematical formulation have been reported in Table 5 with 
the following meaning of the terms: yTi and yPi represent the i-th target 
and prediction, respectively, n is the total number of observations, 
whereas μ and σ represent the mean and standard deviation values, 
respectively. 

3. Results

3.1. Relationships between variables 

To preliminarily explore the strength of the relationships between 
variables investigated, Pearson correlation [47] has been used. Pearson 
correlation coefficient (R) between two variables always ranges between 
+1 and − 1: the + sign stands for a positive correlation (if one variable 
increases, the other one increases as well) whereas the − sign stands for 
a negative correlation (if one variable increases, the other one de-
creases). The absolute value size is a measure of the relationship’s 
strength. The extremes of the range represent a perfect correlation, 
which means that it is possible to determine the exact value of one 
variable starting from the value of the other one. On the other hand, R 
equal to 0 means that there is no relationship between the two variables: 
knowing the value of one variable provides no help in predicting the 
value of the other one. The R values calculated for each variable pair is 
reported in a correlation matrix (Fig. 4). For modelling purposes, it is 
useful to notice that the dynamic modulus has a strong negative 

correlation with temperature [r = − .90, n = 560, p < .0005] and a 
strong positive correlation with bitumen viscosity [r = + .63,n = 560,
p < .0005]. In contrast, phase angle has a strong positive correlation 
with temperature [r = + .88,n = 560,p < .0005] and a strong negative 
correlation with bitumen viscosity [r = − .53,n = 560,p < .0005]. 

3.2. CatBoost modelling results 

3.2.1. Model training 
Before being used as input to the model, each feature has been 

normalized. Each value of a specific variable was mapped to the range 
[0, + 1] whose lower and upper extremes correspond to the minimum 
and maximum values assumed by the variable, respectively (Equation 
9). This data pre-processing practice is well established in ML as it helps 
to increase both computational speed and models efficiency. 

xnorm =
x − xmin

xmax − xmin
(9) 

Combined with normalization, a 5-fold cross-validation was imple-
mented in order to reduce the bias in model’s predictive performance. 
The overall dataset was randomly partitioned into two distinct subsets: 
the training one composed by the 80% of the total data (448 observa-
tions) and the testing one composed by the 20% of the total data (112 
observations). Such a partitioning choice was in line with what reported 
in the relevant literature [48]. Testing set was left unchanged allowing 
the model to be tested on an unused portion of data, whereas training set 
was rearranged as follows: it was split into five different folds so that 
four of them could be used to train the model and the remaining one to 
validate it. This training process was repeated 5 times iteratively so that 
each time the validation fold could be varied and a performance score (i. 
e., a validation score) could be tracked. The average of the five valida-
tion scores returned the actual performance of the model for each 

Table 4 
Statistical description of the variables considered in the CatBoost model.  

Variable Description U.M. Count Mean Std Dev 

Categorical Aggregate nature – 560 –  – 
ρ3/4 Retained on the ¾ inch sieve % 560 7.2  9.1 
ρ3/8 Retained on the 3/8 inch sieve % 560 25.9  12.5 
ρNo.4 Retained on the No. 4 sieve % 560 50.5  11.2 
ρNo.200 Passing the No. 200 sieve % 560 7.9  1.4 
AV Air voids in the mix, by volume % 560 3.7  0.4 
Vbeff Effective bitumen content, by volume % 560 13.3  1.9 
fl Load frequency Hz 560 13.0  12.6 
T Temperature ◦C 560 14.4  19.9 
ηb Bitumen viscosity 106 Poise 560 213913.3  520927.3 
A Regression constant – 560 10  0.5 
VTS Regression constant – 560 − 3.3  0.2 
|E*| Asphalt mixture dynamic modulus MPa 560 10859.5  9607.3 
φ Phase angle ◦ 560 21.8  13.8  

Table 5 
Goodness-of-fit metrics selected.  

Metric Description Formulation 

MAE Measures the difference between the observed and the predicted values by averaging the absolute difference over the data set. 1
n
∑n

i=1

⃒
⃒yTi − yPi

⃒
⃒

MAPE Measures the error as a percentage and can be calculated by applying a slight modification to the MAE and multiplying by 100 to 
obtain a percentage score. 

1
n
∑n

i=1

⃒
⃒
⃒
⃒
⃒

yTi − yPi

yTi

⃒
⃒
⃒
⃒
⃒
× 100 

MSE Measures the difference between the observed and the predicted values, by squaring the mean difference over the data set. 1
n
∑n

i=1

(
yTi − yPi

)2 

RMSE Measures the error rate as the square root of the MSE. ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1

(
yTi − yPi

)2
√

R Measures any linearity relationship between the observed and the predicted values. 1
n − 1

∑n
i=1

(
yTi − μyTi

σyTi

)(
yPi − μyPi

σyPi

)

R2 Measures the coefficient of how well predicted values fit the observed ones. Values range from 0 to 1 and are interpreted as 
percentages: the higher the value, the better the model. 1 −

∑n
i=1
(
yTi − yPi

)2

∑n
i=1

(
yTi − μyTi

)2   
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training iteration. The graphical trend of the entire training process has 
been shown in Fig. 5. At the beginning of the process, it can be appre-
ciated that the error is quite high, and it gradually decreases as iterations 

proceed. Training stops when convergence is reached, i.e., no further 
reduction in the loss function is observed. However, as the training loss 
decreases, there should not be a concurrent increase in validation loss. 
Such a pattern would suggest the occurring of the overfitting phenom-
enon. By looking at Fig. 5, it can be appreciated how both training and 
validation curves decrease as iterations proceed. Furthermore, the 
overfitting detector set at 20 iterations allows the best validation point 
to be identified: beyond this point no significant decrease in validation 
loss (

⃒
⃒Ft+1 − Ft

⃒
⃒ ≤ 1 × 10− 4) can be observed. Training results can be 

summarized as follows: with respect to the dynamic modulus, MAE, 
RMSE, and R2 were equal to 279.68 MPa, 415.12 MPa, and 0.998, 
respectively; with respect to the phase angle, MAE, RMSE, and R2 were 
equal to 0.69◦, 0.93◦, and 0.995, respectively. The parameters related to 
the best model configuration have been fixed and kept constant before 
proceeding to the next testing phase. 

3.2.2. Model testing 
The same aforementioned performance metrics, along with MAPE, 

MSE, and R, have been used to describe the CatBoost model testing 
performance. Results have been summarized in Table 6. 

To obtain further insight into the predictive capabilities of the 
developed methodology, Fig. 6 shows the comparisons between the 
experimental targets and the outputs predicted by the CatBoost model 
for both variables, namely dynamic modulus and phase angle. In these 
histogram graphs, test set values are shown in black whereas the 
respective CatBoost predictions are shown in gray. The horizontal axis is 
referred to as Test ID and serves to identify each of the 112 |E*| − φ pairs 
that make up the test set. It can be appreciated that the predictions are 
very close to the observed experimental data, for both parameters 
considered. Such findings are significant from an engineering perspec-
tive because they highlight the reliability of the developed CatBoost 
model along with the goodness of its predictions. Furthermore, they 
demonstrate how accurately and simultaneously this model can predict 
two fundamental parameters that characterize the mechanical behav-
iour of several different mixtures. To get an even deeper understanding 
of the model’s predictive performance, two regression plots are shown, 
one related to the dynamic modulus and the other related to the phase 

Fig. 4. Pearson Correlation Matrix.  

Fig. 5. Model training process with best iteration (black marker).  

Table 6 
Predictive performance of different models.  

|E* | test vector Witczak- 
Fonseca 

Witczak 1-37A SoA-ANN CatBoost 

MAE 3616.93 2146.30 640.05 552.21 
MAPE 67.58 41.25 21.60 12.04 
MSE 2.03 × 107 8.43 × 106 6.88 × 105 9.85 × 105 

RMSE 4506.01 2904.13 829.21 992.36 
R 0.9370 0.9694 0.9965 0.9952 
R2 0.7904 0.9129 0.9929 0.9898 
φ test vector Witczak- 

Fonseca 
Witczak 1-37A SoA-ANN CatBoost 

MAE – – 1.05 1.19 
MAPE – – 10.90 7.84 
MSE – – 2.17 3.68 
RMSE – – 1.47 1.92 
R – – 0.9942 0.9908 
R2 – – 0.9884 0.9804  
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angle (Fig. 7). The 45-degree blue solid line represents the line-of- 
equality, namely the line that reflects 100% accurate predictions 
whereas light blue circles represent CatBoost predictions. It can be 
observed that the predictions do not strongly differ from the line-of- 
equality, confirming the remarkable results described by Pearson cor-
relation coefficients equal to 0.9952 and 0.9909 for |E*| and φ, respec-
tively. In addition, all predictions of both variables are within the 99% 
confidence bounds, represented by the green solid lines. A frequency 
analysis was performed to determine whether the CatBoost model sys-
tematically overpredicted or underpredicted the respective values of 
dynamic modulus and phase angle. 

3.2.3. Features importance 
The estimation of a given feature’s influence on the predictions of a 

ML model is often challenging. For this reason, feature importance 
calculation algorithm has been introduced in Python 3.8.5 to determine 
how much CatBoost predictions change on average if the feature values 
change. The higher the importance value, the greater the change in 
prediction value if this feature is modified. Furthermore, feature 
importance values were normalized so that the sum of them could be 
equal to 100%. This is feasible because importance values are always 
non-negative. Fig. 8 shows the results of the analysis performed and 
returns feature importance as a list of features (ID − importance) pairs 
ordered by the importance magnitude. It can be noticed that 

temperature (41.86%), binder viscosity (34.74%), and loading fre-
quency (8.22%) are more critical than empirical regression constants, 
volumetric properties, and aggregates nature (15.18% all together) in 
predicting mechanical behaviour parameters such as dynamic modulus 
and phase angle. 

To obtain further useful information about CatBoost model outputs, 
also a SHAP (SHapley Additive exPlanations) analysis has been per-
formed. Such technique was developed to understand why a model 
makes certain predictions, thus focusing on the concept of prediction 
interpretability along with the more commonly described concept of 
prediction accuracy [49]. Let f be the CatBoost model to be explained 
and g the explanation model, assume that f(x) is the prediction based on 
the input x. M represents the set of all features, z′ ∈ {0,1}M is equal to 1 
when a feature is observed (otherwise it is 0), |z′| is the number of non- 
zero entries in z′, z′ ⊆ x represents all z′ vectors where the non-zero en-
tries are a subset of the non-zero entries in x, and z′\i denotes setting z′ =
0 [49]. The contribution provided by the i-th feature (ϕi) to predict the 
model output is determined as follows: 

ϕi =
∑

z′⊆x

|z′|!(M − |z′| − 1 )!
M!

[fx(z′) − fx(z′\i)] (9) 

g is defined as a linear function of binary features [50] according to 
the following additive feature attribution method: 

Fig. 6. Observed and CatBoost-predicted dynamic modulus (up) and phase angle (down) data.  
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g(z′) = ϕ0 +
∑M

i=1
ϕizi

′ (10) 

ϕi values are known as Shapley values [51] and assign to each feature 
an importance value for a particular prediction. Two separate SHAP 
analyses have been performed: one for each of the two targets, namely 
dynamic modulus and phase angle. The results are shown in the SHAP 
summary plots (Fig. 9). These beeswarm diagrams rank the features 
from top to bottom in a descending order of importance when predicting 
a given output. 

The temperature has the highest importance in predicting both dy-
namic modulus and phase angle, followed by bitumen viscosity and 
loading frequency, confirming what has already been observed in Fig. 8. 
These features are then followed by the two empirical regression 

constants. Volumetric properties and aggregate nature are found to have 
less importance in the prediction of both the outputs. It can be observed 
that the importance order of these last features is slightly different from 
that shown in Fig. 8 as their importance is now specified for the pre-
diction of the two respective outputs. Nevertheless, in addition to the 
feature importance, SHAP summary plots add further information as 
suggested by the use of colours: the feature effect. Considering tem-
perature variable and the summary plot referring to dynamic modulus, it 
can be observed that high T values (displayed in red) result in negative 
SHAP values and consequently in lower |E*| predictions. This trend is 
gradually reversed moving toward the horizontal axis where low T 
values (displayed in blue) result in positive SHAP values and conse-
quently in higher |E*| predictions. This tendency helps to understand the 
relationship between the different features and the specific target. In 
general, moving from left to right, a smooth transition from blue to red 
stands for a direct proportionality relationship between the target and 
the specific feature, whereas a smooth transition from red to blue stands 
for an inverse proportionality relationship between them. The former 
can be observed for pairs (|E*| − ηb), (|E*| − fl), and (φ − T), whereas the 
latter can be observed for pairs (|E*| − T), (φ − ηb), and (φ − fl). 

3.2.4. Comparison of the models 
A comprehensive comparative analysis was performed in the present 

study in order to compare the two previously described regression-based 
models (Witczak-Fonseca and Witczak 1-37A) with state-of-the-art 
artificial neural network (SoA-ANN) and the decision-tree based Cat-
Boost model. A detailed discussion about SoA-ANN implemented in 
MATLAB® is not presented herein due to brevity and can be found in 
Baldo et al. [52]. Both ML models were calibrated based on the same 
dataset, using the same data pre-processing and resampling techniques 
in order to make a fair comparison. All the four mentioned models were 
then compared based on six different goodness-of-fit metrics, as shown 
in Table 6. 

Based on the |E*| test vector, the following key observations can be 
deduced. ML models outperform regression-based ones, with CatBoost 
achieving both the minimum MAE (552.21 MPa) and MAPE (12.04%). In 
terms of the other four goodness-of-fit metrics, the comparison between 
SoA-ANN and CatBoost models is very competitive and returns compa-
rable results, with ANN performing slightly better (RMSE equal to 
829.21 MPa). Comparing only the two regression-based models, Witczak 
1-37A performs significantly better than Witczak-Fonseca with respect 
of all six-performance metrics. A summary representation of the above- 
mentioned results can be observed in Fig. 10. However, one point should 
be emphasized: starting from the same input features, ML models have 
been trained to simultaneously predict not only the dynamic modulus 
but also the phase angle. Thereby, they are able to provide a more 
detailed insight about the fundamental viscoelastic properties of the 
asphalt mixtures analyzed. Also with respect to phase angle, both ML 
models’ performance are remarkable and similarly comparable 
(Table 6) with MAE of approximately 1◦, MAPE less than 11%, R and R2 

of around 0.99 and 0.98, respectively. 

4. Conclusions

The present study outlines a detailed methodology in order to
implement an innovative DT based ML algorithm, namely CatBoost, for 
the simultaneous prediction of both dynamic modulus and phase angle 
of nine different AC mixtures. An extensive 4PBT experimental 
campaign was carried out and the results obtained were used to train 
and test the developed model. 12 features were used as input and refer to 
aggregate nature and gradation percentages, air voids content, effective 
binder content, binder viscosity, loading frequency, and testing tem-
perature. To evaluate model performance, six different goodness-of-fit 
metrics were used: these included MAE, MAPE, MSE, RMSE, R, and R2. 
An in-depth sensitivity analysis was also performed to understand model 

Fig. 7. CatBoost model regression plots for both |E*|(up) and φ (down); blue 
solid line represents line-of-equality, light blue circles represent predictions, 
whereas green solid lines indicate 99% confidence level. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web 
version of this article.). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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functioning and the impact that specific features have on the two 
different outputs. The performance achieved by the model is very good 
and accounts for the remarkable accuracy of the predictions made. With 
regard to |E*|, MAE, MAPE, MSE, RMSE, R, and R2 resulted equal to 
552.21 MPa, 12.04 %, 9.85× 105 MPa2, 992.36 MPa, 0.9952, and 
0.9898, respectively. Similarly, with regard to φ, the same performance 
metrics resulted equal to 1.19◦, 7.84 %, 3.68 ◦2, 1.92◦, 0.9908, and 
0.9804, respectively. Based on these findings, the following conclusions 
can be drawn: 

The variables required as input by the predictive model, can be easily 
determined during a preliminary mix design procedure or easily derived 
from them, minimizing laboratory technicians’ effort required. 

The developed model is capable of simultaneously providing highly 
accurate predictions of both dynamic modulus and phase angle, avoid-
ing the need for additional expensive and time-consuming laboratory 
tests to determine them experimentally. 

In this way, performance parameters such as |E*| and φ can be easily 
estimated and then implemented within the most common asphalt 
pavement design procedures. 

Both ML-based methods outperformed the implemented empirical 
equations, showing much better performance for all the goodness-of-fit 
metrics used. 

In particular, the CatBoost and SoA-ANN models were competitive 
and showed roughly comparable results, with ANN performing slightly 
better according to the MSE, RMSE, R, and R2 measures. However, the 
differences in goodness-of-fit metrics are not as marked, but CatBoost 
model can be easily implemented in Python and this, combined with its 
high interpretability, make it most preferable. 

The outlined methodology was calibrated on data from the above- 
mentioned experimental campaign. For future developments, it could 
easily be adopted to analyze larger and more varied datasets in order to 
obtain an increasingly powerful and high-performance tool capable of 
making accurate predictions covering an increasingly conditions vari-
ety. Finally, CatBoost model has been developed and used to predict AC 
mixtures’ dynamic modulus and phase angle, obtaining remarkable re-
sults. However, its flexibility could also inspire many further applica-
tions in pavement engineering by allowing even very different 
phenomena such as moisture sensitivity or permanent deformation and 
fatigue resistance to be investigated and modelled. Clearly any further 
application of the developed model different from the one proposed here 
should be deeply explored by implementing new calibrations and 

Fig. 8. Feature Importance.  

Fig. 9. SHAP summary plot for |E*| (left) and φ (right).  

Fig. 10. Graphical representation of |E*| predictive performance.  
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researching for the best hyperparameters. 
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