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Abstract. Manoeuvring is one of the fundamental qualities of the ship. It has a

direct impact on the operability of the unit and therefore on the shipowner’s per-

ception of quality. Furthermore, the manoeuvrability forecasting models are ex-

tremely sensitive to the geometry of the hull and appendages and thus closely re-

lated with the type of the unit. In this article, an innovative methodology for pre-

dicting the manoeuvring characteristics during the conceptual design phase is pre-

sented. It may be applied to all types of vessels, especially those requiring a spe-

cific study of manoeuvrability, such as fast hulls. Here, a destroyer has been consid-

ered. Starting from 15 hulls geometries, a fleet of 225 ships has been generated, by

changing systematically the ratio L/B, B/T and the block coefficient CB. This way

a 3-dimensional Central Composite Circumscribed (CCC) has been obtained, that

comprehends a total of 15 experimental points for each base hull. Manoeuvring cal-

culations has been performed on each vessel of the fleet and the main manoeuvring

dimensionless quantities has been related to some simple variables, known during

the conceptual phase. With a greedy approach, the adjusted coefficient of determi-

nation R2
has been maximized. This way, from the collected data, the best possi-

ble linear models for manoeuvring characteristics are obtained. This is because no

statistical significance filtering of the variables is performed, as instead happens in

the classic stepwise approach.

Keywords. Manoeuvring, Coefficient of Determination, Stepwise Regression,

Design of Experiment, Concept Design

1. Introduction

As highlighted by in the Annual Overview of Marine Aasualties and Incidents drawn up

by EMSA [1], excluding human errors, most of the accidents between 2014 and 2021 are

related issues. Indeed, manoeuvring qualities are of great importance for maritime safety

and environmental protection. Moreover, operational and manoeuvring characteristics

play a crucial role in determining the perception of quality of the final product [2]. There-

fore, predicting and optimizing these characteristics during the initial stages of project

development, particularly during the concept design phase, is of particular interest.

Several approaches have been explored for concept design of complex products such

as ships. The main two are the Holistic ship design [5,6], based on the optimization of

a single design (Multi-Objective Decision Making (MODM)), and the metamodel meth-

ods [7,8], which instead is based on the selection of the best design alternative (Multi-
Attributive Decision Making (MADM)). Their common purpose is to select the best de-

sign from the Pareto front, supported by Multi Criteria Decision Making (MCDM) tech-
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niques, which require a model for each parameterized ship quality, such as manoeuvring

characteristics.

There are various methods available to study manoeuvring qualities, such as Ma-
noeuvring Modeling Group (MMG) models [3], possibly complemented with Computa-
tional Fluid Dynamics (CFD) predictions of derivatives [4]. While these provide valid

results during the functional design phases, they can be too time-consuming and precise

for the conceptual and preliminary stages. Therefore, a simpler and heuristic approach,

although less accurate, is preferred.

Here, in the framework of MADM methods for the selection of the best possible

design alternative, to predict the behavior of manoeuvrability characteristics, the results

of manoeuvring simulations were expressed as function of some global variables. The

question is how to choose them, from a bigger set of global quantities. The most com-

monly adopted approach in various fields is stepwise algorithm [20,21], which aims to

maximize the adjusted determination coefficient R2
, while minimizing the mean squared

deviation from the regression model. The stepwise algorithm gradually eliminates inde-

pendent variables to select the model with the highest determination coefficient, progres-

sively increasing the statistical significance of the regressors.

However, due to the high sensitivity of manoeuvrability results to input variables, it

is helpful to disengage from the concept of statistical significance. Furthermore, there is a

large body of literature criticizing the stepwise method, mainly because of the inflaction

of false positive findings [22,23,24]. For these reasons, a greedy approach has been here

adopted.

The purpose is to build a predictive model for manoeuvrability, such as to maximize

the adjusted coefficient of determination R2
. To better illustrate the methodology, a case

study is presented. Although the obtained results are strongly dependent on the unit con-

sidered, this methodology is applicable during the concept design phase to all vessels

that require special care concerning manoeuvrability.

2. Materials and Methods

Using the MADM method, the first step involves defining the design space that encom-

passes all design alternatives. The response datas are the results of manoeuvrability sim-

ulations for each alternative. To establish a correlation between the independent input

variables with response, the dataset has been normalized, and the outliers have been re-

moved. Finally, a criterion is proposed for selecting the optimal combination of repres-

sors, based on maximizing the adjusted coefficient of determination R2
.

2.1. Design Space

First of all, it is necessary to identify a design space, characterized by few main char-

acteristics of the ship. These variables should be known during the conceptual phase. A

standard multipurpose design space has been here adopted, useful for other metamodels,

such as seakeeping and stability ones. The design space consists of the following free

variables:

• Ratio between length and breadth L/B;
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Table 1. Central Composite Circumscribed (CCC)
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• Ratio between breadth and draft B/T ;

• Block coefficient CB.

Other characteristic parameters can be derived from these, such as L/T = L/B ·B/T .

Different ships, belonging to the same class, are represented in the design space by

distinct points. The manoeuvring calculations has been performed on the ships related to

these points.

To extend the dataset, a Central Composite Circumscribed (CCC) [9], characterized

by three factors; the free coordinates of the design space (L/B,B/T,CB); and two levels

Δ = ±1 has been used. The total of 15 experimental points obtained, were arranged as

shown in Table 1.

2.2. Data Normalization and Outlier Removal

As proposed by Degan et al. [10], a set of r independent variables, considered signifi-

cant in the representation of the phenomenon, and s object of observation – the depen-
dent variables or response variables – were chosen. The n collected data points can be

arranged in two matrices:
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• The input matrix X with dimension n× r, where each element Xi j represents the

value of the j-th independent variable Xj for the i-th data point;

• The output matrix Y with dimension n× s, where each element Yi j represents the

value of the j-th dependent variable Yj for the i-th data point.

To ensure consistency in the data, all columns of the matrices are normalized separately

using their minimum and maximum values. Each element of the normalized column-

vector �Z′ is obtained as follows:

z′i =
zi − c

r
∀zi ∈ Z

where

c =
max(�Z)+min(�Z)

2
r =

max(�Z)−min(�Z)
2

Once normalized, outliers1 on dependent variables Y1, ...,Ys were removed. Each nor-

malized column is then de-normalized and re-normalized without outliers until no more

outliers were found.

2.3. Multiple linear regression

Multiple linear regression has been employed to establish the correlation between the

input data matrix X and the output data matrix Y [12]. As a matter of fact, the least square

method can be extended to the multi-dimensional case. Given a set of n records and k
regressors, the independent variables X1, ...,Xk, the objective is to find k+ 1 parameters

p0, p1, ..., pk that minimize the sum of the Euclidean distances between the k-dimensional

hyperplane defined by these parameters and the n observed data. The equation for the

k-dimensional hyperplane is given by:

ŷ(�x) = p0 + p1X1 + p2X2 + ...+ pkXk

This problem can be rewritten using the overdetermined linear system:

�y = X�p+�ε

where

�y =

⎡
⎢⎣

y1

...

yn

⎤
⎥⎦ X =

⎡
⎢⎣

1 X11 . . . X1k
...

1 X1k . . . Xnk

⎤
⎥⎦ �p =

⎡
⎢⎢⎢⎣

p0

p1

...

pk

⎤
⎥⎥⎥⎦ �ε =

⎡
⎢⎢⎢⎣

y0 − ŷ(�X0)

y1 − ŷ(�X1)
...

yn − ŷ(�Xn)

⎤
⎥⎥⎥⎦

Here,�ε represents the residuals vector, which denotes the distance between the known

point y0 and the expected value ŷ(�X0). Applying the least square method [13] the pa-

1Commonly, the outliers of a dataset are the values that exceed one and a half interquartile range Δiq, under

the first quartile q1 and over the last q3 [11].
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rameters k+1 parameters that minimize the sum of squared residuals can be determined

as:

�p =
(
XT X

)−1 XT�y

Thus, by selecting a subset of k regressors from the independent variables X1,X2, ...,Xr
defined earlier, it is possible to predict trends of manoeuvring characteristics – during

concept design – with a simple multiple linear regression model.

2.4. Maximum R2 Criterion

The coefficient of determination R2 increases monotonically with the number of inde-

pendent variables added to the model, even if they are completely uncorrelated with the

phenomenon. This is because the precision in representing the phenomenon increases

with the addition of more degrees of freedom. Therefore, the coefficient of determination

is not adequate to assess the reliability of a multiple regression model.

To better understand the benefits associated with adding a new independent variable,

the coefficient of determination shall be corrected by defining the adjusted coefficient of
determination R2

as follows:

R2
= 1− n−1

n− k−1
· RSS

T SS
= 1− (1−R2)(n−1)

n− k−1

Where n is the number of datas observed and k is the number of regressors. In any case

is R2 ≤ R2 and R2
is not dependent in k.

From the set of independent variables up to the second order (Tab. 5), the most rep-

resentative k regressors has been chosen adopting a greedy approach. Each combination

of available independent variables X1, ...,Xr is evaluated as regressors in a multiple linear

regression model. The combination that maximize the adjusted determination coefficient
R2

is adopted. Unlike the stepwise approach, this method is independent of statistical

significance and does not involve the p-value based selection.

3. Application

3.1. Case Study

The process is here applied to a case study, consisting in the initial design of a destroyer.

Initially, a fleet of 15 destroyers were considered. The body plan of two of them are rep-

resented in Figure 1a and Figure 1b. In the design space, the ships are equivalent alter-

natives, corresponding to 15 distinct and non-aligned points. For each destroyer – each

design point – 14 more ships were generated with the Lackenby method [14], following

the central composite design previously defined (Tab. 1). Since 15 variants were obtained

for each of the 15 ships, the database consist of 255 units (Tab. 2).

The commercial manoeuvring calculator AVEVA Initial Design, based on classical

maneuvering theory [15,16], has been adopted to perform the following standard ma-

noeuvring tests [17]:
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(a) Hull 00/00

(b) Hull 07/00

Figure 1. Body plan
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 Table 2. Limits of the fleet

L/B B/T CB

Min 7.126 3.099 0.406

Max 8.349 3.601 0.538

Table 3. Dependent variables

(a) Turning cirlce

Result v1 = 12kn v2 = 18kn

δ = 15o δ = 35o δ = 15o δ = 35o

Advance/L (90o) Y1,1 Y6,1 Y1,2 Y6,2

Transfer/L (90o) Y2,1 Y7,1 Y2,2 Y7,2

Tactical D/L (180o) Y3,1 Y8,1 Y3,2 Y8,2

St. turning D/L (360o) Y4,1 Y9,1 Y4,2 Y9,2

VS/Vappr Y5,1 Y10,1 Y5,2 Y10,2

(b) Zig-zag manoeuvre

Result v1 = 12kn v2 = 18kn

δ =±10o δ =±20o δ =±10o δ =±20o

1st OvSh Y11,1 Y13,1 Y11,2 Y13,2

2nd OvSh Y12,1 Y14,1 Y12,2 Y14,2

• Turning circle at rudder angle δ = 15o;

• Turning circle at rudder angle δ = 35o;

• Zig-zag manoeuvre 10o/10o;

• Zig-zag manoeuvre 20o/20o.

Each one repeated at speed of 12kn and 18kn. This way, 28 dependent variables have

been defined, named as for Table 3. In Table 4 are reported the manoeuvring results

obtained for six ships of the fleet.

The independent variables were defined combining the design space free coordi-

nates L/B, B/T , CB, the Froude number Fn and the inertia radius. Among these, with

the previously described greedy approach, the best k regressors have been chosen. For

the estimation of the roll inertia radius kxx, the empirical formulation of Doyere [18] has

been adopted, whereas for the pitch inertia radius kyy the Pavlenko one [19].

kxx =

√
1

12

(
B2 +4KG2

)
kyy =

√
0.65 ·CWPL2

The 16 adimensional variables thus generated are reported in Table 5.

3.2. Results and Discussion

Applying the greedy approach for the maximization of the adjusted coefficient of de-

termination R2
, each dependent variable Y1,1, ...,Y14,1,Y1,2, ...,Y14,2 has been defined as a
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 Table 4. Manoeuvring results for some hulls

Hull 00/00 00/05 00/10 07/00 07/05 07/10

LWL 162.44 164.62 162.41 158.20 160.15 158.22

BWL 20.62 20.90 20.62 22.20 20.19 19.95

T 6.30 6.43 6.30 6.25 6.35 6.25

L/B 7.76 7.75 7.75 7.13 7.93 7.93

B/T 3.27 3.25 3.27 3.55 3.18 3.19

CB 0.48 0.50 0.48 0.42 0.45 0.46

Y1,1 3.47 3.41 3.47 3.91 3.76 3.78

Y2,1 2.37 2.31 2.37 2.84 2.73 2.75

Y3,1 5.15 5.03 5.15 6.15 5.89 5.93

Y4,1 4.97 4.83 4.97 6.04 5.79 5.81

Y5,1 0.83 0.82 0.83 0.87 0.87 0.87

Y6,1 2.13 2.10 2.13 2.35 2.25 2.26

Y7,1 1.10 1.07 1.10 1.32 1.26 1.28

Y8,1 2.38 2.31 2.38 2.87 2.72 2.73

Y9,1 1.85 1.76 1.85 2.49 2.37 2.36

Y10,1 0.54 0.52 0.54 0.60 0.61 0.61

Y11,1 5.06 5.61 5.07 4.71 4.11 3.84

Y12,1 6.24 6.54 6.25 4.62 3.61 4.97

Y13,1 11.48 10.97 11.48 10.03 10.09 9.45

Y14,1 11.93 12.33 11.93 11.41 10.43 9.25

Y1,2 3.45 3.38 3.34 3.93 3.76 3.79

Y2,2 2.35 2.28 2.35 2.85 2.73 2.75

Y3,2 5.12 4.98 5.12 6.17 5.89 5.93

Y4,2 4.95 4.81 4.95 6.06 5.79 5.83

Y5,2 0.85 0.84 0.85 0.88 0.87 0.87

Y6,2 2.21 2.16 2.21 2.46 2.35 2.36

Y7,2 1.10 1.07 1.11 1.35 1.28 1.29

Y8,2 2.38 2.30 2.38 2.91 2.74 2.75

Y9,2 1.87 1.77 1.87 2.52 2.39 2.38

Y10,2 0.55 0.54 0.55 0.60 0.62 0.61

Y11,2 5.70 5.83 5.71 3.56 4.12 4.22

Y12,2 7.04 7.52 7.04 4.82 3.61 5.74

Y13,2 14.86 14.63 14.87 12.15 11.35 10.67

Y14,2 15.32 15.01 15.32 11.26 11.36 13.17

function of with the best combination of independent variables X1, ...,X16. In Table 6 and

Table 7 are reported these optimal combinations together with the resulting R2
and the

regression coefficients pi.

The minimum, average, and maximum R2
values obtained are 0.414, 0.792, and

0.917, respectively. The lower R2
values affect the results of the zig-zag manoeuvre

test (Y11,1,Y12,1,Y13,1,Y14,1,Y11,2,Y12,2,Y13,2,Y14,2). This means that none of the regressors

here considered has a high-level of determination for these responses. To improve the

determination, new independent variables should be analyzed. On the other hand, the
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Table 5. Independent variables

Variable Expression Min Max

X1
T
B 0.278 0.323

X2

( T
B

)2
0.077 0.104

X3

( B
L

)2
0.014 0.020

X4 CB ·
( T

B

)
0.117 0.168

X5 CB ·
( T

L

)2
5.74×10−4 8.74×10−4

X6 (1−CB) ·
( T

B

)
0.140 0.180

X7 (1−CB) ·
( T

L

)
0.018 0.024

X8 Fn 0.154 0.253

X9 Fn ·CB 0.066 0.131

X10 Fn · T
B 0.044 0.080

X11 Fn · B
L 0.019 0.035

X12 Fn · T
L 5.42×10−3 10.7×10−3

X13
Fn
CB

0.302 0.599

X14 Fn · B
T 0.482 0.876

X15
kxx
L =

√
1
12

(
B2+4KG2

)
L 0.360 0.380

X16
kyy
L =

√
0.65CWP 0.183 0.237

average R2
value for the turning circle responses is 0.889, considered satisfactory for

concept design applications.

It should be noted that the model obtained is closely tied to the dataset. By em-

ploying a greedy approach on all possible combinations of predictors, the coefficient of

determination is maximized for the chosen independent variables within the considered

dataset. Expanding the training database or modifying the independent variables can fur-

ther enhance the model. It is worth noting that since all possible combinations of inde-

pendent variables are evaluated, the time complexity of the greedy approach is expo-

nential in relation to the number of independent variables. The time-complexity of the

stepwise algorithm remains to be explored.

4. Conclusions

By evaluating the maneuverability characteristics of various design alternatives, a spe-

cific predictive linear model has been developed for this project. The main advantage of

the greedy approach employed in this study is its independence from statistical signif-

icance, as it selects the optimal combination of regressors based solely on the adjusted

coefficient of determination, denoted as R2
. On the other hand, the time complexity of

the greedy approach is exponential with the number of independent variables, since all

possible combinations of independent variables are evaluated. With the independent vari-

ables here considered, satisfactory linear regression models have been obtained for the

responses of the turning circle maneuver. However, for the responses related to zig-zag

maneuvers, the models models provide only indicative results.

Future studies in this area could involve the application of multiple non-linear re-

gressions or deep learning techniques to develop models for predicting manoeuvring
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L Table 6. Results v1 = 12kn

Depndent variable Optimal regressors Coefficients (p0, ..., pk+1) R2

Y1,1 X1, X2, X4, X5, X6, X7, X8, X9, X10,

X12, X13, X14, X15, X16

−1.81, 100.13, −97.73, −5.06,

4.22, 2.57, 3.48, −61.34, 8.54,

61.16, −7.81, 3.17, 62.97, 0.94,

0.11

0.895

Y2,1 X1, X2, X3, X4, X5, X8, X9, X10, X11,

X13, X14, X15, X16

−0.54, 46.46, −45.67, 6.18, −3.47,

2.16, −26.49, 1.79, 30.07, −10.03,

1.85, 30.51, 0.54, 0.05

0.902

Y3,1 X1, X2, X3, X4, X5, X6, X8, X9, X10,

X12, X13, X14, X15, X16

−0.80, 60.16, −62.27, 1.18, −2.92,

3.52, 3.32, −41.36, 4.45, 44.03,

−5.97, 2.56, 40.49, 0.71, 0.11

0.890

Y4,1 X1, X2, X3, X4, X5, X8, X9, X10, X11,

X13, X14, X15, X16

−0.72, 49.74, −48.80, 5.86, −3.41,

2.13, −28.34, 1.62, 31.75, −9.54,

1.71, 32.42, 0.59, 0.07

0.895

Y5,1 X1, X2, X3, X6, X7, X8, X9, X10, X11,

X12, X13, X14

3.42, −99.60, 97.72, 7.41, −5.73,

1.92, 65.35, −7.45, −59.41,

−15.44, 4.89, −2.23, −60.09

0.865

Y6,1 X1, X2, X3, X5, X6, X7, X8, X9, X10,

X11, X12, X13, X14, X15, X16

−1.53, 119.92, −126.03, −12.75,

6.96, 7.41, 8.83, −87.66, 12.68,

88.16, 25.15, −26.27, 3.32, 78.56,

1.56, 0.21

0.887

Y7,1 X1, X2, X3, X4, X5, X6, X8, X9, X10,

X12, X13, X14, X15, X16

−1.09, 62.52, −63.10, 1.15, −2.98,

2.65, 3.13, −41.38, 4.69, 42.61,

−4.69, 2.34, 41.04, 0.86, 0.10

0.912

Y8,1 X1, X2, X4, X5, X6, X8, X9, X10, X11,

X12, X13, X14, X15, X16

−2.63, 110.65, −109.25, −4.18,

3.58, 4.32, −69.74, 6.75, 69.76,

2.23, −6.45, 2.93, 70.14, 1.07, 0.16

0.891

Y9,1 X3, X4, X5, X10, X11, X13, X14, X15,

X16

0.40, 3.05, −1.80, 1.32, 1.53,

−5.15, 0.83, 1.78, 0.48, 0.09

0.911

Y10,1 X1, X2, X3, X5, X6, X8, X9, X10, X11,

X12, X13, X14

4.10, −142.16, 143.71, 11.01,

−2.42, −9.21, 97.08, −11.32,

−93.20, −23.50, 13.73, −2.60,

−88.69

0.827

Y11,1 X1, X2, X4, X6, X7, X8, X9, X13, X14,

X16

−1.82, 55.30, −38.20, −8.29, 5.42,

0.92, −16.26, 15.32, 2.15, 21.82,

−0.32

0.414

Y12,1 X1, X2, X4, X7, X8, X10, X14, X15,

X16

−4.34, 139.79, −138.49, 0.81,

−0.32, −81.69, 86.15, 85.26,

−0.74, −0.19

0.526

Y13,1 X2, X7, X11, X13, X14, X15 −0.36, 3.15, 1.28, −1.32, −1.90,

3.99, −1.07

0.497

Y14,1 X1, X2, X6, X8, X9, X10, X11, X12,

X14, X16

1.86, −77.56, 81.00, −3.61, 53.70,

−2.59, −57.51, −2.48, 3.49,

−51.81, −0.11

0.552

characteristics during the concept design phase. Moreover, considering the existence

of established theories for maneuverability modeling, such as the MMG (Manoeuvring

Modeling Group) models [3], the development of a physics-informed machine learning

framework could find excellent applications in this context. These approaches may pro-

vide more accurate and comprehensive models for specific ship designs, without signifi-
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 Table 7. Results v2 = 18kn

Depndent variable Optimal regressors Coefficients (p0, ..., pk+1) R2

Y1,2 X1, X2, X4, X5, X6, X7, X8, X13, X9,

X10, X12, X15, X14, X16

−1.49, 87.91, −86.34, −4.21, 3.93,

2.17, 3.56, −54.77, 2.37, 6.94,

55.54, −7.63, 0.84, 56.46, 0.13

0.900

Y2,2 X1, X2, X3, X4, X5, X8, X13, X9, X10,

X11, X15, X14, X16

−0.37, 39.06, −38.55, 5.93, −3.13,

1.96, −22.54, 1.44, 1.28, 26.18,

−9.53, 0.50, 26.37, 0.07

0.906

Y3,2 X1, X2, X3, X4, X5, X8, X13, X9, X10,

X11, X15, X14, X16

−1.13, 60.71, −59.10, 5.75, −3.75,

2.20, −34.84, 1.64, 1.78, 38.05,

−9.42, 0.64, 39.37, 0.09

0.898

Y4,2 X1, X2, X3, X4, X5, X8, X13, X9, X10,

X11, X15, X14, X16

−0.75, 48.65, −47.42, 5.67, −3.49,

2.12, −27.61, 1.55, 1.55, 30.81,

−9.31, 0.54, 31.81, 0.08

0.900

Y5,2 X1, X2, X4, X5, X6, X7, X8, X13, X9,

X10, X12, X14, X16

4.84, −105.16, 97.30, 4.24, 3.47,

−2.23, 6.63, 62.09, −0.99, −4.25,

−54.61, −11.06, −63.12, −0.04

0.866

Y6,2 X1, X2, X3, X4, X5, X6, X7, X8, X13,

X9, X10, X11, X12, X15, X14, X16

−2.38, 124.68, −125.71, −6.60,

−2.82, 5.63, 5.87, 5.12, −83.03,

2.99, 10.59, 82.64, 13.84, −17.11,

1.43, 79.58, 0.19

0.897

Y7,2 X1, X2, X3, X4, X5, X6, X8, X13, X9,

X10, X11, X15, X14, X16

−0.73, 51.17, −48.42, 5.66, −4.21,

1.62, 1.10, −28.46, 1.88, 3.89,

29.60, −8.71, 0.61, 32.53, 0.06

0.917

Y8,2 X1, X2, X3, X4, X5, X6, X8, X13, X9,

X10, X12, X15, X14, X16

−2.27, 100.67, −98.72, 1.30,

−4.35, 3.34, 4.02, −62.47, 2.65,

6.51, 62.68, −5.58, 0.93, 63.88,

0.14

0.893

Y9,2 X3, X4, X5, X13, X9, X10, X11, X15,

X14, X16

0.63, 3.68, −2.58, 1.62, 1.49, 1.12,

1.36, −6.21, 0.59, 1.59, 0.09

0.885

Y10,2 X1, X2, X3, X5, X6, X8, X13, X9, X10,

X11, X12, X14

5.70, −181.30, 180.77, 9.15,

−1.54, −7.48, 118.39, −1.34,

−8.82, −116.20, −19.55, 10.75,

−113.74

0.834

Y11,2 X1, X2, X3, X4, X5, X6, X7, X8, X9,

X10, X11, X12, X15, X14

6.13, −162.63, 154.89, −20.42,

5.49, 6.07, 6.22, 9.16, 89.66, 6.56,

−96.00, 33.44, −25.60, −1.45,

−103.21

0.622

Y12,2 X1, X2, X5, X7, X9, X11, X12, X14,

X16

0.97, 9.39, −7.27, 1.67, 6.41, 5.44,

0.46, −8.38, 2.62, −0.11

0.702

Y13,2 X1, X2, X3, X4, X6, X8, X9, X10, X11,

X12, X14, X16

1.78, −92.33, 89.97, −18.36, 5.74,

8.72, 48.32, 5.13, −61.42, 35.63,

−14.04, −63.03, −0.20

0.657

Y14,2 X3, X5, X7, X8, X11, X12, X15, X14 −2.17, −8.78, −5.47, −5.44,

−9.66, 14.69, 9.44, 1.55, −0.41

0.443

cantly increasing the time required.
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