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1 Introduction

The geometry of (Euclidean) AdSD has several features that make it an ideal background to
study quantum field theories (QFT) [1]. It introduces a dimensionful parameter, the radius,
which acts as an IR cutoff and can be used to probe the theory at different scales. Differently
from other possible IR cutoffs, it preserves a large symmetry, namely the isometry group
SO(1, D). Moreover, it admits asymptotic observables, the correlators on the conformal
boundary, on which the symmetry acts as the conformal group. These boundary correlators
obey all the axioms of a d = D− 1 dimensional conformal field theory (CFT), with the only
exception of the existence of the stress-tensor operator. They are related to the S-matrix in
the flat space limit [2–19].
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It is natural to ask how the bulk physics of the QFT maps to the boundary correlation
functions. A good understanding of this dictionary paves the way to import the progress
in CFT to massive quantum field theory, by applying the conformal bootstrap to the
boundary correlators either with numerical [12, 20, 21] or analytic techniques [22–26]. This
question is especially interesting in the regime of strong coupling. This motivated the study
in [27] of strongly coupled theories of self-interacting scalars and fermions, namely the
O(N) and Gross-Neveu models, respectively, in the limit of large N and finite coupling in a
AdSD background. Other recent works on QFT in AdS studied how the bulk RG can be
encoded in the boundary correlation functions [28–32], studied thermal properties [33, 34],
or considered the special case in which the bulk theory is conformal, as an efficient tool to
study conformal defects [35–40] or boundary conditions [41–43].

In this paper we apply the approach of [27] to a strongly coupled gauge theory. Asymp-
totically free gauge theories are a clear target to be studied using the AdS background [44],
possibly via the bootstrap of the boundary correlators. It is therefore particularly important
to understand how various gauge theory phenomena are encoded in the conformal correlators.
We perform the first steps in this direction, studying the simple example of scalar QED
(sQED) with Nf flavors in the large Nf limit. This theory is asymptotically free and has an
interesting structure of phases for 2 < D < 4 (D can be kept as a continuous parameter at
large Nf ). In flat space, it has a Coulomb phase and a Higgs phase separated by a second
order phase transition, described by an interacting CFT. Both phases are gapless: in the
Coulomb phase the massless excitation is the photon, while in the Higgs phase there are
Goldstone bosons of the CPNf−1 model. We place the theory in AdSD with Dirichlet-type
boundary condition for the gauge field. These phases are still present in AdSD (and both
are allowed for an intermediate range of m2). In both phases we compute the four-point
function of the charged operators that source the scalar electrons of the bulk theory, from
which the dimensions of the exchanged operators can be extracted, for arbitrary values of
the scaled gauge coupling α = e2Nf .

As an intermediate step, we compute the bubble diagram corresponding to the bulk
two-point correlator of a conserved current in the free theory. To this end, we employ
and further develop the technique of the spectral representation for two-point functions
of a spinning operator [45].1 The spectral representation allows us to readily resum the
bubble diagrams and obtain the exact propagator of the photon at the leading order at
large Nf . The four-point function is then expressed as an exchange diagram with this
exact propagator. In the Coulomb phase, the spin 1 exchanged operators are: a conserved
current with protected dimension, and the finite-coupling versions of the spin 1 double-trace
operators of the matter fields, whose dimensions and OPE coefficient we can follow to
finite values of α (there is a caveat for integer dimension D = 3 that we discuss below). In
the Higgs phase, the external operators are exactly marginal because the corresponding

1While this paper was in preparation, [46] appeared that contains the calculation of the analogous
diagram in dS, with Wightman ordering, and also discusses in general the integral representation for spinning
two-point functions that we use here. The calculation in dS is closely related to the one in AdS that we
perform here: it amounts to replacing the AdS propagators with AdS harmonic functions. It should be
possible to obtain the bubble we compute here from the dS one by performing two additional spectral
integrals that convert the harmonic functions to AdS propagators. We thank Manuel Loparco for a discussion
on this.
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bulk fields are massless Goldstone bosons. A classical analysis in AdS would suggest that
the current operator becomes non-conserved and gets an anomalous dimension. At finite
coupling instead the only remnant of this non-conserved current is in a specific feature of
the spectrum of the spin 1 double-trace operators, which is the AdS analogue of a resonance
in flat space. Going to the deep IR with a tuned value of the mass-squared we reach a
critical point with bulk conformal symmetry, corresponding to a BCFT in flat space via a
Weyl rescaling, and we can extract the scaling dimensions of the spin 1 boundary operators
appearing in the boundary OPE of the gauge field.

Something special happens in the Coulomb phase in integer dimension D = 3: the
double-trace jµjµ of the boundary theory is classically marginal, and the corresponding
coupling gets a non-trivial β function triggered by the bulk gauge coupling. Therefore, the
conformal symmetry of the boundary gets broken. This is true in ordinary perturbation
theory [47, 48] and we explain that it remains true working at large Nf , finite coupling. We
comment on the interpretation of this phenomenon as an IR divergence that is not cured by
the AdS length scale, and offer a novel point of view on the computation of the β function
from the spectral representation of the propagator. This IR divergence persists when we
tune the mass-squared of the scalar to the critical value, and hinders the possibility to
define a conformal boundary condition for the IR CFT of 3d sQED by considering the RG
in AdS with Dirichlet conditions for the gauge field. Therefore, when we talk about the
boundary CFT in the Coulomb phase or at the bulk conformal point, we always refer to
using a non-integer value of D to regulate this divergence.

The rest of the paper is organized as follows: in section 2 we discuss scalar QED at
large Nf in flat space; this section is mostly a review, though typically only the critical point
is discussed while here we also consider the observables away from criticality. In section 3
we compute the exact propagator of the gauge field in AdS, requiring the cancellation of
spurious double-trace poles in the four-point function of the charged operators. Sections 4
and 5 contain an analysis of the spectrum in the Coulomb and Higgs phase, respectively,
and also a discussion of the IR divergence in AdS3 in the Coulomb phase. In section 6
we comment on the bulk critical point. The appendix discusses several properties of the
spectral representation for the bulk two-point functions of conserved spin 1 operators.

2 Phases of sQED in flat space

The Euclidean Lagrangian of sQED is

L = 1
4e2FµνF

µν +m2ϕaϕa∗ + (Dµϕ
a) (Dµϕa)∗ + σ√

N
(ϕaϕa∗)− σ2

2λ (2.1)

where ϕa are Nf complex scalar fields, Dµ = ∂µ + iAµ , and σ is a Hubbard-Stratonovich
field with algebraic equation of motion σ = λ√

Nf
ϕaϕa∗. Integrating out σ gives a quartic

interaction between the scalars. We will study the theory at large Nf and for any value
of the couplings λ and α ≡ e2Nf . Most of the formulas will be valid for any spacetime
dimension D = d+ 1 but our focus will be in the range 2 < D < 4 in which the theory is
strongly coupled in the IR. Note that the continuous symmetries of this theory are a flavor
symmetry SU(Nf ) rotating the scalar fields, and for integer D a magnetic U(1) (D−3)-form
symmetry whose conserved current is 1

2π ⋆ F .
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The first step in studying the dynamics of the theory is to minimize the effective
potential and find the possible vacua/phases at large Nf as a function of the parameters.
At leading order at large Nf the calculation of the effective potential as a function of the
VEVs of σ and ϕa is not affected by the presence of the gauge field and therefore the results
are identical to those in the ungauged O(2Nf ) model [49]. In particular one finds that
in the vacuum there is a VEV ⟨σ⟩ =

√
Nf Σ which has the effect of shifting the physical

mass of the scalars to M2 = m2 +Σ. Both m2 and Σ, which is itself a function of m2, are
UV divergent and scheme-dependent but their combination M2 is not. The phase of the
theory then depends on the value of m2. For m2 > m2

c we have a Coulomb phase with
a massless gauge field that mediates a long range force V (r) ∼ e2 r3−D between massive
charged particles with M2 > 0. For m2 < m2

c on the other hand we have a Higgs phase,
the IR excitations are 2Nf − 2 massless goldstone bosons parametrizing a CPNf−1 sigma
model, while the gauge-field becomes massive. Separating the two phases there is a second
order phase transition at m2 = m2

c described by a CFT.2

We will now consider each of these phases separately and compute some salient observ-
ables at leading order in the 1/Nf expansion.

2.1 Coulomb phase

In order to compute in 1/Nf perturbation theory we need the propagators of the fields Aµ

and σ̂ ≡ σ −
√
NfΣ at order 1/Nf , and exactly in the coupling constants. The calculation

for σ̂ at this order is not affected by the presence of the gauge field and therefore it takes
the same form as for the O(2Nf ) model [49] which we will not repeat.

For the gauge field, the exact propagator is given by the resummation of the 1PI
bubble diagrams in figure 1. Note that the 1PI bubble is the two-point function of the
U(1) conserved current in the theory of the Nf free scalars, with the addition of the seagull
contact term that ensures transversality, i.e. that pµ⟨jµ(p)jν(−p)⟩ = 0. The result is

⟨jµ(p)jν(−p)⟩ = −NfB
(1)(p2,M2)

(
δµν − pµpν

p2

)
,

B(1)(p2,M2) = 1
D − 1

[(
p2 + 4M2

)
B(0)(p2,M2)− (4− 2D)

(4π)D
2

(
M2

)D
2 −1

Γ
(
1− D

2

)]
.

(2.2)

Here B(0)(p2,M2) denotes the spin 0 bubble function, i.e. the two point function of ϕϕ∗,

2We stress that these conclusions are valid in the regime of large Nf , though one can compute systematically
1/Nf corrections. The phases of this theory and of the tricritical theory at large Nf were recently analyzed
also in presence of a Chern-Simons term in [50]. At small value of Nf instead the transition might be first
order, see e.g. section 5 of [51] for a discussion of the case Nf = 2, and also the relative size of λ and e2

can play an important role, e.g. in determining type I vs type II superconductivity in the Higgs phase for
Nf = 1, see e.g. [52] for a textbook account. See [53–59] for recent investigations of the phases of this theory
at finite Nf using lattice simulations.
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Figure 1. The double wavy line is the propagator of the photon at leading order O(N−1
f ) in the

large Nf expansion, and exactly in α = e2Nf , while the single wavy line is the tree level propagator
∝ e2. The grey blob represents the 1-loop 1PI correction to the two-point function that is ∝ Nf .
The dashed line is the propagator of the complex scalars, with the arrow denoting the flow of charge.

given by

B(0)(p2,M2) =
∫

dDk

(2π)D

1
(k2 +M2) ((k + p)2 +M2)

=
Γ
(
2− D

2

)
(M2)D

2 −2

(4π)D/2(3−D)

((
D − 6− 4M2

p2

)
2F1

(
1, 2− D

2 ,
1
2 ,−

p2

4M2

)

+
(
1 + 4M2

p2

)
2F1

(
1, 2− D

2 ,−
1
2 ,−

p2

4M2

))
.

(2.3)

The tree-level propagator of the gauge field with gauge fixing Lagrangian

Lg.f. =
1
2ξ (∂µA

µ)2 , (2.4)

is
⟨Aµ(p)Aν(−p)⟩|tree =

e2

p2

(
δµν − pµpν

p2

)
+ ξ

pµpν

p4
. (2.5)

The sum of bubble diagrams then becomes simply a geometric sum in the coefficient of the
transverse projector, giving the following propagator at leading order at large Nf , and any
fixed α = Nfe

2 and ζ = Nfξ

⟨Aµ(p)Aν(−p)⟩| 1
Nf

= 1
Nf

(
α

p2 + αB(1)(p2,M2)

(
δµν − pµpν

p2

)
+ ζ

pµpν

p4

)
. (2.6)

Note that the photon remains massless because B(1)(p2,M2) ∝
p→0

p2.

2.1.1 Scattering in the Coulomb phase

The simplest observable to compute is the scattering amplitude of the charged scalars
ϕ∗aϕb → ϕ∗cϕd. The contribution from the gauge field is given by the diagrams in figure 2.
It is immediate to write down the resulting amplitude using the exact photon propagator
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Figure 2. Diagrams that compute the scattering amplitude at leading order O(N−1
f ). The letters

denote the SU(Nf ) flavor index and the momenta are all ingoing with p1 + p2 + p3 + p4 = 0.

i Tab→cd = i
1
Nf

(
δabδcd T (s, t) + δacδbd T (t, s)

)
,

iT (s, t) = − α(s− 4M2 + 2t)
s− αB(1)(−s,M2)

.

(2.7)

The amplitude is crossing symmetric under simultaneous exchange of the flavor indices
b and c and the Mandelstam variables s and t. It also has analytic properties that are
expected in the interacting theory, e.g. as a function of complex s for fixed t there is a pole
at s = 0 due to the photon exchange and a two-particle branch-cut starting at s = 4M2.

It is also interesting to check the unitarity of the amplitude, in particular after projecting
to the singlet sector. Note that we can view the amplitude as the matrix element

i Tab→cd = ⟨c, d| i T |a, b⟩ , (2.8)

where the asymptotic two-particle states are normalized as

⟨a′, b′|a, b⟩ = δaa′
δbb′ × (momentum conserving delta’s) . (2.9)

Therefore the unit normalized flavor singlet state is

|S⟩ = 1√
Nf

∑
a

|a, a⟩ , (2.10)

and the amplitude in the singlet sector is

i TS→S = i T (s, t) +O(N−1
f ) . (2.11)

Note that t only appears in the combination s−4M2+2t = (s−4M2) cos θ in the numerator,
where θ is the scattering angle. Therefore the decomposition in partial waves contains only
spin J = 1. In the normalization of [60] we have

fS→S
J=1 (s) = − π

(16π)D−1
2 Γ(D+1

2 )
α(s− 4M2)

s− αB(1)(−s,M2)
. (2.12)

Since this projection to the singlet sector is not suppressed by any small parameter, the full
non-linear unitarity constraint applies to it, for any α. In fact elastic unitarity is saturated,3

3Compared to [60], whose normalization we are using, there is an additional factor of 2 on the right-hand
side because the external particle are complex scalars instead of identical real scalars.
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i.e. for any α and any real s > 4M2 we have

2 Im fS→S
1 (s) = 2(s− 4M2)D−3

2
√
s

|fS→S
1 (s)|2 . (2.13)

This can be easily checked using the following identity valid for real s > 4M2

ImB(0)(−s,M2) = − MD−4

2D+1π
D−3

2 Γ
(

D−1
2

)
√

4M2

s

(
s

4M2 − 1
)D−3

2
. (2.14)

The fact that at leading order in the 1/Nf expansion there is no particle production is a
consequence of the fact that we are resumming only one-loop diagrams. Note that there
is an additional contribution to the ϕ∗aϕb → ϕ∗cϕd amplitude from the exchange of the
σ field, i.e. from the scalar self-interaction, which however only contributes to the J = 0
partial wave and similarly, when projected to the singlet sector, at leading order at large
Nf saturates elastic unitarity.

For D ≤ 4 at subleading order in the 1/Nf expansion we expect that IR divergences
make the amplitude of the charged particles ill-defined in the Coulomb phase, see e.g. [61]
for a recent discussion of IR divergences in sQED with D = 3. Therefore one would need to
consider some dressing of the asymptotic states, or replace the scattering amplitude with
some inclusive observable.

2.2 Higgs phase

In this phase the minimization of the effective potential requires a non-zero VEV for
ϕa ∗ϕa = NfΦ2, and we have M2 = 0, i.e. Σ = −m2. Orienting the VEV of ϕa in the
direction a = Nf and labeling with A = 1, . . . , Nf − 1 the orthogonal directions, we expand
the fields around the minimum as

ϕA = πA ,

ϕN =
(√

NfΦ+ ρ√
2

)
e

i θ√
2Nf Φ

,

σ = −
√
Nf m

2 + σ̂ .

(2.15)

The field fluctuations are: the Goldstone bosons πA, the radial mode ρ and the Hubbard-
Stratonovich field σ̂. Plugging in the Lagrangian (2.1) we obtain

L = 1
4e2FµνF

µν +NfΦ2AµA
µ + (DµπA)(Dµπ

A)∗ + 1
2 (∂µρ)2 +

1
2 (∂µθ)2

+
√
Nf

(
m2

λ
+Φ2

)
σ̂ − σ̂2

2λ +
√
2Φ σ̂ ρ+ σ̂√

Nf

(1
2ρ

2 + πAπA ∗
)

+
√
2Nf ΦAµ (∂µθ) +

√
2NfΦ ρAµA

µ + 2ρAµ (∂µθ) + 1
2 ρ

2AµA
µ

+ 1√
2Nf Φ

ρ2Aµ (∂µθ) + 1√
2Nf Φ

ρ (∂µθ)2 +
1

4NfΦ2 ρ
2 (∂µθ)2 .

(2.16)
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As expected we have a mass term for the gauge field. We can get rid of the mixing
terms Aµ∂

µθ by introducing the gauge-fixing term

Lg.f. =
Nf

2ζ

(
∂µA

µ +
√

2
Nf

ζ Φ θ
)2

. (2.17)

With this choice, we can easily resum the 1PI diagrams in figure 1 to get the following
photon propagator at leading order at large Nf

⟨Aµ(p)Aν(−p)⟩| 1
Nf

= 1
Nf

(
α

p2 +m2
A + αB(1)(p2, 0)

(
δµν − pµpν

p2

)
+ ζ

pµpν

p4

)
, (2.18)

where m2
A = 2e2Φ2. Note that now only the Nf − 1 massless fields πA run in the bubble

loop. The bubble diagram at M2 = 0 reads

B(1)(p2, 0) = − π

(16π)D−1
2 Γ

(
D+1
2

)
sin
(

πD
2

)(p2)D−2
2 . (2.19)

Neglecting the bubble the massive photon is a stable particle corresponding to the pole
at p2 = −m2

A. This value of p2 on the negative real axis is precisely on the branch-cut of
the power appearing in the bubble function. For 2 < D < 4 and any α the actual pole of
the exact propagator is for complex values of p2 and not in the first sheet.4 The massive
photon becomes a resonance, as expected given that it can decay to pions.

An observable in the Higgs phase is the scattering amplitude of the pions, that can be
computed at leading order at large Nf with the same techniques showed in section 2.1.1.
Like we saw in the Coulomb phase, this amplitude is directly determined by the exact
propagator of the photon, and therefore in this case it will contain a spin 1 resonance. Like
in the Coulomb phase, the J = 1 partial amplitude in the singlet sector saturates elastic
unitarity. An important difference with the Coulomb phase is that in the Higgs phase we
do not expect any IR divergence, therefore this scattering amplitude remains an interesting
observable of the theory also at subleading order in the 1/Nf expansion, or at finite Nf .

2.3 CFT at the phase transition

For completeness let us now briefly review the evidence that at large Nf there is a second
order transition at m2 = m2

c , namely at M2 = 0 and |Φ|2 = 0. The photon propagator with
this value of the parameters and at leading order in the large Nf expansion is

⟨Aµ(p)Aν(−p)⟩| 1
Nf

= 1
Nf

(
α

p2 + αB(1)(p2, 0)

(
δµν − pµpν

p2

)
+ ξ

pµpν

p4

)
, (2.20)

4The equation for the zero of the denominator is p2 + C(p2)γ = −m2
A, with C > 0 and 0 < γ < 1.

On the first sheet Arg(p2) ∈ (−π, π) and Arg(C(p2)γ) = γ Arg(p2). Note that the solution cannot have
Arg(p2) = 0 because in that case both p2 and C(p2)γ are positive real numbers. As a result, in the first
sheet the arguments of p2 and C(p2)γ are either both in (0, π) and their sum has a positive imaginary part,
or both in (−π, 0) and their sum has negative imaginary part. In either case their sum cannot equal the real
number −m2

A. This proves that the solution is not in the first sheet.
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where B(1)(p2, 0) is the power of momentum in eq. (2.19). In the IR limit (p2)D−2
2 ≪ α the

propagator approaches the α-independent limit

⟨Aµ(p)Aν(−p)⟩| 1
Nf

,IR = 1
Nf

( 1
B(1)(p2, 0)

(
δµν − pµpν

p2

)
+ ξ

pµpν

p4

)
, (2.21)

from which we compute the two-point function of the gauge-invariant field strength operator

⟨ 1
2πFρµ(p) 1

2πFσν(−p)⟩| 1
Nf

,IR = CF

Nf

δµνpρpσ − δρνpµpσ − δµσpρpν + δρσpµpν

(p2)D−2
2

,

CF ≡ −
(16π)D−1

2 Γ
(

D+1
2

)
sin
(

πD
2

)
4π3 .

(2.22)

Note that CF > 0 for 2 < D < 4. In position space this correlator is

⟨ 1
2πFρµ(x) 1

2πFσν(0)⟩| 1
Nf

,IR = CF

Nf

16
(4π)D

2 Γ(D
2 − 1)

IµνIρσ − IρνIµσ

(x2)2 ,

Iµν ≡ δµν − 2xµxν

x2
.

(2.23)

This takes precisely the form of the correlator for a two-form primary operator of scaling
dimension ∆F = 2 in a D dimensional CFT. Note that the unitarity bound for a two-form
is ∆ ≥ max(2, D − 2), so in the range 2 < D < 4 this bound is saturated by F , reflecting
the existence of the null operator corresponding to the Bianchi identity dF = 0. In integer
D the hodge dual ⋆F gives the conserved current for a (D − 3)-form symmetry, but only in
D = 3 this conserved current is compatible with the unitarity of the CFT.5

At leading order at large Nf , and restricting to local operators, the CFT is the product
of two decoupled sectors, the mean field theory of the field strength operator, and the
free CFT of the matter fields, restricted to the singlet sector of the U(1) gauge symmetry
and with the conserved current removed Jµ = 0. Corrections to the CFT data can be
computed systematically in 1/Nf expansion, e.g. using a diagrammatic approach with the
exact propagator (2.21) and the standard interaction vertices involving the matter fields.
In addition in D = 3 there are also local monopole operators, for which the 1/Nf expansion
is less straightforward but has also been developed, see e.g. [62–64].

3 sQED in AdS

We will now study large Nf scalar QED in AdS space. The theory is defined by the same
Lagrangian as in eq. (2.1). The possible relevant curvature coupling Rϕaϕa ∗ is absorbed in
the definition of the coupling m2. It will be convenient to keep the spacetime dimension as
an arbitrary parameter, so will work in AdSD=d+1.

5For D = 4 both ∆ = 2 and ∆ = D − 2 are saturated, so unitarity would require both dF = 0 and
d ⋆ F = 0, but the second identity does not hold due to the coupling to matter fields.
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3.1 Exact photon propagator

Just like in flat space, the first step towards the large Nf solution is to obtain the exact
large Nf propagator of the gauge field, and we start by computing this propagator in the
Coulomb phase. For this purpose, it is convenient to adopt the spectral representation6

of the propagator [45]. Imposing a Dirichlet boundary condition for the gauge field at
the conformal boundary of AdS, i.e. the standard boundary condition that gives rise to a
global symmetry on the boundary, the propagator in ordinary perturbation theory has the
following spectral representation

⟨AM (X)AN (Y )⟩pert. theory ≡ G
(1)
MN (X,Y )

=
∫ +∞

−∞
dν

e2

ν2 + (d
2 − 1)2

Ω(1)
ν MN (X,Y ) +∇X

M∇Y
NL(u) .

(3.1)

Here we are using the embedding coordinates X,Y ∈ R1,d+1 with mostly plus signature
convention and X2 = Y 2 = −1. Therefore the indices N,M run from 0 to d+ 1 and they
are constrained to lie on the tangent space, i.e. XMAM (X) = 0 and similarly in the point
Y , see [45] for more details.

The function Ω(1)
ν MN (X,Y ) is a spin 1 harmonic function in AdS, i.e. it is an eigenfunction

of the Laplacian on vectors

□XΩ(1)
ν MN (X,Y ) =

(
ν2 + d2

4 + 1
)
Ω(1)

ν MN (X,Y ) , (3.2)

with no singularity at coincident points. It is symmetric under exchange X ↔ Y together
with M ↔ N . Moreover, it is a transverse function

∇X
MΩ(1)M

ν N (X,Y ) = 0 . (3.3)

Therefore we see that the propagator (3.1) has a transverse part proportional to the harmonic
function, and a longitudinal gauge-dependent part given by the derivative of an arbitrary
function L of the distance between the two points, parametrized by u = −1−X · Y . The
familiar family of Rξ gauges, parametrized by a real parameter ξ, corresponds to the choice

L(u) = e2 ξ G
(0)
d ⋆ G

(0)
d (u) = e2 ξ

∫ +∞

−∞
dν

1
(ν2 + d2

4 )2
Ω(0)

ν (u) . (3.4)

Here G(0)
∆ denotes the AdSd+1 propagator of a scalar field whose corresponding boundary

operator has scaling dimension ∆, and choosing ∆ = d corresponds to a massless scalar
field, the symbol ⋆ denotes the convolution, and Ω(0)

ν is the scalar harmonic function.
6In this paper we use the term “spectral representation” to refer to the integral representation which

expands a bulk two-point function in the continuous basis of eigenvectors of the AdS Laplacian, i.e. harmonic
functions. Recently the same term [32] was used to refer to boundary OPE expansion of a bulk two-point
function. The two representations are related by closing the contour in the integral representation and
rewriting the integral as a discrete sum over poles. While the representation in [32] is indeed a closer
analogue to the Källén-Lehman spectral representation in flat space, we keep using the term to refer to the
integral representation to be consistent with [27], and for lack of a better term.
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The transverse harmonic function Ω(1)
ν MN (X,Y ) can be used more generally to write

down a spectral representation for an arbitrary bulk two-point function of a spin one
conserved operator. The details of this transform, and how to obtain the Fourier transform
in the flat-space limit, are explained in the appendix A. In particular, for the two-point
function of the U(1) conserved current of a single complex scalar we have

⟨JM (X)JN (Y )⟩ = −
∫ +∞

−∞
dν B(1)(ν) Ω(1)

ν MN (X,Y ) . (3.5)

B(1)(ν) is a function of ν that we will have to determine. For Nf complex scalars there is
an additional overall factor of Nf . This two-point function is precisely the one-loop 1PI
correction to the propagator of the photon. The contribution of the seagull interaction
fixes the contact term to ensure that the two-point function is transverse even at separated
points, as Ω(1)

ν MN is.
Just like in flat space, the exact propagator at leading order at large Nf is obtained by

summing diagrams with an arbitrary number of insertions of this 1PI one-loop correction
proportional to Nf . Thanks to the properties of Ω(1)

ν MN under convolution [45], this sum
becomes geometric in the ν variable. Note also that the convolution of Ω(1)

ν MN with the
longitudinal part of the propagator vanishes, because we can integrate by parts and use
that Ω(1)

ν MN is transverse.7 As a result we get

⟨AM (X)AN (Y )⟩large Nf

= 1
Nf

∫ +∞

−∞
dν

α

ν2 + (d
2 − 1)2 + αB(1)(ν)

Ω(1)
ν MN (X,Y ) +∇X

M∇Y
NL(u) ,

(3.6)

where α = e2Nf is kept fixed in the limit.

3.2 Boundary four-point function

We will now use (3.6) to compute the boundary four-point function of the charged operators
dual to the complex scalar. Denoting the boundary operators with the same letter ϕa

that we use for the bulk fields, the four-point function at leading order is just the trivial
disconnected contribution

⟨ϕa(P1)ϕ∗ b(P2)ϕ∗ c(P3)ϕd(P4)⟩|O(N0
f
)

= δabδcd 1
(−2P1 · P2)∆(−2P3 · P4)∆

+ δacδbd 1
(−2P1 · P3)∆(−2P2 · P4)∆

,
(3.7)

where m2 = ∆(∆− d). Since the scalar is complex, there is no u-channel contribution, and
as a result the OPE decomposition contains double-trace operators of any integer spin J ,
even and odd, with scaling dimensions 2∆ + 2n+ J , with n non-negative integers. Note
that as long as ∆ > d

2 − 1 there are no spin 1 conserved operators. This might seem at odds
with the fact that there is a global symmetry under which ϕa are charged, but actually the
boundary theory is not local and therefore Noether’s theorem does not apply.

7Since the diagrams are given by integrals over the whole AdS space, we can only drop the longitudinal
contribution thanks to the fact that Ω(1)

ν MN is transverse even at coincident points.

– 11 –



J
H
E
P
1
0
(
2
0
2
3
)
0
8
9

Next, we consider the first connected contribution at order O(N−1
f ). This is the

exchange diagram of the photon, for which we use the exact propagator (3.6). The result is

⟨ϕa(P1)ϕ∗ b(P2)ϕ∗ c(P3)ϕd(P4)⟩|O(N−1
f

) = δabδcdg12|34 + δacδbdg13|24 , (3.8)

where

gij|kl =
1
Nf

∫ +∞

−∞
dν

α

ν2 + (d
2 − 1)2 + αB(1)(ν)

4
∫

X,Y
K∆(Pi, X) i∇X

MK∆(Pj , X)K∆(Pk, Y )(−i)∇Y
NK∆(Pl, Y ) Ω(1)MN

ν (X,Y ) .

(3.9)

We are using the shorthand notation
∫

X,Y =
∫
dd+1X

∫
dd+1Y for the integral over the bulk

points. K∆(P,X) is the bulk-to-boundary propagator of the scalar field

K∆(P,X) =
√
C∆

(−2X · P )∆ ,

C∆ ≡ Γ(∆)
2π d

2 Γ(∆− d
2 + 1)

,
(3.10)

where the normalization comes from taking a canonical normalization for the bulk field,
and normalizing to 1 the two-point function of the boundary operator. Note that thanks
to gauge-invariance only the transverse part of the propagator contributes to the four-
point function.

Next we use that [45]∫
X,Y

K∆(Pi, X) i∇X
MK∆(Pj , X)K∆(Pk, Y )(−i)∇Y

NK∆(Pl, Y ) Ω(1)MN
ν (X,Y )

= 1
(−2Pi · Pj)∆(−2Pk · Pl)∆

1
8π d

2 Γ(∆)2Γ(1− d
2 +∆)2

F (1)
d
2+iν

(u, v)

= 1
(−2Pi · Pj)∆(−2Pk · Pl)∆

1
8π d

2 Γ(∆)2Γ(1− d
2 +∆)2

(
CνK(1)

d
2+iν

(u, v) + (ν → −ν)
)
,

(3.11)

where

Cν ≡
Γ
(

d
4 + iν

2 + 1
2

)4
Γ
(
−d

4 +∆± iν
2 + 1

2

)2
2π
(

d
2 + iν − 1

)
Γ(iν)Γ

(
d
2 + iν + 1

) . (3.12)

Here F (1)
d
2+iν

is the spin 1 conformal partial wave, and K(1)
d
2+iν

is the spin 1 conformal block,
which are functions of the scaling dimension d

2 + iν of the exchanged operator, and of the
conformally invariant cross-ratios u and v.8

8We use the same convention of [65] for the conformal partial wave and the conformal blocks, with the
following map between symbols: Fthere = Fhere and Gthere = Khere.
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As a result the four-point function is

gij|kl =
1
Nf

1
(−2Pi · Pj)∆(−2Pk · Pl)∆

1
2π d

2 Γ(∆)2Γ(1− d
2 +∆)2∫ +∞

−∞
dν

α

ν2 + (d
2 − 1)2 + αB(1)(ν)

(
CνK(1)

d
2+iν

(u, v) + (ν → −ν)
)
.

(3.13)

Closing the contour of the ν integral in the lower-half plane for the K(1)
d
2+iν

term, and in

the upper-half plane for K(1)
d
2−iν

, we pick the contributions from the poles of the coefficient
functions that generate the OPE expansion of the correlator. Note that at the tree level in
usual perturbation theory α≪ 1 we can neglect the bubble contribution and we have simply
an exchange diagram of the photon. The corresponding pole at ν = ±i(d

2 − 1) correspond
to the exchange of a conserved current operator in the OPE. We see that the boundary
current, that was absent in the theory of charged scalars with a bulk global symmetry,
appears when we gauge the symmetry in the bulk with Dirichlet boundary conditions for
the gauge field. The conserved current is still present in the OPE even at finite α as long
as the bubble function in the denominator does not shift the position of the corresponding
pole, namely

B(1)
(
±i
(

d
2 − 1

))
= 0 . (3.14)

This can be seen as a condition of unbroken gauge invariance on the bubble function. We
will later use it to fully determine the function B(1) (ν). We note that the condition of
having a conserved current in the spectrum only applies to the Coulomb phase. On the other
hand, this condition is enough to completely fix the function B(1) (ν) for any value of the
scalar mass, and the same function computed at M2 = 0 also appears in the computations
in the Higgs phase, in complete analogy with the flat space calculation. Alternatively, we
can derive (3.14) directly in the free theory of the complex scalar, before introducing the
coupling to the gauge fields, by requiring that the two-point function of the conserved
current (3.5) must admit a Källén-Lehman representation as a sum over AdS propagators
of massive spin 1 fields.9

3.3 Bootstrapping the spin 1 bubble

We will now compute the bubble function B(1) (ν) not by a direct calculation of the diagram,
but rather by imposing a certain self-consistency condition on the four-point function. The
method follows closely the one used in [27] to compute the spin 0 bubble function.

9To obtain such a representation, we substitute the expression (A.6) for the harmonic function in the
integral (3.5), closing the contour of the integral with G d

2 ±iν,1 in the lower/upper half-plane of the variable ν

and picking the poles of the function B(1) to convert the integral in a sum over G∆,1. However the function
G d

2 ±iν,1 itself has a spurious pole at ν = ∓i( d
2 − 1), and the cancellation of these spurious contributions

require a zero of the coefficient function B(1) at these points. Note that the conservation of the current plays
an important role in this argument, because the contribution of these spurious poles turns out to give a
longitudinal contribution to the two-point function, and it could be canceled by the longitudinal term of the
two-point function in the case of a non-conserved spin 1 two-point function.
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Consider the projection of the four-point function to the s-channel singlet sector
of the flavor symmetry SU(Nf ). This projection simply amounts to contracting with
1

N2
f
δabδcd, giving

1
N2

f

⟨ϕa(P1)ϕ∗a(P2)ϕ∗b(P3)ϕb(P4)⟩=
1

(−2P1 ·P2)∆(−2P3 ·P4)∆

+ 1
Nf

( 1
(−2P1 ·P3)∆(−2P2 ·P4)∆

+g12|34
)
+O(N−2

f ) .

(3.15)
The t-channel disconnected contribution and the s-channel connected one enter at the
same order 1

Nf
. The factor Γ

(
−d

4 +∆± iν
2 + 1

2

)2
in the connected diagram g12|34 has a

double pole at the positions ν = ν±n ≡ ±i
(
2∆ + 2n+ 1− d

2

)
, with n a non-negative integer.

In ordinary perturbation theory α ≪ 1, the term involving the function B(1) (ν) in the
denominator can be neglected, and these double poles have the effect of producing an O(α)
anomalous dimension for the spin 1 double-trace operators of dimension 2∆ + 2n+ 1.

On the other hand, at order 1/Nf and finite α, the exchange of the exact propagator
of the gauge field produces anomalous dimensions for these operators that are non-trivial
functions of α. These can only arise from zeroes of the denominator ν2+(d

2 −1)2+αB(1)(ν).
At the same time, the exchange of these operators from the disconnected contribution
needs to be canceled by a contribution of opposite sign from g12|34. This can happen only
if B(1)(ν) has a single pole precisely at the location of the double-pole in the numerator,
so that the full ν integrand of g12|34 has only a single pole at that location. This gives
the condition

c2n,J=1

= 2πiRes

2 1
2π d

2 Γ(∆)2Γ(1− d
2 +∆)2

α

ν2 + (d
2 − 1)2 + αB(1)(ν)

Cν

∣∣∣∣∣∣
ν=ν−

n

,
(3.16)

where the factor of 2 inside the parenthesis comes from the equal contributions of the two
terms K(1)

d
2±iν

, and cn,J are the OPE coefficients for a complex scalar GFF, which in our
normalization of the conformal blocks read

c2n,J =
2J(∆− d

2+1)2n(∆)2n+J

J !n!(J+ d
2)n(2∆+n−d+1)n(2∆+2n+J−1)J(2∆+n+J− d

2)n

. (3.17)

Denoting the behavior of the bubble near the pole as

B(1)(ν) ∼
ν∼ν−

n

b
(1)
n

i(ν − ν−n )
+ . . . , (3.18)

we can solve (3.16) to determine

b(1)n

=
Γ
(

d
2 + n+ 1

)
Γ(n+∆+ 1)Γ

(
−d

2 + n+∆+ 1
2

)
Γ
(
−d

2 + n+ 2∆+ 1
)

(4π) d
2 Γ
(

d
2 + 1

)
Γ(n+ 1)Γ

(
n+∆+ 3

2

)
Γ
(
−d

2 + n+∆+ 1
)
Γ(−d+ n+ 2∆+ 1)

.

(3.19)
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In ordinary perturbation theory, i.e. in an expansion in α, the bubble function appears
in the numerator as a loop correction to the photon exchange diagram. At any finite order
in perturbation theory we cannot have new operators appearing in the spectrum, but rather
we can only generate a series of corrections to the OPE data of the GFF theory. As a result,
the singularities in (3.18) are the only singularities of B(1)(ν) in the complex plane.

If in addition the function B(1)(ν) would decay at infinity in the complex plane, by a
simple contour argument the function would be uniquely fixed in terms of the location of
the poles and the residues. However in generic dimension B(1)(ν) does not decay, and this
manifests in a divergence of the sum over poles with the prescribed residues. This is due to
(bulk) UV divergences in the loop that computes the bubble. The summand (symmetrized
under ν → −ν) behaves as

B(1)
n (ν) ≡ 2iν−n b

(1)
n

ν2 − (ν−n )2
∼

n→∞
− nd−2

(4π) d
2 Γ(d

2 + 1)
(1 + . . . ) , (3.20)

where the dots denote a series of 1/n corrections, such that the coefficients of the 1/n2k

and 1/n2k+1 corrections are (even) polynomials in ν of degree ν2k. In any d we can make
the sum convergent by subtracting sufficient terms, say 2m, in the Taylor expansion of the
summand B

(1)
n (ν) around ν = 0, which contains only even powers. After resumming the

resulting convergent series, we account for the subtraction by adding a polynomial in ν of
degree 2m with arbitrary coefficients.10

From the structure described above we see that no subtraction is needed only for d < 1.
In the more interesting range 1 ≤ d < 3 we have

B(1)(ν)|1≤d<3 =
∞∑

n=0

[
B(1)

n (ν)−B(1)
n (0)

]
+ a0 , (3.21)

where the infinite sum is now convergent, but a0 is a constant that remains undetermined.
We have the further constraint (3.14) coming from the condition of gauge invariance, and
we can use it to fix a0. We get

B(1)(ν)|1≤d<3 =
∞∑

n=0

[
B(1)

n (ν)−B(1)
n (i

(
d
2 − 1

)
)
]
. (3.22)

Note that, if one computes the loop with a choice of regulator, the coefficient a0 is UV
divergent if the regulator does not preserve gauge invariance (e.g. a sharp cutoff). The

10The same procedure can be derived from the fact that B(1)(ν) behaves at infinity as

B(1)(ν) ∝
|ν|→∞

|ν|d−1 .

This growth implies that the contour argument determines B(1)(ν) when d < 1, while for 1 ≤ d < 3
we can only use it to determine B(1)(ν) − B(1)(0), for 3 ≤ d < 5 we can only use it to determine
B(1)(ν) − B(1)(0) − 1

2 ν2B(1)′′
(0), and so on. The behavior for ν → ∞ corresponds to the flat space limit in

momentum space with ν ∼ Lp, see the appendix A, and therefore can be fixed by computing the behavior of
the spin 1 bubble in Rd+1. However this limit also requires to scale ∆ ∼ Lm → ∞. Since we cannot prove
that the leading power in the growth at large ν does not depend on ∆ (though a posteriori this will turn out
to be true) we prefer to use the argument based on the structure of the series in the main text.
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coupling that reabsorbs the UV divergence in a0 is in fact the mass of the gauge field. In
the range 3 ≤ d < 5 we need to perform one more subtraction to get a convergent sum

B(1)(ν)|3≤d<5=
∞∑

n=0

[
B(1)

n (ν)−B(1)
n (0)− ν2

2 B
(1)′′
n (0)

]
+a0+a1(ν2+(d

2−1)2) , (3.23)

and there are two undetermined constants a0,1. We can again impose the gauge-invariance
condition (3.14) to fix a0, obtaining

B(1)(ν)|3≤d<5 =
∞∑

n=0

[
B(1)

n (ν)−B(1)
n (i

(
d
2 − 1

)
)−

ν2 + (d
2 − 1)2

2 B(1)′′
n (0)

]
+ a1(ν2 + (d

2 − 1)2) .
(3.24)

However in this case the coefficient a1 remains undetermined, and in fact computing
explicitly the loop with a UV regulator one would find that a1 is UV divergent, even with a
gauge-invariant regulator. The UV divergence in a1 is reabsorbed in the gauge coupling,
which indeed is finite in the range 1 ≤ d < 3 but needs to be renormalized in the range
3 ≤ d < 5. More subtractions are needed if d is further increased.

The final sums simplify when d is even. For d = 2 (i.e. AdS3) we obtain

B(1)(ν)|d=2 =
ν
[
−2(2∆− 3)ν +

(
ν2 + 4(∆− 1)2

) (
i ψ
(
∆− iν

2

)
− i ψ

(
∆+ iν

2

))]
16π (ν2 + 1) ,

(3.25)
where ψ(x) denotes the digamma function. For d = 4 (i.e. AdS5) we obtain

B(1)(ν)|d=4=
ν2+1

2048π2ν (ν2+4)
[
(∆−1)(2∆−5)(2∆−7)ν

(
4−3ν2

)
−4
(
ν2+(2∆−3)2

)(
ν2+(2∆−5)2

)(
iψ
(
∆− iν

2 −
1
2

)
−iψ

(
∆+ iν

2 −
1
2

))]
+ã1(ν2+1) , (3.26)

where the tilde denotes that we reabsorbed a ∆-dependent constant in the undetermined
coefficient. As a check of the result, we can compute the flat-space limit by taking ν = Lp,
p being the modulus of the momentum in flat space, and ∆ = Lm, and sending L→ ∞, see
the appendix A. We find that the AdS results approach the flat space answer for the bubble
computed with a dimreg regulator in eq. (2.2), up to a polynomial in the momentum when
d ≥ 3 which reflects the ambiguity in the choice of the regulator (which we left unspecified
in AdS).

We can also write the sum in generic d in terms of a generalized hypergeometric function.
In the rest of the paper we focus on the range 1 ≤ d < 3 in which case the expression reads

B(1)(ν)|1≤d<3=B(ν)−B(i(d
2−1)) ,

B(ν)≡
π

1−d
2 2−2∆ν2Γ(∆+1)Γ

(
2∆− d

2+1
)

(
∆− d

4+
1
2

)
Γ
(
∆+ 3

2

)
Γ
(
∆− d

2+1
)2(

ν2+4
(
∆− d

4+
1
2

)2) (3.27)

7F6

[ d
2+1,∆+1,∆− d

2+
1
2 ,2∆− d

2+1,∆− d
4+

1
2 ,∆− d

4+
iν
2 +

1
2 ,∆− d

4−
iν
2 +

1
2

∆+ 3
2 ,∆− d

2+1,2∆−d+1,∆− d
4+

3
2 ,∆− d

4+
iν
2 +

3
2 ,∆− d

4−
iν
2 +

3
2

;1
]
.
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Having fixed the form of the exact propagator of the photon, we now study the physical
observables that we can extract from it in the various phases of the theory.

4 Coulomb phase in AdS

For m2 ≥ m2
c,1 there is stable minimum of the AdS effective potential at ϕa = 0 and with a

non-zero expectation value ∝ Σ for the Hubbard-Stratonovich field, which gives a physical
mass-squared M2 = m2 + 2Σ to the scalar fluctuations above the Breitenlohner-Freedman
(BF) bound [66]. The analysis of the effective potential at leading order at large Nf is not
affected by the gauge field and therefore we will not repeat it here but simply refer to the case
of the self-interacting scalars [27], from which one can also read off the (scheme-dependent)
value of m2

c,1. This phase of the gauge theory is the Coulomb phase, in which the photon
mediates a long-range force between the scalars. We concentrate in the range 1 ≤ d < 3
in which the theory is strongly-coupled at large distances. We assume Dirichlet boundary
conditions for the gauge field.

The observables we will consider are the scaling dimensions of the spin 1 boundary
operators that are exchanged in the connected four-point function of the charged operators,
at the leading order in the 1/Nf expansion. Equivalently, these are the operators that
appear in the boundary channel expansion of the bulk two-point function of the gauge field.
Setting the AdS scale L = 1, they depend on two parameters, the gauge coupling α and
the mass-squared M2, which we will trade with the scaling dimension ∆ of the boundary
charged operator.

4.1 1 ≤ d < 3 , d ̸= 2: scaling dimensions from weak to strong coupling

We first consider d ̸= 2 in order to regulate the IR divergence that appears in AdS3.
The spectrum of the spin 1 boundary operators is determined by the poles of the exact
propagator (3.6) in the complex ν plane, i.e. by the zeroes of the denominator

1
α

(
ν2 +

(
d

2 − 1
)2)

+B(1)(ν) = 0 . (4.1)

The solutions {ν∗n}n≥0 are located on the negative imaginary ν axis, and they correspond
to the exchange of an operator with scaling dimension ∆n = d

2 + iν∗n (since the function is
symmetric under ν → −ν we could equivalently look at the positive imaginary axis). We
cannot find a closed form expression for these solutions, but we can easily visualize them by
plotting the function B(1)(ν) in eq. (3.27) as a function of ν along the negative imaginary
axis, for a given ∆ and d. This is showed in figure 3. We see that for small values of α the
scaling dimensions approach their minimal values ∆(0)

n = 2∆+ 2n+ 1 which are just the
values in the free theory. The anomalous dimension increases monotonically as a function
of the coupling, with no level crossing. The maximum value of ∆n is still separated by a
gap from ∆(0)

n+1 and is reached in the limit α→ ∞, corresponding to the zeroes of B(1)(ν).
In addition to this tower of solutions, for any value of α there is also an additional zero at
iν∗ = d

2 − 1 which corresponds to the conserved current, as follows from the condition of
gauge invariance (3.14) that we used to fix the bubble function.
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Figure 3. On the left: plot of B(1)(ν) (green line) on the negative imaginary ν axis, together with
− 1

α (ν2 + (d
2 − 1)2) for α = 10 (orange curve) and α = 50 (blue curve) in units of the AdS radius.

We have taken d = 5/2 and ∆ = 21/20 for the external operators. The intersections are highlighted
with black dots, the corresponding values of ν give the scaling dimensions of spin 1 operators via
∆ = d

2 + iν. The arrows denote the direction of increasing coupling constant α. The dashed vertical
lines correspond to the spin 1 double-trace operators in the free theory. On the right: zoom of the
previous plot near the origin. There all the curves − 1

α

(
ν2 +

(
d
2 − 1

)2) for any α intersect B(1)(ν)
at the point iν = d

2 −1. The corresponding operator is the conserved current of the global symmetry.

Note that as we go from d > 2 to d < 2 the conserved current poles in the upper- and
lower-half ν plain cross the integration contour on the real ν axis, as illustrated in figure 4.
As a result to ensure continuity in d the contour needs to be changed by adding circles
surrounding these two poles, similarly to what is done for scalar AdS propagators with
alternate boundary conditions. This is related to the fact that the two boundary modes of
the vector field in AdS

Aµ ∼
z→0

zd−2 e2 jµ + aµ + . . . , (4.2)

exchange dominance as we go from d > 2 to d < 2. Here we are using Poincaré coordinates
(z, xµ), µ = 1, . . . , d, with boundary at z = 0, jµ denotes the boundary conserved current and
aµ the boundary gauge field. The dots denote subleading contributions from descendants,
and also from higher dimensional operators when the gauge field is coupled to matter. The
Dirichlet boundary condition sets aµ = 0.

The contribution from the piece of the contour surrounding the pole naively requires
evaluating Ω(1)

ν MN at ν = i(d
2 − 1), however the harmonic function itself is singular there, it

has a single pole. One should then evaluate the residue at the resulting double pole, but
alternatively we observe that the residue of Ω(1)

ν MN is longitudinal, namely

Ω(1)
ν MN (X,Y ) ∼

ν→i( d
2−1)

∇X
M∇Y

NF (u)
ν − i(d

2 − 1)
+ Ω̄(1)

MN (X,Y ) . (4.3)

Recalling that the ν integral computes the two-point function of the gauge field, thanks to
gauge-invariance we can ignore the longitudinal piece and simply consider the finite term
denoted as Ω̄(1)

MN (X,Y ).

4.2 d = 2: IR divergence and breaking of conformal invariance

In the limit d → 2 the poles associated to the conserved current pinch the contour, see
figure 4, making the propagator of the photon with Dirichlet boundary condition singular
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d < 2

Figure 4. Poles (crosses) and integration contour (red curve) of the spectral representation of
the photon propagator in the complex ν plane. The poles at ±ν∗

n gives the finite coupling version
of the double-trace operators arising from the matter fields. The poles at ±i(d

2 − 1) give the
conserved current. For d < 2 they cross the contour and we need to add to the contour two circles
surrounding them.

in AdS3. This singularity arises in the spectral representation of the photon propagator
from the behaviour of the ν integral in eq. (3.1) around ν = 0

∼
∫
dν

ν2
. (4.4)

The analogy between the ν integral and momentum space integrals in flat space suggests
the interpretation of this divergence as an IR divergence in the bulk of AdS. On the other
hand from the point of view of the boundary conformal theory this manifests like a UV
divergence and can be reabsorbed in a running coupling, which leads to a breaking of
conformal invariance.

We can understand the relation between this divergence and the running of the coupling
as follows: adding the marginal interaction on the boundary

δSboundary = κ0
2

∫
ddx ĵµĵ

µ , (4.5)

gives an additional contribution to the propagator of the gauge field, represented by the
diagram in figure 5. Using d ̸= 2 as a regulator, the contribution of this diagram is expected
to be proportional to the value of the harmonic function at the pole that is pinching the
contour, namely Ω̄(1)

MN (X,Y ) up to longitudinal terms, and therefore the pole 1
d−2 can be

absorbed by a renormalization of the coupling κ0 ∝ µd−2

d−2 . This in turn gives rise to a β
function for κ.

Instead of computing the diagram, a simple way to obtain this β function is by looking
at the boundary condition of the gauge field [47, 48] (similar results in the scalar case were
discussed earlier in [67, 68]). In d = 2 the boundary conserved current appears as the
coefficient of a logarithmic mode in the near boundary expansion of the gauge field

Aµ|d=2 ∼
z→0

log z e2 ĵµ + aµ + . . . . (4.6)
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2
jµj

µ

Figure 5. The correction to the propagator at leading order in the boundary current-current inter-
action. The wavy lines are bulk-to-boundary propagators, and the boundary point is integrated over.

Using dimreg and comparing (4.6) with (4.2) we see that the d = 2 current ĵµ is related to
d dimensional counterpart as

jµ = 1
d− 2 ĵµ +O(1) . (4.7)

The resulting pole in the near-boundary expansion must be reabsorbed by a re-definition of
the constant mode

aµ = −κ0 ĵµ , κ0 =
(

e2

d− 2 + κ(µ)
)
µ2−d . (4.8)

This mixed boundary condition corresponds to turning on the double-trace coupling
κ0
2 ĵµĵ

µ [68] which is classically marginal in d = 2.11 Here κ0 denotes the bare dim-
reg coupling, κ(µ) the renormalized coupling, and µ is the dimreg scale. We then obtain
the leading order β function for the coupling

0 = dκ0
d logµ ⇒ βκ = dκ

d logµ = −e2 +O(κ2, e4, e2κ) , (4.9)

which depends only on the bulk coupling and not on κ itself at leading order.
We can use the same logic to compute the β function of κ at leading order for small κ

and large Nf , at any value of α. The only difference is that the boundary OPE coefficient
e2 of ĵµ in the expansion of the gauge field gets now replaced by the coefficient of 1

ν2 in the
expansion around ν → 0 of the full propagator (3.6). In this way we get

βκ|large Nf
= − 1

Nf

α

1 + α
8π ((3− 2∆) + 2(∆− 1)2ψ(∆)) +O(κ2, N−2

f , N−1
f κ) . (4.10)

As a result, both in perturbation theory and at large Nf the Dirichlet boundary
condition in AdS3 in the Coulomb phase does not preserve the isometry and it does not

11To fix the normalization of the current-current coupling, one needs to consider the d-dimensional
boundary action in the presence of the source. With the normalization in (4.2) one finds that the coupling
between the source and the current is −

∫
ddx (d − 2) aµjµ which in the limit d → 2 gives −

∫
ddx aµĵµ.
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allow to define a set of boundary conformal correlator. It would be interesting to explore
the existence of fixed points for the coupling κ with some appropriate scaling of the coupling
with e2 or 1

Nf
. As the derivation did not use any detail of the matter sector, the existence

of this boundary running couplings is a generic phenomenon for 3d gauge theories in AdS,
and persists even for the pure gauge theory. An important exception is the case with a
Chern-Simons term in the Lagrangian.

5 Higgs phase in AdS

For m2 ≤ m2
c,2 the AdS effective potential has minimum with ϕa =

√
NfΦa ̸= 0 and with

vanishing mass-squared of the scalar fluctuations M2 = 0. This is the Higgs phase, in
which the gauge field gets a mass m2

A = 2e2Φ2, and the Nf − 1 massless scalar fluctuations
correspond to Goldstone bosons for the spontaneous breaking of the flavor symmetry.
We refer again to [27] for the discussion of the effective potential, we simply recall that
m2

c,1 < m2
c,2 and as a result in AdS there is a range of parameters in which the Coulomb

and the Higgs phase are both possible.
The Lagrangian for the Higgs phase in AdS is the same as the one in flat space in

eq. (2.16). The corresponding large Nf propagator of the gauge field is

⟨AM (X)AN (Y )⟩large Nf , Higgs phase

= 1
Nf

∫ +∞

−∞
dν

α

ν2 + (∆A − d
2)2 + αB(1)(ν)|∆=d

Ω(1)
ν MN (X,Y ) +∇X

M∇Y
NL(u) ,

(5.1)

where m2
A = (∆A − 1)(∆A −d+1). Goldstone bosons in AdS are associated to the existence

of a conformal manifold of boundary theories, on which the bulk global symmetry acts [27].
In this Higgs phase, a U(1) factor of the spontaneously broken symmetry is gauged, and
in the boundary conformal theory this means that the marginal operators are charged
under the would-be U(1) symmetry, which consequently is explicitly broken by the marginal
couplings. The current operator is therefore not protected anymore, and classically it would
get a scaling dimension ∆A above the unitarity bound ≥ d− 1.

The observables we will consider are the scaling dimensions of the spin 1 boundary
operators that are exchanged in the connected four-point of the Goldstone bosons πA, at
the leading order in the 1/Nf expansion. Equivalently, these are the operators that appear
in the boundary channel expansion of the bulk two-point function of the massive gauge
field. Setting the AdS scale L = 1, they depend on two parameters, the gauge coupling α
and the mass-squared m2

A, which we will trade with the scaling dimension ∆A. Unlike the
Coulomb phase, having generated a mass for the gauge field there is no IR divergence in
this phase, and there is no need to discuss d = 2 separately.

5.1 Spin 1 resonance in AdS

The spectrum of spin 1 operators is determined by the zeroes of the denominator of the
photon propagator

1
α

(
ν2 + (∆A − d

2)
2
)
+B(1)(ν)|∆=d = 0 . (5.2)
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i ⌫

Figure 6. Plot of B(1)(ν) (green line) on the negative imaginary ν axis, together with − 1
α (ν2 +

(∆A − d
2 )2) for α = 10 (orange curve) and α = 50 (blue curve) in units of the AdS radius, and

∆A = 8.5. We are in d = 2, i.e. AdS3. The intersections are highlighted with black dots, the
corresponding values of ν give the scaling dimensions of spin 1 operators via ∆ = d

2 + iν. The arrows
denote the direction of increasing coupling constant α. The dashed vertical lines correspond to the
spin 1 double-trace operators in the limit α → 0 with ∆A fixed. The red dot correspond to the
dimension ∆A of the non-conserved spin one operator associated to the massive vector classically.
There is no operator with this scaling dimension in the interacting theory.

We show the solutions {ν∗n} in figure 6. They determine the scaling dimensions of the
exchanged operators via ∆n = d

2 + iν∗n. Like in the Coulomb phase, the scaling dimensions
approach the ones of the spin 1 double trace operators ∆(0)

n = 2d+ 2n+ 1 in the limit of
small α, and increase monotonically as we increase α, without level crossing.

Besides the absence of the conserved current, we see a new feature in the spectrum of
the Higgs phase if we compare the anomalous dimensions ∆n −∆(0)

n in the two regimes
∆(0)

n < ∆A and > ∆A. Note that contrarily to the classical expectation, in the interacting
theory there is no spin 1 operator with dimension ∆A, due to the resummation of the
bubble. As proposed in [12] the quantity

δl=1(n) =
π

2
(
∆(0)

n −∆n

)
, (5.3)

is related in the flat space limit to the spin 1 phase shift δl=1(s) in the scattering amplitude
of the pions (the relation between n and s involves a certain average over a window of
the discrete values of n centered around the value such that ∆(0)

n ∼
√
s, see [12] for the

precise formulation of the flat space limit). The feature in δl=1(n) displayed in figure 7
when ∆(0)

n ∼ ∆A is the AdS avatar of the existence of a resonance in flat space, which is
characterized by a similar step behaviour of δl=1(s) around s ∼ m2

A.

6 Conformal point

Let us now consider the limit in which λ and α are sent to +∞, and the mass-squared of the
charged scalars is fine-tuned to have bulk conformal symmetry. Tuning the mass-squared is
equivalent to fixing a particular value for the scaling dimension ∆ of the boundary charged
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Figure 7. The black dots are the values of (5.3), related to the anomalous dimension of the n-th
double-trace operator, as a function of n at finite coupling in the Higgs phase. The dashed line is
the a fit with a Breit-Wigner phase shift, i.e. Arg

(
−1

n−x+iy

)
. Both plots are for d = 2, i.e. AdS3 and

the value of the parameters ∆A and α, as well as of the fitted parameters x and y, are indicated
under each panel. Note that as expected the resonance broadens as the coupling α increases.

operator, so the first question to ask is what value of ∆, if any, gives rise to conformal
symmetry in the bulk. Note that, unlike in flat space, the correlation length is always
finite in AdS, i.e. the correlation functions always decay exponentially as a function of the
large geodesic distance [1], and there is no symmetry enhancement, so it is more subtle to
detect the conformal point. Nevertheless, there are some important consequences of the
bulk conformal symmetry: up to a Weyl rescaling the theory in AdS becomes equivalent
to a conformal boundary condition for the CFT on a half flat-space (at least this is the
case if also the boundary condition preserves conformal symmetry, more on this below). As
a result there is a convergent bulk OPE expansion for correlation functions, and among
the boundary operators there is a displacement operator with protected scaling dimension
D = d+ 1.

In similar setups, a criterion to detect the conformal value of a free parameter ∆ from
the two-point function ⟨OO⟩ of a bulk operator O was proposed in [27]. It uses the fact
that the bulk OPE expansion of the two-point function of identical operators contains
the identity, and this contribution to the bulk OPE is simply a power law ζ−∆O of the
chordal distance squared ζ that is going to zero. In a massive theory this leading power is
generically accompanied by subleading integer shifted “pseudo-descendant” powers ζ−∆O+k,
with k ∈ N, but in a CFT, barring the existence of other primary operators of integer
dimension k, these powers must be absent. It was found in examples that there exists a
value of ∆ setting to zero simultaneously the coefficients of all of these powers, and this
determines the conformal value. This criterion can be also implemented in ν space, i.e.
from the spectral representation of the two-point function: in this case one requires that the
expansion at large ν matches the expansion of the spectral representation of the power-law
ζ−∆O , given by [27]

ζ̂−∆O(ν) = (4π)
d+1

2
Γ(d+1

2 −∆O)
4∆OΓ(∆O)

Γ(−d
2 +∆O ± iν)
Γ(12 ± iν)

. (6.1)
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Applying this criterion to the bulk two-point function of the operator Φ∗Φ (or equiva-
lently, the Hubbard-Stratonovich field σ) in sQED at leading order at large Nf , the resulting
value of ∆ will be identical to the one found in the O(N) model, simply because at this
order this two-point function is not affected by the gauge interactions. Therefore one finds
that in d = 2 the value is ∆ = 1 [27]. More generally for any dimension 1 < d < 3 we know
from the study of the O(N) BCFT at large N in flat space [69–71] that the conformal value
is ∆ = d− 1. We can then plug this value in the spectral representation of the large Nf

two-point function of the bulk gauge field, which in this limit becomes simply

⟨AM (X)AN (Y )⟩large Nf , conformal point

= 1
Nf

∫ +∞

−∞
dν

1
B(1)(ν)|∆=d−1

Ω(1)
ν MN (X,Y ) +∇X

M∇Y
NL(u) ,

(6.2)

and read-off the spectrum of spin 1 boundary operators appearing in the boundary OPE
of the gauge field from the poles of (B(1)(ν)|∆=d−1)−1 and also their bulk-to-boundary
OPE coefficients squared from the residues. In general d we cannot find these values
analytically, but for any specific d their numerical values can be extracted from the explicit
expression (3.27), and one can check the positivity of the squared OPE coefficients.

At the integer value d = 2, i.e. AdS3, the bubble function evaluated at ∆ = 1 simplifies to

B(1)(ν)|d=2,∆=1 =
ν3 coth

(
πν
2
)

16(ν2 + 1) , (6.3)

which, besides the double zero at ν = 0, has single zeroes at νk,± = ±i(2k + 1), with
k ∈ N and k ≥ 1, giving boundary operators of dimension ∆k = 2k + 2. The corresponding
residues are

2πiResνk,+

[
(B(1)(ν)|d=2,∆=1)−1

]
= 256k(k + 1)

(2k + 1)3 ≥ 0 . (6.4)

However in this case, as we have explained in section 4.2, the double pole at ν = 0 and the
associated divergence in the integral representation of the propagator imply the existence
of a spin one operator of dimension 1 in the boundary spectrum, whose scalar bilinear is
classically marginal and breaks conformal invariance.12 Note that the operator giving rise
to the boundary running coupling in the deep IR α→ ∞ is not simply the boundary mode
of the gauge field which is visible at weak coupling: recall that the boundary current is
related to the bulk gauge field by Aµ ∼

z→0
e2jµ log z, therefore when we take e2 → ∞ to

reach the IR jµ is set to 0. Instead it is an operator from the matter sector that mixes
with the gauge field at strong coupling, and that is why its properties are controlled by the
bubble function.

Because of this, we cannot use Weyl rescaling to flat space and we fail to construct a
conformal boundary condition for the IR fixed point of sQED with a Dirichlet boundary
condition for the gauge field in AdS3. Note that this does not exclude the possibility that
in flat space we might be able to define a conformal boundary condition for the IR fixed
point of 3d gauge theories by starting the RG flow with a Dirichlet condition for the gauge

12It makes sense to talk about the bilinear of the operator and to sum up the scaling dimensions because
we are working at large Nf .
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field in the UV, because AdS and flat space with a boundary are not equivalent along the
RG flow. It would be interesting to explore this question purely in flat space, for instance
using the large Nf expansion as a computational tool.

7 Outlook

We conclude by mentioning some possible future directions:

• The study of strongly coupled abelian gauge theories in AdS can be extended by
considering coupling to fermionic matter and/or including also a Chern-Simons term
for the gauge field in AdS3. The fermionic theory also has an interesting phase diagram
in AdS3 which can be obtained by varying the parity breaking but flavor-symmetry
preserving mass term (or, alternatively, the parity preserving but flavor-symmetry
breaking one). At large Nf , by computing the fermionic current-current bubble
diagram one could readily study the spectrum of operators appearing in the four-point
function of the fermionic boundary operators in these phases. Note that in the massive
parity-breaking phases a Chern-Simons term for the gauge field would be generated,
curing the IR divergence in the photon propagator with Dirichlet condition;

• Considering purely a Chern-Simons kinetic term for the gauge field, it would be
interesting to study the boundary correlation functions for Chern-Simons matter
theory, and to try to elucidate the unusual properties under crossing symmetry of
the scattering of anyons [72–74] from the point of view of the boundary conformal
correlators;

• Scattering amplitudes of charged particles in abelian gauge theories in flat space
have IR divergences in D ≤ 4. A direction for the future is to understand the AdS
counterpart of the inclusive observables that give finite results, using the behavior
in the flat-space limit as a diagnostic of the IR properties, see [19, 75] for work in
this direction. In particular one could compute the 1 loop diagrams in AdS that
correspond to the IR divergent amplitude in flat space, and study their behavior in
the flat-space limit to look for an appropriate prescription that gives a finite result.
The IR divergences can also be studied at large Nf and finite coupling, by computing
at next-to-leading order in the 1/Nf expansion;

• It would be interesting to try to apply bootstrap techniques to the boundary correlators
of gauge theories in AdS. An important problem in this direction is to understand
what are the minimal set of assumptions that allow to single out a particular gauge
theory. A nice feature of the Dirichlet boundary condition is that the gauge group
becomes a global symmetry at the boundary and therefore is visible in the conformal
bootstrap. A natural target in this case is the four-point function of the non-abelian
currents, see [76] for recent numerical progress on this problem. Even for a fixed gauge
group and matter content, in this setup one always finds not just a single conformal
theory but rather a continuous family of them parametrized by the dimensionless
combination of the gauge coupling and the AdS radius. Therefore important inputs
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for the bootstrap problem can come from the regime of weak coupling where the data
of the conformal theory can be reliably computed in perturbation theory.

• It would be interesting to obtain explicit position-space expressions for loop diagrams
with gauge fields. For this, one can use similar techniques to those obtained in [77, 78]
for scalar and fermionic diagrams. Presumably there will be various relations between
the spinning diagrams and the scalar diagrams.
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A AdS spectral representation for spin 1

A.1 Propagator and harmonic function

To make the presentation self-contained, here we review the definition of the spin 1 harmonic
function and the spectral representation of spin 1 propagators from [45].

We can decompose any two-point function of spin-1 operators as

F (X1, X2;W1,W2) = (W1 ·W2)F0(u) + (W1 ·X2) (W2 ·X1)F1(u) , (A.1)

where X1,2 satisfying X2
1 = X2

2 = −1, X0
1,2 > 0 are embedding coordinates for points in

AdSd+1, and W1,2 satisfying W 2
1,2 = W1 ·X1 = W2 ·X2 = 0 are auxiliary vectors used to

keep track of the possible structures of the indices. For more details about embedding
coordinates see [45], whose conventions we adopt here. The argument of the coefficient
functions is u = (X1 − X2)2/2. In any coordinate system xµ the two structures can be
rewritten using the expression of the chordal distance in that coordinate system, and the
substitutions (W1 ·W2) → − ∂2u

∂x
µ1
1 ∂x

µ2
2

and (W1 ·X2) (W2 ·X1) → ∂u
∂x

µ1
1

∂u
∂x

µ2
2

.
For a massive spin 1 Proca field with m2 = (∆− 1)(∆− d+ 1) the propagator G∆,1

has the following coefficient functions

(G∆,1)0 (u) = (d−∆)g(u)− 1 + u

u
h(u),

(G∆,1)1 (u) =
(1 + u)(d−∆)

u(2 + u) g(u)− d+ (1 + u)2
u2(2 + u) h(u) .

(A.2)
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where

g(u) = N (2u)−∆
2 F1

(
∆, 1− d+ 2∆

2 , 1− d+ 2∆,−2
u

)
,

h(u) = N (2u)−∆
2 F1

(
∆+ 1, 1− d+ 2∆

2 , 1− d+ 2∆,−2
u

)
,

N = Γ(∆ + 1)
2πd/2(d− 1−∆)(∆− 1)Γ

(
∆+ 1− d

2

) .
(A.3)

This propagator solves the equation

(−∇2
1 +m2 − d)G∆,1(X1, X2;W1,W2) = (W1 ·W2)δd+1(X1, X2) ,

(K1 · ∇1)G∆,1(X1, X2;W1,W2) = 0 .
(A.4)

Near the AdS boundary it satisfies a Dirichlet-type of boundary condition, namely setting
X2 = λP2 + O(λ−1) with P 2

2 = 0 the propagator scales like λ−∆ at large λ. This is the
boundary condition corresponding to the existence of a boundary operator of dimension ∆
in the bulk-to-boundary OPE of the vector. Taking the limit and dividing by λ−∆ one gets
the bulk-to-boundary propagator

K∆,1(X1, P2;W1, Z2) = (d− 1−∆)N (−2X1 · P2)(W1 · Z2) + 2(W1 · P2)(Z2 ·X2)
(−2X1 · P2)∆+1 . (A.5)

The spin 1 harmonic function can be defined in terms of the Proca propagator as

Ω(1)
ν (X1, X2;W1,W2) =

iν

2π
(
G d

2+iν,1 (X1, X2;W1,W2)−G d
2−iν,1 (X1, X2;W1,W2)

)
.

(A.6)
The coefficient functions for Ω(1)

ν can be written in the following form that makes manifest
the absence of singularities at u = 0

(Ω(1)
ν )0(u) =

ν sinh(πν)
(
d2 + 4ν2

)
Γ
(

d
2 − 1 + iν

)
Γ
(

d
2 − 1− iν

)
2d+4π

d+3
2 Γ

(
d+3
2

)
[
(d+ 1) 2F1

(
d
2 − iν, d

2 + iν; d+1
2 ;−u

2

)
−(u+ 1) 2F1

(
d
2 + 1− iν, d

2 + 1 + iν; d+3
2 ;−u

2

)]
,

(Ω(1)
ν )1(u) =

ν sinh(πν)
(
d2 + 4ν2

)
Γ
(

d
2 − 1 + iν

)
Γ
(

d
2 − 1− iν

)
2d+4π

d+3
2 Γ

(
d+3
2

)
u(2 + u)[

(d+ 1)(1 + u) 2F1
(

d
2 − iν, d

2 + iν; d+1
2 ;−u

2

)
−(d+ (1 + u)2) 2F1

(
d
2 + 1− iν, d

2 + 1 + iν; d+3
2 ;−u

2

)]
.

(A.7)

It is an eigenvector of the spin 1 Laplacian and transverse (i.e. divergence free)

−∇2
1Ω(1)

ν =
(

d2

4 + ν2 + 1
)
Ω(1)

ν ,

(K1 · ∇1)Ω(1)
ν = 0 .

(A.8)
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The eigenvalues are labeled by ν > 0 but it is convenient to think of Ω(1)
ν as an even function

of ν ∈ R. It admits the so-called split representation in terms of integral of bulk-to-boundary
propagators

Ω(1)
ν (X1, X2;W1,W2)

= ν2

π(d
2 − 1)

∫
∂
dP K d

2+iν,1 (X1, P ;W1, DZ) K d
2−iν,1 (X2, P ;W2, Z) .

(A.9)

Moreover the harmonic function satisfies the following orthogonality property under
convolutions

1
d−1
2

∫
AdSd+1

dd+1X3Ω(1)
ν′ (X1, X3;W1,K3) Ω(1)

ν (X3, X2;W3,W2)

= δ (ν − ν ′) + δ (ν + ν ′)
2 Ω(1)

ν (X1, X2;W1,W2) ,
(A.10)

and completeness relation∫ +∞

−∞
dν Ω(1)

ν (X1, X2;W1,W2) = (W1 ·W2)δd+1(X1, X2)

− (W1 · ∇1)(W2 · ∇2)
∫ +∞

−∞
dν

1
ν2 + d2

4
Ω(0)

ν (X1, X2) .

(A.11)

Here Ω(0)
ν is the scalar harmonic function, see e.g. the appendix B of [27] and refer-

ences therein.

A.2 Spin 1 spectral representation

We can use the spin 1 and spin 0 harmonic functions to decompose the two-point function
of a spin 1 operator as follows

F (X1, X2;W1,W2) =
∫ +∞

−∞
dν F̃⊥(ν) Ω(1)

ν (X1, X2;W1,W2)

+ (W1 · ∇1)(W2 · ∇2)
∫ +∞

−∞
dν F̃L(ν) Ω(0)

ν (X,Y ) .
(A.12)

Therefore we can trade the function F with two functions of ν, the coefficient F̃⊥(ν) of the
transverse structure, and the coefficient F̃L(ν) of the longitudinal structure.

As a first example, let us consider the Proca propagator G∆,1 for ∆ > d
2 . Then we

have [45]

G̃∆,1
⊥
(ν) = 1

ν2 + (∆− d
2)2

,

G̃∆,1
L
(ν) = 1

(∆− 1)(∆− d+ 1)
1

ν2 + d2

4
.

(A.13)

This can be checked by performing explicitly the integral over the ν variable: using (A.6)
to rewrite Ω(1)

ν , we can close the contour with an arc at infinity in the upper half-plane for
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the G d
2−iν term, and in the lower half plane for the G d

2+iν term. The contributions of the

poles at ν = ±i(∆− d
2) of G̃∆,1

⊥
(ν) sum up to give precisely G∆,1. In addition, there are

spurious contributions from the poles of the function G d
2∓iν at ν = ±i(d

2 − 1), which are

canceled from the contributions of the poles at ν = ±id
2 of the longitudinal term G̃∆,1

L
(ν).

Consider now the propagator Gd−1,1 for the massless vector in the Rξ gauge with
Dirichlet-type boundary conditions, giving a conserved current on the boundary. In this
case we have

G̃d−1,1
⊥
(ν) = 1

ν2 + (d
2 − 1)2

,

G̃d−1,1
L
(ν) = ξ

(ν2 + d2

4 )2
.

(A.14)

Note that the transverse part is precisely the limit ∆ → d − 1 of the transverse part of
the Proca propagator. The longitudinal term instead is given by ξ times the square of the
ν-space propagator of a massless scalar field. One can explicitly check that this expression
for Gd−1,1 satisfies the correct equation(

−∇2
1 − d+ (1− 1

ξ )
1

d−1
2

(W1 · ∇1)(K1 · ∇1)
)
Gd−1,1(X1, X2;W1,W2)

= (W1 ·W2)δd+1(X1, X2) ,
(A.15)

by using that both Ω(1)
ν and Ω(0)

ν are eigenvalues of the Laplacian, that Ω(1)
ν is transverse,

and the completeness relation (A.11).
In order to compute the exact propagator of the gauge field in the main text, we

adopt the spectral representation for the 1PI correction to the propagator, which can be
understood as the two-point correlator of the conserved current in the free theory. Motivated
by this, let us now consider the two-point function of a conserved current in AdS

⟨J (X1,W1) J (X2,W2)⟩ ≡ FJ (X1, X2;W1,W2) . (A.16)

Being a transverse function, its spectral representation will be in terms of a single function
of ν which we will just call F̃J(ν), namely

FJ(X1, X2;W1,W2) =
∫ +∞

−∞
dν F̃J(ν) Ω(1)

ν (X1, X2;W1,W2) . (A.17)

Thanks to (A.10), this integral transform maps convolutions to products

˜FJ ⋆ FJ ′(ν) = F̃J(ν)F̃J ′(ν) , (A.18)

where

(FJ ⋆ FJ ′)(X1, X2;W1,W2)

≡ 1
d−1
2

∫
AdSd+1

dd+1X3 FJ(X1, X3;W1,K3)FJ ′(X3, X2;W3,W2) .
(A.19)
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A.2.1 Inversion formula

Let us show how to obtain the function F̃J(ν) from FJ , “inverting” the defining rela-
tion (A.17). Applying a convolution with Ω(1)

ν to both sides of the representation (A.17)
and using the relation (A.10) we get

1
d−1
2

∫
AdSd+1

dd+1X3Ω(1)
ν (X1, X3;W1,K3)FJ(X3, X2;W3,W2)

= F̃J(ν) Ω(1)
ν (X1, X2;W1,W2) .

(A.20)

Next we compute the contraction of the two indices of Ω(1)
ν and take the limit of coincident

points, obtaining
1

d−1
2

Ω(1)
ν (X1, X1;K1,W1) = Cν ,

Cν ≡
dν
(
d2 + 4ν2

)
sinh(πν)Γ

(
d
2 − 1 + iν

)
Γ
(

d
2 − 1− iν

)
(4π) d+3

2 Γ
(

d+1
2

) .

(A.21)

Applying this operator to both sides of (A.20) we obtain

F̃J(ν)

= 1
Cν

1(
d−1
2

)2 ∫
AdSd+1

dd+1X3Ω(1)
ν (X1, X2;K1,K2)FJ(X3, X1;W2,W1) . (A.22)

This is the desired expression of F̃J(ν) as an integral of the function FJ in position
space. If we plug in the above integral the expression of both Ω(1)

ν and FJ in the basis of
structures (A.1), we can rewrite the above integral just in terms of scalar quantities. The
result is

F̃J(ν) =
Vol

(
Sd
)

Cν

∫ +∞

0
du
√
g(u)

{(
d+ (1 + u)2

)
(Ω(1)

ν )0(u)(FJ)0(u)

− u(1 + u)(2 + u)
[
(Ω(1)

ν )1(u)(FJ)0(u) + (Ω(1)
ν )0(u)(FJ)0(u)

]
+u2(2 + u)2(Ω(1)

ν )1(u)(FJ)1(u)
}
,

(A.23)

where
√
g(u) = 1

2(u(2 + u)) d−1
2 and Vol

(
Sd
)
= 2π

d+1
2

Γ( d+1
2 ) .

A.3 Flat space limit

We now show how the spectral representation discussed above reduces to the Fourier
transform in the flat space limit. In order to do this we restore the dependence on the
radius L in the parametrization of the two-point function (A.1) by replacing u with the
dimensionless combination L−2u, and allowing for an overall power of L fixed by dimensional
analysis. Then in the limit L→ ∞ the decomposition (A.1) becomes

L−2α
(
− ∂u

∂xµ∂yν
F0
(
L−2u

)
+ L−2 ∂u

∂xµ

∂u

∂yν
F1
(
L−2u

))
−→

L→∞
δµνf0(u)− (x− y)µ(x− y)νf1(u) ,

(A.24)
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Here, 2α can be defined as the mass dimension of the function f0(u) in flat space. After
taking the limit we can identify u with (x − y)2/2. Equivalently we can write the limit
separately for the two component functions as

F0
(
L−2u

)
=

L→∞
L2α

(
f0(u) +O

(
L−2

))
,

F1
(
L−2u

)
=

L→∞
L2αL2

(
f1(u) +O

(
L−2

))
.

(A.25)

In flat space the constraint of transversality is most easily imposed in momentum space
and reads

δµνf0(u)−(x−y)µ(x−y)νf1(u)=
∫

dd+1p

(2π)d+1

(
−p2δµν+pµpν

)
h̃
(
p2
)
e−ip(x−y) , (A.26)

which in turn implies

h̃
(
p2
)
= − 1

p2

(
f̃0
(
p2
)
+ 2f̃ ′1

(
p2
))

= 4f̃ ′′1
(
p2
)
. (A.27)

The first of these two equalities can be seen simply as the definition of h̃
(
p2
)

in terms of
the Fourier transforms f̃0,1

(
p2
)

of f0,1(u), while the second expresses the constraint f0 and
f1 need to satisfy in order to ensure transversality. Note that the primes denote derivatives
w.r.t. the argument, namely p2. We can then write f̃0,1

(
p2
)

as a radial Fourier transform

f̃0,1
(
p2
)
=
(
p2
)− d−1

4 (2π)
d+1

2

∫ +∞

0
dr r

d+1
2 J d−1

2
(pr) f0,1 (u) (A.28)

where p ≡
√
p2, u = r2/2 and Jν is the Bessel function. Plugging in (A.27) we obtain an

expression for h̃
(
p2
)

as an integral of f0 and f1

h̃
(
p2
)
= −

(
p2
)− d+3

4 (2π)
d+1

2

∫ +∞

0
dr r

d+1
2

[
J d−1

2
(pr) f0 (u)−

r

p
J d+1

2
(pr) f1 (u)

]
.

(A.29)
Plugging in the inversion formula (A.23) the following identities for the asymptotic

behaviors of (Ω(1)
ν )0 and (Ω(1)

ν )1,13

L−d(Ω(1)
ν )0(L−2u)|ν=pL →

L→∞

(rp) d+1
2

2 d+3
2 π

d+1
2 rd

(
J d−1

2
(rp)− 1

rp
J d+1

2
(rp)

)
,

L−d−2(Ω(1)
ν )1(L−2u)|ν=pL →

L→∞

(rp) d+1
2

2 d+3
2 π

d+1
2 rd+2

(
J d−1

2
(rp)− d+ 1

rp
J d+1

2
(rp)

)
,

(A.30)

together with the limits (A.25), and comparing with (A.29), we get

L−2α+d+1F̃J(ν)|ν=pL →
L→∞

p2h̃
(
p2
)
. (A.31)

This is the desired relation between the spectral representation and the Fourier transform
in the flat space limit.

13These identities can be derived starting from the integral expression of the hypergeometric functions
entering (Ω(1)

ν )0 and (Ω(1)
ν )1, along the same lines of the calculation needed for the flat space limit of the

scalar spectral representation in [27].
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